
Tuning artificial neural networks parameters using an evolutionary algorithm

Leandro M. Almeida, Teresa B. Ludermir
Federal University of Pernambuco – Center of Informatics

P.O. Box 7851, Cidade Universitária, Recife - PE, Brazil, 50732-970
{lma3,tbl}@cin.ufpe.br

Abstract

This paper describes a method to automatically tuning
artificial neural networks parameters for a specific problem
using an evolutionary algorithm. The method employs an
evolutionary search to perform simultaneous tuning of ini-
tial weights, transfer functions, architectures and learning
rules (learning algorithms parameters). Experiments were
performed and the results demonstrate that the method in a
shorter time of search, is able to find efficient networks with
satisfactory generalization capabilities.

1. Introduction

The power of Artificial Neural Networks (ANNs) has
been widely proved through its use with successful in many
fields such as pattern recognition, speech recognition, signal
processing and function approximation [1, 10]. Even with
its success widely proven in the literature and by applica-
tions in commercial and industrial fields, the search for an
ANN tailored to a specific problem in order to attain success
in an application that uses ANNs remains a challenge. Man-
ual tuning (trial-and-error) of ANN parameters for a certain
problem is considered a tedious, less productive and error-
prone task [1, 2]. A near-optimal ANN is characterized
by the choice of its specific and corrected parameters for
a specific problem, thereby producing a satisfactory perfor-
mance [2]. The construction of near-optimal ANN configu-
rations involves difficulties such as the exponential number
of parameters that need to be adjusted; the need for a pri-
ori knowledge of the problem domain and ANN operation
in order to define these parameters; and the presence of an
expert when such knowledge is lacking [2].

A large number of papers are found in the literature de-
voted to constructing automatic methods for tuning ANN
parameters. These can be categorized as evolutionary and
non-evolutionary methods. One kind of evolutionary tech-
nique, the Genetic Algorithm (GA) [4], is often used for
search near-optimal ANN models with topology optimiza-

tion, as presented in [6, 7]. Other works include transfer
functions, initial weights and learning rules, as presented
in [1, 5]. Automatic methods that use non-evolutionary
techniques are focused mainly on the manipulation of ANN
architectures and weights. Some of these non-evolutionary
methods prune connections considered less significant [8, 9]
or freeze weights when the same inputs are submitted to the
network [8].

In this paper, we present a method denominated GAN-
NTune (GA + ANN + Tune), which is an evolution of its an-
tecessor NNGA-DCOD (aNN + GA - Direct enCODe), pre-
sented in [2]. The NNGA-DCOD method is mainly charac-
terized by the adoption of Evolutionary ANNs (EANNs),
a framework that makes possible the search for all ANN
components needed for its operation, as defined by Xin
Yao [10]. EANNs include a sequential and nested layer
search process, in which each layer has specific ANN in-
formation to be found by a specific GA. In NNGA-DCOD
the search for initial weights is performed in the lower layer;
the search for hidden layers, nodes per layer (architecture)
and transfer functions occurs in the intermediate layer; and
the search for learning algorithm parameters is performed
in the higher layer. Thus, there are three GAs for search-
ing these ANN parameters and, consequently, there is de-
pendence between this GAs. While the NNGA-DCOD has
three nested GAs the GANNTune has only one GA. The
aim of this approach is to reduce the time needed to perform
the search for ANN parameters for a specific problem and
preserve the NNGA-DCOD capability of finding solutions
(ANN parameters) with similar or better quality. This paper
is organized as follows: Section 2 presents the GANNTune
method; Section 3 describes experimental results, includ-
ing time consumption analysis; Section 4 summarizes our
conclusions and presents future work.

