
Learning Representations of Web Entities for Entity Resolution

Luciano Barbosa

Centro de Informatica
Universidade Federal de Pernambuco

Av. Jornalista Anbal Fernandes, s/n

Recife, Pernambuco, 50740-560, Brazil
luciano@cin.ufpe.br

Abstract

Purpose - Matching instances of the same entity, a task known as entity

resolution, is a key step in the process of data integration. This paper

proposes a deep learning network that learns different representations of

Web entities for entity resolution.

Design/Methodology/Approach - To match Web entities, the pro-

posed network learns the following representations of entities: (1) embed-

dings, which are vector representations of the words in the entities in a

low-dimensional space; (2) convolutional vectors from a convolutional layer,

which captures short-distance patterns in word sequences in the entities;

and (3) bag-of-word vectors, created by a bow layer that learns weights

for words in the vocabulary based on the task at hand. Given a pair of

entities, the similarity between their learned representations are used as

features to a binary classifier that identifies a possible match. In addition

to those features, the classifier also uses a modification of idf (inverse doc-

ument frequency) for pairs, which identifies discriminative words in pairs

of entities.

Findings - The proposed approach was evaluated in 2 commercial and 2

academic entity-resolution benchmarking datasets. The results have shown

the proposed strategy outperforms previous approaches in the commercial

datasets, which are more challenging, and have similar results to its com-

petitors in the academic datasets.

Originality/value - No previous work has used a single deep-learning

framework to learn different representations of Web entities for entity res-

olution.

Keywords entity resolution, representation learning, Web entity

Paper type Research paper

1

2

1. Introduction

The Web contains information about many real-world entities. For instance, infor-

mation about products can be found on retail websites (e.g. amazon.com), descrip-

tions about movies are present on movie sites (e.g., imdb.com), and information

about entities in general is available on Wikipedia. Entity-centric data is currently

used in a wide range of applications. Search engines use this data to augment their

search results as a response to a queried entity (e.g., movies and actors). Entities

and relations extracted from Web structured data are also used to build knowl-

edge bases (Cafarella et al., 2011). Moreover, the entity-centric data itself has been

made available on data-as-a-service market sitesa. To take advantage of such useful

content, many approaches have been proposed to collect (Qiu et al., 2015; Meusel

et al., 2014; He et al., 2013), extract (Gupta and Sarawagi, 2009; Cafarella et al.,

2008) and integrate (Madhavan et al., 2007) Web entity-centric data.

Entity resolution, also known as entity matching or record linkage, is a key

step in the process of entity-centric data integration. Its goal is to identify enti-

ties that represent the same real-world object. To perform this task effectively, an

entity-resolution approach must be able to deal with cases in which a same entity

is represented in different ways, or distinct entities are presented in similar ways.

Figures 1 and 2 illustrate those cases. In Figure 1, a same entity (a product in

this example) has distinct representations on the websites abt.com and buy.com:

on buy.com (Figure 1(a)), the product description is much concise than on abt.com

(Figure 1(b)). In Figure 2, different entities, which are related products, are rep-

resented with similar content on two distinct websites (amazon.com and Google

Shopping).

The problem of entity resolution has been extensively studied (Christen, 2008;

Bhattacharya and Getoor, 2006; Firmani et al., 2016). A typical workflow of entity

matching has two main steps (Christophides et al., 2015): blocking (Efthymiou

et al., 2015) and matching (Köpcke et al., 2010). The blocking step is responsible to

reduce the number of comparisons, and the matching step decides whether a given

pair of entities represents the same entity.

For the matching phase in particular, there are two main classes of solutions

according to (Köpcke et al., 2010): the non-learning-based and the learning-based

matching approaches. Usually, the non-learning-based approaches rely on off-the-

shelf similarity measures to compose the matching function. Entities with a simi-

larity match higher than a given threshold are considered as equivalent. Learning-

based techniques for entity resolution, on the other hand, provide different types

of similarity measures between the input entities as features to a machine learning

classifier that checks the existence of matches.

