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Abstract— This paper describes an improved version of
a method that automatically searches near-optimal Multi-
layer feedforward Artificial Neural Networks using Genetic
Algorithms. This method employs an evolutionary search for
simultaneous choices of initial weights, transfer functions,
architectures and learning rules. Experimental results have
shown that the developed method can produce compact, efficient
networks with a satisfactory generalization power and with
shorter training times when compared to other methods found
in the literature.

I. INTRODUCTION

The search for an Artificial Neural Network (ANN) tai-
lored to a specific problem is an extremely important task
for attaining success in an application that uses ANNs. This
search is generally performed by an ANN configuration
developer through a trial-and-error procedure. Thus, optimal-
ity or even near-optimality is not guaranteed, as the space
explored is only a small portion of the entire search space
and the type of search is rather random [1]. An optimal
neural network can be seen as an ANN tailored to a spe-
cific problem, thus having a smaller architecture with faster
convergence and a better generalization performance [2], [3],
[4]. The specific and correct (near-optimal) configuration
of an ANN model for a certain problem through trial-and-
error is considered a tedious, less productive and error-prone
task [2], [3]. When the complexity of the problem domain in-
creases and when near-optimal networks are desired, manual
searching becomes more difficult and unmanageable [2]. The
construction of near-optimal ANN configurations involves
difficulties such as the exponential number of parameters
that need to be adjusted; the need for a priori knowledge
of the problem domain and ANN functioning in order to
define these parameters; and the presence of an expert when
such knowledge is lacking [3].

An automatic method can be used to avoid the problems
stemming from a manual search. A significant amount of the
methods found in the literature for searching near-optimal
ANNs employ evolutionary techniques, specifically Genetic
Algorithms (GA), whereas others employ non-evolutionary
techniques. Some methods use evolutionary techniques to
search ANN models with architecture optimization, as pre-
sented in [5], [6]. Another methods perform searches in-
cluding more information, such as transfer functions, initial
weights and learning rules (or learning algorithms), as pre-
sented in [2], [1]. There are also methods that employ non-
evolutionary techniques that prune connections considered
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less significant [7], [8] or freeze weights when the same
inputs are submitted to the network [7]. Methods using non-
evolutionary techniques are focused on the manipulation of
ANN architectures. Thus, they only investigate restricted
topological subsets, whereas methods using evolutionary
techniques search the complete class of network architecture,
thereby achieving better results [1].

In this work, we present an improved version of a method
developed for searching near-optimal networks using ANNs
and GAs with direct encoding, denominated NNGA-DCOD
(aNN + GA - Direct enCODe), as presented in [3]. The main
improvements to NNGA-DCOD are related to the change in
the selection criterion and the assessment of solutions/ANNs
found. In previous versions, NNGA-DCOD with roulette
wheel selection failed to achieve adequate results due to
the selection criterion being too severe and discarding com-
plex solutions/ANNs, even when they exhibited satisfactory
performance. Other selection criterion was adopted and a
revision/adjust in the assessment of solution and genetic
operators was performed in order to improve the method
in search for more complex ANNs configurations, i.e. with
more hidden layers. Another significant improvement is
the time consumption analysis of NNGA-DCOD. Although
rarely described in papers on the search for near-optimal
ANNs, this analysis is useful for determining the amount
of time the method needs to perform the search. NNGA-
DCOD differs from other methods in the search for ANNs
with high performance, low complexity and training up to
five epochs, and its evolutionary search uses individuals
with direct encoding (e.g., real values) [3]. Therefore, the
main contribution of this work regards the genetic operators
specially developed to work directly with ANN information
on individuals. Another contribution is the search for near-
optimal neural networks that considers performance, simplic-
ity and processing speed. This paper is organized as follows:
Section 2 presents the NNGA-DCOD method; Section 3
describes experimental results, including time consumption
analysis; Section 4 summarizes our conclusions and presents
future work.

II. NNGA-DCOD METHOD

The development of the NNGA-DCOD was performed
using Evolutionary ANNs (EANNs), a framework that makes
possible the search for all ANN components needed for its
functioning, as defined by Xin Yao [4]. Such a framework
is composed of a combination of GAs and ANNs, allow-
ing the exploration and exploitation of a large number of
necessary aspects or components necessary to the building
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of well-performing ANN models, sucha as initial weights,
transfer functions, topology setups and learning rules (train-
ing algorithm parameters) [4]. EANNs include a sequential
layer search process, in which each layer has specific ANN
information to be found by a specific GA. This information
is organized as follows [4]:

• the evolutionary search for initial weights occurs in the
lower layer;

• the evolutionary search for learning algorithm parame-
ters is performed in the intermediary layer;

• the evolutionary search for architecture configurations is
performed in the higher layer, including the number of
connections, number of hidden nodes per layer, number
of hidden layers, transfer functions per layer or hidden
nodes.