2. Developed evolutionary search methodology

GA is a kind of Evolutionary Algorithm (EA) that is
widely employed to build automatic methods for tuning
ANN parameters. The GANNTune is made up of a GA

Eighth International Conference on Hybrid Intelligent Systems

978-0-7695-3326-1/08 $25.00 © 2008 IEEE

DOI 10.1109/HIS.2008.117

927

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

working directly with ANN parameters in their natural for-
mat. In other words, there is no encoding scheme. An in-
dividual is composed of all ANN parameters needed for its
operation: learning algorithm parameters, number of hid-
den layers and hidden nodes per layer, transfer functions
and initial weights. The traditional genetic operators have
been reformulated to deal with such kinds of values. These
operators are the main contribution of this work, as there
is an absence of such types of genetic operators in the lit-
erature. The tournament selection operator is used to select
individuals to compose a new population (survivors) as well
as individuals for recombination.

The execution of the genetic operator for recombination
between individuals can be divided into three phases: In the
first, the recombination of learning algorithm information
occurs; in the second phase, the recombination of archi-
tecture information occurs; and lastly the recombination of
initial weights occurs. This separation is also applied to the
mutation operator. The recombination of learning algorithm
information occurs with the generation of new values within
a range based on the parent values. Based on probability,
the mutation algorithm for the child performs an addition or
subtraction operation in the child rates. Based on its current
value, this operation causes a forty percent up or down (in-
creasing or decreasing) change in the parameter. The evo-
lutionary search for learning rules or learning algorithms
occurs with the search for parameters from the following
algorithms: Back-Propagation (BP), Levenberg- Marquardt
(LM), Quasi-Newton Algorithm (QNA) and Scaled Conju-
gate Gradient (SCG).

The recombination of architectures considers configura-
tions with between one and three hidden layers and between
one and 12 hidden nodes per layer. Table 1 displays the
transfer functions in the search process. The selected indi-
viduals (“parents”) are submitted to the recombination pro-
cess. The process starts with the definition of the number
of hidden layers that the child will have, which is obtained
through the mean sum of hidden layers from the parents,
rounded off based on probability problems. The dimensions
of the hidden layers and the transfer functions for the child
are then defined through random selection that considering
all parent information, hidden layers and transfer functions.

The crossover/recombination operator for architectures
produces individuals that are very similar to their parents.
Thus, the mutation operator (Algorithm 1) is applied after
the crossover in order to maintain diversity in the popula-
tion. Child selection for mutation is performed through a
random process. The process starts with the number of chil-
dren that will undergo mutation. A random number is then
generated within the range [0, 1). This value will be used
to define whether an architecture will undergo an increase
or decrease in the number of hidden layers or will undergo
an increase (pInc = 0.6) or decrease (pDec = 0.5) in the

number of hidden nodes per layer. If an architecture has
only one hidden layer, the possibility of the number being
three is great within all the possibilities. In the case of a se-
lected random value failing to cause a significant change
in the number of hidden layers, a set of values between
arqval = [−2, 5) is generated and added to the current di-
mensions of the architecture. This range was defined em-
pirically with the purpose of maintaining diversity among
the individuals. If an architecture has two hidden layers,
the possibility of the number being three is great, with the
intention of reducing the number of hidden nodes per layer.

Algorithm 1: Mutation architecture information
Data: childVet, n, m //child vector, number of child, mutation rate
Result: mutChild
begin1

childNumber ← ((m/100) ∗ n)2
while childNumber > 0 do3

probability ← rand(1)4
child← raffle(childVet)5
if probability ≥ pInc then6

if child.numHiddLy = 1ou = 2 then7
child← addLayers(3)8

else9
child← decreaseLayersTo(2)10

else if probability ≥ pDec then11
if hild.numHiddLy = 1ou = 2 then12

child← addLayers(1)13

else14
filho← decreaseLayersTo(2)15

else16
child← child + raffle(arqval)17

childVet← childVet− child;18
mutChild← child19
childNumber ← childNumber − 120

mutChild← mutChild + childVet21
end22

The recombination of initial weights also considers the
information from two parents, but the parents can have dif-
ferent information regarding architecture, they have matri-
ces of weights with different dimensions as well. For this
reason, the recombination starts with generation of the ini-
tial weights randomly based on the architecture description
arch. After random generation of the initial weights, an
insertion of genetic material from parents occurs, since the
previous conditions have been satisfied. One of these con-
ditions refers to the number of weight matrices (nm). The
transfer of genetic material occurs up to the same number
of matrices in the parents and child, and up to the minimal
dimension of a matrix. Algorithm 2 describes the recom-
bination of initial weights in more detail. The procedure
getDim has the capability of identifying the dimensions of
all matrices (number of lines and columns). The parameters
pflip = 0.5 controls the source of genetic material to be
transferred to child.