This paper presents a learning-based method that learns not only the most

suitable weights for the features to detect entity matches, as previous approaches,

aExamples of data market sites: https://www.factual.com/ and http://www.xignite.com/

3

(a) Entity from Abt

(b) Entity from Buy

Fig. 1. Representations of the same entity in two distinct sites.

(a) Entity from Amazon

(b) Entity from Google Shopping

Fig. 2. Two different entities with similar content.

but also the best weights for the representations of those entities that minimize the

training error in a single deep learning network. To perform entity matching, the

network uses specific layers, namely embedding, convolutional and a modification

of bag of words, to learn new representations of the original entity’s representation.

The similarity between the learned representations of entities are then used as

features to a classifier. In addition to those features, a modification of idf weighting

scheme for pairs is also added to the set of the classifier’s features.

The strategy is evaluated on commercial and academic datasets for entity resolu-

tion. The results have shown that, on the more challenging datasets (the commercial

ones), the approach outperformed previous solutions to this problem and, on the

academic ones, it obtained similar results to its competitors.

The remaining of this paper is organized as follows. Section 2 presents the pro-

posed solution for entity resolution. The experimental evaluation is presented in

Section 3. Finally, The related work is discussed in Section 4 and Section 5 con-

cludes and gives some possible future directions for this work.

2. Proposed Network

Figure 3 presents an overview of the deep-learning network for entity resolution pro-

posed in this work. Given a pair of entities e1 and e2, the network infers whether

e1 and e2 represent the same entity based on their similarity on different rep-

4

Fig. 3. The deep-learning network for entity resolution.

resentations: embeddings semb(e1, e2); convolution scnn(e1, e2); and bag of words

sbow(e1, e2), which are provided as features to a softmax classifier. The network

also uses, as additional features, a representation of the pair based on the frequency

of their words: pair-idf(e1, e2). This section describes in details the components

that compose the network.

2.1. Embeddings

Word embeddings (Mikolov et al., 2013) is a dimensionality reduction technique

that captures syntactic and semantic regularities of a word into a geometric space

(embedding space), represented in a low-dimensional vector (e.g., 100 or 200 dimen-

sions). The weight of each dimension can be learned during training and initialized

from vectors pre-trained on a corpus.

Given a pair of entities e1 and e2, the network applies a pair of embedding

layers to produce the embedding vectors of the words for each entity: emb(e1) and

emb(e2). The network then computes the similarity of each vector in emb(e1) with

each vector in emb(e2) and provides those values as features (semb(e1, e2) Figure 3)

5

to the softmax classifier.

2.2. CNN

Convolutional neural network has been successfully applied in different text-related

tasks such as name entity recognition (Collobert et al., 2011) and sentiment anal-

ysis (Kim, 2014). The convolution operation learns local patterns in the text by

taking into account the proximity (or context) of the words.

Given a sequence of vectors E, representing the embedding vectors of the words

in an entity, the convolutional layer applies a filter f ∈ Rk×d to each sequence of

k vectors in E, producing a set of n − (k − 1) convolutional vectors. For each k-

sequence of E, the convolution operation calculates the dot product between f and

a matrix X, where X is the concatenation of k embedding vectors from the words

in the k-sequence of E, plus a bias term b. The result of the dot product is then

applied to a non-linear function h (e.g. hyperbolic tangent), creating a convolution

vector v of size |d| :

v = h(f ·X + b) (1)

The network proposed in this work applies the convolutional layer on the embed-

ding representation of the pair of input entities, emb(e1) and emb(e2), producing

two set of convolutional vectors: cnn(e1) and cnn(e2). The network then computes

the similarity of each vector in cnn(e1) with each vetor in cnn(e2), and those sim-

ilarities are used as features (scnn(e1, e2) in Figure 3) by the softmax classifier. In

the network implementation, two convolutional layers are used with different values

of k: 3 and 5b.

2.3. BOW Layer

The bow layer (dos Santos et al., 2015) is inspired on the tfidf weighting

scheme (Baeza-Yates et al., 1999), widely used in Information Retrieval. In the

original tfidf , the idf of a term t is the inverse (or log of the inverse) of the doc-

ument frequency of t in a given collection. This scheme gives higher weights to

discriminative words in a collection. In classification tasks, however, one might not

necessarily be interested in discriminative words in general but mainly for the task

at hand. Thus, in the bow layer, instead of having a fixed weight associated with a

word, the weight of a word is learned in the training process.

