
AN ENVIRONMENT FOR REPRESENTATION AND MANAGEMENT
OF DATA MINING RESULTS AS XML DOCUMENTS

Thereza P. P. Padilha1 2, Leandro M. Almeida1 and João B. M. Alves2

Abstract: The employment of the eXtensible Markup Language (XML) has been increasing rapidly in
several application domains. It has some powerful properties that make it a great candidate for
representation and handling of different kinds of data. In this paper we will explore the use of XML
documents for representing and management of data mining (DM) results. For this, an implementation of
an environment for discovered knowledge management and some experimental results will be presented.

Keywords: data mining, XML, knowledge management.

INTRODUCTION

In recent years, a change in knowledge
discovery has occurred, which can be divided
into three generations. First, the change was
mainly directed towards the development of
more powerful data mining algorithms that
discover better patterns, achieving higher
accuracy, and scaling better on a large data set.
The second generation tackled the knowledge
discovery life cycle, which includes human
resource identification, problem specification,
data prospecting, domain knowledge
incorporation, methodology identification,
data preprocessing, pattern discovery, and
knowledge post-processing. The third and
current generation is tackling the interchange
of discovered knowledge among compliant
applications, which requires the specification
of a commonly accepted representation. This
endeavor has been approached by XML-based
languages [1].

The knowledge discovery in databases (KDD)
is a complex, iterative, interdisciplinary multi-
step process, comprising in patterns
investigating. The obtained knowledge of this
process should be possible to manipulate it,
share it, consolidate it, report it for decision
making support, marketing, etc. In this
context, this paper presents an environment

that uses an XML-based language to represent
and manage data mining results (decision tree,
for example), gained in the KDD process. The
use of XML as representation language allows
to build a flexible and extensible environment
for processing of discovered knowledge.

THE KDD PROCESS

The knowledge discovery in databases is not
only the application of data mining algorithms
against the raw data from database. Its
definition can change slightly from one author
to another, but the general shape means the
same, as can be found in [2, 3, 4]. According
to Fayyad et al., the KDD process consists of
five steps [2]:

• selection: understanding of the
application domain, creating a dataset,
focusing on a subset of attributes
(features) or data samples;

• preprocessing: data cleaning, deciding
on strategies for handling missing data
value and removing inconsistent data or
noise if necessary;

• transformation: data adapting to a
particular format of data mining
algorithm;
1 Lutheran University of Brazil – ULBRA - Email: {thereza, leandro}@ulbra-to.br
2 Federal University of Santa Catarina – UFSC - Email: {thereza, jbosco}@inf.ufsc.br

• data mining: searching for relevant
patterns and representing in a particular
form;

• interpretation/evaluation: visualization
of the extracted patterns.

Sometimes the KDD process is considered as
consisting of only 2-4 steps as presented in [5].
An important issue of this process is extracted
knowledge examination by domain experts.
The knowledge should be presented in
expressive description languages so that they
can be easily understood and interactive. In
general, the languages used are: trees, tables,
rules, graphs, matrices, etc. Each language
takes a peculiar format.

Recently, the XML-based approach emerged
to support problems of data mining languages,
such as platform independence and
extensibility. Some works about this have
already been reported in the literature. In [6],
an XML-based environment is proposed to
support part of the KDD process. More
specifically, it designed a query language that
allows realizing sophisticated combinations of
data mining steps. Data mining tasks and their
results are specified by means of XML
documents. Another previous work proposed
an XML framework for the domain of
knowledge discovery in databases [7]. Thus, it
shows a prototype of the definition of data
interfaces for respective KDD steps using
XML. The steps were performed by
specialized agents and a system of formal
ontology would be created to describe the
domain of the KDD process.

Although research on XML-based approach to
support languages for data mining is still
immature, already there is an initiative for
standardization of a language, which several
participating companies. Some of these
languages will be presented later.

