
E. Corchado, A. Abraham, and W. Pedrycz (Eds.): HAIS 2008, LNAI 5271, pp. 156–163, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Evolutionary Approach for Tuning Artificial Neural
Network Parameters

Leandro M. Almeida and Teresa B. Ludermir

Federal University of Pernambuco - Center of Informatics,
P.O. Box 7851, Cidade Universitária, Recife - PE, Brazil, 50732-970

{lma3,tbl}@cin.ufpe.br

Abstract. The widespread use of artificial neural networks and the difficult
work regarding the correct specification (tuning) of parameters for a given
problem are the main aspects that motivated the approach purposed in this pa-
per. This approach employs an evolutionary search to perform the simultaneous
tuning of initial weights, transfer functions, architectures and learning rules
(learning algorithm parameters). Experiments were performed and the results
demonstrate that the method is able to find efficient networks with satisfactory
generalization in a shorter search time.

Keywords: Evolutionary algorithms, genetic algorithms, artificial neural net-
work parameterization, initial weights, architectures, learning rules.

1 Introduction

There are a large number of articles in the literature devoted to the analysis and/or
usage of Artificial Neural Networks (ANNs). Applications in commercial and indus-
trial fields have contributed more strongly toward proving the importance, efficiency
and efficacy of ANNs [9]. The success of ANN usage in fields such as pattern recog-
nition, signal processing, etc. is incontestable [1], but a key problem concerning neu-
ral networks usage in practice remains as a challenge [2]. This problem is related to
correctly building neural networks specially tailored to a specific problem, which is
an extremely important task for attaining success in an application that uses ANNs
[2], [3]. The search for ANN parameters is generally performed by a developer
through a trial-and-error procedure. Thus, optimality or even near-optimality is not
ensured, as the space explored is only a small portion of the entire search space and
the type of search is rather random [6].

Manual tuning (trial-and-error search) of ANN parameters for a certain problem is
considered a tedious, under-productive, error-prone task [1], [2], [3]. When the com-
plexity of a problem domain increases and when near-optimal networks are desired,
manual searching becomes more difficult and unmanageable [1]. An optimal neural
network is an ANN tailored to a specific problem, thereby having a smaller architec-
ture with faster convergence and a better generalization performance [1], [2], [3]. A
near-optimal ANN is characterized by the choice of its specific, corrected parameters
for a specific problem, thereby producing a satisfactory performance [2], [3]. The

 An Evolutionary Approach for Tuning Artificial Neural Network Parameters 157

construction of near-optimal ANN configurations involves difficulties such as the
exponential number of parameters that need to be adjusted; the need for a priori
knowledge of the problem domain and ANN functioning in order to define these pa-
rameters; and the presence of an expert when such knowledge is lacking [2], [3].

Considering the problems and difficulties related to the use of the manual method
for tuning ANN parameters, the adoption of an automatic method for performing this
tuning task emerges with the aim of avoiding such problems. A large number of pa-
pers are found in the literature devoted to constructing automatic methods for tuning
ANN parameters. These can be categorized as evolutionary and non-evolutionary
methods. One kind of evolutionary technique, the Genetic Algorithm (GA) [5], is
often used to search near-optimal ANN models with topology optimization, as pre-
sented in [7], [8]. Others include transfer functions, initial weights and learning rules,
as presented in [1], [6]. Automatic methods that use non-evolutionary techniques are
focused mainly on the manipulation of ANN architectures and weights. Some of these
non-evolutionary methods prune connections considered less significant [10], [11] or
freeze weights when the same inputs are submitted to the network [10].

In this paper, we present a method denominated GANNTune (GA + ANN + Tune),
which is an evolution of its antecessor NNGA-DCOD (aNN + GA - Direct enCODe),
presented in [2]. The NNGA-DCOD method is mainly characterized by the adoption
of Evolutionary ANNs (EANNs), a framework that makes possible the search for all
ANN components needed for its functioning, as defined by Xin Yao [13]. EANNs
include a sequential and nested layer search process, in which each layer has specific
ANN information to be found by a specific GA. In NNGA-DCOD, the search for
initial weights is performed in the lowest layer; the search for hidden layers, nodes per
layer (architecture) and transfer functions occurs in the intermediate layer; and the
search for learning algorithm parameters is performed in the highest layer. Thus, there
are three GAs for searching these ANN parameters and, consequently, there is inter-
dependence between these GAs [3]. While the NNGA-DCOD has three nested GAs,
the GANNTune has only one GA. The aim of this approach is to reduce the time
needed to perform the search for ANN parameters for a specific problem. This ap-
proach also seeks to preserve the NNGA-DCOD capability of finding solutions (ANN
parameters) with similar or better quality. This paper is organized as follows: Section
2 presents the GANNTune method; Section 3 describes experimental results, includ-
ing time consumption analysis; and Section 4 summarizes our conclusions and pre-
sents future work.