Figure 1 displays a possible search configuration in which
the evolution speed is faster with the layer of initial weights
than with the other layers. This is a consequence of the high
dimensionality of the exploration space for initial weights
due to the lack of a priori knowledge on excellent sets
of initial weights. The higher search layers search for ar-
chitectures and learning algorithm parameters, as they have
more a priori knowledge and allow the restriction of a more
specific search space. There is a GA in each layer that works
with a population of individuals related to the information
from the current layer. A recent work used EANNs with the
layer configurations in Figure 1 for searching near-optimal
ANNs [2]. Thus, a more intensive search for architectures
and initial weighs is performed based on the specified
learning algorithm parameters.

Evolutionary search of learning algorithms and its parameters

Back-propagation Scaled-Conjugate
Gradient

Quasi-Newton Levenberg
Marquardt

Evolutionary search of architectures and node transfer
functions

Evolutionary search of initial weights

F
a
s
t

S
lo

w

Fig. 1. Evolutionary search in layers.

Unlike the Abraham implementation [2] in which ANN
information is encoded in binary form, the developed method
uses real values, thereby avoiding the frequent encoding
and decoding tasks at each iteration of the search process.
The NNGA-DCOD performs the search for MLP, feedfor-
ward, fully connected ANNs, with supervised learning for
classification problems that have a simple architecture (few
hidden layers and nodes per layer), faster convergence into
fewer training epochs and with satisfactory generalization
performance. For example, in a work by Abraham [2], up
to 500 training epochs are used for each network, whereas

the NNGA-DCOD uses up to five training epochs. As the
NNGA-DCOD uses real values rather than binary encoding
schema, the traditional genetic operators are reformulated to
deal with such values (ANN information).

The evolutionary layered search process displayed in Fig-
ure 1 is used in the NNGA-DCOD. The layer arrangement
is the same used by [2], where the search for initial weights
is performed in the lower layer; the search for hidden layers,
nodes per layer (architecture) and transfer functions occurs in
the intermediated layer; and the search for learning algorithm
parameters is performed in the higher layer. Thus, there is a
separate GA for each layer and, consequently, one population
of individuals for learning algorithm parameters (PLAP), one
for architectures and transfer functions (PATF) and another
for initial weights (PIW).

As this is a sequential search process, three nested data
structures are used for individuals in the NNGA-DCOD: the
first is composed of a set of parameters for the training
algorithms and a population from the second data structure.
The second is composed of a set of architectures and a
population from the third data structure. Finally, the third
data structure is composed of a set of initial weights as
presented (Figure 2).

LR-1

ARCH-1

WGTs-1 WGTs-2 WGTs-3 ...

ARCH-2 ARCH-3 ARCH-4 ...

LR-2 LR-3 LR-4 ...

Learning Rules (Learning Algorithms Parameters)

Architectures

Initial Weights

Fig. 2. Composition of data structure used.

As stated above, the NNGA-DCOD uses individuals with
real values. Therefore, individuals from PIW are specific
weight matrices, the encoding and decoding of which could
present problems related to the representation of number
precision for large float numbers. On the other hand, the
adoption of real values to avoid this problem gives rise
to the need for genetic operators that deal directly with
real ANN information. The construction of genetic operators
for individuals from PLAP, PATF and PIW was performed
in stages with several experimentations in order to obtain
the current operator versions. These operators are the main
contribution of this work, as there is an absence of such types
of genetic operators in the literature.

The selection of n individuals is performed using the
tournament strategy, with a random pressure rate of p = 50%
and an elitism rate of e = 10%. This information was found
empirically. The tournament selection operator is used to
select individuals to compose a new population (survivors)
as well as individuals for crossover.
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One PIW is associated to a fixed pre-defined architecture
in which all individuals have weight matrices with the same
dimensions. Thus, the crossover of previously selected piwn

individuals, in which every weight matrix w has c × r
dimensions, occurs as described in Algorithm 1. The idea of
slicing the two weight matrices to form the child is related to
maintaining the correlations that exist between weights. One
portion of correlations between weights from two matrices
will compose the child weight matrix. Therefore, from two
matrices a and b, half of al, ar, bl, br is obtained, from
which the new matrix will be defined, for example, wchild =
[al;br] or wchild = [ar;bl].

