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Abstract. The widespread use of artificial neural networks and the difficult 
work regarding the correct specification (tuning) of parameters for a given 
problem are the main aspects that motivated the approach purposed in this pa-
per. This approach employs an evolutionary search to perform the simultaneous 
tuning of initial weights, transfer functions, architectures and learning rules 
(learning algorithm parameters). Experiments were performed and the results 
demonstrate that the method is able to find efficient networks with satisfactory 
generalization in a shorter search time.  
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1   Introduction 

There are a large number of articles in the literature devoted to the analysis and/or 
usage of Artificial Neural Networks (ANNs). Applications in commercial and indus-
trial fields have contributed more strongly toward proving the importance, efficiency 
and efficacy of ANNs [9]. The success of ANN usage in fields such as pattern recog-
nition, signal processing, etc. is incontestable [1], but a key problem concerning neu-
ral networks usage in practice remains as a challenge [2]. This problem is related to 
correctly building neural networks specially tailored to a specific problem, which is 
an extremely important task for attaining success in an application that uses ANNs 
[2], [3]. The search for ANN parameters is generally performed by a developer 
through a trial-and-error procedure. Thus, optimality or even near-optimality is not 
ensured, as the space explored is only a small portion of the entire search space and 
the type of search is rather random [6]. 

Manual tuning (trial-and-error search) of ANN parameters for a certain problem is 
considered a tedious, under-productive, error-prone task [1], [2], [3]. When the com-
plexity of a problem domain increases and when near-optimal networks are desired, 
manual searching becomes more difficult and unmanageable [1]. An optimal neural 
network is an ANN tailored to a specific problem, thereby having a smaller architec-
ture with faster convergence and a better generalization performance [1], [2], [3]. A 
near-optimal ANN is characterized by the choice of its specific, corrected parameters 
for a specific problem, thereby producing a satisfactory performance [2], [3]. The 
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construction of near-optimal ANN configurations involves difficulties such as the 
exponential number of parameters that need to be adjusted; the need for a priori 
knowledge of the problem domain and ANN functioning in order to define these pa-
rameters; and the presence of an expert when such knowledge is lacking [2], [3]. 

Considering the problems and difficulties related to the use of the manual method 
for tuning ANN parameters, the adoption of an automatic method for performing this 
tuning task emerges with the aim of avoiding such problems. A large number of pa-
pers are found in the literature devoted to constructing automatic methods for tuning 
ANN parameters. These can be categorized as evolutionary and non-evolutionary 
methods. One kind of evolutionary technique, the Genetic Algorithm (GA) [5], is 
often used to search near-optimal ANN models with topology optimization, as pre-
sented in [7], [8]. Others include transfer functions, initial weights and learning rules, 
as presented in [1], [6]. Automatic methods that use non-evolutionary techniques are 
focused mainly on the manipulation of ANN architectures and weights. Some of these 
non-evolutionary methods prune connections considered less significant [10], [11] or 
freeze weights when the same inputs are submitted to the network [10]. 

In this paper, we present a method denominated GANNTune (GA + ANN + Tune), 
which is an evolution of its antecessor NNGA-DCOD (aNN + GA - Direct enCODe), 
presented in [2]. The NNGA-DCOD method is mainly characterized by the adoption 
of Evolutionary ANNs (EANNs), a framework that makes possible the search for all 
ANN components needed for its functioning, as defined by Xin Yao [13]. EANNs 
include a sequential and nested layer search process, in which each layer has specific 
ANN information to be found by a specific GA. In NNGA-DCOD, the search for 
initial weights is performed in the lowest layer; the search for hidden layers, nodes per 
layer (architecture) and transfer functions occurs in the intermediate layer; and the 
search for learning algorithm parameters is performed in the highest layer. Thus, there 
are three GAs for searching these ANN parameters and, consequently, there is inter-
dependence between these GAs [3]. While the NNGA-DCOD has three nested GAs, 
the GANNTune has only one GA. The aim of this approach is to reduce the time 
needed to perform the search for ANN parameters for a specific problem. This ap-
proach also seeks to preserve the NNGA-DCOD capability of finding solutions (ANN 
parameters) with similar or better quality. This paper is organized as follows: Section 
2 presents the GANNTune method; Section 3 describes experimental results, includ-
ing time consumption analysis; and Section 4 summarizes our conclusions and pre-
sents future work. 