XML

The World Wide Web Consortium (W3C) [8]
built a language for semi-strutured data named
XML, which is designed to allow marking,
transferring and reusing information through a
standard method of definition of the
documents structure and format. XML data are
organized into elements delimited by tags, and
elements can be nested. It has been recognized
by many researches as a promising solution to
their problems. The characteristics of XML-
based applications are:

• platform independence: XML is a
document that can be managed by any
application, according to Document Type
Definition (DTD) that defines elements of
the document and a hierarchical order
between them;
• robustness: XML documents have to be
well-formed;
• extensibility: from DTDs, XML serves
as a metalanguage for definitions of other
languages;
• human legibility: XML is not directly
meant to be read by humans, but simple
text editors or specialized editing
applications can be used to view, create,
and modify it;
• information interchange: integration
with several repositories and metadata
services increase the information
interchange by applications.

There are some XML-based description
languages have been proposed for data mining
results, such as Predictive Model Markup
Language (PMML) [9] and XML Data Mining
Specification Language (XDMSL) [11], but
these still seem to be supported by few tools
and research projects. PMML is an XML-
based language that provides a quick and easy
a way for companies to define predictive

models and share models between compliant
vendor's applications [4]. Initially, in version
1.0, it created a small set of DTDs that specify
the entities and variables for documenting
decision tree and regression models. Actually,
in version 2.1, it provides DTDs for clustering,
neural networks, association rules, and others.
More discussion and further references about
PMML can be found in [11]. XDMSL is an
XML-based language for the description of
each step in the KDD process [10]. The
intended use of XDMSL is to capture the
whole evolution process from the original data
to the knowledge mined from it. In other
words, it is used to describe and store all
relevant informations to data mining projects,
and enable applications to exchange and share
such projects.

THE PROPOSED ENVIRONMENT

The proposed environment offers a support for
representation and management of knowledge
using XML documents. Our choice of using
XML as language for data mining results is
guided by its characteristics (cited in early
section), easiness of the knowledge reusability,
and possibility for building queries. The

reusability has a vast importance, mainly when
it is situated in business applications allowing
to manipulate, search and know the identified
patterns from databases that contain customer
purchase data, for instance. The building
queries allows to obtain interesting patterns
through combinations among elements, values,
features and, mainly, some data mining results,
facilitating decision making support.

This environment has been implemented in
Java and supports three data mining models.
Figure 1 shows a simplified schema of the
environment architecture. Graphical User
Interface (GUI), DM models and Java API
(XalanJ and Document Object Model (DOM))
are main components of the environment. The
GUI component allows users to interact with
the environment and explore its recourses.
This component, basically, handles extracted
knowledge. The building a new query is
supported by an editor that guides users in the
whole process. Presentation of results, setting
parameters and exporting results to XML files
are also available recourses. In following,
other components (DM models and Java API)
will be described in more detail.

Fig.1.- Environment architecture

<!—model in PMML format-->
<PMML version="2.1">
- <TreeModel functionName
 - <MiningSchema>
…
</PMML>

XML
Document

DM Results
(Weka)

GUI DM Models

Decision Tree

Java API

XML
Dictionary

XalanJ

DOM
Association Rules

Regression

The provided data mining results to the
environment are based on output format of the
weka software. This format consists of
identified patterns and several informations
such as attributes, number of instances, data
source name (relation), learning algorithm and
others. Weka is a Java-based collection of
machine learning algorithms for data mining
tasks [12]. The algorithms can either be
applied directly to a dataset or called from
your own Java code. Weka has tools for data
pre-processing, classification, regression,
clustering, association rules, and visualization.
It is also well-suited for developing new
machine learning schemes. Weka is open
source software issued under the GNU General
Public License [12]. The weka was chosen
because it is well-known software in Machine
Learning community, and, moreover, presents
good-quality data mining methods to discover
patterns.