In the context of entity resolution, an entity e is represented by a bow vector:

bow(e) ∈ R|V |, whose size is the collection vocabulary |V |. The bow layer calculates

the weighted bow vector of e by performing an element-wise multiplication between

bow(e) and the weight vector W ∈ R|V |, which contains the learned weight of each

word in the vocabulary. The vector W can be randomly initialized or the idf of the

bDifferent convolutional strategies were tried in the experiments, for instance, adding a convolu-
tional layer on top of other, but they did not produce better results.

6

words in the collection can be used as initial weights. After computing the weighted

bow vectors of the pairs of the input entities, the bow layer calculates the similarity

between these vectors and add it to the feature set (sbow(e1, e2) in Figure 3) of the

classifier.

2.4. Pair-idf

Having a high overlap of words between two entities not necessarily indicates they

correspond to the same entity. Figure 2 illustrates an example in which two products

with similar descriptions represent different real-world objects.

Pair-idf is a weighting scheme that identifies discriminative words in pairs of

entities. More specifically, the pair-idf of a term t is the inverse of its frequency in

pairs of entities: 1/pf , where pf is the frequency of t in the pairs of the collection.

Terms that do not appear in pairs of the collection has pair-idf equals to 0.

In this solution, given a pair of entities e1 and e2, represented by their bow

vectors: bow(e1) and bow(e2), the network computes the pair-idf vector (pair-idf ∈
R|V |, where |V | is the vocabulary size) from the words in the intersection of bow(e1)

and bow(e2), and provides it as features to the classifier (pair-idf(e1, e2) in Figure 3).

2.5. Training

The output of the network is the class-membership probabilities provided by the

softmax of a given input x:

P (Y = i|x,W, b) =
eWix+b∑
j e

Wjx+b
(2)

where i is the index of a class, W is a matrix of weights and b is a bias term. The

optimal parameters of the network are learned by minimizing a loss function. In the

network, it is used the negative log-likelihood loss function:

L(X) = −
∑
x∈X

log(P (Y = y∗|x)) (3)

where X is the set of training examples x and P (Y = y∗|x) is the probability of x

belonging to the true class y∗ returned by the softmax function. The network uses

the stochastic optimization method Adam (Kingma and Adam, 2015) to minimize

the loss function with a learning rate of 10−6.

3. Experimental Evaluation

In this section, the effectiveness of the proposed solution is evaluated over real

datasets comparing it with previous approaches.

7

Dataset Attributes # Pairs Avg. Similarity

Between Matches

DBLP-ACM title, authors, venue, year 4949 0.98

DBLP-Scholar title, authors, venue, year 19140 0.89
Abt-Buy name, description, price 3382 0.59

Amazon-Google name, description, manufacturer, price 4017 0.62

Table 1. Description of the datasets used in the evaluation.

3.1. Experimental Setup

Datasets. The proposed strategy is assessed on 4 different datasets widely used to

evaluate entity-resolution approachesc:

• DBLP-ACM: entries of article references from DBLPd and ACMe.

• DBLP-Scholar: entries of article references from DBLP and Google

Scholarf .

• Abt-Buy: product descriptions from the sites Abtg and Buy.comh.

• Amazon-Google: product descriptions from the sites Amazon.comi and

Google Productsj.

Table 1 presents more details about the datasets. The dataset with the biggest

number of pairs was DBLP-Scholar with 19,140 pairs and the one with the smallest

number was Abt-Buy with 3,382 pairs. Table 1 also shows the average similarity

between matches for each dataset to have a sense how similar the matches (posi-

tive pairs) are in these datasets. As one can see in Table 1, the academic datasets

(DBLP-ACM and DBLP-Scholar) have high average similarities (0.98 and 0.89 re-

spectively) whereas the commercial ones (Abt-Buy and Amazon-Google) have much

smaller average similarity (0.59 and 0.62 respectively). This might indicate that the

commercial datasets are more challenging for entity resolution.