Algorithm 1: Crossover Operator for PIW individuals
Data: piw

n
, w //parents, number of matrices in the network

Result: childVet //new offspring
begin1

numChilds← 12
while numChilds ≤ (n/2) do3

for matrix← 1 : w do4
halfA← doSlice(pw(numChilds).(matrix))5
halfB← doSlice(pw(numChilds + 1).(matrix))6
child(matrix)← [halfA;halfB]7

childVet← child8
numChilds← numChilds + 29

end10

The selection of individuals for mutation is performed
randomly, as individuals have no fitness yet. According to
the mutation rate m = 40%, forty percent of the child will
undergo mutation and this mutation will affect forty percent
of its composition as well. Sparse matrices are generated
for individuals selected for mutation, with forty percent of
the values between fx = [−0.5, 0.5] and the remaining
values zeros. This range of values was also found empirically.
These sparse matrices are then added to the child weight
matrices. The fitness for PIW individuals is the normalized
mean squared error (NMSE) from the training data submitted
to the network.

For individuals from PATF, the fitness Ifit is composed
of four pieces of information, Iacc classification accuracy,
Inmse training error, Icomp network complexity and If

weight of transfer functions used.

Ifit = α ∗ Iacc + β ∗ Inmse + γ ∗ Icomp + δ ∗ If(1)

Iacc = 100 ∗

(
1 −

correct

total

)
(2)

Inmse =
100

N P
∗

P∑
j=1

N∑
i=1

(di − oi)
2 (3)

Icomp =
c

ctotal
(4)

If =

n∑
h=1

fah (5)

In the Equation 1, Iacc is the classification error percent-
age; Inmse is the training NMSE generated by the network;
Icomp is the complexity measure considering the number of

used connections c and and the total number of possible
connections ctotal; If computes the weight from the transfer
functions used. For such, every transfer function has a associ-
ated weight empirically found (Table I): P with 0.2, T with
0.4 and L with 0.7, prioritizing simple transfer functions,
as the aim of the NNGA-DCOD is to find simple networks
with high performance; N and P are the total number of
outputs and number of training patterns, respectively; d and
o are the desired output (target) and the network output
(obtained), respectively. As the NNGA-DCOD searches for
networks with up to three hidden layers, the ctotal value
is based on the amount of input (in), output (out) nodes
and the number of hidden nodes per layer (hid): ctotal =
in×hid+hid+hid×out. In this work, the winner-takes-all
classification criterion was adopted, in which the output node
that has the highest value will determine the class pattern. For
this, the number of output nodes is equal to the amount of
the problem class. The Iacc calculus (network classification
error) occurs through the winner-takes-all criterion.

Constants α, β, γ and δ have values between [0, 1] and
control the influence of the respective factors upon the overall
fitness calculation process. For example, to favor the clas-
sification accuracy regarding training error and complexity,
the constants are defined as follows: α = 1, β = 0.90,
γ = 0.90 and δ = 0.20. These definitions imply that, when
apparently similar individuals are found, those that have
the least training error, structural complexity and transfer
function complexity will prevail. These values were found
empirically and used in the NNGA-DCOD experimentation.

The search for architectures is performed to find con-
figurations with between one and three hidden layers and
between one and 12 hidden nodes per layer. Table I dis-
plays the transfer functions enclosed in the search process.
The selected individuals (“parents”) are submitted to the
crossover process performed according to Algorithm 2. The
process starts with the definition of the number of hidden
layers that the child will have, which is obtained through
the mean sum of hidden layers from the parents, rounded
off based on probability problems. The dimensions of the
hidden layers and the transfer functions for the child are then
defined through random selection that considers all parent
information, hidden layers and transfer functions.

The crossover operator for PATF produces individuals that
are very similar to their parents. Thus, the mutation operator
(Algorithm 3) is applied after the crossover in order to main-
tain diversity in the population. Child selection for mutation
is performed through a random process. The process starts
with the number of children that will undergo mutation. A
random number is then generated within the range [0, 1].
This value will be used to define whether an architecture
will undergo an increase or decrease in the number of hidden
layers or will undergo an increase (pInc = 0.6) or decrease
(pDec = 0.5) in the number of hidden nodes per layer. If
an architecture has only one hidden layer, the possibility of
the number being three is great within all the possibilities.
In the case of a selected random value failing to cause a

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2237

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:23 from IEEE Xplore.  Restrictions apply.



