Precise Modeling with UML: Why OCL?

R.Duarte, J.Junior, A.Mota

Federal University of Pernambuco
Centre of Informatics

P.O.Box 7851 - Cidade Universitaria
50740-540 - Recife - PE - Brazil

Abstract

Nowadays UML is the most common graphical notation for object-
oriented software development. But UML itself is not enough to model
some software aspects precisely. Hence, IBM has proposed the Ob-
ject Constraint Language (OCL) as the UML standard specification
language. To be attractive, OCL is announced to be easy as well
as avoid mathematical and logical descriptions. In this paper we ar-
gue that OCL is not special, being easily comparable to Object-Z, an
object-oriented extension of the model-based language Z. In particu-
lar, aspects concerning formal semantics and refinement reveals that
OCL is indeed an immature language. The comparison also yields a
translation from OCL to Object-Z.

1 Introduction

The Unified Modeling Language (UML), a standard graphical notation pro-
vided by the Object Management Group (OMG), is the most popular and
widespread graphical modeling notation for object-oriented software devel-
opment [BRJ99]. Indeed, there are software processes entirely based on the
use of UML, such as the RUP [Kru00]. Unfortunately, neither UML has a
formal semantics nor capabilities to characterise software properties formally.

Formal methods, on the other hand, are based on a formal semantics,
where elements of logic and mathematics are used. However, since in general
they lack graphical notation and still have limited integrated tool support,
these have contributed to formal methods still suffer some rejection by the
software industry [CW96].

Therefore, bringing together UML and Formal Methods seems a very
promising effort for two main reasons. First, one can disseminate the use
of formal methods through UML graphical diagrams. And second, one can
turn the current software development practices more rigorous. In view of
this, IBM has proposed the Object Constraint Language (OCL) as the UML
standard specification language. To be attractive, OCL is announced to be
easy as well as avoid mathematical and logical descriptions.

However, although OCL seems more easy than traditional specification
languages to the industry, it still lacks a complete formal semantics. Fur-
thermore, the literature does not mention the OCL characteristics related to
formal development to the best of our knowledge.

In this paper we investigate OCL in various aspects, ranging from syntax
and readability aspects through formal semantics, tool and refinement sup-
port. To accomplish this we use Object-Z, an object-oriented version of the
model-based language Z, as a reference language.

A further contribution of this paper concerns determining the practical
usage of OCL in a formal development life-cycle. In order to do that we
establish a correspondence between OCL and Object-Z. We aim at still ap-
plying OCL due to the wide acceptance UML and OCL already have by the
software industry. Indeed, this is an overall goal provided by the project
ForMULa (Formal Methods and UmL integration) by which the present
effort contributes.

This paper is organised as follows. Section 2 presents a UML overview
using an example. In Section 3 the main elements of the OCL language are
introduced and explained. The reference language, Object-Z, is the focus of
the Section 4. The comparisonbetween Object-Z and OCL is considered in
Section 5. Finally, concluding and future research remarks are described in
Section 6.

2 UML Overview

The Unified Modeling Language (UML), a standard graphical notation pro-
vided by the Object Management Group (OMG), is the most popular and
widespread graphical modeling notation for object-oriented software devel-
opment [BRJ99]. Indeed, there are software processes entirely based on the
use of UML, such as the RUP [Kru00].

UML is composed of various diagrams, each one with its own specific
purpose. Some diagrams are provided for analysis and design, whereas others
are related to implementation and distribution. The purpose of an UML
diagram is to visualize some aspect of a software system easily. For instance,

UML class diagrams are used to present the static view of a system, whereas
state diagrams for the dynamic aspects.

Unfortunately, almost all UML diagrams do not have a formal semantics?.
What it is common for the UML community is that UML diagrams have
rigid rules on how they can be depicted. Such rules are stated using a meta-
model description with a core of UML itself. However, these rules are not
sufficient to provide more specific characteristics of software systems and this
is one reason the UML community has adopted the OCL [WK99] (Object
Constraint Language) language for such a purpose.

In this paper we are concerned specifically with UML class diagrams.
The reason is simple: they are the most common diagrams found in software
development projects.

2.1 UML Class Diagrams

The static aspect of a system is normally described using UML class dia-
grams. In such diagrams, the specifier is concerned with classes, interfaces,
collaborations, and relationships.