To prepare the datasets for the experiments, the following steps were executed.

First, each entity was tokenized using the Stanford Tokenizer (Klein and Manning,

2003). Second, for each dataset, 70% of the data was randomly selected for training

and 30% for test. For the negative examples, the blocking strategy was to consider

only pairs whose cosine similarity was higher than a given threshold (0.4 in this

evaluation) because: (1) this strategy removes trivial non-matching entity pairs; (2)

and it is very costly to perform the evaluation over the Cartesian product of all

cThe datasets were downloaded from Database Group Leipzig web site: https://dbs.uni-
leipzig.de/en/
dhttp://dblp.uni-trier.de/
ehttp://dl.acm.org/
fhttps://scholar.google.com/
ghttp://www.abt.com/
hhttp://www.rakuten.com/
ihttps://www.amazon.com/
jhttps://www.google.com/shopping/

8

entity pairs of each dataset. All attributes of the entries were considered in the

experiments.

Entity-Resolution Strategies. The following strategies were executed for evalu-

ation:

• Cosine: the cosine similarity (Baeza-Yates et al., 1999) between pair of

entities is one of the baselines. To consider a match, the similarity threshold

was varied from 0.4 to 0.9.

• Kenter: Kenter et al. (Kenter and de Rijke, 2015) propose a strategy to cal-

culate the similarity between texts using so-called semantic features. These

features are extracted from word embeddings. Examples of features are: a

modification of the BM25 algorithm (Robertson and Walker, 1994) that

uses the cosine similarity between the word embeddings of the sentences

to compose the BM25 formula; and the euclidean distance and cosine sim-

ilarity of the mean embedding vector that represents E1 and E2. These

features are then used by an SVM classifier to predict whether a pair of

text has the same meaning (paraphrase), in this context, whether a pair

refers to the same entity.

• Febrl (Freely extensible biomedical record linkage)k: Febrl is a tool that im-

plements different steps of the record linkage process. For entity matching,

it uses machine learning algorithms that learn a model from a set of fea-

tures computed using similarity measures. For this evaluation, Support Vec-

tor Machine (SVM) was used as learning algorithm and 3 features: q gram,

tokenset and winkler. The q gram similarity measures the normalized inter-

section of q grams between two strings (q grams are the substrings of size q

in a string). The tokenset similarity calculates the normalized intersection

of the tokens between two strings. The winkler (or Jaro-Winkler) (Win-

kler, 1990) similarity is a variant of string edit similarity suitable for entity

resolution. For more details, see (Christen, 2008).

• Dedupel: similar to Febrl, Dedupe (Bilenko and Mooney, 2003) (also known

as Marlin) is an approach that uses machine learning for entity resolu-

tion. Dedupe performs 3 steps: blocking, matching and grouping. Since

the dataset has already been blocked in the experimental setup mentioned

previously, this step was not executed on Dedupe. The features used in

the matching step are the affine gap penalty string distance, also known

as the Smith-Waterman algorithm (Smith and Waterman, 1981), between

the words of each entity pair. The logistic regression algorithm is used to

build a model from these features. The output from the logistic model is

the matching probability of a given pair. To make the decision of matches

khttps://github.com/fgregg/febrl
lhttps://github.com/dedupeio/dedupe

9

based on this probability is necessary to define a decision threshold. In this

evaluation, this threshold was varied from 0.1 and 0.9, and only reported

the best result for each datasetm. The final step of Dedupe is grouping. Its

goal is to cluster groups composed by the same entities. Dedupe does that

by using a hierarchical clustering with centroid linkage.

• Deep learning network: The deep learning approach proposed in this work

was implemented using Keras (Chollet, 2015). For training the network,

it was used a minibatch of 10 in 3 epochs. To assess the contribution of

each component of the solution, the following network configurations were

executed:

– Emb: in this configuration, the feature set used is the vector contain-

ing the similarities of the Cartesian product between the embeddings

of all terms in the pair of entities provided as input. The number of

dimensions of the embeddings was set to 100, and used pre-trained em-

beddings trained on the English Wikipedia using word2vec (Mikolov

et al., 2013). The dot product was used as similarity measure.

