
Experimenting Formal Methods through UML

P. Moura, R. Borges, A. Mota

Federal University of Pernambuco
Centre of Informatics

P.O.Box 7851 - Cidade Universitária
50740-540 - Recife - PE - Brazil

Abstract

In this paper we experience annotating UML class diagrams with fragments of
the Object-Z specification language. This yields an encapsulation of formal methods
in UML where modeling can be seen more practical and easy, and analysis could
be automated straightforwardly by extending UML tools. We illustrate this ap-
proach by modeling a simple but very interesting object-oriented system as well as
performing the required syntax and type checking, proof of desired properties, and
investigation of data refinements, based on tool support.

1 Introduction

Nowadays, UML is a standard notation to document software artifacts [BRJ99]. This is
probably due to its graphical notation as well as flexibility (lack of rigor). Indeed, there
are software processes entirely based on the use of UML, such as the RUP [Kru00].

Contrarily, formal methods still suffer some rejection by the software Industry [CW96].
Partly because one has to use mathematical notation and partly due to its lack of integrated
tool support.

Comparing UML and formal methods, clearly UML is seen as extremely easy to use
(and consequently dangerous if used without care [CE97]), while formal methods are an-
nounced to be very difficult to apply in practice [Som02]. Therefore, bringing these two
approaches together seems to be very promising.

In this paper we propose a practical use of formal methods where fragments of the
Object-Z specification language [Smi00], an object-oriented version of the model-based
language Z [Spi92], are embedded in UML class diagrams. This is enforced by the fact that
integrating UML and Object-Z—by mapping the annotated UML elements to Object-Z
constructs—naturally yields a formal semantics to UML [MS03]. Indeed, this is an overall
goal of the project ForMULa (Formal Methods and UML Integration) by which the
present effort contributes.

Since formal methods need integrated tool support in order to be more acceptable by
the software Industry, we have decided to experience our approach in a UML development
tool. Our choice was the Rational Rose because it is a leader of market, UML static and
dynamic diagrams could be easily drawn, and its add-in technologies allows us to extend
its functionality for our specific purposes.

1



Our approach is very similar to the one proposed by IBM where the language OCL
(Object Constraint Language) [WK99] is used as a standard formal specification language
to formalize UML diagrams. However, OCL is still lacking a complete formal semantics
and tool support beyond syntax and type checking 1. Furthermore, the choice of Object-Z,
which already has a formal semantics [Smi00], is a matter of convenience since OCL can be
seen as a simple syntactical variant of a formal specification language with object-oriented
support [DJM03].

As it is well known by the Z community, LATEX is the standard input language for
Z tools. Therefore, the Object-Z constructs used in this paper will appear as LATEX ele-
ments. Nonetheless, for each Figure where such elements occur a corresponding graphical
presentation will be given.

This paper is organized as follows. An overview of UML notation is discussed in
section 2 using a simple but interesting object-oriented example. In section 3 we give a
brief summary of introducing formal methods in UML class diagrams: we show how to
annotate the diagram in section 3.1, how occurs the mapping from an annotated UML
model to pure Object-Z as well as presents Object-Z itself very succinctly in 3.2; and we
illustrate the use of tools to prove properties and refinements in these specifications in
section 3.3. Tool support is explained in section 4. Finally, in section 5 we present our
conclusions and future researches.

2 UML Overview

The Unified Modeling Language (UML), the standard graphical notation provided by
the Object Management Group (OMG), is currently the most popular and widespread
graphical modeling notation for object-oriented software development [BRJ99]. Indeed,
there are software processes entirely based on the use of UML, such as the RUP [Kru00].

UML has various diagrams, each one with its own specific purpose. Some diagrams
are provided for analysis and design, whereas others are related to implementation and
distribution. The purpose of an UML diagram is to visualise some aspect of a software
system easily. For instance, UML class diagrams are used to present the static view of a
system, whereas state diagrams for the dynamic aspects.