UML diagrams can accommodate constraints (predicates) as notes at-
tached to any UML graphical element. In particular, UML class diagrams
use such a facilite to annotate pre- and post-conditions of operations as well
as class invariants.

Figure 1 illustrates a UML class diagram that models a simple company.
From this diagram we can identify three packages, company, person, and
util, which group other packages and classes. The remainder elements of this
diagram are explained in corresponding sections.

2.2 Classes

A class is a description of a set of objects that share the same attributes,
operations, relationships and semantics. A class has a name, attributes and
operations. An attribute has a name, a visibility, a type, and a multiplicity,
and describes an interval of values that the instances of the property can
assume. An operation has a name, a visibility and parameters, and is an
implementation of a service that can be requested of any object of a class to
affect its behavior.

The class diagram of Figure 1 has several classes, where the class Person
belongs to the package person and the class Department belongs to the pack-
age company, for example. The class Person, in particular, has three private

'In particular, state chart diagrams have a formal semantics since they are based on
state charts [HPSS87].

Company
tfrem sompany)

company person util

BhireEmployeeinewPerson : Persan)
®dismissErmplovee(person | Persan)
VstatProjectinewProject : Project, dept: Departrment)
Diate ¥sellProjectitheProject ; Project, dept : Department)
FfinishProjectiheProject : Project, dept: Departrment)

thram utily

HumanResources 1 1
(om0 mpany) TESOUFSES
Shiral) 1
Sismiss0 = chapartment
0=
gsalary: Real
employees gslartDate : Date
o+
Petson 3 '
(fismipiersan) +employee A 0+ Department
&name : String /"—ﬂ (from company)
Sshirthdate - Date 0. rerployer (& ame - String 0.x
SsregistryMumber : Integer
+manager 0.7 | %start)
Qgethlamel String T %seng
QyetBirthDateq) : Date 1 +rmanagedDept | #fnish)
QyetRegistryMumber) : Integer :
" 1
1. Projact subDepartment
&snarme : String
&rleadLine : Date
*WOrkSON | @ifinished - Boolean profects

0. 0.x

ByetMame) ; String
BgetDeadLined Date
¥isFinished(: Boolean

Figure 1: Example of a UML class diagram

(invisible) attributes, name, birthdate, and registryNumber, as well as three
public methods, getName, getBirthDate, and getRegistryNumber.

2.3 Associations

An association is a structural relationship that specifies what objects of a
type (class) are connected to objects of, possibly, another type. For instance,
Figure 1 has a directed association from class Company to class Department,
called department. The association direction enforces the navigability (or
reference) from one class to the other and not the reverse. Furthermore,
each end of an association can have a multiplicity, that is, how many objects
can exist at each end. For the department association, we can see that one
Company can be associated to one or more Departments.

Figure 1 also illustrates an important kind of association, named a class
association. A class association is an association between two classes, where
the association itself has an attached class. The attached class serves to
accomodate attributes and methods that do not belong to the main related
classes.

3 UML Precise Modeling with OCL

UML provides itself a formal language to express constraints, the Object
Constraint Language (OCL) [OMGO3]. It is a formal language that can
be used to specify invariants, pre- and post- conditions as well as describe
guards and constraints on operations. OCL expressions do not have side-
effects. That is, when they are evaluated the system state does not change.
But expressions can be used to specify state changes like other formal lan-
guages [Spi92, Smi00]. Since OCL is a typed language, expressions have a
well-defined type, although some of them can result in an undefined type.

3.1 Invariants, Pre, Post, and Definitions

In this section we consider the main constructs of OCL using simple examples
based on the UML class diagram of Figure 1.