DM Models
Every one of the data mining models has a
data dictionary, represented by the
DataDictionary element, which contains
definitions of data fields, specifies their types
and ranges of valid values. These definitions

are assumed to be independent of specific data
sets as used for training or scoring a specific
model. Every model contains also one mining
schema, represented by the MiningSchema
element, which lists fields used in that model.
Mining schema is a subset of the fields defined
in the data dictionary. While the mining
schema contains information that is specific to
a certain model, the data dictionary contains
data definitions, which do not vary per model.
The main purpose of the mining schema is to
list the fields that a user has to provide in order
to apply the model.

The data mining models used are: a) decision
tree (converts weka C4.5, ID3 and Decision
Stump decision tree learning model into
PMML decision tree learning model), b)
association rules (converts weka Apriori
Association Rule learning model into PMML
association rule model) and c) regression
(converts weka M5 numerical prediction
learning model into PMML Regression
learning model). The decision tree model, for
example, consists of the following essential
elements:

• TreeModel: starts the definition for a

tree model;
• Node: is an encapsulation for either

defining a split or a leaf in a TreeModel.
Every Node contains a predicate that
identifies a rule for choosing itself or any
of its siblings;

• modelName: identifies the model with
an unique name in PMML file.

The environment receives a data mining result,
identifies a mining model through learning
algorithm name, analysis according to a data
dictionary and provides a correspondent
PMML document. One or more mining
models can be contained in a PMML

document. A PMML document is an XML
document with a root element of type PMML.

Java API
The environment uses basically two Java
APIs: DOM and XalanJ. For each provided
data source, the environment creates an XML
dictionary that can aggregate several data
mining results. An XML dictionary has
pertinent informations of XML documents,
such as existing attributes and its values, type
of attributes, accuracy level, filename and
function name. The main dictionary's
functionality is to facilitate the management of
stored XML documents.

The knowledge processing from XML
documents is made using the XML Path
Language (XPath) because it has a similar
syntax to navigating through directories.
XPath is a language recommended by W3C
for addressing parts of an XML document
[13]. To support XPath queries is used XalanJ
API, developed by Apache Group. XalanJ [14]
implements relevant W3C specifications, such
as Extensible Stylesheet Language
Transformations [15] and XPath [13]. XalanJ
basically performs XPath queries and captures
query results, transforming them in a new
XML document. DOM is a standard
recommendation of the W3C for building tree
structure in memory for a XML document [16,
17]. In environment, DOM is used for
creating, processing, and manipulating XML
documents. However, the created tree
navigation is made using XPath query because
it has flexibility to incorporate logical
operators.

The environment supports two kinds of valid
and well-formed queries in XML documents:
XPath query - the user should know the XPath
syntax and documents structure; and SQL
query - the user uses SQL syntax and PMML
elements. When the user executes a SQL query
then it will be transformed to an XPath query.
The user can choose a search in specific
dictionary that contains links for several other

documents, or just one XML document. So, it
is possible to find Node elements that contain
a specific attribute in XML dictionary, for
example. The query output shows the number
and description of PMML elements found, i.e.,
Node. For a visual representation the JTree
class is used.

EXPERIMENTAL RESULTS

The aim of this experiment is to show how our
environment works for representation and
management of data mining results as XML
documents. For this, the classic labor data set,
available in repository of the weka software,
was used to extract weka decision tree learning
models (set of data mining results). This data
set contains 57 examples and 17 attributes (09
categorical and 08 continuous), grouped in two
class.

Figure 2 shows one of these obtained models
using the J48 learning algorithm (inductor) and
its default parameters. In this model, the
generated decision tree has three leaf nodes
(each tree level is represented by ' | ' symbol)
and its accuracy level is 74%, approximately.
Later, we provided to the environment the
weka models to transform them in PMML
decision tree models and create an XML
dictionary, called LaborDictionary.

Fig. 2.- An example of weka decision tree model

=== Run information ===
Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: labor-neg-data
Instances: 57
Attributes: 17
 wage-increase-first-year
 wage-increase-second-year
 wage-increase-third-year
 statutory-holidays
 .

.