2 Evolutionary Approach for Tuning ANN Parameters

There are many different variants of Evolutionary Algorithms (EA) [5]. GA is a kind
of EA that is widely employed to build automatic methods for tuning ANN parame-
ters. The GANNTune is made up of a GA working directly with ANN parameters in
their natural format. In other words, there is no encoding scheme. This approach was
adopted with the intention of avoiding the frequent encoding and decoding tasks at
each iteration of the search process, which occurs when the canonical GA is used [5].
Therefore, an individual is composed of all ANN parameters needed for its function-
ing: learning algorithm parameters, number of hidden layers and hidden nodes per
layer, transfer functions and initial weights.

158 L.M. Almeida and T.B. Ludermir

The individuals used by the GA for tuning ANN parameters are composed of real,
integer and discrete information. Traditional genetic operators have been reformulated
to deal with these kinds of values. These operators are the main contribution of this
work, as there is an absence of such types of genetic operators in the literature.

The selection of N individuals is performed using the tournament strategy, with a
random pressure rate of Pp = 0.3 and an elitism rate of E = 0.1. This information was
found empirically. The tournament selection operator is used to select individuals to
compose a new population (survivors) as well as individuals for recombination.

In recombination, given two selected individuals, a random variable is drawn from
[0,1) and compared to Pc. If the value is smaller than Pc, one offspring is created via
the recombination of the two parents; otherwise, the offspring is created asexually by
copying one of the parents [5]. The crossover rate used in this work was Pc = 0.6.
After recombination, a new random variable is drawn from [0,1) and compared to Pm.
If the value is smaller than Pm, the mutation operator is applied to the individual;
otherwise, nothing undergoes any changes. The mutation rate used is Pm = 0.4.

The execution of the genetic operator for recombination (and mutation) between
individuals can be divided into three phases: First, the recombination of the learning
algorithm information occurs; then the recombination of architecture information
occurs; and, lastly, the recombination of initial weights occurs. The recombination of
the learning algorithm information occurs with the generation of new values within a
range based on the parent values. Based on probability, the mutation algorithm for the
child performs an addition or subtraction operation in the child rates. Based on its
current value, this operation causes a forty percent up or down (increasing or decreas-
ing) change in the parameter. The evolutionary search for learning rules occurs with
the search for the Back-Propagation (BP) algorithm parameters.

The recombination of architectures considers configurations with between one and
three hidden layers and between one and 12 hidden nodes per layer. The selected indi-
viduals (“parents”) are submitted to the crossover process. The process starts with the
definition of the number of hidden layers that the child will have, which is obtained
through the mean sum of hidden layers from the parents, rounded off based on probabil-
ity problems. The dimensions of the hidden layers and the transfer functions for the
child are then defined through random selection that considers all parent information.

The recombination operator for architectures produces individuals that are very
similar to their parents. Thus, the mutation operator (algorithm in Figure 1) is applied
after the crossover in order to maintain diversity in the population. Child selection for
mutation is performed through a random process. The process starts with the number
of children that will undergo mutation. A random number is then generated within the
range [0, 1). This value will be used to define whether an architecture will undergo an
increase or decrease in the number of hidden layers or will undergo an increase (PInc =
0.6) or decrease (PDec = 0.5) in the number of hidden nodes per layer. If an architec-
ture has only one hidden layer, the possibility of the number being three is great
within all the possibilities. In the case of a selected random value failing to cause a
significant change in the number of hidden layers, a set of values between archval =
[-2, 5) is generated and added to the current dimensions of the architecture. This range
was defined empirically with the purpose of maintaining diversity among the indi-
viduals. If an architecture has two hidden layers, the possibility of the number being
three is great, with the intention of reducing the number of hidden nodes per layer.