We start by considering an invariant (inv) over the class Job (context
Job). The following constraint states that the attribute salary of the current
object of the class Job must be greater than 1000.

context Job inv:
self.salary > 1000

To see how OCL can work as a navigation language, accessing objects via
associations, we use the next invariant. We navigate from class Department
to class Project (self.projects), count how many projects are associated
to (->size()), and state that this amount must be less than or equal to 10.

context Department
inv: self.projects->size() <= 10

To illustrate an OCL first-order based constraint we present the last in-
variant of this section. In this invariant, we enforce that all projects a person
is working on must not be finished yet.

context Person
inv projectFinished:
self .worksOn->forAll(p: Project | p.isFinished() = false)

Finally, we consider the specification of an operation. In OCL, like VDM
or B, pre- and post-conditions are stated explicitly. For OCL, the keywords
pre and post are used. The method hire requires that a person (p) must
not be (->exclude(p)) an employee (self.employees) provided by the class
HumanResources. If the method works normally then the person must now
be included in the employees collection of class HumanResources.

context HumanResources::hire(p: Person)
pre: self.employees->exclude(p)
post: self.employees->including(p)

4 UML Precise Modeling with Object-Z

In the previous section we have seen that OCL is used to complement UML
class diagrams; this is the standard combination provided by the OMG. How-
ever, other approaches can be used as well [MBMO03].

In this section we show examples corresponding to the ones presented in
the previous section using fragments of the language Object-Z.

Object-Z [Smi00] is an object-oriented version of the model-based lan-
guage 7 [Spi92], whose purpose is to improve the clarity of large specifica-
tions (and to facilitate its design) through enhanced structuring in an object-
oriented style [Boo91].

4.1 Invariants, Pre, Post, and Definitions

Object-Z alone is able to elaborate models equivalents to the ones origi-
nated using UML annotated with OCL. That is, Object-Z has constructs
to specify classes, attributes, and methods, as well as invariants, pre- and
post-conditions, definitions, and theorems.

Our first example defines a class Job (corresponding to the UML descrip-
tion) which has the attribute salary of type real (corresponding to the UML
description) and states that every salary must be greater than 1000 (cor-
respoding to the OCL description, although using a simplified presentation
provided by the self contained class definition).

__Job

salary : Real

self .salary > 1000

The next example corresponds to the OCL constraint () of section 3. In
this fragment, it is usith noting that the cardinality operator # replaces the
combination ->size () of OCL.

__ Department

projects : P Project

#self .projects < 10

The following example states that for all person p working on some project
(self .worksOn), a call to the method isFinished of p generates a result and
this result must be False.

__Person

worksOn : P Project

YV p @ self . worksOn e p.isFinished A p.result! = False

The last example of this section presents the specification of a method.
Although Object-Z makes no explicit destinction between pre- and post-
conditions, the predicate p? ¢ self.employees corresponds to the pre-condition
of OCL and the predicate p? € self.employees’ corresponds to the post-
condition.

_ HumanResources

employees : P Person

__hire
A(employees)
p? : Person

p? & self .employees
p? € self.employees’

5 OCL versus Object-Z

Sections 3 and 4 have presented an overview of OCL and Object-Z respec-
tively. Clearly, OCL and Object-Z have some kind of correspondence. But
what is it? Are they completely equivalent?

In this section are ivestigate these languages more deeply and systematicly
in order to highlight the advantages and drawbacks of both. This analysis
will also originate a way of translating OCL into Object-Z and vice-versa
where it is possible.

5.1 Syntax and Readability

From section 3, we can see that OCL is a language combining object-orinted
programming constructs (->, ., ::, and context from, for example, C++)
and a verbose (textual) version of graphical languages of Logic (forall in-
stead of V and size() instead of #) and Mathemathics. On the other hand,
section 4 shows that Object-Z was basically the traditional graphical lan-
guage of Logic and Mathemathics with addtional graphical notation from
the Object-Z/Z scheme calculus.

Doing an impartial analysis, we can say that OCL has a more familiar
syntax to software practitioners than other formalisms. Thus OCL descrip-
tion can obviously be expected to be more readable. However, if OCL does
not need a strong mathematical background then the other formalisms do
not require as well. Thus, we agree that it can be interesting to use OCL
descriptions to annotate UML diagrams instead of, for example, Object-Z.

These observations that lead the creators of OCL to claim OCL is easier
than other languages, or that there is no need of a strong mathematical
backgroung to use OCL.

5.2 Semantics

Since OCL was created it has been analyzed and several formal semantics
have already been presented, in particular by Bickford and Guaspari [BG9S],
Hamie, Howse, and Kent [HHK98], and Richters and Gogolla [RG02, RG9S|
for OCL 1.1 and by Clark [Cla99], and Cengarle and Knapp [CKO01] for
OCL 1.4. However, there is not a definitive formalization because OCL still
does not have a final version - as we said before, the OCL 2.0 was already
submitted, but not approved yet.

