Experimenting Formal Methods through UML

ClassA ClassB

ClassC

Model the UML class diagram
that represents your system
static structure.

For this purpose, you need to
get the Rational Rose CASE
tool and our RoZe Add-In,
which can be found at
www.cin.ufpe.br/~Imf/roze.

Classh | ClassB |
Object Object
L Z L Z
.

™,

ClassC |

Object
z

Add the Object-Z constraints
using the LATEX Object-Z
macros.

This includes:

e the types of attributes and of
operation parameters;

e class invariants, pre- and
post-conditions of operations.

Generate the specification
according to the desired
analysis (Z or Object-Z).

Go to the Tools ® RoZe menu
in the Rose tool and make a
choice:

e Generate Object-Z;
o Z Property Checker;

ZIEVES

Wizard

Run Z/EVES or Wizard using
the start button in the dialog
according to the previous step.

Only for Z choice is necessary
that you have the Z/EVES
installed and configured in the
Tools ® RoZe ® Configuration.

Check the results.

If there is a problem with the
specification, go back to the
second step and review your
model following the tool
response.

e Z Refinement.

UML Overview Mapping to Pure Object-Z

The Unified Modelling Language (UML) is the standard graphical notation provided by Transforming an annotated UML class diagram into an Object-Z specification is almost

the Object Management Group (OMG) and currently the most popular notation to direct. A UML class corresponds to an Object-Z class in such a way that the name of the

: UML class becomes the name of the Object-Z class. UML attributes and invariants are
model system requirements.

mapped to Object-Z state variables and invariants, and UML methods are captured by

UML has various diagrams, each one with its own specific purpose. Here, we use UML Object-Z schemas where the separated pre- and post-conditions in a UML method are

class diagrams, that are provided for analysis and design of the static aspects of systems. put together as the Object-Z schema predicate.

In such diagrams, the designer is concerned with classes, interfaces, collaborations, and

, , We also need to consider the UML association and generalization relationships. UML
relationships.

associations are captured in Object-Z as class attributes, and the superclass in a UML

Figure 1 shows a class diagram that models a banking system. This diagram uses almost generalization is mapped as the base class in Object-Z .

all elements of UML class diagrams: classes, associations, and inheritance.
With these considerations, we can, for example, obtain an Object-Z class in Figure 3,

Bank

ClientCollection
ifrom Concreto)

which represents the Account class in Figure 1.

AccountCollection ‘addAccuumo ClientCollection
’remg\reAccguntO +clients < <refines =
SaddClient L

4] add() Badd) Account

1
Sremove Sremovel)

: __eredit
| n: N Al balance, number)
+client 37 0. value? : R

+accounts

Sadd() 1

Pramovel)
1
+accnkxu-”

SremoveClient]
Soredit)
Vdehiti)

Account T ,. NUMBE
: = number : L 7 i 7 P
%E::’gﬁgﬁ;ﬂ???-n &narme : NAME ' ll_“' er - NUMBET: balanece’ balance + value?
: +owih et l%gd_dres it batance : R numher’ number
Sereditivalue real) &id: 1D vner - P Client rosree rorre
:debit(\talue:lreal) 1 on S oumer e
‘getNumberO Ygetaddress) I debit
getBalance(SgetiDy balance = 0 -
#hcompose A balance, number)

0 << fowner < n |
le I'IIrJ'IIII'II'r'I.} . R

Saving rrem 7
_INIT balance!

Rirterast) .'IJH la nee 0

balance — value?

number

number’

Fi 1: A UML class di for a banki t
GHE cHass Clagtam Tot 4 bartiig syster Figure 3: Object-Z specification for Account class

Annotating UML Diagrams Formal Development

It is well known that, in a formal language like Object-Z, we can specify pre- and post- The use of formal methods aims at guaranteeing the overall quality of critical and

conditions of operations as well as class invariants. Although UML cannot specify these complex software products. In this respect, the most common tasks to provide means of

conditions, class diagrams are equipped with places to accommodate them and others quality assurance are the proof of desired properties and refinements.

general constraints as notes attached to any UML graphical element. Although, Object-Z tool support is limited to the type-checker Wizard, a model checking

Since the present work is oriented towards industrial applications, our approach uses strategy, and a theorem prover via an encoding in the HOL system. A single Object-2

the Rational Rose CASE tool, which allows the designer to insert additional constraints class can be seen as a Z specification and thus all tools available for Z can be used for

in the diagrams, as defined in UML. Object-Z. Furthermore, with such an extension, we can apply a refinement calculus and

derive code.
For UML classes we typically annotate its invariant and expected properties. And for

every method, we can annotate its pre- and post-conditions, specify whether it

Conclusion

changes(A) the class state space as well as if such a method is defined in terms of others

by means o the Z schema calculus. In associations, we specify its invariant and type; in

, , , o o In this work, we experience annotating UML class diagrams with fragments of the

particular, we annotate the retrieve field when such an association is indeed a . o o _ .
Obiject-Z specification language, providing means of type-checking, proof of properties

refinement relation (see Figure 2).

and data refinements. This is an initial effort in the direction of the project ForMULa,

- — - , — : which is supported by the Laboratory of Formal Methods (LMF).
Class Specification for Account Dperatlun Specification for credit
Gonera | Dotal | - Oprators | = S ' Semarics | Future Work. As fut h intend t tend hical notation to UML
Felations I Components I Mested I Files Roze I Files il Hoze uture Ork. S ruture researc y we 1mmten O exten our gl'ap 1Cal notation to -
Set: [defaut =] Ediset. | Set [Edt Sel.. | RT, a UML extension able to model real-time systems, as well as our formal language to
e BRrEE Model Eropertics OhCircus, in order to capture static and dynamic aspects of systems simultaneously, and
* L Mame | Y alue | Source | | W alue | Source | o) o o)
balance \geq 0 Override isDefinilion False Defaul providing a uniform way of deriving program code from specifications.
o Fropetties /| EyTemse ‘ isuery False Default
compose Yimplies balance' = balance Ireeariant Drefault

Figure 2: Screen shot of Account class specification.

Acknowledgements. We would like to thank Augusto Sampaio for his comments on earlier versions of this work and Paulo Moura regarding participation on earlier versions of the tool.

Joabe Junior Rafael Borges Rafael Duarte Alexandre Mota
Centre of Informatics — Federal University of Pernambuco
P.O.Box 7851 — Cidade Universitaria
50740-540 — Recife - PE - Brazil