 An Evolutionary Approach for Tuning Artificial Neural Network Parameters 159

Data: childVet, n, m //children vector, number of children, mutation rate
Result: mutChild
Begin

childNumber ((m/100) * n)
while childNumber < 0 do

probability rand(1)
child raffle(childVet) //choose randomly one child
if probability <= Pinc then

if child.numHidLyrs = 1 or 2 then
child addLayers(3)

else
child reduceLayersTo(2)

else if probability <= Pdec then
if child.numHidLyrs = 1 or 2 then

child addLayers(1)
else

child reduceLayersTo(2)
else

child child + rand(archval)
childVet childVet – child
mutChild child
childNumber childNumber – 1

mutChild mutChild + childVet
end

Fig. 1. Algorithm used for architectures mutation

In the recombination of initial weights, the parents can have different information
regarding architecture; they have matrices of weights with different dimensions as
well. For this reason, the recombination starts with generation of the initial weights
randomly based on the architecture description arch. After random generation of the
initial weights, an insertion of genetic material from the parents occurs, as the previ-
ous conditions have been satisfied. One of these conditions refers to the number of
weight matrices (nm). The transfer of genetic material occurs up to the same number
of matrices in the parents and child, and up to the minimal dimension of a matrix. The
algorithm in Figure 2 describes the recombination of initial weights in more detail.
The procedure getDim has the capability of identifying the dimensions of all matri-
ces (number of lines and columns). The parameters pflip = 0.5 controls the source of
genetic material to be transferred to child.

The selection of individuals for mutation is performed randomly, as individuals
have no fitness yet. According to the mutation rate Pm = 0.4, forty percent of the chil-
dren will undergo mutation. The mutation operator for initial weights consists of its
adjustment (training) by 5 epochs with the BP algorithm using the data for training.

The method starts the search by randomly generating populations of individuals. Fit-
ness is then calculated based on the ANN Mean Squared Error (MSE) achieved in the
training set. The genetic operators maintain the diversity of individuals for the tourna-
ment search and a small range of random selection, where the new individuals generated
for the next offspring must be distinct from individuals in the present offspring. The
amount of individuals used in the GANNTune is small, but, as this method is iterative,

160 L.M. Almeida and T.B. Ludermir

Data: prta, prtb, arch //parent A, parent B, architecture description
Result: child //new offspring
Begin

weightsrange [-0.05, 0.05)
weights getInitialWeights(arch, weightsrange)
for id 1:weights.nm do

if prta.nm < index < prtb.nm then
dim getDim(prta{id}, prtb{id}, weights{id})
linmin min([dim.lina, dim.linb, dim.linc])
colmin min([dim.cola, dim.colb, dim.colc])
for e 1:linmin do

for g 1:colmin do
if rand(1) < pflip then

weights.matrices{id}(e,g) prta.wgts{id}(e,g)
else

weights.matrices{id}(e,g) prtb.wgts{id}(e,g)
end

Fig. 2. Algorithm used for initial weights recombination

Table 1. Individual composition description

 Parameters for: Values
Encoding Direct
Elitism 10%
Recombination 80%
Mutation 70%
Pressure 30%
Selection / Stopping
criteria

Tournament / Max generations

Population size 50 G
en

et
ic

 A
lg

or
it

hm

Generation 100
Type MLP, Feed-forward
Transfer functions Pure-linear (P), Tang-sigmoid (T) and Log-Sigmoid (L)
Hidden layers Up to 3
Hidden nodes per layers Up to 16
Training epochs Up to 3
Range of initial weights [-0.05, 0.05)
Output neuron Linear
Learning rate [0.05 0.25)

A
N

N
s

Momentum rate [0.05 0.25)

many new individuals are created at every generation of each kind of search. Thus, the
search space explored is large and satisfactory results are achieved.