The selection of individuals for mutation is performed
randomly, as individuals have no fitness yet. According to

928

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

Algorithm 2: Recombining initial weights
Data: prta, prtb, arch //parent A, parent B, architecture description
Result: child //new offspring
begin1

weightsrange = [−0.5, 0.5)2
[weights] = getInitialWeights(arch, weightsrange)3
for id = 1 : weights.nm do4

if prta.nm >> index >> prta.nm then5
[dim] =6
getDim(prta{id}, prtb{id}, weights{id})
linmin = min([dim.lina, dim.linb, dim.linc])7
colmin = min([dim.cola, dim.colb, dim.colc])8
for e = 1 : linmin do9

for g = 1 : colmin do10
if rand(1) < pflip then11

weights.matrices{id}(e, g) =12
prta.wgts{id}(e, g)

else13
weights.matrices{id}(e, g) =14
prtb.wgts{id}(e, g)

child← weights15
end16

Parameters for: Values

G
A

s - Encoding / Selection Direct / Tournament
- Elitism / Recomb. / Mutation / Pressure 10% / 60% / 40% / 30%
- Population size / Generations 50 / 100

A
N

N
s

- Type MLP, feedforward
- Transfer functions Pure-linear (P),

Tang-sigmoid (T),
Log-Sigmoid (L)

- Hidden layers / Nodes / Train. epochs up to: 3 / 16 / 3
- Range of initial weights [-0.5, 0.5)
- Output neuron linear

T
ra

in
.

al
go

-
ri

th
m

s

BP - Learning rate and momentum [0.05, 0.25)
LM - Learning rate [0.001, 0.02)
SCG - Step lengths [1.0E-06, 100)
- Limits on step sizes [0.1, 0.6)
QNA - Scale factor to determine performance [0.001, 0.003)
- Scale factor to determine step size [0.001, 0.02)
- Change in weight for 2nd deriv. approx. [0, 0.0001)
- Regulating the indefiniteness of the Hessian [0, 1.0E-06)

Table 1. GANNTune parameters.

the mutation rate pm = 0.4, forty percent of the child will
undergo mutation and this mutation will affect forty percent
of its composition as well. Sparse matrices are generated for
individuals selected for mutation, with forty percent of the
values between fx = [−0.5, 0.5) and the remaining values
at zeros. This range of values was also found empirically.
These sparse matrices are then added to the child weight
matrices. The fitness for is calculated based on the ANN
Mean Squared Error (MSE) achieved in the training set.

3. Experiments

The experiments to evaluate the GANNTune were
performed with three well-known classification problems
found in the UCI repository [3]. Cancer (ca) with 9 at-
tributes (atb), 699 examples (exp) and 2 classes (cla); Heart-
Cleveland (he) with 35 atb, 303 exp and 2 cla; and Pima-
diabetes (pi) with 8 atb, 768 exp and 2 cla. To perform the

Prob./ GANNTune Trial-and-error
Algts. Time Arc. Errors Arc. Errors

in min. Train. Test Train. Test

C
an

ce
r

BP 10.26 3.7 2.38 2.54 16.8 23.16 23.14
LM 13.12 3.5 2.37 2.53 11.4 1.91 2.67
SCG 8.91 8.7 2.31 2.48 15 3.48 3.55
QNA 10.26 3.6 2.21 2.85 7.4 3.39 3.53