2   Evolutionary Approach for Tuning ANN Parameters 

There are many different variants of Evolutionary Algorithms (EA) [5]. GA is a kind 
of EA that is widely employed to build automatic methods for tuning ANN parame-
ters. The GANNTune is made up of a GA working directly with ANN parameters in 
their natural format. In other words, there is no encoding scheme. This approach was 
adopted with the intention of avoiding the frequent encoding and decoding tasks at 
each iteration of the search process, which occurs when the canonical GA is used [5]. 
Therefore, an individual is composed of all ANN parameters needed for its function-
ing: learning algorithm parameters, number of hidden layers and hidden nodes per 
layer, transfer functions and initial weights.  



158 L.M. Almeida and T.B. Ludermir 

The individuals used by the GA for tuning ANN parameters are composed of real, 
integer and discrete information. Traditional genetic operators have been reformulated 
to deal with these kinds of values. These operators are the main contribution of this 
work, as there is an absence of such types of genetic operators in the literature. 

The selection of N individuals is performed using the tournament strategy, with a 
random pressure rate of Pp = 0.3 and an elitism rate of E = 0.1. This information was 
found empirically. The tournament selection operator is used to select individuals to 
compose a new population (survivors) as well as individuals for recombination. 

In recombination, given two selected individuals, a random variable is drawn from 
[0,1) and compared to Pc. If the value is smaller than Pc, one offspring is created via 
the recombination of the two parents; otherwise, the offspring is created asexually by 
copying one of the parents [5]. The crossover rate used in this work was Pc = 0.6. 
After recombination, a new random variable is drawn from [0,1) and compared to Pm. 
If the value is smaller than Pm, the mutation operator is applied to the individual; 
otherwise, nothing undergoes any changes. The mutation rate used is Pm = 0.4. 

The execution of the genetic operator for recombination (and mutation) between 
individuals can be divided into three phases: First, the recombination of the learning 
algorithm information occurs; then the recombination of architecture information 
occurs; and, lastly, the recombination of initial weights occurs. The recombination of 
the learning algorithm information occurs with the generation of new values within a 
range based on the parent values. Based on probability, the mutation algorithm for the 
child performs an addition or subtraction operation in the child rates. Based on its 
current value, this operation causes a forty percent up or down (increasing or decreas-
ing) change in the parameter. The evolutionary search for learning rules occurs with 
the search for the Back-Propagation (BP) algorithm parameters. 

The recombination of architectures considers configurations with between one and 
three hidden layers and between one and 12 hidden nodes per layer. The selected indi-
viduals (“parents”) are submitted to the crossover process. The process starts with the 
definition of the number of hidden layers that the child will have, which is obtained 
through the mean sum of hidden layers from the parents, rounded off based on probabil-
ity problems. The dimensions of the hidden layers and the transfer functions for the 
child are then defined through random selection that considers all parent information. 

The recombination operator for architectures produces individuals that are very 
similar to their parents. Thus, the mutation operator (algorithm in Figure 1) is applied 
after the crossover in order to maintain diversity in the population. Child selection for 
mutation is performed through a random process. The process starts with the number 
of children that will undergo mutation. A random number is then generated within the 
range [0, 1). This value will be used to define whether an architecture will undergo an 
increase or decrease in the number of hidden layers or will undergo an increase (PInc = 
0.6) or decrease (PDec = 0.5) in the number of hidden nodes per layer. If an architec-
ture has only one hidden layer, the possibility of the number being three is great 
within all the possibilities. In the case of a selected random value failing to cause a 
significant change in the number of hidden layers, a set of values between archval = 
[-2, 5) is generated and added to the current dimensions of the architecture. This range 
was defined empirically with the purpose of maintaining diversity among the indi-
viduals. If an architecture has two hidden layers, the possibility of the number being 
three is great, with the intention of reducing the number of hidden nodes per layer. 
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Data: childVet, n, m //children vector, number of children, mutation rate  
Result: mutChild 
Begin 

childNumber  ((m/100) * n) 
while childNumber < 0 do 

probability  rand(1) 
child  raffle(childVet)  //choose randomly one child  
if probability <= Pinc then 

if child.numHidLyrs = 1 or 2 then 
child  addLayers(3) 

else 
child  reduceLayersTo(2) 

else if probability <= Pdec then 
if child.numHidLyrs = 1 or 2 then 

child  addLayers(1) 
else 

child  reduceLayersTo(2) 
else 

child  child + rand(archval) 
childVet  childVet – child 
mutChild  child 
childNumber  childNumber – 1  

mutChild  mutChild + childVet 
end 

Fig. 1. Algorithm used for architectures mutation 

In the recombination of initial weights, the parents can have different information 
regarding architecture; they have matrices of weights with different dimensions as 
well. For this reason, the recombination starts with generation of the initial weights 
randomly based on the architecture description arch. After random generation of the 
initial weights, an insertion of genetic material from the parents occurs, as the previ-
ous conditions have been satisfied. One of these conditions refers to the number of 
weight matrices (nm). The transfer of genetic material occurs up to the same number 
of matrices in the parents and child, and up to the minimal dimension of a matrix. The 
algorithm in Figure 2 describes the recombination of initial weights in more detail. 
The procedure getDim has the capability of identifying the dimensions of all matri-
ces (number of lines and columns). The parameters pflip = 0.5 controls the source of 
genetic material to be transferred to child. 

