Chapter 3
Transport Lazer

A note on the use of these ppt slides:

We’' re making these slides freely available to all (faculty, students, readers).
They’ re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only

ask the following:
< If you use these slides (e.g., in a class) that you mention their source

(after all, we’ d like people to use our book!)

< If you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

@AII material copyright 1996-2013
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking

A Top-Down Approach

KUROSE ROSS

Computer
Networking:A Top
Down Approach
6t edition
Jim Kurose, Keith Ross

Addison-Wesley
March 2012

Transport Layer 3-1

Chapter 3: Transport Layer

our goals:

+ understand + learn about Internet
principles behind transport layer protocols:
transport layer = UDP: connectionless
Services: transport

= multiplexing, = TCP: connection-oriented
demultiplexing reliable transport
= reliable data transfer = TCP congestion control

* flow control
" congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

T

J/
0’0

provide logical communication

between app processes
running on different hosts

transport protocols run in
end systems

" send side: breaks app
messages into segments,
passes to network layer

® rcv side: reassembles
segments into messages,
passes to app layer

more than one transport
protocol available to apps

= |Internet;: TCP and UDP

ransport services and protocols

data link [roSesrs

transport
networ

data link
physical

Transport Layer 3-4

Transport vs. network layer

% network layer: logical

communication
between hosts

< transport layer:
logical
communication
between processes
" relies on, enhances,

network layer
services

- household analogy:

|2 kids in Ann s house sending

letters to |2 kids in Bill s
house:

» hosts = houses
» processes = kids
% app messages = letters in

envelopes

% transport protocol = Ann

and Bill yvho demux to in-
house siblings

» network-layer protocol =

postal service

Transport Layer 3-5

Internet transport-layer protocols

. . application
+ reliable, in-order oeport Y
delivery (TCP) S
o J PIyee network
" congestion control 2 i O N e
physical O
" flow control MR =<
" connection setu B
P gg network &4
. . data link O
% Unl"ellable, unordered %7 phtysical o
delivery: UDP [etarink
: . ——hysical
= no-frills extension of dota ik a3 Mcation
ié) ” w physical otwor 3
best-effort” IP g datna~“nkk e
. . hysical atd in
+ services not available: ,QL = Lphsic

" delay guarantees E&&

" bandwidth guarantees

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

Multiplexing/demultiplexing

- multiplexing at sender:

handle data trom multiple — demultiplexing at receiver: —
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application application [] socket
|—| |T| Qprocess
transport trarfd pdrt
network netWork
‘ link 1L [[mk ' |
L physical phygical

Transport Layer 3-8

How demultiplexing works

+ host receives IP datagrams

" each datagram has source |P
address, destination IP
address

" each datagram carries one
transport-layer segment

= each segment has source,
destination port number
+ host uses IP addresses &
bort numbers to direct
segment to appropriate
socket

32 bits —

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

+ recall: created socket has + recall: when creating
host-local port #: datagram to send into
DatagramSocket mySocketl UDP socket, must specify

= new DatagramSocket (12534); = destination IP address

" destination port #

< when host receives UDP IP datagrams with same
segment: dest. port #, but different

source |IP addresses

" checks destination port # ‘ and/or source port
in segment : :
_ 5 numbers will be directed
" directs UDP segment to to same socket at dest

socket with that port #

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
DatagramSocket DatagramSocket DatagramSocket
mySocket2 = new mySocketl = new
DatagramSocket (642 8) M DatagramSocket
(9157) ; application (5773) ;
application @ application
f 4]
A tramsport W
trangport ot W oFk trangport
nefwork | n'< netwprk
ink [.'h‘/SiCEﬂ lihk
/™ hydical hykical \ |
phydica phypica \
- [=
source port: 6428 source port: ?
. dest port: 9157 : dest port: ?
> le S
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

+» TCP socket identified
by 4-tuple:
" source IP address
" source port number
" dest IP address
" dest port number
+ demux: receiver uses
all four values to direct

segment to appropriate
socket

% server host may support
many simultaneous TCP
sockets:

= each socket identified by
its own 4-tuple

<+ web servers have
different sockets for
each connecting client

" non-persistent HT TP will
have different socket for
each request

Transport Layer 3-12

Connection-oriented demux: examEIe

application application
wl 4 | _‘@ N C
tranpport ranspor
net'vork network
lipk " link
é‘ ‘z Phypical o server: IP physical r;
e address B -—2a
host: IP source IP,port: B,80 <« host: IP
address A dest IP port: A,9157 source IP,port: C,5775 address C
s dest IP,port: B,80
source IP,port: A,9157
dest IP, port: B,80_

source IPport: C,9157
dest IP,port: B,80

three segments, all destined to IP address: B,

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: examEIe

threaded server

application

application
m_4 |m
tranpport
net'vork
lihk
{ ‘{ phyfical
host: IP source IP,port: B,80
address A dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

server: IP
address B

application

—l@—l-%-
Franspor

network

link

physical

source IP,port: C,5775
dest IP,port: B,80

source IPport: C,9157
dest IP,port: B,80

E

-

host: IP
address C

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

% no frills,” “bare bones” <« UDP use:
Internet transport = streaming multimedia
protocol apps (loss tolerant, rate
+ “best effort” service, sensitive)
UDP segments may be: = DNS
" |ost = SNMP
" delivered out-of-order + reliable transfer over
to app UDP:

< connectionless: N
" add reliability at

" no handshaking Telle
between UDP sender, application layer

receiver

= each UDP segment
handled independently
of others

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

length <~ | checksum

— why is therea UDP? _

% NO connhection

application establishment (which can
data add delay)
(payload) :

+ simple: no connection
state at sender, receiver

» small header size

> no congestion control:
UDP can blast away as
fast as desired

L)

>

>

L)

L)

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors’ (e.g., flipped bits) in transmitted
segment

sender: receiver:

< treat segment contents, + compute checksum of
including header fields, received segment
as sequence of 16-bit

% check if computed

integers
5 checksum equals checksum

< checksum: addition

(one’ s complement field value:

sum) of segment "= NO - error detected

contents " YES - no error detected.
+ sender puts checksum But maybe errors

value into UDP nonetheless? More later

checksum field

Transport Layer 3-18

Internet checksum: example

example: add two |6-bit integers

6-
11100110011 00110
110101010101 0101

wr'apar'ound@lOll101110111011

sum

1011101110111 100
checksum 0100010001 00O0O0T11

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| i
reliable chcmnel)j

application
layer

fransport
layer

(a) provided service

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

sending receiver I
process I process
| i
reliable chcmnel)j

application
layer

fransport
layer

Junrelicble ohcmnel);'A

(a) provided service (b) service implementation

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

% important in application, transport, link layers
= top-10 list of important networking topics!

senalngl receiver I
process process
! i

. rdt send()
reliable chcmnel)j —

reliable data
transfer protocol
(sending side)

application
layer

deliver data()

reliable data
tfransfer protocol
(receiving side)

udt_send()i [packet | [packet] Irdt rev()

fransport
layer

Junrelicble ohcmnel);'A

(a) provided service (b) service implementation

« characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send () : called from above,

(e.g., by app.). Passed data to
deliver to receiver upper layer

\ rdt_send()

reliable data
transfer protocol
(sending side)

send
side

packet

udt send ()t

deliver data() : called by
rdt to deliver data to upper

/

deliver data()

relioble data receive
transfer protocol id
(receiving side) Slde
packel Irdt_rcv ()

unreliable channel)J

udt send () : called by rdt,
to transfer packet over
unreliable channel to receiver

rdt rcv () : called when packet
arrives on rcv-side of channel

Transport Layer 3-24

Reliable data transfer: getting started

y
we |l:

+ incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

< consider only unidirectional data transfer
= but control info will flow on both directions!

<+ use finite state machines (FSM) to specify sender,

receiver
event causing state transition
actions taken on state transition

——

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdtl.0: reliable transfer over a reliable channel

<+ underlying channel perfectly reliable
" no bit errors
" no loss of packets
+ separate FSMs for sender, receiver:
= sender sends data into underlying channel
" receiver reads data from underlying channel

“Y\Wait for

rdt_send(data) “YAWait for rdt_rcv(packet)
call from call from xtract ket dat
above packet = make_pkt(data) below extract (packet,data)

deli data(dat
udt_send(packet) eliver_data(data)

sender receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

<+ underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

»”

How do humans recover from “errors
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

<+ underlying channel may flip bits in packet
= checksum to detect bit errors

< the question: how to recover from errors:

* acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

" negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

* sender retransmits pkt on receipt of NAK
% new mechanisms in rdt2.0 (beyond rdt1.0):

" error detection

» feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)
sndpkt = make_pkt(data, checksum) receiver
udt_send(sndpkt)
rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Walit for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

) ~ ()
rdt_rcv(rcvpkt) && isACK(rcvpkt) s .
Wait for
A
call from
below

sender

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
ISNAK(rcvpkt)

Walit for
call from
above

rdt_rcv(rcvpkt) &&
udt_send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
<
A

Wait for
call from
below

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

Walit for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

end(NAK

rdt_rcv(rcvpkt) && isSACK(rcvpkt)
<
A

Wait for
call from
below

rdt rcv(rcvpkt) &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if handling duplicates:

ACK/NAK corrupted!?

+ sender doesn’ t know
what happened at
receiver!

% can’ tjust retransmit:
possible duplicate

— stop and wait

response

sender sends one packet,
then waits for receiver

» sender retransmits

current pkt if ACK/NAK
corrupted

+ sender adds sequence

number to each pkt

. . ’
» receiver discards (doesn t

deliver up) duplicate pkt

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or
NAK O

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iISACK(rcvpkt)

A A
Wait for
rdt_rcv(rcvpkt) && Cagbt\]:reom
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make pkt(ACK, chksum)
udt_send(sndpkt)

\
\
rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seql(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.|: discussion

sender:
% seq # added to pkt

» two seq. # s (0,1) will
suffice. Why!