.
 vacation
 class
Test mode: 10-fold cross-validation
=== Classifier model (full training set) ===
J48 pruned tree

wage-increase-first-year <= 2.5: bad (15.27/2.27)
wage-increase-first-year > 2.5
| statutory-holidays <= 10: bad (10.77/4.77)
| statutory-holidays > 10: good (30.96/1.0)

=== Summary ===
Correctly Classified Instances 42 73.6842 %
Incorrectly Classified Instances 15 26.3158 %

The Fig. 3 presents the data mining result
shown in Fig. 2 in PMML format. The
DataDictionary element summarizes the
attributes employed in this model that are:
wage-increase-first-year and statutory-
holidays. It shows, for each attribute, its name
and data type (continuous). The score attribute
in a Node element defines the class value.
Informations like number of instances, number
of attributes and learning algorithm name are
not stored because the existent data mining
models still not offer elements for this
purpose.

An example of a query in the LaborDictionary
(LaborDictionary.xml) and its results are
shown in Fig. 4. In Query Elements field, up
left, the accessible PMML elements and its
respective values are presented. In Dictionary
Tree field, bottom left, users can see all
existing XML dictionaries and the XML
documents that are aggregated. The executed
query, in Editor field, finds tree nodes (Node
elements) that contains class value equal bad.

In thi
found
can o
instan
Other
accura
Node
allowi
obtain

 <?xml version="1.0" ?>
- <PMML version="2.1">

 <Header copyright="www.dmg.org" description="Decision Tree of
labor." />

- <DataDictionary numberOfFields="2">
 <DataField name="wage-increase-first-year" optype="continuous"

/>
 <DataField name="statutory-holidays" optype="continuous" />
- <DataField name="class" optype="categorical">

 <Value value="bad" />
 <Value value="good" />

 </DataField>
 </DataDictionary>
- <TreeModel functionName="classification" modelName="labor">

- <MiningSchema>
 <MiningField name="wage-increase-first-year" />
 <MiningField name="statutory-holidays" />
 <MiningField name="class" usageType="predicted" />

 </MiningSchema>
- <Node score="">

 <True />
- <Node score="bad">

 <SimplePredicate field="wage-increase-first-year"
operator="lessOrEqual" value="2.5" />

 </Node>
- <Node score="bad">

- <C Operator=" ">ompoundPredicate boolean and
 <SimplePredicate field="wage-increase-first-year"

operator="greaterThan" value="2.5" />
 <SimplePredicate field="statutory-holidays"

operator="lessOrEqual" value="10" />
 </CompoundPredicate>

 </Node>
- <Node score="good">

- <CompoundPredicate booleanOperator="and">
 <SimplePredicate field="wage-increase-first-year"

operator="greaterThan" value=" " /> 2.5
 <SimplePredicate field="statutory-holidays"

operator="greaterThan" value="10" />
 </CompoundPredicate>

 </Node>
 </Node>

 </TreeModel>
</PMML>

Fig. 3.- An example of PMML decision tree model

s case, just ten Node elements were
and listed. In the dotted rectangle, we
bserve a Node element that covers

ces with wage-increase-first-year <= 2.5.
informations such as date, file and

cy are also provided. All the selected
elements are presented in the same way
ng the user explores the elements for
 new knowledge for decision making.

The user can, for instance, discover a certain
pattern in several data mining results,
independent of the kind of mining model (tree,
association rules and regression).

Although the Fig. 4 has presented a simple
query, the employ of syntax similar to SQL
facilitates users find patterns because there is
strong assimilation with SQL query.

Furthermore, the possibility of reuse of data
mining results can provide, for example, a

common Node element among several XML
documents.

Fig. 4.- An example of query in XML dictionary

CONCLUSIONS AND FURTHER WORK

In general, many communities have used XML
to specify the necessary documents format in
their applications. In this paper we presented
an environment that uses XML-based
language for management of obtained data
mining results of the weka software. Here, we
present just the decision tree data mining
model. The main contribution was to show the
potential of the XML language for knowledge
processing, enhancing the decision making
support. We have used XalanJ and XPath to
retrieve the contained information in XML
documents and JTree class to present visual
documents to the user.