The selection of individuals for mutation is performed randomly, as individuals 
have no fitness yet. According to the mutation rate Pm = 0.4, forty percent of the chil-
dren will undergo mutation. The mutation operator for initial weights consists of its 
adjustment (training) by 5 epochs with the BP algorithm using the data for training. 

The method starts the search by randomly generating populations of individuals. Fit-
ness is then calculated based on the ANN Mean Squared Error (MSE) achieved in the 
training set. The genetic operators maintain the diversity of individuals for the tourna-
ment search and a small range of random selection, where the new individuals generated 
for the next offspring must be distinct from individuals in the present offspring. The 
amount of individuals used in the GANNTune is small, but, as this method is iterative,  
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Data: prta, prtb, arch //parent A, parent B, architecture description  
Result: child //new offspring 
Begin 

weightsrange  [-0.05, 0.05) 
weights  getInitialWeights(arch, weightsrange) 
for id  1:weights.nm do 

if prta.nm < index < prtb.nm then 
dim  getDim(prta{id}, prtb{id}, weights{id}) 
linmin min([dim.lina, dim.linb, dim.linc]) 
colmin  min([dim.cola, dim.colb, dim.colc]) 
for e  1:linmin do 

for g  1:colmin do 
if rand(1) < pflip then 

weights.matrices{id}(e,g)  prta.wgts{id}(e,g) 
else 

weights.matrices{id}(e,g)  prtb.wgts{id}(e,g) 
end 

Fig. 2. Algorithm used for initial weights recombination 

Table 1. Individual composition description 

 Parameters for: Values 
Encoding Direct 
Elitism 10% 
Recombination 80% 
Mutation 70% 
Pressure 30% 
Selection / Stopping 
criteria 

Tournament / Max generations 

Population size 50 G
en

et
ic

 A
lg

or
it

hm
 

Generation 100 
Type MLP, Feed-forward 
Transfer functions Pure-linear (P), Tang-sigmoid (T) and Log-Sigmoid (L) 
Hidden layers Up to 3 
Hidden nodes per layers Up to 16 
Training epochs Up to 3 
Range of initial weights [-0.05, 0.05) 
Output neuron Linear 
Learning rate [0.05 0.25) 

A
N

N
s 

Momentum rate [0.05 0.25) 

many new individuals are created at every generation of each kind of search. Thus, the 
search space explored is large and satisfactory results are achieved. 

3   Experimental Results 

The experiments for evaluating the GANNTune were performed with seven well-
known classification problems found in the UCI repository [12]. Cancer with 9 attrib-
utes (atb), 699 examples (exp) and 2 classes (cla); Heart-Cleveland with 35 atb, 303 
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exp and 2 cla; Pima-diabetes with 8 atb, 768 exp and 2 cla; Horse with 58 atb, 364 
exp and 3 cla; Glass with 9 atb, 214 exp and 6 cla; Card with 51 atb, 690 exp and 2 
cla; and Soybean with 82 atb, 683 exp and 19 cla. To perform the experiments, we 
used 30 two-fold iterations [4]. At each iteration, data were randomly divided into 
halves. One half was the input for the algorithm (70% for training and 30% for the 
validation set) and the other half was used to test the final solution (test set). The 
execution of one iteration corresponds to the creation of an initial population and 
execution of evolutionary search for 100 generations. After 30 iterations with differ-
ent data division and initial populations, the best 30 ANN parameters are chosen 
based on training error, test error and architecture size. The results reported are the 
mean value from the 30 ANN parameters found for each classification problem. 

The search for ANNs through trial-and-error was performed following the previ-
ously described methodology, using the same database split scheme and number of 
training epochs. We performed 30 runs in each fold for the network having between 
[2, 24) hidden neurons for one hidden layer with the (T) transfer function. 

Table 2 displays the mean values from near-optimal ANNs found with GANNTune 
and trial-and-error methods. The mean of the architectures (Arch.) is based on the 
amount of hidden units/neurons. Regarding the number of hidden neurons, GANNTune 
found structurally worse networks (with many hidden neurons) than most of those 
found with the trial-and-error method. However, with application of the t-test, the 
results of GANNTune were statistically much better than the manual method for all 
problems considering the training and test errors. 