Algorithm 2: Crossover operator for PATF individuals
Data: patf , n, k//parents, amount, index
Result: childVet//new offspring
begin1

while k ≤ (n/2) do2
layers← patf(k).HL + patf(k + 1).HL3
if rand(1) > probs then4

child.HL← roundCeil(layers/2)5
else6

child.HL← roundFloor(layers/2)7

dimensions← [patf(k).dim;patf(k + 1).dim]8
transFunc← [patf(k).func;patf(k + 1).func]9
for elements← 1 : dimensionssize do10

[child.dim, child.func]←11
raffle(dimensions, transFunc)

childVet← child12
k ← k + 213

end14

significant change in the number of hidden layers, a set of
values between arqval = [−2, 5] is generated and added
to the current dimensions of the architecture. This range was
defined empirically with the purpose of maintaining diversity
among the individuals. If an architecture has two hidden
layers, the possibility of the number being three is great,
with the intention of reducing the number of hidden nodes
per layer.

Algorithm 3: Mutation operator for PATF individuals
Data: childVet, n, m //child vector, number of child, mutation rate
Result: mutChild

begin1
childNumber ← ((m/100) ∗ n)2
while childNumber > 0 do3

probability ← rand(1)4
child← raffle(childVet)5
if child.numHiddLy = 1 then6

if probability ≥ pInc then7
child← addLayers(3)8

if probability ≥ pDec then9
child← addLayers(2)10

else11
child← child + raffle(arqval)12

13
else if child.numHiddLy = 2 then14

if probability ≥ pInc then15
child← addLayers(3)16

if probability ≥ pDec then17
child← decreaseLayersTo(1)18

else19
child← child + raffle(arqval)20

21
else22

if probability ≥ pInc then23
child← decreaseLayersTo(2)24

if probability ≥ pDec then25
child← decreaseLayersTo(1)26

else27
child← child + raffle(arqval)28

childVet← childVet− child;29
mutChild← child30
childNumber ← childNumber − 131

mutChild← mutChild + childVet32
end33

The evolutionary search for learning rules or learning al-
gorithms occurs with the search for parameters from the fol-
lowing algorithms: Back-propagation (BP), Levenberg- Mar-

quardt (LM), quasi-Newton Algorithm (QNA) and Scaled
Conjugate Gradient (SCG). Based on the adopted learning
algorithm, an individual from PLAP will have parameters
from this algorithm for functioning. As a PLAP individual
has a PATF, the fitness measure is given as the best Ifit

among its set of architectures. The selection of the individual
from PLAP also uses the tournament strategy. The mutation
and elitism rates are the same presented earlier for the other
evolutionary searches.

As individuals from PLAP have information related to the
learning algorithm parameters in question, the crossover of
individuals occurs with the generation of new values within
a range based on the parent values. Based on probability,
the mutation algorithm for the child performs an addition
or subtraction operation in the child rates. Based on its
current value, this operation causes a forty percent up or
down (increasing or decreasing) change in the parameter.

The general functioning of the NNGA-DCOD method is
presented in the Algorithm 4. Table I displays the complete
list of the parameters used.

Algorithm 4: General functioning of the NNGA-DCOD
Data: Parameters in Table I
Result: A set of near-optimal ANNs
begin1

Generate randomly the populations of: initial weights, architectures and2
learning algorithms parameters
foreach learning algorithm do3

Calculate the fitness for all individuals4
foreach generation ∈ ESLAP do5

foreach6
PATF ∈ PLAP and generation ∈ ESATF
do

foreach7
PIW ∈ PATF and generation ∈ ESW
do

Select parents to crossover based on the fitness8
Apply genetic operators to produce the offspring for9
next generation
Reduce the population to specified size10