The proposed environment is considered open
and can be easily extended in multiple
directions as the increase of other DM result
formats. Some benefits were identified using

XML documents for knowledge management,
such as: flexibility for accessing Node
elements (easy to be parsed), standard model
definition supported by PMML and knowledge
sharing.

Another advantage of the XML approach is
that from XML documents, it is possible and
easy to transform one knowledge
representation to another, e.g. decision tree to
production rules and vice-versa. These
documents also can be transformed into other
data formats and displayed by different
programs using some existing mechanisms
such as DOM. So, the users can choice your
programs, maximizing the information
interchange. In the future, we will intend to
add new format of data mining results and
explore the integrating into them.

REFERENCES

[1] A. G. Buchner, M. D. Mulvenna, R.

Bohm, S. S. Anand; “Data Mining and
XML: Current and Future Issues”. In:
First International Conference on Web
Information Systems Engineering,
Hong Kong, 2000.

[2] U. M. Fayyad, G. Piatesky-Shapiro, P.

Smyth, R. Uthurusamy: “From Data
Mining to Knowledge Discovery in
Databases”. American Association for
Artificial Intelligence, 1996.

[3] H. Mannila; “Methods and Problems in

Data Mining”. In Proceedings of the
7th International Conference on
Database Theory (ICDT’97), Delphi,
Greece, 1997.

[4] D. Pyle; “Data Preparation for Data

Mining”. Morgan Kaufmann
Publishers, Inc., San Francisco, CA,
USA, 1999.

[5] S. O. Rezende; “Sistemas Inteligentes:

Fundamentos e Aplicações”. Manole,
Barueri, SP, Brazil, 2003.

[6] P. Alcamo, F. Domenichini, F. Turini;

“An XML Based Environment in
Support of the Overall KDD Process”.
In Proceedings of the Fourth
International Conference on Flexible
Query Answering Systems
(FQAS2000), Warsaw, Poland, 2000.

[7] P. Kotàsek, J. Zendulka; “An XML

Framework Proposal for Knowledge
Discovery in Databases”. In The Fourth
European Conference on Principles and
Practice of Knowledge Discovery in
Databases, Lyon, France, 2000.

[8] World Wide Web Consortium Home
Page. http://www.w3.org/XML.

[9] Data Mining Group Home Page.

http://www.dmg.org/.

[10] P. Kotàsek; “DMSL: The Data Mining

Specification Language”. PhD thesis,
Brno University of Technology,
Faculty of Information Technology,
2003.

[11] Predictive Model Markup Language

http://www.dmg.org/pmml-v2-1.html.

[12] I. H. Witten, E. Frank; “Data Mining:

Practical Machine Learning Tools and
Techniques with Java
Implementations”. Morgan Kaufmann
Publishers, Inc., San Francisco, CA,
USA, 1999.

[13] XML Path Language Home Page.

http://www.w3.org/TR/xpath.

[14] Xalan-Java Overview Home Page.

http://xml.apache.org/xalan-
j/overview.html.

[15] Extensible Stylesheet Language Home

Page. http://www.w3.org/Style/XSL/.

[16] Document Object Model Home Page.

http://www.w3.org/DOM/.

[17] H. M. Deitel, P. J. Deitel, T. R. Nieto,

T. M. Lin, P. Sadhu; “XML: How to
Program”. Prentice-Hall, Inc., NJ,
USA, 2001.

	AN ENVIRONMENT FOR REPRESENTATION AND MANAGEMENT
	OF DATA MINING RESULTS AS XML DOCUMENTS
	Thereza P. P. Padilha1 2, Leandro M. Almeida1 and João B. M.
	Abstract: The employment of the eXtensible Markup Language (
	Keywords: data mining, XML, knowledge management.
	INTRODUCTION
	THE KDD PROCESS
	XML
	THE PROPOSED ENVIRONMENT
	DM Models
	Java API
	EXPERIMENTAL RESULTS

	CONCLUSIONS AND FURTHER WORK
	REFERENCES