+ must check if received
ACK/NAK corrupted

+ twice as many states

= state must
“remember” whether
“expected” pkt should
have seq # of 0 or |

receiver:

<+ must check if received
packet is duplicate

= state indicates whether
0 or | is expected pkt
seq #
< hote: receiver can not
know if its last
ACK/NAK received

OK at sender

Transport Layer 3-35

rdt2.2: a NAK-free protocol

L)

» same functionality as rdt2.1, using ACKs only

+ instead of NAK, receiver sends ACK for last pkt
received OK

" receiver must explicitly include seq # of pkt being ACKed

+ duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragsments

rdt_send(data)
sndpkt = make pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&
. (corrupt(rcvpkt) ||
W ait for W ait for .
call 0 from ACK ISACK(rcvpkt,1))
above 0 udt_send(sndpkt)

sender FSM

fragment rdt_rcv(rcvpkt)
........... && notcorrupt(rcvpkt)
rdt_rcv(rcvpkt) && .. && ISACK(rCVpktio)
(corrupt(revpkt) || = —~—
has_seql(rcvpkt))

—

cceiver FsM

coverron "
E T

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt) T
&& has_seql(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_ pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

udt_send(sndpkt)

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets
(data, ACKs)

" checksum, seq. #,
ACKs, retransmissions
will be of help ... but
not enough

approach: sender waits

“reasonable” amount of
time for ACK

< retransmits if no ACK

received in this time

+ if pkt (or ACK) just delayed

(not lost):

" retransmission will be
duplicate, but seq. # s
already handles this

" receiver must specify seq
of pkt being ACKed

% requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\

rdt_rcv(rcvpkt)
A

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C

start_timer (/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
ISACK(rcvpkt,0))

A

sndpkt = make pkt(0, data, checksum)
\ udt_send(sndpkt)
\ start_timer

W ait for
call Ofrom
above

(corrupt(rcvpkt) ||
ISACK(rcvpkt,1))
A

timeout
udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& iIsACK(rcvpkt,0)

stop_timer

W ait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_ pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver sender receiver
send pkt0 ktO send pktO ktO
\ rcv pktO \ rcv pktO
ac send ackO ac send ackO
rcv ackO /ﬂ/ rcv ackO /Q/
send pktl \Wl\‘ send pktl_ ktl
rcv pktl X
ack send ackl loss
rcv ackl 0
send pkt0
p \\ rcv pktO ‘ t/meout
ack send ackO resend pktl \pktl\‘
rcv pktl
ack send ackl
rcv ackl
I send pkt0 \K 0
rcv
(a) no loss ack sencl:l) ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action

sender receiver
send pktO ktO
\\ Frcv pkto
ack send ackO
rcv ackO
send pktl_ \Ml\‘
rcv pktl
yaskl— send ack1
loss

timeout

resend pktl ktl

rcv pktl
(detect du Ellcate)
send ac

f

ack

\

rcv ackl
send pkt0 ktO
rcv pktO

ack send ack0

/

(c) ACK loss

sender recelver
send pktO
\\ rcv pkto
send ackO
rcv ackO /Q/
send pktl_ \
rcv pktl

send ackl
ackl
‘ t/meou
resend pktl rcv pktl
rcv ackl (detect du I|cate)

send pktoﬁ< send ac
send pkt0 send ack0
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-41

Performance of rdt3.0

% rdt3.0 is correct, but performance stinks
» e.g.: | Gbps link, |5 ms prop. delay, 8000 bit packet:

8000 bits

L .
=5 = . = 8 mICrosecs
Drans = R = 109 bits/sec
" U 4o Utilization — fraction of time sender busy sending
L/R .008
J = — = 0.00027

sender orT 4| /R ~ 30.008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

% network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —so-----------mmmmmmmm -
last packet bit transmitted, t=L/R

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,

packet, t =RTT + L/ R_\ ---------------------
\

<«

L/R .008
U = — = 0.00027

sender — RTT+L/R 30.008

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
" range of sequence numbers must be increased
» buffering at sender and/or receiver

data packet—s data packets—» ’
B

+«— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

+ two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender

first packet bit transmitted, t = 0 —
last bit transmitted, t=L /R ¢

RTT

ACK arrives, send next,
packet, t=RTT+L/R |}

3L/R
RTT+L/R

U

sender —

receiver

first packet bit arrives
last packet bit arrives, send ACK

> last bit of 2nd packet arrives, send ACK
—last bit of 3" packet arrives, send ACK

3-packet pipelining increases
utilization by a factor of 3!