Repeat steps from ESW11

Repeat steps from ESW12

Select the near-optimal networks found with every learning algorithm13
end14

The Evolutionary Search for Architectures and Transfer
Functions (ESATF) is dependant on the Evolutionary Search
for Weights (ESW). For every individual from PATF, there is
one PIW; and for every population of initial weights, an ESW
is performed for a fixed, pre-defined architecture. Therefore,
the ESW occurs on a faster time scale than the ESATF. For
every evolutionary search of architecture generation, many
evolutionary searches of weight generations are performed.
The Evolutionary Search for Learning Algorithm Parameters
(ESLAP) occurs on a lesser time scale than the ESATF,
because every individual from PLAP has one PATF that
they evolve for many generations to find optimal architec-
tures using pre-defined, fixed learning algorithm parameters.
After one ESATF generation execution, for every individual
from PLAP, there is one generation execution to search for
learning algorithm parameters.
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Parameters for: Values

G
A

s

- Encoding Direct
- Elitism 10%
- Mutation 40%
- Selection Tournament
- Population/Generation
→ Algorithms 7/30
→ Architectures 10/5
→ Weights 10/5

A
N

N
s

- Type MLP, feedforward
- Transfer functions Pure-linear (P),

Tang-sigmoid (T),
Log-Sigmoid (L)

- Hidden layers up to: 3
- Hidden nodes up to: 16
- Training epochs up to: 5
- Range of initial weights [-0.5, 0.5]
- Output neuron linear

T
ra

in
in

g
al

go
ri

th
m

s

BP - Learning rate and momentum [0.05, 0.25]
LM - Learning rate [0.001, 0.02]
SCG - Step lengths [1.0E-06, 100]
- Limits on step sizes [0.1, 0.6]
QNA - Scale factor to determine performance [0.001, 0.003]
- Scale factor to determine step size [0.001, 0.02]
- Change in weight for second derivative
approximation

[0, 0.0001]

- Regulating the indefiniteness of the Hessian [0, 1.0E-06]

TABLE I

NNGA-DCOD PARAMETERS.

The method starts the search by randomly generating pop-
ulations for all kinds of individuals. Fitness is then calculated
based on the ANN Normalized Mean Squared Error (NMSE)
achieved in the training set. The genetic operators maintain
the diversity of individuals for the tournament search of
all layers and a small range of random selection, where
the new individuals generated for the next offspring must
be distinct from individuals in the present offspring. The
amount of individuals used in the NNGA-DCOD is small,
but as this method is iterative, with nested loops and, many
new individuals are created at every generation of each kind
of search. Thus, the search space explored is large and
satisfactory results are achieved.

The improvements introduced in the NNGA-DCOD regard
the change of the fitness calculation formula and change
of the selection criterion. Currently, the measure of error
is accomplished with the NMSE formula. Thus, the error
information from the training set with NMSE is used for the
calculation of the fitness of all individuals. The validation
error is only used to present the gradual evolution of the
search and the test error is only used to show the final
performance of the near-optimal networks found. In the
earlier versions of the NNGA-DCOD, the roulette wheel
selection criterion was used, but according to experiments,
this type of selection reduces population diversity, which is a
phenomenon that strongly hampers the capacity of the GAs
to find near-optimal solutions. A high diversity of individuals
is something desired for GA applications [9], but as the
diversity was not obtained through roulette wheel selection,
tournament selection was adopted. Parameters from the ge-
netic operators, such as the pressure rate of selection, were
adjusted in order to accept networks with more hidden layers,
less hidden nodes per layers and a satisfactory performance.

Another improvement is the analysis of the time consumption
in the search for near-optimal ANNs performed by the
NNGA-DCOD and described together with the experimen-
tation results in the next section.

III. EXPERIMENTATION SETUP

The experiments to evaluate the NNGA-DCOD was per-
formed with five well-known classification problems found
in the UCI repository [10]. Cancer with 9 attributes (atb),
699 examples (exp) and 2 classes (cla); Glass with 9 atb,
214 exp and 6 cla; Heart-Cleveland with 35 atb, 303 exp
and 2 cla; Horse with 58 atb, 364 exp and 3 cla; and
Pima-diabetes with 8 atb, 768 exp and 2 cla. To perform
the experiments, we used five iterations of two-fold cross-
validation (5 x 2 cv). At each iteration, data were randomly
divided into halves. One half was the input for the algorithms
(70% for training and 30% for the validation set) and the
other half was used to test the final solution (test set).
To determine whether the differences among the algorithms
were statistically significant, we used a combined F-test
described by [11]. Let p

(j)
i denote the difference in the

accuracy of two classifiers in fold j of the i-th iteration
of 5 x 2 cv, p̄ = (p

(1)
i + p

(2)
i )/2 denote the mean, and

s2
i = (p

(1)
i − p̄)2 + (p

(2)
i − p̄)2 the variance.

f =

∑5
i=1

∑2
j=1

(
p
(j)
i

)2

2
∑5

i=1 s2
i

(6)

F is then approximately distributed with ten and five
degrees of freedom. We rejected the null hypothesis that
the two algorithms have the same error rate with a 0.05
significance level if f > 4.74. The accuracy results presented
in the section 3.1 are based on error information from the
ten tests and training sets. This methodology was used in
experiments due to the fact that usual method generates an
increase in type-I errors, where the results are incorrectly
deemed significantly different more often than expected
given the level of confidence used in the test [11].