Unfortunately, almost all UML diagrams do not have a formal semantics2. What it
is common for the UML community is that UML diagrams have rigid rules on how they
can be depicted. Such rules are stated using a meta-model description with a core of
UML itself. However, these rules are not sufficient to provide more specific characteristics
of software systems and this is one reason the UML community has proposed the OCL
(Object Constraint Language) language [WK99]. OCL is a “formal” language used to
restrict forbidden instances allowed by the UML graphical notation alone. Therefore,
OCL is a textual language very similar to the LATEXversion of Z used in tools. Indeed, the
UML community is not using OCL as suggested by its creators.

In this paper we are concerned specifically with UML class diagrams. They are ex-
plained in the following section.

1In particular, OCL automated type checking is partial. That is, some terms are not decided to be
type compatible or not.

2In particular, statechart diagrams have a formal semantics since they are based on statecharts [Harel].

2



Figure 1: A UML class diagram for a banking system.

2.1 Class Diagrams

The static aspect of a system is generally catched by UML class diagrams. These diagrams
are the most common diagrams found in software development projects.

In such diagrams, the specifier is concerned with classes, interfaces, collaborations, and
relationships.

UML class diagrams are equipped with places to accomodate pre- and post-conditions
of operations as well as class invariants, and general constraints as notes attached to any
UML graphical element.

As it is well known to the Object-Z community, by providing operations with pre- and
post-conditions one can capture behavioural aspects of a system as well. Therefore, we
can use UML class diagrams to characterise both static and dynamic aspects of a system
by annotating them with invariants, pre- and post-conditions.

Figure 1 presents a class diagram that models a banking system. This diagram uses
almost all elements of UML class diagrams: classes, associations and inheritance.

2.2 Classes

A class is a description of a set of objects that share the same attributes, operations,
relationships, and semantics. A class has a name, attributes and operations. Figure 1
also shows a class whose name is Account. This class has two attributes: number of type
NUMBER, and balance of type R (\real), both invisible (private) outside the class. And
to deal with these attributes , we can see four visible (public) methods: credit (with a real
number parameter), debit (with a real number parameter), getNumber, and getBalance.

3



Figure 2: An example of refinement association.

The diagram shown in Figure 1 consists of a main entity, Bank, which has two at-
tributes: AccountCollecion and ClientCollection, collections of Account and Client that
become related through an association. Each class has its proper attributes and operations.
Saving represents a generalization of Account.

2.3 Associations

In order to capture relationships among objects, UML class diagrams provides associations.
An association is a structural relationship that specifies what objects of a type (class) are
connected to objects of, possibly, another type.

In Figure 1 we have many examples of associations. The Bank class relates, at the
same time, with the classes AccountCollection and ClientCollenction through two rela-
tionships. Each extremity of an association has a name of the role, a multiplicity, a class
that the extremity is joined and an attribute to describe the navigability. The class Ac-
countCollection has the role account and ClientCollection has the role client, both with
multiplicity 1.

An interesting relationship between two classes is that of refinement. This relation
is common for the formal methods community, where one can represent that some class
is better than (refines) another class. Although this is not common for UML, we can
characterize this this relationship by using a stereotype association, or an association with
a specific purpose (stereotype). Figure 2 presents two versions of the class ClientCollection,
where the left class lies in the package abstract and the right one in the package concrete.
From the packages naming, it is obvious that we are trying to represent that the right
class is better than (refines) the left one.

Generalization A generalization is a taxonomic relationship between a more general
class (superclass) and one more specific (subclass). Figure 1 shows an example of gener-
alization between the class Account (superclass) and the class Saving (subclass). Gener-
alization is the UML element designed to characterize inheritance aspects.

3 Precise Modeling with UML

The specification language Object-Z [Smi00] is an extension of the model-based language
Z [Spi92]. It was designed to support object-oriented features as well as originate modular
specifications more easily for non-experienced users.