Table 2. Description of near-optimal ANNs found with GANNTune and trial-and-error meth-
ods and time consumption of the developed method  

GANNTune Trial-and-error 
Errors Errors 

Classification 
Problems Time cons. in 

minutes 
Arch. 

Training Test 
Arch. 

Training Test 
Cancer (ca) 14.36 25.4 3.03 3.63 16.8 7.16 8.14 
Heart (he) 14.10 20.5 10.03 14.93 21.2 17.62 24.54 
Pima (pi) 14.63 26.6 16.54 16.99 15.4 23.97 23.96 
Horse (ho) 15.05 24.5 12.35 17.79 20 19.71 19.72 
Glass (gl) 14.50 27.3 9.62 10.27 11.7 13.93 13.94 
Card (cd) 14.65 18.6 8.55 12.35 12.3 13.03 16.07 
Soybean (sy) 17.65 38.9 4.76 4.79 22.8 20.47 32.35 

Considering the figures in Table 3, which are mean values, GANNTune is better 
than the other methods for searching near-optimal ANNs for the Pima-diabetes, Glass, 
Soybean and Horse problems regarding mean error (and similar to its antecessor 
NNGA-DCOD for the Horse problem), but the amount of nodes is high compared to 
the other methods. Comparing the GANNTune to NNGA-DCOD, the reduction in the 
mean performance for all problems is very expressive, but with GANNTune, the same 
does not occur with the number of nodes/connections. 

None of the methods found in the literature on searching for near-optimal ANNs 
studied the time consumption of the search methodology. The second column in Table 
2 displays information on the time GANNTune needs to search for near-optimal ANNs 
for each problem using all training algorithms. Time is related to the search 
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performed in one fold of the each problem in which the evolutionary search runs up to 
100 generations. Therefore, the figures in second column of Table 2 are mean values 
from 30 iterations in minutes. The main drawback of methods that use evolutionary 
techniques (such as GAs) is the long search processing time. This is due to the fact 
that GAs considers a large search space (where near-optimal ANNs can be found) 
and, consequently, requires a large amount of time to explore this search space [6]. 

Table 3. Comparison between evolutionary and non-evolutionary (*) methods 

  Methods 

In
fo
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[8

] 
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[7

] 

C
N

N
D

A
* 

[1
0]

 

ca 3.63 6.22 - - - 1.38 1.15 
he 14.93 14.26 13.63 14.26 13.63 11.96 - 
pi 16.99 21.15 19.27 19.90 19.84 19.69 19.91 
ho 17.79 17.52 - - - 26.74 - 
gl 10.27 12.75 35.16 - 35.16 22.89 - 
cd 12.35 - - - - 12.17 - 

T
es

t e
rr

or
 

sy 4.79 - - - - 7.61 - 
ca 25.4 12.8 - - - 5.89 3.5 
he 20.5 12.1 6.37 4.77 11.4 7.28 - 
pi 26.6 6.1 4.57 6.17 7.9 7.9 4.3 
ho 24.5 7.2 - - - 20.3 - 
gl 27.3 5.6 6.33 - 14.87 6.73 - 
cd 18.6 - - - - 6.89 - 

N
um

be
r 

 
of

 h
id

de
n 

no
de

s 

sy 38.9 - - - - 19.42 - 

Compared to the time consumption of the NNGA-DCOD method, which is meas-
ured in hours of processing, the time consumption of GANNTune applied to the same 
classification problems is displayed in minutes of processing. This very significant 
reduction in time consumption was obtained with the adoption of only one GA to 
perform the search, whereas the NNGA-DCOD has three nested GAs to perform the 
same search. 

4   Conclusions 

The search for ANNs that are custom-tailored to a specific problem is considered a 
complex task and has mainly employed manual search methods. In this paper, we 
presented a new version of a hybrid method for automatically searching near-optimal 
ANNs. This method is composed of a combination of GAs and ANNs that search 
different ANN information.  Experiments were performed and the results demonstrate 
that this method is able to achieve neural networks with satisfactory performances 
when compared to a simulation of the manual search method and other recent meth-
ods described in the literature. Moreover, the overall method requires just 15 minutes 
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to perform the search for ANN parameters (compared to 33.63 hours for its anteces-
sor). In other words, the reduction in time consumption is clear. Future work will 
concentrate on refining the genetic operators and addressing the issues of pruning 
connections. 
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