P
im

a

BP 8.37 10.3 17.65 17.25 15.4 23.97 23.96
LM 17.53 19.6 12.64 15.87 15 14.09 16.13
SCG 8.85 13.2 15.83 16.9 12.4 18.13 18.51
QNA 9.67 7.5 15.66 16.19 20.8 17.59 18.40

H
ea

rt

BP 8.21 7.3 12.72 13.87 21.2 24.62 24.64
LM 54.96 24.4 3.58 16.65 16.4 6.48 13.14
SCG 8.59 11 11.76 13.54 15.8 12.28 12.96
QNA 12.49 4.5 11.38 13.50 17.8 12.04 12.89

Table 2. Near-optimal ANNs found through
NNGA-DCOD and trial-and-error.

experiments, we used 30 two-fold iterations. At each it-
eration, data were randomly divided into halves. One half
was the input for the algorithms (70% for training and 30%
for the validation set) and the other half was used to test
the final solution (test set). The execution of one iteration
corresponds to the creation of an initial population and ex-
ecution of evolutionary search for 100 generations. After
30 iterations with different data division and initial popu-
lations, the best 30 ANNs parameters are chosen based on
training error, test error and architecture size. The results
reported are the mean value from the 30 ANNs parameters
found for each classification problem. The search for ANNs
through trial-and-error was performed following the previ-
ously described methodology, using the same database split
scheme and number of training epochs. We performed 30
runs in each fold for the following network setup [2, 24)
hidden neurons for one hidden layer with the (T) transfer
function.

Table 2 displays the mean values from near-optimal
ANNs found with GANNTune and trial-and-error meth-
ods. The mean of the architectures (arc.) is based on the
amount of hidden units/neurons. Regarding the number of
hidden neurons, GANNTune found structurally better net-
works (with few hidden neurons) than most of those found
with the trial-and-error method. Moreover, with application
of the t-test, the results of GANNTune were also statisti-
cally better than the manual method for all problems using
the BP algorithm. In the case of Pima-Diabetes problem,
the GANNTune found structurally better networks with the
QNA algorithm as well.

Considering the figures in Table 3, which are mean val-
ues, GANNTune using SCG is better than the other meth-
ods for searching near-optimal ANNs for the Pima-diabetes
problem regarding mean error (and similar to its anteces-
sor NNGA-DCOD), but the amount of nodes is high com-
pared to the other methods. For the Pima-diabetes problem,
the GANNTune tuning ANN parameters with the BP algo-

929

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

rithm achieved a much better mean error performance than
all methods, including the NNGA-DCOD with BP. Compar-
ing the GANNTune to NNGA-DCOD, the reduction in the
mean performance for all problems when using the BP al-
gorithm is very expressive, but with GANNTune, the same
does not occur when the number of nodes/connections is
observed.

The methods found in the literature on searching for
near-optimal ANNs did not study the time consumption of
the search methodology. Table 3 also displays information
on the time GANNTune needs to search for near-optimal
ANNs for each problem using all training algorithms. Time
is related to the search performed in one fold of the each
problem in which the evolutionary search runs up to 100
generations. Therefore the figures in Table 3 are mean val-
ues from 30 iterations in minutes. The main drawback of
methods that use evolutionary techniques (such as GAs) is
the long search processing time. This is due to the fact
that GAs consider a large search space (where near-optimal
ANNs can be found) and, consequently, require a large
amount of time to explore this search space [5].

Considering the time consumption of the NNGA-DCOD
method, in which was measured in hours of processing, the
time consumption of GANNTune applied to the same clas-
sification problems is displayed in minutes of processing.
This very significant reduction in time consumption was
obtained with the adoption of only one GA to perform the
search, whereas the NNGA-DCOD has three nested GAs
to perform the same search. The greatest amount of pro-
cessing time was expended with training algorithms that use
second-order information. This can be explained by the fact
that such algorithms require complex calculus to adjust the
weights and, consequently, require more memory and pro-
cessing time. The search with BP was faster because the
training algorithm adjusts the weights in a simple way, re-
quiring less memory and processing time. The search for
ANNs in the Glass problem was faster due to the smaller
amount of examples, whereas the search was slower for the
Horse problem due to the greater number of attributes.