.0024 '/

= 0.00081

30.008

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

% sender can have up to
N unacked packets in
pipeline

% receiver only sends
cumulative ack

= doesn’ t ack packet if
there’ s a gap

+ sender has timer for
oldest unacked packet

" when timer expires,
retransmit all unacked
packets

Selective Repeat:

+ sender can have up to N
unack’ ed packets in
pipeline

< rcvr sends individual ack
for each packet

< sender maintains timer
for each unacked packet

= when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

+ k-bit seq # in pkt header
» “window of up to N, consecutive unack’ ed pkts allowed

send_base nexfsegnum dlready Usable. not
lv i ack’ed yet sent
TR LORTUTITO0ONID | semimpe] s
 __ window size —%
N

« ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”’

" may receive duplicate ACKs (see receiver)

+ timer for oldest in-flight pkt

+ timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {

sndpkt[nextsegnum] = make_pkt(nextsegnum,data,chksum)

udt_send(sndpkt[nextsegnum])
if (base == nextsegnum)

start_timer
nextsegnum-++
.. }
A else
v refuse_data(data)

nextseqnum=1 " (D

a timeout
start_timer
3 udt_send(sndpkt[base])
O udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)
udt_send(sndpkt[nextsegnum-1])
rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
stop_timer
else
start_timer

Transport Layer 3-48

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(revpkt)

T~ (D && notcurrupt(rcvpkt)

A TS~ - && hassegnum(rcvpkt,expectedsegnum)
=~

expectedseqnum=1 AQextract(rcvpkt,data)

sndpkt = deliver_data(data)

make_pkt(expectedsegqnum,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)

expectedsegnum-++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

* may generate duplicate ACKs

" need only remember expectedseqnum
+ out-of-order pkt:

= discard (don’ t buffer): no receiver buffering!

* re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN in action

sender window (N=4) sender receiver

R4 5678 send pkt0

WY 56 7 8 send pktl \ _

012 3 NANE send pkt2 — receive pkt0, send ackO

0123 AN send pkt3 X /oss receive pktl, send ackl
(wait)

receive pkt3, discard,

ofEEY¥678 rcv ack0, send pkt4 (re)send ack1

01EkEEI6 78 rcv ackl, send pkt5 receive pkt4, discard,
(re)send ackl
receive pkt5, discard,
(re)send ackl

ignore duplicate ACK

Pkt 2 timeout |

012 3 45 ks send pkt2
VN2 345 WA send pkt3 \ _
rcv pkt2, deliver, send ack2

R12 3 45 A send pkt4 !

0 1R 7 5 send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4

rcv pkt5, deliver, send ack5

Transport Layer 3-50

Selective repeat

<+ receiver individually acknowledges all correctly
received pkts

= buffers pkts, as needed, for eventual in-order delivery
to upper layer

<+ sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt
+ sender window

= N consecutive seq # s
" limits seq #s of sent, unACKed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base nexftsegnum dlready Lsable. rot
, ack’ed yet sent
(0TI T
t _ window size —4
N

(a) sender view of seguence numbers

acceptable
(buffered) but — § (ithin window)
already ack’'ed

I e R

t _ window size—24

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52

Selective repeat

— sender

— receiver

data from above:

+ if next available seq # in
window, send pkt

timeout(n):

+ resend pkt n, restart
timer

AC K(n) IN [sendbase,sendbase+N]:

<+ mark pkt n as received

< if n smallest unACKed
pkt, advance window base
to next unACKed seq #

Pl(t nin [rcvbase, rcvbase+N-|]
+ send ACK(n)
« out-of-order: buffer

<« in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t N 1IN [rcvbase-N,rcvbase-|]
+» ACK(n)

otherwise:

< ighore

Transport Layer 3-53

Selective repeat in action

sender window (N=4) sender recelver
01 2 3 MY A:! send pkt0
MRl 567 8 send pktl \
0123 L send Ektz-\ receive pkt0, send ack0
0123 RE send pkt3 X Joss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
oMEER¥ 673 rcv ack0, send pkt4 send ack3
01EKEE¥ 78 rcv ackl, send pkt5 receive pktd, buffer
send ack4
/_record ack3 arrived receive pkt5, buffer,
DKt 2 timeout _ send ack>
0 1EEYF6 7 8 send pkt2
O 1EREEEYS 7 8 record ack4 arrived)
01 EREI 7 8 record ack5 arrived I’Ckv pkt2k, delll\(/er, pkt2, K
W2 3 45 N pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Transport Layer 3-54

sender window receiver window

Selective repeat: (fer receiny (after receipt
dilemma BEEs012 0O

— ofiEEJo 12

0 1N 2
— 01 2EE2

0 1 2 JVERPREs] S S
[F¥13012 —pkt2
example: 7
? o]0 1 2 < pkt3
» seq# s:0, 1,2, 3 Jopy X
< window size=3 W ~—— will accept packet

] with seq number 0
% receiver sees no (a) no problem |
difference in two receiver can’t see sender side.
scenarios! receiver behavior identical in both cases!
. something’s (very) wrong!
<+ duplicate data g5 (very) wrong
accepted as new in EPRs012 —oKO
(b) EFso12 —RktL — ofEE]0 12
3012~pkt2?< — 01EEI12
. . —> o1 p] 30 1P
Q: what relationship e
i timeout
between seq # size . o
. . retransmit pkt0
and window size to EEs012 —0kO e
. . - will accept packe
avoid problem N (b)’ (b) oops! ‘ with seq number 0