An Object-Z specification is built around a collection of classes, each having its own
attributes and methods. More specifically, attributes are better known as the class state
variables, and methods as class operations. To see what an Object-Z class looks like, we

4



Account

n : N

number : NUMBER;
balance : R
owner : P Client

balance ≥ 0
0 ≤ #owner ≤ n

INIT
balance = 0

credit
∆(balance, number)
value? : R

balance ′ = balance + value?
number ′ = number

debit
∆(balance, number)
value? : R

balance ′ = balance − value?
number ′ = number

Figure 3: Object-Z class specification.

present the class Account of the diagram shown in Figure 3. Bite that the association
owner appears as a class attribute and its multiplicity in the class invariant.

It is worth noting that object’s initialization is performed by the operation Init.

3.1 Annotating UML Class Diagrams with Object-Z

From the previous section we can see that Object-Z classes support the elements of a
UML class diagram. Additionally, an Object-Z class has the advantage to be completely
formal whereas UML are not. Thus, following the combination defined in [MS03], in this
section we present how UML class diagrams can be annotated by Object-Z elements in
such a way that we can transform this annotated UML class diagram into a pure Object-Z
specification.

Since the present work is oriented towards industrial applications, our annotation ap-
proach is presented using the Rational Rose CASE tool.

5



(a) (b)

Figure 4: Screen shot of Account class specification.

3.1.1 Annotating Classes

For each class we need to define the invariant and properties which must be satisfied. In
order to do that, we have extended the Rose tool to support two new fields: Invariant and
Properties. Figure 4 (a) illustrates the Properties field, where only the property

Theorem Inverse
compose ⇒ balance ′ = balance3

is stated. It is worth noting that compose is indeed the composite Z operation credit o
9debit

as illustrated in Figure 4 (b). This is actually a Z grammar restriction which forced us to
create a boolean field (isDefinition) indicating whether an operation is single or composite
as explained below. This property captures the notion that applying a credit operation,
followed by a debit operation, using the same amount of money, does not change the class
state. It is worth observing that both the Invariant and the Properties fields are located
in the tab Roze of a class specification window. Invariants can also be associated to class
attributes and are accessed from the attributes window.

Regarding operations, each one has its own pre- and post-conditions, that establish
the conditions under which the operation must operate. As pointed out previously, we
have two choices to define an operation: we can define a single operation (a schema as
in Figure 5 (b)) or a composite operation (compose =̂ credit o

9 debit as in Figure 4 (b)).
For simplification purposes, we reuse the Rose´s tabbings for pre- and post-conditions
for single or composite operations. However, composite operations have the pre-condition
tabbing always empty because Object-Z does not make explicit distinction between pre-
and post-conditions. As composite operations depend on single operations then single pre-
and post-conditions are simply expanded according to the rules of the Z schema calculus.

Although the Rose tool has predefined locations for stating pre- and post-conditions,
other elements are necessary to allow the annotations to exploit certain features of Object-
Z.

Figure 5 (a) shows the specification of the operation credit where we emphasize the
extra fields:

• IsQuery—it is a boolean value used to characterize whether the operation modifies
(when set to false) or not (when true; in this case, we must enforce that all attributes

3compose is used in place of credit o
9 debit due to Z grammar restrictions.

6



(a) (b)

Figure 5: Screen shot of credit operation specification of the class Account.

must not change by an operation execution) the class state; the default value is set
to false. It is included in the UML specification [OMG03], but is not implemented
in Rose.

• IsDefinition—it is a boolean value indicating whether the current operation is de-
scribing a compound Object-Z operation. That is, an operation built around the
composition of other operations using Z schema definition.

3.1.2 Annotating Associations

Associations also need specific fields to insert formal notation. UML associations are
interpreted as being attribute of the other class, if is the case that the final class is navigable
from the initial class. Therefore the necessity exists to also stipulate invariants for the
associations between classes.