– CNN: this configuration uses the convolutional layer on the top of the

embedding layer to produce convolutional vectors. The feature set is

the catersian product of the similarities of convolutional vectors of the

pairs of entities. The similarity measure used is the dot product. In

this configuration, two feature sets are provided to the sofmax layer:

the first one with a convolutional layer with window size equals to 3

and the second one with window size equals to 5.

– CNN+Emb: this configuration is the combination of CNN and Emb

mentioned before.

– CNN+Emb+Bow: in this configuration, the cosine similarity of the

bag-of-word representations of the pair of input entities provided by

the Bow layer is added to the feature set of CNN + Emb.

– CNN+Emb+Bow+Pair-Idf: this network adds to CNN +Emb+Bow

the pair-idf feature set.

3.2. Evaluation

Table 2 and 3 show the F-measure (or F-1 score) on the positive matches and the

overall accuracy for each approach for the 4 datasets. Overall, the deep learning

approach (CNN+Emb+Bow+ Pair-Idf) outperforms the baselines on the commer-

cial datasets (Abt-Buy and Amazon-Google) and obtains similar results to same

baselines on the academic ones (DBLP-ACM and DBLP-Scholar).

Regarding the ABT-Buy dataset, the network obtained an F-measure of 0.59 and

accuracy of 0.76, whereas the baseline with the highest F-measure was Dedupe with

mThe decision threshold for DBLP-ACM and DBLP-Scholar datasets was 0.5, and 0.3 for Abt-Buy
and Amazon-Google datasets

10

DBLP-ACM DBLP-Scholar

Accuracy F1 Accuracy F1

Cosine-0.4 0.47 0.62 0.33 0.44

Cosine-0.5 0.8 0.82 0.87 0.81

Cosine-0.6 0.92 0.92 0.92 0.86

Cosine 0.7 0.94 0.94 0.89 0.77

Cosine-0.8 0.87 0.85 0.82 0.53

Cosine-0.9 0.64 0.35 0.76 0.27

Kenter 0.95 0.95 0.94 0.89

Febrl 0.95 0.95 0.96 0.93

Dedupe 0.89 0.88 0.96 0.92

Emb 0.94 0.94 0.92 0.87

CNN 0.94 0.93 0.94 0.9

CNN+Emb 0.95 0.95 0.95 0.92

CNN+Emb+Bow 0.95 0.95 0.96 0.92

CNN+Emb+Bow+Pair-Idf 0.95 0.95 0.96 0.93

Table 2. Accuracy and F-1 score of all approaches for the academic datasets: DBLP-ACM and
DBLB-Scholar.

Abt-Buy Amazon-Google

Accuracy F1 Accuracy F1

Cosine-0.4 0.28 0.41 0.22 0.32

Cosine-0.5 0.67 0.51 0.54 0.34

Cosine-0.6 0.73 0.39 0.66 0.26

Cosine 0.7 0.69 0.16 0.68 0.16

Cosine-0.8 0.68 0.02 0.68 0.08

Cosine-0.9 0.67 0 0.67 0.01

Kenter 0.71 0.32 0.73 0.48

Febrl 0.69 0.12 0.49 0.54

Dedupe 0.6 0.53 0.48 0.48

Emb 0.69 0.4 0.75 0.57

CNN 0.71 0.51 0.77 0.59

CNN+Emb 0.71 0.51 0.77 0.64

CNN+Emb+Bow 0.74 0.57 0.78 0.66

CNN+Emb+Bow+Pair-Idf 0.76 0.59 0.79 0.68

Table 3. Accuracy and F-1 score of all approaches for the commercial datasets: Abt-Buy and

Amazon-Google.

0.53, and with the highest accuracy was Kenter with 0.71. On the Amazon-Google

dataset, the approach’s performance was also far superior than the baselines with

F-measure equals to 0.68 and accuracy equals to 0.79, whereas the best baselines

11

obtained F-measure=0.54 and accuracy=0.49 for Febrl, and F-measure=0.48 and

accuracy=0.73 for Kenter. If one considers the average similarity between matches

on a dataset as a measure of how challenging is a dataset for entity resolution, the

network obtains better results than the baselines in the more challenging datasets

for this task, the commercial ones, as Table 1 suggests.