Transport Layer 3-55

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56

TC P: OverVieW RFCs: 793,1122,1323, 2018, 2581

% point-to-point:
® one sender, one receiver
<+ reliable, in-order byte
steam:

" no “message
. L4
boundaries

<+ pipelined:
= TCP congestion and

flow control set window
size

< full duplex data:

» bi-directional data flow
in same connection

= MSS: maximum segment
size
< cohnection-oriented:

* handshaking (exchange
of control msgs) inits
sender, receiver state
before data exchange

< flow controlled:

= sender will not
overwhelm receiver

Transport Layer 3-57

TCP segment structure

URG: urgent data

(generally not used)™_ source port# | dest port #

ACK: ACK #
valid

32 hits >

A

counting

by bytes

of data

(not segments!)

. sequence number
\Knowledgement number

PSH: push data now
(generally not used) —

head
en |u ! P[R|S|F| receive window
Urg data pointer

bytes
rcvr willing

RST, SYN, N
connection estab

to accept

op% s (variable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-58

TCP seq. numbers, ACKs

outgoing segment from sender

sequence numberS°

"byte stream number of
first byte in segment’ s
data

acknowledgements:

"seq # of next byte
expected from other side

= cumulative ACK

Q: how receiver handles
out-of-order segments

= A: TCP spec doesn’ t say,
- up to implementor

source port # dest port #
sequence number
acknowledgement number
| | rwnd
checksum urg pointer
wmdow Siz

N

sender sequence number space

sent
ACKed

sent, not- usable not
yet ACKed but not usable
(“in- yet sent

flight”)

incoming segment to sender

source port #

dest port #

sequence number

lll acknowledgement number

A

rwnd

checksum

urg pointer

Transport Layer 3-59

TCP seq. numbers, ACKs

User *
Seq=42, ACK=79, w
Seq=79, ACK=43, data = ‘C’
host ACKs
receipt
of echoed ~—____
‘

Seq=43, ACsz

simple telnet scenario

Host B

— g’

host ACKs
receipt of

‘C’, echoes
back ‘C’

Transport Layer 3-60

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

+ longer than RTT
" but RTT varies
< too short: premature

timeout, unnecessary
retransmissions

<+ too long: slow reaction
to segment loss

/7
0’0

Q: how to estimate RTT?

SampleRTT: measured
time from segment
transmission until ACK
receipt

" jgnore retransmissions

SampleRTT will vary, want
estimated RTT “smoother”

" average several recent
measurements, not just
current SampleRTT

Transport Layer 3-61

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

+» exponential weighted moving average
+ influence of past sample decreases exponentially fast
+ typical value:a =0.125

RTT (milliseconds)

350 +

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr ,

¢ sampleRTT

EstimatedRTT

1

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62

TCP round trip time, timeout

+ timeout interval: EstimatedRTT plus “safety margin”
" large variation in EstimatedRTT -> larger safety margin

+ estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-PB)*DevRTT +
f*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT

estimated RTT “safety margin”

Transport Layer 3-63

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64

TCP reliable data transfer

& JTCP creates rdt service
L4 .
on top of IP" s unreliable
service

* pipelined segments ,
= cumulative acks let” s initially consider

= single retransmission simplified TCP sender:
timer " ignore duplicate acks

% retransmissions " ignore flow control,
triggered by' congestion control

" timeout events
" duplicate acks

Transport Layer 3-65

TCP sender events:

data rcvd from app:

% Create segment with
seq #

- seq # is byte-stream
number of first data
byte in segment

< start timer if not
already running
» think of timer as for

oldest unacked
segment

" expiration interval:
TimeOutInterval

>

L)

L)

timeout:

< retransmit segment
that caused timeout

<% restart timer
ack revd:

<+ if ack acknowledges
previously unacked
segments

" update what is known
to be ACKed

= start timer if there are
still unacked segments

Transport Layer 3-66

TCP sender (simplified)

data received from application above

create segment, seq. #: NextSeqgNum
pass segment to IP (i.e., “send”)

NextSegNum = NextSegNum + length(data)
if (timer currently not running)
A a start timer
NextSeqNum = InitialSegNum
SendBase = InitialSegNum
timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer
ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase-1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67

TCP: retransmission scenarios

I
(®)
n
~
>

i

e—— timeout —*

\
Seq=92, 8 bytes of data

x/

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Hos
\uli

u

B

/
ACK=100

Host A

g

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

K

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes of dat

ACKzlo/

ACK=120

/

Seq=92, 8
bytes of data\

/

ACK=120

\

premature timeout

Transport Layer 3-68

TCP: retransmission scenarios

Host A Host B
q \V \
e —— >

f—— timeout —*

/

Seq=92, 8 bytes of data

Seq=100, 20 bytes%fd{
ACK=100
XI /

ACK=120

/

\

Seq=120, 15 bytes of data

cumulative ACK

Transport Layer 3-69

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receliver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte

Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70

TCP fast retransmit

% time-out period often
relatively long:

" long delay before
resending lost packet

+ detect lost segments
via duplicate ACKs.