3 Experimental Results

The experiments for evaluating the GANNTune were performed with seven well-
known classification problems found in the UCI repository [12]. Cancer with 9 attrib-
utes (atb), 699 examples (exp) and 2 classes (cla); Heart-Cleveland with 35 atb, 303

 An Evolutionary Approach for Tuning Artificial Neural Network Parameters 161

exp and 2 cla; Pima-diabetes with 8 atb, 768 exp and 2 cla; Horse with 58 atb, 364
exp and 3 cla; Glass with 9 atb, 214 exp and 6 cla; Card with 51 atb, 690 exp and 2
cla; and Soybean with 82 atb, 683 exp and 19 cla. To perform the experiments, we
used 30 two-fold iterations [4]. At each iteration, data were randomly divided into
halves. One half was the input for the algorithm (70% for training and 30% for the
validation set) and the other half was used to test the final solution (test set). The
execution of one iteration corresponds to the creation of an initial population and
execution of evolutionary search for 100 generations. After 30 iterations with differ-
ent data division and initial populations, the best 30 ANN parameters are chosen
based on training error, test error and architecture size. The results reported are the
mean value from the 30 ANN parameters found for each classification problem.

The search for ANNs through trial-and-error was performed following the previ-
ously described methodology, using the same database split scheme and number of
training epochs. We performed 30 runs in each fold for the network having between
[2, 24) hidden neurons for one hidden layer with the (T) transfer function.

Table 2 displays the mean values from near-optimal ANNs found with GANNTune
and trial-and-error methods. The mean of the architectures (Arch.) is based on the
amount of hidden units/neurons. Regarding the number of hidden neurons, GANNTune
found structurally worse networks (with many hidden neurons) than most of those
found with the trial-and-error method. However, with application of the t-test, the
results of GANNTune were statistically much better than the manual method for all
problems considering the training and test errors.

Table 2. Description of near-optimal ANNs found with GANNTune and trial-and-error meth-
ods and time consumption of the developed method

GANNTune Trial-and-error
Errors Errors

Classification
Problems Time cons. in

minutes
Arch.

Training Test
Arch.

Training Test
Cancer (ca) 14.36 25.4 3.03 3.63 16.8 7.16 8.14
Heart (he) 14.10 20.5 10.03 14.93 21.2 17.62 24.54
Pima (pi) 14.63 26.6 16.54 16.99 15.4 23.97 23.96
Horse (ho) 15.05 24.5 12.35 17.79 20 19.71 19.72
Glass (gl) 14.50 27.3 9.62 10.27 11.7 13.93 13.94
Card (cd) 14.65 18.6 8.55 12.35 12.3 13.03 16.07
Soybean (sy) 17.65 38.9 4.76 4.79 22.8 20.47 32.35

Considering the figures in Table 3, which are mean values, GANNTune is better
than the other methods for searching near-optimal ANNs for the Pima-diabetes, Glass,
Soybean and Horse problems regarding mean error (and similar to its antecessor
NNGA-DCOD for the Horse problem), but the amount of nodes is high compared to
the other methods. Comparing the GANNTune to NNGA-DCOD, the reduction in the
mean performance for all problems is very expressive, but with GANNTune, the same
does not occur with the number of nodes/connections.

None of the methods found in the literature on searching for near-optimal ANNs
studied the time consumption of the search methodology. The second column in Table
2 displays information on the time GANNTune needs to search for near-optimal ANNs
for each problem using all training algorithms. Time is related to the search

162 L.M. Almeida and T.B. Ludermir

performed in one fold of the each problem in which the evolutionary search runs up to
100 generations. Therefore, the figures in second column of Table 2 are mean values
from 30 iterations in minutes. The main drawback of methods that use evolutionary
techniques (such as GAs) is the long search processing time. This is due to the fact
that GAs considers a large search space (where near-optimal ANNs can be found)
and, consequently, requires a large amount of time to explore this search space [6].