The search for ANNs through trial-and-error was per-
formed following the previously described methodology,
using the same database split scheme and number of training
epochs. We performed 10 runs in each fold for the following
network setup: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 and 24
hidden neurons for one hidden layer with the (T) transfer
function. The purpose of these experiments was to compare
the performance between NNGA-DCOD and the manual
process, using the same database split scheme and number
of training epochs.

A. Experimentation Results

Table II displays the mean values from near-optimal ANNs
found with NNGA-DCOD and trial-and-error methods. The
mean of the architectures (arch) is based on the amount
of hidden units/neurons. Regarding the number of hidden
neurons, the NNGA-DCOD found structurally better net-
works (with few hidden neurons) than those found with
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Problems / NNGA-DCOD Trial-and-error
Algorithms Arch. Errors Arch. Errors

Training Test Training Test

C
an

ce
r

BP 12.8 6.26 6.22 16.8 23.16 23.14
LM 3.5 1.85 2.52 11.4 1.91 2.67
SCG 4.5 3.11 3.2 15 3.48 3.55
QNA 11.7 3.14 3.22 7.4 3.39 3.53

P
im

a

BP 6.1 21.02 21.15 15.4 23.97 23.96
LM 5.2 14.47 15.92 15 14.09 16.13
SCG 2 16.3 16.9 12.4 18.13 18.51
QNA 7.8 16.64 17.79 20.8 17.59 18.40

H
ea

rt

BP 12.1 14.33 14.26 21.2 24.62 24.64
LM 5.4 7.02 12.25 16.4 6.48 13.14
SCG 5.1 11.78 12.62 15.8 12.28 12.96
QNA 13.3 12.6 12.49 17.8 12.04 12.89

H
or

se

BP 7.2 17.29 17.52 20 19.71 19.72
LM 4.2 7.04 15.34 11.4 5.83 15.82
SCG 4.6 13.52 15.28 12 12.96 15.51
QNA 7.3 13.92 15.44 13.2 13.80 15.56

G
la

ss

BP 5.6 12.73 12.75 11.7 13.93 13.94
LM 12.3 7.61 9.18 14.6 7.89 9.62
SCG 5.2 10.22 10.29 19 10.24 10.37
QNA 5.1 10.47 10.53 12.6 10.34 10.44

TABLE II

MEANS VALUES FROM NEAR-OPTIMAL ANNS FOUND THROUGH

NNGA-DCOD AND TRIAL-AND-ERROR.

the trial-and-error method for all problems. Moreover, with
application of the f -test, the results of NNGA-DCOD also
were statistically better than the manual method for all
problems using the BP algorithm. In case of the Pima-
Diabetes problem, the NNGA-DCOD found structurally bet-
ter networks with the QNA algorithm as well.

In an overall analysis, NNGA-DCOD is very efficient
in searching ANNs with very simple architectures and ob-
tains a satisfactory error performance. In some cases, the
developed method failed to outperform the trial-and-error
method. This happened mainly when using algorithms that
work with second-order information. These algorithms (LM,
SCG and QNA) work with second derivative information and
converge faster than first-order methods. Moreover, second-
order algorithms do not experience as much interference
from the variation in the amount hidden layers and neurons,
type of transfer function and initialization weights as first-
order algorithms do [3]. As NNGA-DCOD works with the
variations in parameters to achieve better results (networks),
good results are not always achieved using second-order
algorithms. Analyzing the amount of hidden neurons, the
ANNs found with NNGA-DCOD are much better than those
found with the trial-and-error method and present a similar
error performance for all problems. The capacity of NNGA-
DCOD for searching ANNs with few hidden nodes is evident,
but in the special case of the BP algorithm, the developed
method achieved far better results in terms of errors and
architectures in comparison to the manual method.