= sender often sends

many segments back-
to-back

" if segment is lost, there

will likely be many
duplicate ACKs.

—- JCP fast retransmit —

if sender receives 3
ACKs for same data

(“triple duplicate ACKs"),
resend unacked
segment with smallest
seq #

" |ikely that unacked

segment lost, so don’ t
wait for timeout

Transport Layer 3-71

TCP fast retransmit

Host A

u

e —

h A

)

timeout

— Seq=92, 8 bytes of data

Seq= 100,73‘0y(ec.@fd'a\ta.
\X

ACK=100

\

’ACK=1OO
~Seq=100, 20 bytes of data

W
.

v

fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 3-72

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73

TCP flow control

application may

application
process

remove data from

application

TCP socket buffers

... Slower than TCP
receiver is delivering —
(sender is sending)

TCP socket
receiver buffers

|

TCP
code

— flow control
receiver controls sender, so

sender won’ t overflow
receiver s buffer by transmitting
too much, too fast

code Q
e -

I !
from sender

receiver protocol stack

Transport Layer 3-74

TCP flow control

. 14 . »”
< receiver advertises free

buffer space by including to application process
rwnd value in TCP header TIT
of receiver-to-sender F
segments RcvBuffer buffered data
= RcvBuffer size setvia T
socket options (typical default rwnd free buffer space
is 4096 bytes) I
" many operating systems I

autoadjust RevBuffer

< sender Iimits amount of
unacked (in-flight”) data to
receiver s rwnd value

% guarantees receive buffer
will not overflow

TCP segment payloads

receiver-side buffering

Transport Layer 3-75

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76

Connection Management

before exchanging data, sender/receiver “handshake”:

+ agree to establish connection (each knowing the other willing
to establish connection)

< agree on connection parameters

application application

O

connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size

at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

f V{ network network
N : '
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname", "port welcomeSocket.accept () ;

number") ;

Transport Layer 3-77

Agreeing to establish a connection

2-way handshake:

A on

Q: will 2-way handshake

= always work in
S N network?
T ESTAB <+ variable delays
esTAB O + retransmitted messages

(e.g. req_conn(x)) due to
message loss

L)

4

% message reordering
5 —

choose X |~ ¢ can t “see’ other side
req_conn(>_<L’

® ESTAB
acc_conn(x)
ESTAB &

Transport Layer 3-78

Agreeing to establish a connection

2-way handshake failure scenarios:

g

.

choose x

retransmit
req_conn(x)

ESTAB

client
terminates

acc_conn(x)

>

reg_conn(x)

_ connection
X completes

—
req_conn(x
j" ESTAB

choose x

retransmit
req_conn(x)

™
e ———

\req_conn(>_<L‘

acc_conn(x)

~data (x+ 1_L~
N\

connection

ESTAB
retransmit
data(x+1)

?erver client
orgets x terminates
ESTAB

half open connection!

(no client!)

—-

X completes
\
req_conn(x)

data(x+1)

X ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-79

TCP 3-way handshake

client state | V{ ﬁ server state
LISTEN s LISTEN
choose init seq num, x
I send TCP SYN msg [~_
SYNSENT SYNbit=1, Seq=x

choose init seq num, y
d TCP SYNACK
vl SYN RCVD

/ msg, acking SYN

SYNbit=1, Seg=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~~~

this segment may contain ACKbit=1, ACKnum=y+1

client-to-server data
T~~~ [received ACK(y)
indicates client is live

v

ESTAB

Transport Layer 3-80

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A Socket clientSocket =
SYN(X) ! newSocket ("hostname", "port
umber") ;
SYNACK(seq=y,ACKnum=x+1) number)
create new socket for SYN(seq=x)
communication back to client
1 ,,
‘ ‘ SYNACK(seq=y,ACKnum=x+1)

ACK(ACKnum=y+1) ACK(ACKnum=y-+1)

A

Transport Layer 3-81

TCP: closing a connection

+ client, server each close their side of connection
* send TCP segment with FIN bit = |

+ respond to received FIN with ACK

" on receiving FIN, ACK can be combined with own FIN
+ simultaneous FIN exchanges can be handled

Transport Layer 3-82

TCP: closing a connection

client state

ESTAB

N

clientSocket.close ()

FIN WAIT 1 can no longer

A

send but can
receive data

FIN 'WAIT_Z wait for server

close

TIMED_WAIT —’

timed wait
for 2*max
segment lifetime

CLOSED J,

g El
e

T FRbit=1
it=1, SEK

/
ACKbit=1: ACKnum=x+1
—

/
‘/FI_Nbit=1, seq=y
\

ACKbit=1; ACKnum=y+1

\

can still
send data

can no longer
send data

server state
ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84

Principles of congestion control

congestion:

» informally: “too many sources sending too much
data too fast for network to handle

<+ different from flow control!
< manifestations:
" lost packets (buffer overflow at routers)
* long delays (queueing in router buffers)
+ a top-10 problem!