Table 3. Comparison between evolutionary and non-evolutionary (*) methods

 Methods

In
fo

rm
at

io
n

P
ro

bl
em

s

G
A

N
N

T
un

e

N
N

G
A

-
D

C
O

D
 [

2]

G
E

PN
E

T

[8
]

C
O

V
N

E
T

[8

]

M
O

B
N

E
T

[8

]

C
O

O
P

N
N

[7

]

C
N

N
D

A
*

[1
0]

ca 3.63 6.22 - - - 1.38 1.15
he 14.93 14.26 13.63 14.26 13.63 11.96 -
pi 16.99 21.15 19.27 19.90 19.84 19.69 19.91
ho 17.79 17.52 - - - 26.74 -
gl 10.27 12.75 35.16 - 35.16 22.89 -
cd 12.35 - - - - 12.17 -

T
es

t e
rr

or

sy 4.79 - - - - 7.61 -
ca 25.4 12.8 - - - 5.89 3.5
he 20.5 12.1 6.37 4.77 11.4 7.28 -
pi 26.6 6.1 4.57 6.17 7.9 7.9 4.3
ho 24.5 7.2 - - - 20.3 -
gl 27.3 5.6 6.33 - 14.87 6.73 -
cd 18.6 - - - - 6.89 -

N
um

be
r

of

 h
id

de
n

no
de

s

sy 38.9 - - - - 19.42 -

Compared to the time consumption of the NNGA-DCOD method, which is meas-
ured in hours of processing, the time consumption of GANNTune applied to the same
classification problems is displayed in minutes of processing. This very significant
reduction in time consumption was obtained with the adoption of only one GA to
perform the search, whereas the NNGA-DCOD has three nested GAs to perform the
same search.

4 Conclusions

The search for ANNs that are custom-tailored to a specific problem is considered a
complex task and has mainly employed manual search methods. In this paper, we
presented a new version of a hybrid method for automatically searching near-optimal
ANNs. This method is composed of a combination of GAs and ANNs that search
different ANN information. Experiments were performed and the results demonstrate
that this method is able to achieve neural networks with satisfactory performances
when compared to a simulation of the manual search method and other recent meth-
ods described in the literature. Moreover, the overall method requires just 15 minutes

 An Evolutionary Approach for Tuning Artificial Neural Network Parameters 163

to perform the search for ANN parameters (compared to 33.63 hours for its anteces-
sor). In other words, the reduction in time consumption is clear. Future work will
concentrate on refining the genetic operators and addressing the issues of pruning
connections.

Acknowledgments

The authors would like to thank CNPq (Brazilian Research Council) for their finan-
cial support.

References

1. Abraham, A.: Meta learning evolutionary artificial neural networks. Neurocomputing 56,
1–38 (2004)

2. Almeida, L.M., Ludermir, T.B.: Automatically searching near-optimal artificial neural
networks. In: 15th European Symposium on Artificial Neural Networks, pp. 549–554
(2007)

3. Almeida, L.M., Ludermir, T.B.: An improved method for automatically searching near-
optimal artificial neural networks. In: International Joint Conference on Neural Networks
(2008)

4. Cantú-Paz, E., Kamath, C.: An empirical comparison of combinations of evolutionary al-
gorithms and neural networks for classification problems. IEEE Transactions on Systems,
Man, and Cybernetics, Part B 35(5), 915–927 (2005)

5. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg
(2003)

6. Ferentinos, K.P.: Biological engineering applications of feed-forward neural networks de-
signed and parameterized by genetic algorithms. Neural Networks 18(7), 934–950 (2005)

7. García-Pedrajas, N., Hervás-Martínez, C., Ortiz-Boyer, D.: Cooperative co-evolution of ar-
tificial neural network ensembles for pattern classification. IEEE Transaction on Evolu-
tionary Computation 9(3), 271–302 (2005)

8. García-Pedrajas, N., Ortiz-Boyer, D., Hervás-Mart´ınez, C.: Cooperative co-evolution of
generalized multilayer perceptrons. Neurocomputing 56, 257–283 (2004)

9. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood
Cliffs (1999)

10. Islam, M.M., Murase, K.: A new algorithm to design compact two-hidden-layer artificial
neural networks. Neural Networks 14(9), 1265–1278 (2001)

11. Ma, L., Khorasani, K.: New training strategies for constructive neural networks with appli-
cation to regression problems. Neural Networks 17(4), 589–609 (2004)

12. Asuncion, A., Newman, D.: UCI machine learning repository, University of California, Ir-
vine, School of Information and Computer Sciences (2007),
http://mlearn.ics.uci.edu/MLRepository.html

13. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447
(1999)

	An Evolutionary Approach for Tuning Artificial Neural Network Parameters
	Introduction
	Evolutionary Approach for Tuning ANN Parameters
	Experimental Results
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