With the improvements to NNGA-DCOD, more complex
neural networks were found and better error performances
were achieved. The following are examples found using
the SCG algorithm with the architecture configuration and
test error: Cancer 1p, 4t, 2.42; Pima 1p, 2t, 15.89; Heart
3l, 3p, 12.25; Horse 2p 1t, 14.12 and Glass 3t, 10.43. Unlike
previous versions of NNGA-DCOD, which found ANNs with

only one hidden layer, the current version obtained networks
with up to three hidden layers, which is considered near-
optimal.

Table III displays the performance comparison between
results obtained with NNGA-DCOD and other works found
in the literature. The values in Table III are shown in same
sequence as the problems discussed previously. This same
sequence is valid for the means of nodes and connections.
The methods used in the comparison do not work with
learning algorithms for searching ANNs, as they having their
own way to adjust the parameters of networks. Therefore,
two versions of NNGA-DCOD were chosen in order to make
the comparison more honest, in other words, the results with
the BP (first-order) and SCG (which uses some second-order
information) algorithms are used in the comparison.

Considering the figures in Table III which are mean values,
NNGA-DCOD using BP is better than the other methods
for searching near-optimal ANNs for the Horse and Glass
problems regarding mean error and the amount of nodes.
For the Pima-Diabetes and Heart problems, the version
of NNGA-DCOD with SCG outperformed other methods
with regard to the mean error and amount of nodes. In
case of Cancer problem, the developed method achieved a
satisfactory performance, placing it among the methods that
present the best results for this problem.

Information on the amount of connections was considered
in the comparisons, but NNGA-DCOD does not have special
treatment for this ANN component. The other methods
used in comparison have special mechanisms for connection
eliminations to improve the performance of networks that
are not trained with traditional algorithms (BP, LM, SCG
or QNA). As the developed method does not have such
a mechanism, comparisons are not appropriate, but were
carried out with the intention of studying the power of the de-
veloped method. Especially for the Horse problem, NNGA-
DCOD found networks with a small amount of connections.
For the Heart problem, NNGA-DCOD found networks that
needed a greater amount of nodes and, consequently, more
connections in order to achieve good performances. The
training algorithms also require a particular amount of nodes
and connections in order to function successfully. For the
Cancer, Pima-Diabetes and Glass problems, the mean amount
of connections was similar to that of the other methods.
Comparisons with other methods in the literature demonstrate
that the developed method is very efficient in searching near-
optimal ANNs.

The methods found in the literature on searching for near-
optimal ANNs did not study the time consumption of search
methodology. Table IV displays information on the time
NNGA-DCOD needs to search for near-optimal ANNs for
each problem using all training algorithms. Time is related
to the search performed in one fold of the each problem.
The main characteristic of methods that use evolutionary
techniques (such as GAs) is the long processing time of the
search. This is due to the fact that GAs considers a large
search space (where near-optimal ANNs can be found) and,
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6.22 3.20 - - - 1.38 1.15
21.15 16.90 19.27 19.90 19.84 21.35 19.91
14.26 12.62 13.63 14.26 13.63 12.79 -
17.52 15.28 - - - 26.37 -
12.75 10.29 35.16 - 35.16 23.58 -

N
od

es

12.8 4.5 - - - 5.89 3.5
6.1 2 4.57 6.17 7.9 7.9 4.3

12.1 5.1 6.37 4.77 11.4 7.28 -
7.2 4.6 - - - 20.30 -
5.6 5.2 6.33 - 14.87 6.73 -

C
on

ne
ct

. 140.8 49.5 - - - 58.30 35.8
61 20 24.60 29.43 76.32 76.32 40.4

447.7 188.7 50.70 33.07 64.63 90.31 -
439.2 280.6 - - - 779.67 -

84 78 63.37 - 132.10 83.97 -

TABLE III

COMPARISON BETWEEN EVOLUTIONARY AND NON-EVOLUTIONARYne

SEARCH METHODS.

Problems Training Algorithms Mean of Time
BP LM SCG QNA HOURS

Cancer 26.10 30.77 36.15 27.86 30.22
Pima 26.84 30.90 34.72 27.55 30.00
Heart 26.44 38.51 46.20 26.58 34.43
Horse 28.57 80.44 39.12 28.35 44.12
Glass 27.68 32.38 29.96 27.53 29.39
Total mean 27.13 42.60 37.23 27.58 33.63

TABLE IV

MEAN TIME DISCRIMINATIONS IN HOURS OF PROCESSING TO

SEARCHING NEAR-OPTIMAL ANNS.

consequently, requires a large amount of time to explore this
search space [1].