As mentioned before, some baselines obtained similar results to the approach

for the academic datasets. For instance, both approaches, Febrl and Kenter, on the

DBLP-ACM dataset obtained accuracy equals to 0.95 and F1 equals to 0.95, and

on the DBLP-Scholar dataset, Febrl had an accuracy of 0.96 and F-measure of 0.93.

These are the same results the approach obtained on these two datasets. However,

as Table 1 indicates, finding the matches in those datasets does not seem to be hard

since the average cosine similarity of matches in the DBLP-ACM dataset is 0.98

and 0.89 for the DBLP-Scholar dataset, meaning that there is a great overlap of

words between pair matches, which are bibliographic citations in the case of these

two datasets.

Table 2 and Table 3 also show the results of the different combinations of the

network. In all 4 datasets, the results improved as more features were added to the

model. The improvements, however, were greater in the most challenging datasets:

the commercial ones. For instance, if one compares the F-measure values of Emb ver-

sus CNN+Emb+Bow+Pair-Idf on the Amazon-Google dataset, it improves 19.2%

and on the Abt-Buy dataset 47.5%, whereas for the DBLP-ACM dataset, the gain

in F-measure was 1% and the DBLP-Scholar 6%.

4. Related Work

In this section, it is discussed previous entity resolution approaches and deep learn-

ing strategies of metric learning.

4.1. Entity Resolution

There are two main classes of solutions for entity resolution (Köpcke et al., 2010):

the non-learning (Thor and Rahm, 2007; Benjelloun et al., 2009; Xiao et al., 2011)

and the learning-based match approaches (Bilenko and Mooney, 2003; Christen,

2008).

Usually, the non-learning based approaches rely on pre-defined similarity mea-

sures to compose the match function. Entities with a similarity match higher than

a given threshold are considered as equivalent. PPJoin+ (Xiao et al., 2011) pro-

poses a strategy to efficiently compute matches of pairs of records. Matches are

computed based on a similarity function passed as a parameter. Only pairs with

similarity higher than a given threshold (also a parameter) are considered matches.

In the same direction, SERF (Benjelloun et al., 2009) creates an efficient strategy

for entity resolution. For that, it considers previously matched pairs to avoid re-

dundant comparisons. The matchers (similarity functions) are considered as black

12

boxes. As opposed to those approaches, this work does not focus on efficiency of

entity resolution but how to compute the correct matches.

Another work (Efthymiou et al., 2017) proposes three non-learning based ap-

proaches to match entities present in Web tables to entities in knowledge bases. The

first approach uses the entity context in the Web tables to find the correspondent

entities in the knowledge base. The second one, the semantic embedding method,

represents the entities as distributed representations, created from the knowledge

base graph. A disambiguation graph is built from all candidates of a given entity

in the knowledge base and the weight of the edges is the cosine similarity between

the distributed representations of the entities. The entities with the highest values

of PageRank in this graph are selected. Finally, the third strategy takes into con-

sideration not only the instance information of the instances in the knowledge base

and web tables, but also their schemata. In our work, we have a different problem

setting: we are performing matching between entities in flat tables, not between

tables and knowledge bases. For this reason, as opposed to them, we can not rely

on the structure of knowledge bases to perform this task.

The learning-based approaches use pre-defined functions as features to a machine

learning classifier that combines them, assigning weights that minimize the error on

a given training data. FEBRL (Christen, 2008) is a framework that provides a set

of string similarity measures to be used as features by a Support Vector Machine

(SVM) classifier. Another learning-based strategy, Dedupe (Bilenko and Mooney,

2003), uses a logistic regression algorithm to perform entity resolution using fea-

tures such as the affinite gap penalty between strings. The experimental evaluation

(Section 3) shows the proposed strategy outperforms FEBRL and Dedupe in the

commercial datasets and have similar results in academic ones.