Because these semantics show deficiencies in handling the OCL types
OclAny and OclType [RG98, HHK98], the OCL flattening rules [BG98,
HHK98], empty collections [RGI8, Cla99], undefined values [HHK98, Cla99],

non-determinism [BG98, HHK98, RG98]|, and overridden properties [BGIS,
HHK98, RG98|.

While OCL is on formalization process, Object-Z already has a formal
semantics that is fundamental for its usage in Formal Methods. Then if
OCL has a similar syntax in relation to Object-Z, why not translate the
OCL constraints to (Object-)Z?

While syntax and readability aspects favor OCL usage, semantics is a
critical problem for OCL. Currently, in its proposal 2.0 (version), the OCL
team developers and collaborators try to fix innumerors design flaws. From
vague informal semantical descriptions to features like ;, OCL is far form being
a stable language. Therefore, in this respect, Object-Z is the best choice
because it is now a stable language having a complete formal semantics.

5.3 Refinement

OCL, being completely new, cannot reuse any existing tools. Therefore,
Object-Z is the best choice again.

This is a delicate point because neither Object-Z nor OCL have a vast
repository of tools. Basically, both have partial syntax and type checkers.
That is, they work for a subset of the languages.

However, Onject-Z has an experimental theorem prover support via its
encoding in HOL [], and a proposal for modelchecking [|. Besides these
instable tools, all Z tools can be used for Object-Z after its translation into
pure Z according to its semantics [].

One of the most interesting and important aspects of a formal specifi-
cation language is its hability to support refinament-based software devel-
opment. Or achieving a concrete model (implementation) from an abstract
one, guaranteeing the properties specified initially.

Object-Z is a language with refinament support, in particular, having
static and dinamic notions of refinament. However, OCL lacks this important
feature; Only [] reports an initial notion of refinament for OCL which is
insufficient to be applied actually.

Another drawback we point out about refinament for OCL is the fact that
an OCL specification only makes sence if accompained with a UML diagram.
Therefore, refinament relations cannot be defined for OCL isolated.

5.4 Tool Support

Object-Z has many benefits to the specification development, but still suffer
some rejection, due to the lack of tool support - if compared to Z. But
there are two projects that can bring some benefits to its use in formal

methods: a approach to integrate UML and Object-Z/Z [MBMO3]; and a
design environment (see http://www10.org/cdrom/papers/182/) for Object-
7. These two projects use the Rational Rose UML, but with different goals.

The first one tries to improve the use of Formal Methods through the map-
ping of UML diagrams to Object-Z/Z specifications. Then we can refine and
make property and type checking. It is done integrating three applications:
Rose, Z-EVES and Wizard. While the second is a web based environment
to visualize an Object-Z specification, supporting inheritance expansion and
that can export the specification, via XSLT technology 2, to Rose.

While Object-Z has a growing use in formal methods, OCL still is starting
its life in the community. But, like Object-Z, OCL also has a type-checker
that can be found in the klasse objecten web site:

http://www.klasse.nl/ocl/

Moreover, the OCL tools that have been created are, in most cases, ide-
alized to be used in CASE tools and they provide several different OCL
implementations, most noteworthy the Bremen USE tool, the Dresden OCL
tool, and the Argo UML. These differ e.g. in their handling of collections and
"oclAsType”, some do not flatten a Collection of Collections; the USE tool
does not include ”let expressions”. Although these OCL tools have many
benefits to the language development, the differences make inconveniences
to the modeler and can be dangerous.

5.5 OCL as Object-Z

From the previous sections, it is obvious that currently OCL alone can only
be used to give an apparent formal description. Since our present effort is
in the direction of the project ForMULa, a clear usage of OCL is simply as
a front-end of a real formal language. Thus, in this section are investigate a
possible mapping between OCL and Object-Z in such a way that OCL can be
used to write specifications but formal development be done using Object-Z.

From the literature we have found the work of [LS02] gives a mapping
from OCL to B [], for non-object-oriented constructs. Hence, as long as
B constructs are very closer to Object-Z ones, we only need to extend the
mapping to catch the object-oriented features of OCL. Table summerises our
correspondence.