This time requirement is the main disadvantage of the
developed method and occurs because NNGA-DCOD has
a search methodology with nesting loops for which there
are currently no stopping criteria. Nonetheless, the figures
in Table IV show interesting characteristics of the training
algorithms. The greatest amount of processing time was
expended with training algorithms that use second-order
information. This can be explained by the fact that such
algorithms require complex calculus to adjust the weights
and, consequently, require more memory and processing
time. The search with BP was faster because the training
algorithm adjusts the weights in a simple way, requiring
less memory and processing time. The search for ANNs in
the Glass problem was faster due to the smaller amount of
examples, whereas search was slower for the Horse problem
due to the greater number of attributes.

IV. CONCLUSIONS

The search for ANNs that are custom tailored to a specific
problem is considered a complex task and has mainly em-
ployed manual search methods. In this paper, we presented
an improved version of a hybrid method for automatically
searching near-optimal ANNs. This method is composed of

a combination of GAs and ANNs that search different ANN
information arranged in layers, in which the information
searched for in every layer can be modified according a priori
knowledge and the wishes of the user. Therefore, when there
is satisfactory knowledge on the architectures, it is possible
to restrict the search to a certain set of architectures, allowing
a more extensive search for initial weights and learning
algorithm parameters, for example. Another configuration of
the framework adopted in this work can be made with the
purpose of searching ANN information more intensively that
may be unknown or little known to the user.

Improvements were made to the NNGA-DCOD and ex-
periments were performed. The results demonstrate that this
method is able to achieve compact neural networks with
satisfactory performances when compared with a simulation
of the manual search method. Furthermore, comparisons
with other recent methods in the literature on searching for
ANNs were carried out and the developed method achieved
the best results regarding error performance and amount of
hidden nodes. However, the NNGA-DCOD does not have
a mechanism for dealing with connections; it works with
fully-connected ANNs and does not find networks with
few connections, whereas other methods have mechanisms
for eliminating connections. Another disadvantage of the
NNGA-DCOD is the considerable processing time of the
search. Future work will be concentrated on reducing the
complexity and processing time in the NNGA-DCOD as well
as addressing the connection issues.

ACKNOWLEDGMENTS

The authors would like to thank CNPq (Brazilian Research
Council) for their financial support.

REFERENCES

[1] K. P. Ferentinos, “Biological engineering applications of feedforward
neural networks designed and parameterized by genetic algorithms.”
Neural Networks, vol. 18, no. 7, pp. 934–950, 2005.

[2] A. Abraham, “Meta learning evolutionary artificial neural networks,”
Neurocomputing, no. 56, pp. 1–38, 2004.

[3] L. M. Almeida and T. B. Ludermir, “Automatically searching near-
optimal artificial neural networks.” European Symposium on Artificial
Neural Networks, pp. 549–554, 2007.

[4] X. Yao, “Evolving artificial neural networks.” Proceedings of the IEEE,
vol. 87, no. 9, pp. 1423–1447, 1999.

[5] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, and D. Ortiz-Boyer, “Coop-
erative coevolution of artificial neural network ensembles for pattern
classification.” IEEE Trans. Evolut. Computation, vol. 9, no. 3, pp.
271–302, 2005.

[6] N. Garcı́a-Pedrajas, D. Ortiz-Boyer, and C. Hervás-Martı́nez, “Cooper-
ative coevolution of generalized multi-layer perceptrons.” Neurocom-
puting, vol. 56, pp. 257–283, 2004.

[7] M. M. Islam and K. Murase, “A new algorithm to design compact
two-hidden-layer artificial neural networks.” Neural Networks, vol. 14,
no. 9, pp. 1265–1278, 2001.

[8] L. Ma and K. Khorasani, “New training strategies for constructive
neural networks with application to regression problems.” Neural
Networks, vol. 17, no. 4, pp. 589–609, 2004.

[9] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing.
SpringerVerlag, 2003.

[10] D. Newman, S. Hettich, C. Blake, and C. Merz, “UCI
repository of machine learning databases,” 1998. [Online]. Available:
http://www.ics.uci.edu/ mlearn/MLRepository.html

2008 International Joint Conference on Neural Networks (IJCNN 2008) 2241

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:23 from IEEE Xplore.  Restrictions apply.
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