Transport Layer 3-85

Causes/costs of congestion: scenario |

original data: 7*in

throughput: kout

. two senders, two \\ S

unlimited shared

output link buffers

receivers Host A
. ohe router, infinite
buffers q |
e I

- output link capacity: R
> NO retransmission

RI24------mm--

}\’ out

A R/2

< maximum per-connection
throughput: R/2

I

delay

Ain R/2
<+ large delays as arrival rate, A, ,
approaches capacity

Transport Layer 3-86

Causes/costs of congestion: scenario 2

% one router, finite buffers

+ sender retransmission of timed-out packet

= application-layer input = application-layer output: A, =
Mout |
" transport-layer input includes retransmissions : A, > A,

A, : original data

A'i: original data, plus
retransmitted data

— S rmm

M= “EEIEERR

finite shared output
link buffers

Transport Layer 3-87

Host B

Causes/costs of congestion: scenario 2

idealization: perfect
knowledge

+ sender sends only
router buffers available

— |

copy

Host B

finite shared output

R/24- - ee -

7\‘ out

when

Ain R/2

A, : original data

A'i: original data, plus

out

retransmitted data

free buffer space!
>

M= “EEIEERR

link buffers

Transport Layer 3-88

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

+ sender only resends if
packet known to be lost

A, original data

copy A'i: original data, plus

retransmitted data

no buffer space!

Transport Layer 3-89

Causes/costs of congestion: scenario 2

Idealization: known loss

R/2

packets can be lost,
dropped at router due

to full buffers

Aout

+ sender only resends if
packet known to be lost

A, : original data

retransmitted

LI

A'i: original data, plus

free buffer space!

when sending at R/2,
some/packets are
retramsmissions but
asymptotic goodput
is still R/2 (why?)

. R/2
7¥in

data

Transport Layer 3-90

Causes/costs of congestion: scenario 2

Realistic: duplicates

R/2 |---mmmmmemmmmennnees I
+ packets can be lost, dropped A
at router due to full buffers _ - when ;Zgﬁ'e”tg ARz
» sender times out prematurely, < . retransmissions
. . : including duplicated
sending two copies, both of . that are delivered!
which are delivered Y R
in
9 '
|kL 4 |l
. -S"l\" \-'J"L-Z = }\'ln \
Ztimeout == 2\ 41— Aout
Ga "V in

free buffer space!

Transport Layer 3-91

Causes/costs of congestion: scenario 2

Realistic: duplicates

= 7] E N —— S —

+ packets can be lost, dropped A
at router due to full buffers . When sending at R/2,

. 5 : some pagkgts are
<+ sender times out prematurely, < . retransmissions
d. . b h f i including duplicated

Sen. mg two C(?PIGS, oth o i that are delivered!
which are delivered

. R/2
}‘*in

“costs’ of congestion:
» more work (retrans) for given “goodput”

% unneeded retransmissions: link carries multiple copies of pkt
" decreasing goodput

Transport Layer 3-92

Causes/costs of congestion: scenario 3

« four senders Q: what happens as A._and A,
increase !

A:as red X, increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

< multihop paths
< timeout/retransmit

Host A L
A, : original data Ut Host B

[¢ |
]]
-II
==

A'i: original data, plus
retransmitted data
finite shared output

H lipk buffe
D /.

Host D ?4%’ lIlIIIl-_/

Bt / CoSe

}‘i_/'l

Host C

Transport Layer 3-93

Causes/costs of congestion: scenario 3

C/2 1

7\‘OU'[

’ |
7"in C/2

11 7 .
another cost of congestion:

» when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94

AEEroaches towards congestion control

two broad approaches towards congestion control:

__end-end congestion _network-assisted =
control: congestion control:
+ no explicit feedback <+ routers provide
from network feedback to end systems
» congestion inferred " single bit indicating
from end-system congestion (SNA,
observed loss, delay DECDbit, TCP/IP ECN,
« approach taken by ATM)
TCP = explicit rate for
sender to send at

Transport Layer 3-95

Case study: ATM ABR congestion control

ABR: available bit rate:
» “elastic service”

» if sender’ s path
“underloaded”:

= sender should use
available bandwidth

» if sender’ s path
congested:

= sender throttled to
minimum guaranteed
rate

RM (resource management)

cells:

+ sent by sender, interspersed

with data cells

+ bits in RM cell set by switches

(“network-assisted *)

= N/ bit: no increase in rate
(mild congestion)

= Cl bit: congestion
indication

< RM cells returned to sender

by receiver, with bits intact

Transport Layer 3-96

Case study: ATM ABR congestion control

I RM cell H data cell

2| || S| _
S R B

+ two-byte ER (explicit rate) field in RM cell

= congested switch may lower ER value in cell

= senders’ send rate thus max supportable rate on path
+» EFCI bit in data cells: set to | in congested switch

" if data cell preceding RM cell has EFCI set, receiver sets
Cl bit in returned RM cell

W

Transport Layer 3-97

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

" segment structure

= reliable data transfer

= flow control

" connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-98

TCP congestion control: additive increase
multiplicative decrease
% approach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