4.2. Deep Learning for Entity Matching

In their seminal work (Bromley et al., 1993), Bromley et al. proposed a neural

network architecture (so-called siamese network) for signature verification: from an

input with two signatures – the real one and the one to be verified – the network

outputs a distance measure. Signatures with distance lower than a threshold are

considered as authentic. The network is composed of two branches with shared

weights of stacks of two convolutional and averaging layers that transform the inputs

into signature feature vectors. The output of the network is the cosine distance

between the feature vectors. Similar to them, Chopra et al. (Chopra et al., 2005) use

a siamese network to the problem of face verification. Similar to them, the proposed

approach uses a siamese network but instead of using a threshold on a distance

measure to detect a match, distance measures from different representations of the

input are provided as features to a binary classifier.

Deep learning approaches have also been used in natural language processing

tasks (Yin and Schütze, 2015; dos Santos et al., 2015). For instance, Yin and Schutze

propose a neural network for paraphrase detection. Their strategy extracts features

REFERENCES 13

to a binary classifier from different representations of the input pair namely a mod-

ification of the convolutional layer for sentences (Kalchbrenner et al., 2014) and

from pooling layers (averaging and max). The proposed approach in contrast uses

a standard convolutional layer and does not obtain features from pooling layers,

which makes it easier to implement. In addition, the proposed approach adds more

features to the binary classifier such as the bow layer and the pair-idf .

5. Conclusions

This paper presents a deep learning strategy for entity resolution. Given a pair of

entities, the proposed approach learns different representations of those, namely em-

beddings, convolutional and a modification of bag-of-words, computes the similarity

between the entities in the pair using those representations, and use them as fea-

tures on a binary classifier. Moreover, a feature set resulting from a modification of

idf for pairs is added to set of classifier’s features. The experimental evaluation over

real datasets has shown the proposed approach outperforms previous approaches in

the commercial datasets, which seem to be more challenging, and has comparable

results with previous approaches in the academic datasets.

As possible future work, different deep learning architectures can be tried for

this problem and, instead of a fixed weight pair-idf , to learn the weights of the

pair-idf based on the training data.

References

Baeza-Yates, R., Ribeiro-Neto, B. et al. (1999). Modern information retrieval, Vol.

463, ACM press New York.

Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S. E. and

Widom, J. (2009). Swoosh: a generic approach to entity resolution, The VLDB

JournalThe International Journal on Very Large Data Bases 18(1): 255–276.

Bhattacharya, I. and Getoor, L. (2006). A latent dirichlet model for unsupervised

entity resolution., Proceedings of the 2006 SIAM International Conference on

Data Mining, pp. 47–58.

Bilenko, M. and Mooney, R. J. (2003). Adaptive duplicate detection using learnable

string similarity measures, Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 39–48.

Bromley, J., Bentz, J. W., Bottou, L., Guyon, I., LeCun, Y., Moore, C., Säckinger,

E. and Shah, R. (1993). Signature verification using a ”siamese” time delay neural

network, IJPRAI 7(4): 669–688.

Cafarella, M. J., Halevy, A. and Madhavan, J. (2011). Structured data on the web,

Communications of the ACM 54(2): 72–79.

Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E. and Zhang, Y. (2008). Webtables:

exploring the power of tables on the web, Proceedings of the VLDB Endowment

1(1): 538–549.

14 REFERENCES

Chollet, F. (2015). Keras: Theano-based deep learning library, Code: https://github.

com/fchollet. Documentation: http://keras. io .

Chopra, S., Hadsell, R. and LeCun, Y. (2005). Learning a similarity metric discrimi-

natively, with application to face verification, IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, pp. 539–546.

Christen, P. (2008). Febrl: a freely available record linkage system with a graphical

user interface, Proceedings of the second Australasian workshop on Health data

and knowledge management, pp. 17–25.

Christophides, V., Efthymiou, V. and Stefanidis, K. (2015). Entity resolution in

the web of data, Synthesis Lectures on the Semantic Web 5(3): 1–122.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K. and Kuksa,

P. (2011). Natural language processing (almost) from scratch, The Journal of

Machine Learning Research 12: 2493–2537.

dos Santos, C., Barbosa, L., Bogdanova, D. and Zadrozny, B. (2015). Learning

hybrid representations to retrieve semantically equivalent questions, Proceedings

of the 53rd Annual Meeting of the Association for Computational Linguistics,

pp. 694–699.