We define two fields where invariants on each end of the association can be inserted.
So each role, that in the future will be mapped as an attribute of the other class of the
association, will have individual fields for its invariant. In Figure 6 we see the fields
RoleAInvariant and RoleBInvariant, which are exactly the fields of the invariant for the
roles A and B respectively.

We represent a data refinement in UML through a special association with stereotype
refine. Since a data refinement needs a retrieve relation, the refine association has a field
named Retrieve where we place the predicate relating abstract and concrete class states.
Figure 6 also presents the field Retrieve in specification window of an association.

Depending on the multiplicity of each single association end, the corresponding role
can represent single object or collection of objects of the same class.

Since we represent associations through Object-Z class attributes, we need to know the
right type o use in each case. In general, for a single instance we use a type T and for a
collection the type P T , seqT or bag T . However, this point has revealed an interesting
consideration concerning refinement. Imagine a design decision that uses a sequence,
instead of a set, to keep the collection of objects. At this point we have two choices: either
considering this decision directly in Object-Z or adding another field to characterize the
type an association must be interpreted. In order to support this kind of data refinement
and still use the graphical notation of UML, we decided to consider the second choice.
Thus, Figure 6 shows two fields, TypeOfRoleA and TypeOfRoleB, used to accomplish such
a design goal.

7



Figure 6: Association Specification Window.

3.2 From Annotated UML Class Diagrams to pure Object-Z

Since both UML and Object-Z are based on [Boo91], we can verify that the mapping
between them is almost direct although there are some special cases reported in [MS03].
In this section, we show how our annotations described in section 3.1 originate a pure
Object-Z specification. For ease of presentation, the translations are related to the UML
class diagram of Figure 1.

The formal mapping between UML classes and Object-Z classes is based on [KC00]
and [MS03], which provides a formal mapping between them. In particular, we will discuss
here the UML constructs shown in section 2.

When we interpret the class or the association as a component of the diagram, they
represent the set of existing instances of that class or association at certain point. Thus,
we can map the class diagram as the set of all classes, associations and generalizations.

3.2.1 Classes

An Object-Z class is generated from an annotated UML class by taking the class name
as the Object-Z class name; the operations in the UML class as operation schemas in the
Object-Z class; the attributes form the state schema (since the attributes in the UML class
represents the state of the object) and out created new field Invariant serves to register
the predicate to be put in the predicate part of the Object-Z class state; and the visibility
of the attributes we put in the visibility list. For each Object-Z operation, we simply join
together the contents of the fields pre- and post-condition of the UML class specification,
since Object-Z operations do not distinguish pre- and post-conditions.

3.2.2 Associations

Object-Z has no direct support to associations. Nevertheless associations can be captured
by class attributes. This is exactly our mean of representation.

Using the association between Account and Client from the Figure 1, where one Account
may be related with many Clients, we could show that an UML association may be mapped
to an Object-Z attribute. In the example the Client appears as the attribute named owner.

8



It is a power set of Client and has an associated invariant that represents the cardinality
of the relation. This can also be seen in Figure 3.

Generalizations This is the easiest feature to be mapped to. The Object-Z class

Saving
Account
. . .

corresponds to the relationship between Saving and Account. Note that apply since both
approaches supports the concept of generalization, a map among them is easy: we just
take the superclass of a class in the UML diagram and put its name in the inherited field
in the Object-Z corresponding class.

3.3 Formal Development

Differently of traditional object-oriented development, a formal development has impor-
tant tasks which guarantee the overall software product. The most common are the proof
of desired properties and refinement of specifications. The first effort is in the direction
of investigating the satisfiability of software requirements. The latter concerns the step-
wise development approach, which originates concrete preserving versions of the original
abstract specification.

From the practical viewpoint, the previous tasks are handled using tool support, such
as type-checkers, theorem provers, and model checkers. Unfortunately, Object-Z has a
limited set of tools. Basically, Object-Z has a type-checker named Wizard [Smi96], a model
checking strategy, and a non-direct theorem prover provided by an Object-Z embedding
in the HOL system.