- >
time
Transport Layer 3-99

TCP Congestion Control: details

sender sequence number space
[CWNA |

last byte —' \ l— last byte
ACKed sent, not- gent

yet ACKed

(“in—

flight™)

< sender limits transmission:

LastByteSent- < cwnd
LastByteAcked

+» cwnd is dynamic, function
of perceived network
congestion

TCP sending rate:

/7
000

roughly: send cwnd
bytes, wait RTT for

ACKS, then send
more bytes

cwnd

rate =

bytes/sec

Transport Layer 3-100

TCP Slow Start

+» when connection begins,
Increase rate
exponentially until first
loss event:
" initially cwnd = | MSS
" double cwnd every RTT

= done by incrementing
cwnd for every ACK
received

% summary: initial rate is
slow but ramps up
exponentially fast

time

Transport Layer 3-101

TCP: detecting, reacting to loss

%+ loss indicated by timeout:
* cwnd set to | MSS;

= window then grows exponentially (as in slow start)
to threshold, then grows linearly

%+ loss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

% TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-102

TCP: switching from slow start to CA

Q: when should the

exponential
. . 14—
increase switch to P Reno
linear? D
B . 10
A: when cwnd gets ST st
to 1/2 of its value go |
before timeout. - ssthresh
O
(9 5ol
|mplementation- O—T—T T T 1T T T T T T T T T T 1
i ° 0 1 2 34 5 6 7 8 9 10 11 12 13 14 15

o Variable ss threSh Transmission round

<+ on loss event, ssthresh
is set to 1/2 of cwnd just
before loss event

Transport Layer 3-103

S

ummary: TCP Congestion Control

S
RS [New T
ACK' \-~

new ACK

cwnd = cwnd+MSS
dupACKcount=0

/>transmit new segment(s), as allowed
cwnd > ssthresh

. ,cﬁ
duplicate ACK
dupACKcount++

)

A

cwnd =1 MSS
ssthresh = 64 KB
dupACKcount=0

____________ A .
4_ ’\ \ . -
z o timeout
‘\ £))issthresh = cwnd/2
cwnd =1 MSS

25 ¥a) . </
W2 timeout

; ssthresh = cwnd/2 t

dupACKcount=0
retransmit missing segment

dcwnd =1MSS
= P e P
retransuneg?%}fscs?ﬁm " Z: S "“’\’”Lz
gsegment _ {2y New
timeout ‘%% ”A ACK! .=
ssthresh = cwnd/2 '7- Lot \‘“
cwnd=1 New ACK

dupACKcount=0

retransmit missing segment cwnd = ssthresh

dupACKcount== dupACKcount=0
ssthresh=cwnd/2
cwnd = ssthresh+ 3

retransmit missing segment

new ACP

cwnd = cwnd + MSS = (MSS/cwnd)
dupACKcount=0
transmit new segment(s), as allowed

A

v

duplicate ACK
cwnd = cwnd + MSS

duplicate ACK
dupACKcount++

dupACKcount==

ssthresh=cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

transmit new segment(s), as allowed

Transport Layer 3-104

TCP throughput

% avg. TCP thruput as function of window size, RTT?
" ignore slow start, assume always data to send

+ W: window size (measured in bytesy Where loss occurs
= avg. window size (# in-flight bytes) is ¥4 W
= avg. thruput is 3/4WV per RTT

avg TCP thruput = % %’I’ bytes/sec

W_/I/\/I/W
W/2 —

Transport Layer 3-105

7

TCP Futures: TCP over “long, fat pipes

+» example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

+ requires W = 83,333 in-flight segments

% throughput in terms of segment loss probability, L
[Mathis 1997]:

1.22 - MSS

RTT./L

=¥ to achieve 10 Gbps throughput, need a loss rate of L
=210 — a very small loss rate!

+ new versions of TCP for high-speed

TCP throughput =

Transport Layer 3-106

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connectlon 1

c=— 8 Ba.Sh B
ﬂottleneck
g router

capacity R

TCP connectlon 2

Transport Layer 3-107

Why is TCP fair?

two competing sessions:
+ additive increase gives slope of |, as throughout increases
+ multiplicative decrease decreases throughput proportionally

Connection 2 throughput o

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 1 throughput R

Transport Layer 3-108

Fairness gmorez

Fairness and UDP

< multimedia apps often
do not use TCP

= do not want rate
throttled by congestion
control

< instead use UDP:

= send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

< application can open
multiple parallel
connections between two
hosts

<+ web browsers do this

+ e.g., link of rate R with 9

existing connections:

" new app asks for | TCP, gets rate
R/10

" new app asks for || TCPs, gets R/2

Transport Layer 3-109

Chapter 3: summary

<+ principles behind
transport layer services:
" multiplexing,
demultiplexing
" reliable data transfer
" flow control
" congestion control

< Instantiation,
implementation in the
Internet
= UDP
= TCP

next:
< leaving the
(11 77
network “edge
(application,
transport layers)
< into the network
11 7
core

Transport Layer 3-110