A tool base on the material of this section, has already started to be
developed. It reuses part of The Dresden OCL tool 3, which is able to
generate Java code from OCL constraints.

2http:/ /nt-appn.comp.nus.edu.sg/fm/zml/
3This tool is intended to be integrated to the tool described in [MBMO03], allowing

10

6 Conclusion

The creation of OCL was a very interesting effort to bring some formality to
UML. Although, OCL is still quite far from being a well accepted language,
due to aspects concerning its semantics, consistency and expressivity. The
translation between OCL and Object-Z is then shown as viable alternative
to effectively use OCL within UML, .

Acknowledgement 1 We would like to thank Augusto Sampaio for many
valuable comments about the present research effort. In particular, for his

criticisms and suggestions concerning the refinement aspects of OCL and
Object-Z.

References

[BG98] M. Brickford and D. Guaspari. Lightweight analysis of uml. Tech-
nical report, 1998.

[Boo91] G. Booch. Object-Oriented Analysis and Design with Applications.
Benjamin—Cummings, Redwood City, Calif., 1st edition, 1991.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

[CKO1] M. Cengarle and A. Knapp. A formal semantics for OCL 1.4.
In Martin Gogolla and Cris Kobryn, editors, UML 2001 - The
Unified Modeling Language. Modeling Languages, Concepts, and
Tools. 4th International Conference, Toronto, Canada, October
2001, Proceedings, volume 2185 of LNCS, pages 118-133. Springer,
2001.

[Cla99] T. Clark. Type checking UML static diagrams. In Robert France
and Bernhard Rumpe, editors, UML’99 - The Unified Modeling
Language. Beyond the Standard. Second International Conference,
Fort Collins, CO, USA, October 28-30. 1999, Proceedings, volume
1723 of LNCS, pages 503-517. Springer, 1999.

[CW96] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art
and Future Directions. ACM Computing Surveys, 1996.

Software developers annotate UML class diagrams with OCL but working implicity with
Object-Z, achieving proof of properties, data refinament and model checking.

11

[HHKOS]

[HPSS87]

[Kru00]

[LS02]

[MBMO3]

[OMGO03]

[RGOS]

[RG02]

[Smi00]

[Spi92]

[WK99]

A. Hamie, J. Howse, and S. Kent. Interpreting the Object Con-
straint Language. In Proceedings 5th Asia Pacific Software En-
gineering Conference (APSEC °98), December 2-4, 1998, Taipei,
Taiwan. IEEE Computer Society, 1998.

D. Harel, A. Pnueli, J. Schmidt, and R. Sherman. On the Formal
Semantics of Statecharts. 2nd IEEE Symp. on Logic in Computer
Science - Ithaca, 1987.

P. Kruchten. An Introduction to the Rational Unified Process.
Addison-Wesley, 2000.

H. Ledang and J. Souquiéres. Derivation schemes from ocl expres-
sions to b. Technical report, 2002.

P. Moura, R. Borges, and A. Mota. Experimenting Formal Meth-
ods through UML. submitted to the Workshop of Formal Methods,
2003.

OMG. Unified modeling language. Specification v1.5, Ob-
ject Management Group, March 2003. http://www.omg.org/cgi-
bin/doc?formal /03-03-01.

M. Richters and M. Gogolla. On formalizing the UML Object
Constraint Language OCL. In Tok Wang Ling, Sudha Ram, and
Mong Li Lee, editors, Proc. 17th Int. Conf. Conceptual Modeling
(ER’98), volume 1507 of LNCS, pages 449-464. Springer, 1998.

M. Richters and M. Gogolla. OCL: Syntax, semantics, and tools.
In Tony Clark and Jos Warmer, editors, Object Modeling with the

OCL: The Rationale behind the Object Constraint Language, pages
42-68. Springer, 2002.

G. Smith. The Object-Z Specification Language. Kluwer Academic
Publisher, 2000.

M. Spivey. The Z Notation. Prentice-Hall, 1992.

J. Warmer and A. Kleppe. The Object Constraint Language: Pre-
cise Modeling with UML. Addison-Wesley, 1999.

12