However, Object-Z is an extension of Z and thus, for a reasonable subset of Object-Z,
it is possible to use the Z tools. In particular, single Object-Z classes can be seen as simple
Z specifications. This is exactly the approach ew take in the present work. We use the
Wizard tool to perform syntax and type-checking, and the theorem prover Z-Eves to check
for valid properties as well as data refinements.

In the rest of this section we point out our current experience of a formal development
approach using the UML graphical context.

Our starting point is syntax and type-checking. This is the easiest task to be accom-
plished since the Wizard tool is a proper Object-Z tool. We simply have to transform the
annotated class diagram into a pure Object-Z specification and execute the Wizard tool.
This simple verification step can reveal a lot of typographical problems in the annotations.

Due to the lack of tools to check Object-Z specifications, we adopted the use of Z to
prove properties and refinements. As cited in [SBC92], the semantics of an Object-Z class
is similar to that of a Z specification with only one state schema. So, after the mapping of
classes in UML to Object-Z, to the purpose of experimentating formal methods embedded
in UML, we can investigate properties and prove refinement of one class in the diagram.

Since we are working with one class in Z, some of the features introduced by Object-Z
are lost. One of these is the visibility: the members do not need visibility, because they
can be seen inside the class, independently of its implicit modifier and there are no other
classes that will try to access hidden class members. The other is associations: the classes

9



which are in the other end of an association with the generated classes are treated as given
sets; this weaks our model, but for the purpose of the experimentations, this is enough.

In this section we will use the example given in Figure 2. So, we need to specify all
operations in Z.

add
∆(ClientSet)
c? : Client

c? 6∈ clientSet
clientSet ′ = clientSet ∪ {c?}

remove
∆(ClientSet)
c? : Client

c? ∈ clientSet
clientSet ′ = clientSet \ {c?}

The most precise things that we can extract from the problem are its properties. When
we are constructing a model for some problem, we want that our model represents it and
we would like to check if it have the desired properties. In a formal specification, the
properties can be used to verify the correctness of the model.

In the previous example, we will try to check a simple property: the Inverse property.
Given the sequential application of the add and remove operations, the final state remains
unchanged in relation to the initial. To do this in an UML model, we added the fields
Property and isDefinition in the class specification. Property, as the name says, serves to
specify the properties of the class. IsDefinition serves to introduce an operation which
sequentially composes others two. This is necessary for formal specification but does not
affect the UML model, since that auxiliary operation can be made private, fitting well the
UML methodology.

Theorem Inverse
add o

9 remove ⇒ clientSet ′ = clientSet

Once we have written an abstract specification and proved its correctness, we would
like to improve it, giving more details about the state space and its associated operations,
replacing mathematical structures by computer-oriented structures. We must be more
precise about storing data or making calculations. But this is not enough: we need to
establish a relationship between the two state schemas. This relationship is called retrieve
and, through it, we must prove that the behavior of the concrete specification is the same
of abstract. In the UML model, we insert the retrieve into a new field, the Retrieve,
which is associated with a refinement association. Since we are mapping UML classes to
Z specifications, this refinement will be done between two classes in the class diagram.
The operations’ specifications of the new class, which refines the prior are presented. The
Retrieve is also shown, where we establish a refinement association between the abstract
and concrete ClientCollection classes.

10



add
∆(clientSeq)
c? : Client

c? 6∈ ran clientSeq

clientSeq ′ = clientSeq a 〈c?〉

remove
∆(clientSeq)
c? : Client

c? ∈ ran clientSeq
clientSeq ′ = clientSeq � (ran clientSeq \ {c?})

Retrieve
clientSet = ran clientSeq

In this particular concrete specification, we can see sequences as some kind of linked
lists, the concatenation of sequences as concatenation of lists and the filter as a traverse
in list eliminating the nodes which do not satisfy some predicate.