Efthymiou, V., Hassanzadeh, O., Rodriguez-Muro, M. and Christophides, V. (2017).

Matching web tables with knowledge base entities: from entity lookups to entity

embeddings, International Semantic Web Conference, Springer, pp. 260–277.

Efthymiou, V., Stefanidis, K. and Christophides, V. (2015). Big data entity reso-

lution: From highly to somehow similar entity descriptions in the web, Big Data

(Big Data), 2015 IEEE International Conference on, IEEE, pp. 401–410.

Firmani, D., Saha, B. and Srivastava, D. (2016). Online entity resolution using an

oracle, Proceedings of the VLDB Endowment 9(5): 384–395.

Gupta, R. and Sarawagi, S. (2009). Answering table augmentation queries from

unstructured lists on the web, Proceedings of the VLDB Endowment 2(1): 289–

300.

He, Y., Xin, D., Ganti, V., Rajaraman, S. and Shah, N. (2013). Crawling deep

web entity pages, Proceedings of the sixth ACM international conference on Web

search and data mining, pp. 355–364.

Kalchbrenner, N., Grefenstette, E. and Blunsom, P. (2014). A convolutional neural

network for modelling sentences, Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, pp. 655–665.

Kenter, T. and de Rijke, M. (2015). Short text similarity with word embeddings,

Proceedings of the 24th ACM International on Conference on Information and

Knowledge Management, pp. 1411–1420.

Kim, Y. (2014). Convolutional neural networks for sentence classification, Pro-

ceedings of Conference on Empirical Methods in Natural Language Processing,

pp. 1746–1751.

Kingma, D. P. and Adam, J. B. (2015). A method for stochastic optimization,

International Conference on Learning Representation.

REFERENCES 15

Klein, D. and Manning, C. D. (2003). Accurate unlexicalized parsing, Proceedings

of the 41st Annual Meeting on Association for Computational Linguistics-Volume

1, pp. 423–430.

Köpcke, H., Thor, A. and Rahm, E. (2010). Evaluation of entity resolution ap-

proaches on real-world match problems, Proceedings of the VLDB Endowment

3(1-2): 484–493.

Madhavan, J., Jeffery, S., Cohen, S., Dong, X., Ko, D., Yu, C. and Halevy, A. (2007).

Web-scale data integration: You can only afford to pay as you go, Proceedings of

Conference on Innovative Data Systems Research, pp. 342–350.

Meusel, R., Mika, P. and Blanco, R. (2014). Focused crawling for structured data,

Proceedings of the 23rd ACM International Conference on Conference on Infor-

mation and Knowledge Management, pp. 1039–1048.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality, Advances in

neural information processing systems, pp. 3111–3119.

Qiu, D., Barbosa, L., Dong, X. L., Shen, Y. and Srivastava, D. (2015). Dexter: Large-

scale discovery and extraction of product specifications on the web, Proceedings

of the VLDB Endowment 8(13): 2194–2205.

Robertson, S. E. and Walker, S. (1994). Some simple effective approximations to

the 2-poisson model for probabilistic weighted retrieval, Proceedings of the 17th

annual international ACM SIGIR conference on Research and development in

information retrieval, pp. 232–241.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular

subsequences, Journal of molecular biology 147(1): 195–197.

Thor, A. and Rahm, E. (2007). Moma-a mapping-based object matching system.,

Proceedings of Conference on Innovative Data Systems Research, pp. 247–258.

Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in

the fellegi-sunter model of record linkage., Proceedings of the Section on Survey

Research Methods, pp. 354–359.

Xiao, C., Wang, W., Lin, X., Yu, J. X. and Wang, G. (2011). Efficient similarity joins

for near-duplicate detection, ACM Transactions on Database Systems 36(3): 1–

41.

Yin, W. and Schütze, H. (2015). Convolutional neural network for paraphrase

identification., HLT-NAACL, pp. 901–911.