4. Conclusions

In this paper, we presented a new version of a hybrid
method for automatically searching near-optimal ANNs.
This method is composed of a combination of GAs and
ANNs that search different ANN information. Experi-
ments were performed and the results demonstrate that this
method is able to achieve compact neural networks with
satisfactory performances when compared to a simulation
of the manual search method. Comparisons with other re-
cent methods in the literature on searching for ANNs were
carried out and the GANNTune achieved the best results
regarding error performance for some problems. Further-

Methods

In
fo

rm
at

io
n

Pr
ob

le
m

s

G
A

N
N

T
un

e
w

ith
B

P

G
A

N
N

T
un

e
w

ith
SC

G

N
N

G
A

-D
C

O
D

w
ith

B
P

N
N

G
A

-D
C

O
D

w
ith

SC
G

C
O

V
N

E
T

[7
]

C
O

O
P

N
N

[6
]

C
N

N
D

A
*

[8
]

E
rr

or
s ca 2.54 2.48 6.22 3.20 - 1.38 1.15

he 17.25 16.90 21.15 16.90 19.90 21.35 19.91
pi 13.87 13.54 14.26 12.62 14.26 12.79 -

N
od

es

ca 3.7 8.7 12.8 4.5 - 5.89 3.5
he 10.3 13.2 6.1 2 6.17 7.9 4.3
pi 7.3 11 12.1 5.1 4.77 7.28 -

C
on

n.

ca 38.6 88.7 140.8 49.5 - 58.30 35.8
he 101.9 131.7 61 20 29.43 76.32 40.4
pi 191.8 384.1 447.7 188.7 33.07 90.31 -

Table 3. Comparison between evolutionary
and non-evolutionary(*) methods.

more, the method overall requires just 14.44 minutes to per-
form the search for ANN parameters (compared to 33.63
hours for its antecessor). In other words, the reduction in
time consumption is clear. Future work will concentrate
on refining of the genetic operators and as well as address-
ing the connection issues. The authors would like to thank
CNPq (Brazilian Research Council) for their financial sup-
port.

References

[1] A. Abraham. Meta learning evolutionary artificial neural
networks. Neurocomputing, (56):1–38, 2004.

[2] L. M. Almeida and T. B. Ludermir. An improved method for
automatically searching near-optimal artificial neural net-
works. International Joint Conference on Neural Networks
(IJCNN 2008), 2008.

[3] A. Asuncion and D. Newman. UCI machine learning repos-
itory, 2007.

[4] A. E. Eiben and J. E. Smith. Introduction to Evolutionary
Computing. SpringerVerlag, 2003.

[5] K. P. Ferentinos. Biological engineering applications of
feedforward neural networks designed and parameterized by
genetic algorithms. Neural Networks, 18(7):934–950, 2005.

[6] N. Garcı́a-Pedrajas, C. Hervás-Martı́nez, and D. Ortiz-
Boyer. Cooperative coevolution of artificial neural network
ensembles for pattern classification. IEEE Trans. Evolut.
Computation, 9(3):271–302, 2005.

[7] N. Garcı́a-Pedrajas, D. Ortiz-Boyer, and C. Hervás-
Martı́nez. Cooperative coevolution of generalized multi-
layer perceptrons. Neurocomputing, 56:257–283, 2004.

[8] M. M. Islam and K. Murase. A new algorithm to design
compact two-hidden-layer artificial neural networks. Neural
Networks, 14(9):1265–1278, 2001.

[9] L. Ma and K. Khorasani. New training strategies for
constructive neural networks with application to regression
problems. Neural Networks, 17(4):589–609, 2004.

[10] X. Yao. Evolving artificial neural networks. Proceedings of
the IEEE, 87(9):1423–1447, 1999.

930

Authorized licensed use limited to: Universidad Federal de Pernambuco. Downloaded on November 24, 2008 at 13:18 from IEEE Xplore. Restrictions apply.