Following this line, we can build classes which are more and more operation oriented,
proving refinement between them, until we have an almost operational design. Then, we
can apply a refinement calculus and derives the code from the specification [WD96]. All
of these steps can be assisted by CASE tools, like Rose.

4 Tool Support

We developed, from the Rational Rose extension interface, one add-in responsible for the
generation of specifications, theorems and properties associated in Object-Z/Z. The add-
in was written in Visual Basic, using a modular structure aiming modules reuses in the
diverse functionalities of the tool. It was also necessary to create archives to describe the
extra menus and properties that had been inserted.

A Web interface was also developed to submit specifications written in LATEX for the
Wizard, thus making possible use of any operational system to analyze and type check its
specifications. This is done through a simple and universal interface.

The RoZe is available and can be downloaded from the RoZe page4, and the Wizard
interface can be accessed through the the Wizard page5.

5 Conclusion

In this paper we have proposed a practical use of formal methods where fragments of the
Object-Z specification language [Smi00] are embedded in UML class diagrams. This work
is in the direction of the project ForMULa (Formal Methods and UML Integration).

4www.cin.ufpe.br/∼rmb2/Arquivos/IC-MF
5www.cin.ufpe.br/∼pvsm/IC-MF/typeCheckerOnline.html

11



Since formal methods need integrated tool support in order to be more acceptable by
the software Industry, we have decided to experience our approach in the Rational Rose
where its add-in technologies allows us to extend its functionality for our specific purposes.

Our approach is very similar to the one proposed by IBM where the language OCL
(Object Constraint Language) [WK99] is used as a standard formal specification language
to formalize UML diagrams. In particular, we indend to use OCL as specification language
(front-end) although reasoning with a translation to Object-Z [DJM03]. The reason is
simple, OCL is the OMG specification language standard but still lacks a complete formal
semantics and tool support as well as capabilities to prove properties and refinements.

As future research we intend to integrate our current approach to model checking
Object-Z specifications, incorporate refactoring and refinement laws in the tool, and in-
corporate treatment for dynamical aspects by using CSP.

Acknowledgement. We would like to thank Augusto Sampaio for his comments on
earlier drafts of this paper.

References

[Boo91] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin–
Cummings, Redwood City, Calif., 1st edition, 1991.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[CE97] T. Clark and A. Evans. Foundations of the Unified Modeling Language. In 2nd
Northern Formal Methods Workshop. Springer-Verlag, 1997.

[CW96] E. M. Clarke and J. M. Wing. Formal Methods: State of the Art and Future
Directions. ACM Computing Surveys, 1996.

[DJM03] R. Duarte, J. Júnior, and A. Mota. Precise Modelling with UML: Why OCL?
submitted to the Workshop of Formal Methods, 2003.

[KC00] S. Kim and D. Carrington. A formal mapping between UML models and Object-
Z specifications. Lecture Notes in Computer Science, 1878:2–21, 2000.

[Kru00] P. Kruchten. An Introduction to the Rational Unified Process. Addison-Wesley,
2000.

[MS03] A. Mota and A. Sampaio. Integrating Object-Z and a subset of UML. submitted
to the Workshop on Critical Systems Development with UML, 2003.

[OMG03] OMG. Unified modeling language. Specification v1.5, Object Management
Group, March 2003. http://www.omg.org/technology/uml/.

[SBC92] S. Stepney, R. Barden, and D. Cooper, editors. Object Orientation in Z. Work-
shops in Computing. Springer-Verlag, 1992.

[Smi96] G. Smith. Wizard: A Type-Checker for Object-Z Specifications. Technical
Report SVRC 96-24, The University of Queensland, 1996.

12



[Smi00] G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher,
2000.

[Som02] I. Sommerville. Software Engineering. Addison-Wesley, 2002.

[Spi92] M. Spivey. The Z Notation. Prentice-Hall, 1992.

[WD96] J. Woodcock and J. Davies. Using Z: Specification, Proof and Refinement.
Prentice Hall International Series in Computer Science, 1996.

[WK99] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1999.

13


