
3 4 521

Experimenting Formal Methods through UML

Joabe Júnior Rafael Borges Rafael Duarte Alexandre Mota
Centre of Informatics — Federal University of Pernambuco

P.O.Box 7851 — Cidade Universitária
50740-540 — Recife - PE - Brazil

U M L O v e r v i e w

The Unified Modelling Language (UML) is the standard graphical notation provided by
the Object Management Group (OMG) and currently the most popular notation to
model system requirements.

UML has various diagrams, each one with its own specific purpose. Here, we use UML
class diagrams, that are provided for analysis and design of the static aspects of systems.
In such diagrams, the designer is concerned with classes, interfaces, collaborations, and
relationships.

Figure 1 shows a class diagram that models a banking system. This diagram uses almost
all elements of UML class diagrams: classes, associations, and inheritance.

A n n o t a t i n g U M L D i a g r a m s

It is well known that, in a formal language like Object-Z, we can specify pre- and post-
conditions of operations as well as class invariants. Although UML cannot specify these
conditions, class diagrams are equipped with places to accommodate them and others
general constraints as notes attached to any UML graphical element.

Since the present work is oriented towards industrial applications, our approach uses
the Rational Rose CASE tool, which allows the designer to insert additional constraints
in the diagrams, as defined in UML.

For UML classes we typically annotate its invariant and expected properties. And for
every method, we can annotate its pre- and post-conditions, specify whether it
changes(D) the class state space as well as if such a method is defined in terms of others
by means o the Z schema calculus. In associations, we specify its invariant and type; in
particular, we annotate the retrieve field when such an association is indeed a
refinement relation (see Figure 2).

Model the UML class diagram
that represents your system
static structure.

For this purpose, you need to
get the Rational Rose CASE
tool and our RoZe Add-In,
which can be found at
www.cin.ufpe.br/~lmf/roze.

Add the Object-Z constraints
using the LATEX Object-Z
macros.

This includes:

• the types of attributes and of
operation parameters;

• class invariants, pre- and
post-conditions of operations.

Generate the specification
according to the desired
analysis (Z or Object-Z).

Go to the Tools → RoZe menu
in the Rose tool and make a
choice:

• Generate Object-Z;

• Z Property Checker;

• Z Refinement.

Run Z/EVES or Wizard using
the start button in the dialog
according to the previous step.

Only for Z choice is necessary
that you have the Z/EVES
installed and configured in the
Tools → RoZe → Configuration.

Check the results.

If there is a problem with the
specification, go back to the
second step and review your
model following the tool
response.

M a p p i n g t o P u r e O b j e c t - Z

Transforming an annotated UML class diagram into an Object-Z specification is almost
direct. A UML class corresponds to an Object-Z class in such a way that the name of the
UML class becomes the name of the Object-Z class. UML attributes and invariants are
mapped to Object-Z state variables and invariants, and UML methods are captured by
Object-Z schemas where the separated pre- and post-conditions in a UML method are
put together as the Object-Z schema predicate.

We also need to consider the UML association and generalization relationships. UML
associations are captured in Object-Z as class attributes, and the superclass in a UML
generalization is mapped as the base class in Object-Z .

With these considerations, we can, for example, obtain an Object-Z class in Figure 3,
which represents the Account class in Figure 1.

F o r m a l D e v e l o p m e n t
The use of formal methods aims at guaranteeing the overall quality of critical and
complex software products. In this respect, the most common tasks to provide means of
quality assurance are the proof of desired properties and refinements.

Although, Object-Z tool support is limited to the type-checker Wizard, a model checking
strategy, and a theorem prover via an encoding in the HOL system. A single Object-Z
class can be seen as a Z specification and thus all tools available for Z can be used for
Object-Z. Furthermore, with such an extension, we can apply a refinement calculus and
derive code.

C o n c l u s i o n

In this work, we experience annotating UML class diagrams with fragments of the
Object-Z specification language, providing means of type-checking, proof of properties
and data refinements. This is an initial effort in the direction of the project ForMULa,
which is supported by the Laboratory of Formal Methods (LMF).

Future Work. As future research, we intend to extend our graphical notation to UML-
RT, a UML extension able to model real-time systems, as well as our formal language to
OhCircus, in order to capture static and dynamic aspects of systems simultaneously, and
providing a uniform way of deriving program code from specifications.

Object
Z

Object
Z

Object
Z

Z/EVES

Wizard !

Figure 1: A UML class diagram for a banking system

Figure 2: Screen shot of Account class specification.

Figure 3: Object-Z specification for Account class

Acknowledgements. We would like to thank Augusto Sampaio for his comments on earlier versions of this work and Paulo Moura regarding participation on earlier versions of the tool.

