
Use Case Points Gautam Banerjee

 1

Use Case Points
 -An Estimation Approach

 Gautam Banerjee

 August 2001

While the information in this publication is believed to be accurate, the author makes no warranty of any kind to this
material including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, the
author shall not be liable for errors contained herein, or for incidental or consequential damages in connection with the
furnishing, performance or use of this material.

The trademarks, service marks, cover all products or services mentioned in this white paper or product names as
designated by the companies that market those products.

Use Case Points Gautam Banerjee

 2

Table of Contents

Introduction...3
Background...3
Use Case Points Based Estimation...3

Classifying Actors and Use Cases..4
Technical and Environmental Factors ..5
Producing Estimates ..6

Use Case Points Gautam Banerjee

 3

Introduction

Estimates of cost and schedule in software projects are based on a prediction of the size of the
future system. Unfortunately, the software profession is notoriously inaccurate when estimating
cost and schedule. Preliminary estimates of effort always include many elements of insecurity.
Reliable early estimates are difficult to obtain because of the lack of detailed information about
the future system at an early stage. However, early estimates are required when bidding for a
contract or determining whether a project is feasible in the terms of a cost-benefit analysis. Since
Process prediction guides decision-making, a prediction is useful only if it is reasonably accurate.

Traditional cost models take software size as an input parameter, and then apply a set of
adjustment factors or 'cost drivers' to compute an estimate of total effort. In object-oriented
software production, use cases describe functional requirements. The use case model may
therefore be used to predict the size of the future software system at an early development stage.
This paper describes a simple approach to software cost estimation based on use case models:
the 'Use Case Points Method'. The method is not new, but has not become popular although it is
easy to learn. Reliable estimates can be calculated in a short time with the aid of a spreadsheet.

Background

Cost models like COCOMO and sizing methods like Function Point Analysis (FPA) are well
known and in widespread use in software engineering. But these approaches have some serious
limitations. Counting function points requires experts.

In 1993 the 'Use Case Points' method for sizing and estimating projects developed with the
object-oriented method was developed by Gustav Karner of Objectory (now Rational Software).
The method is an extension of Function Point Analysis and Mk II Function Point Analysis (an
adaption of FPA mainly used in the UK), and is based on the same philosophy as these methods.
A few cost estimation tools apply use case point count as an estimation of size, adapting Karner's
method. Karner's work on Use Case Point metrics was written as a diploma thesis at the
University of Linköping. It was based on just a few small projects, so more research is needed to
establish the general usefulness of the method. The work is now copyright of Rational Software,
and is hard to obtain.

Use Case Points Based Estimation

An early estimate of effort based on use cases can be made when there is some understanding
of the problem domain, system size and architecture at the stage at which the estimate is made.
The use case points method is a software sizing and estimation method based on use case
counts called use case points.

Use Case Points Gautam Banerjee

 4

Classifying Actors and Use Cases

Use case points can be counted from the use case analysis of the system. The first step is to
classify the actors as simple, average or complex. A simple actor represents another system with
a defined Application Programming Interface, API, an average actor is another system interacting
through a protocol such as TCP/IP, and a complex actor may be a person interacting through a
GUI or a Web page. A weighting factor is assigned to each actor type.

Actor Type Weighting Factor
Simple 1

Average 2
Complex 3

The total unadjusted actor weights (UAW) is calculated by counting how many actors there are of
each kind (by degree of complexity), multiplying each total by its weighting factor, and adding up
the products.

Each use case is then defined as simple, average or complex, depending on number of
transactions in the use case description, including secondary scenarios. A transaction is a set of
activities, which is either performed entirely, or not at all. Counting number of transactions can be
done by counting the use case steps. Karner proposed not counting included and extending use
cases, but why he did is not clear. Use case complexity is then defined and weighted in the
following manner:

Use Case Type No of Transactions Weighting Factor
Simple <=3 1

Average 4 to 7 2
Complex >=7 3

Another mechanism for measuring use case complexity is counting analysis classes, which can
be used in place of transactions once it has been determined which classes implement a specific
use case. A simple use case is implemented by 5 or fewer classes, an average use case by 5 to
10 classes, and a complex use case by more than ten classes. The weights are as before. Each
type of use case is then multiplied by the weighting factor, and the products are added up to get
the unadjusted use case weights (UUCW).

Yet another way of defining complexity of use cases are as follows:

• If the use case is considered a simple piece of work, uses a simple user interface and
touches only a single database entity, the use case is marked as 'Easy'. Rating: 5.

• If the use case is more difficult, involves more interface design and touches 2 or more
database entities, the use case is defined as 'Medium'. Rating 10.

• If the use case is very difficult, involves a complex user interface or processing and
touches 3 or more database entities, the use case is 'Complex'. Rating: 15.

The UAW is added to the UUCW to get the unadjusted use case points
UAW+UUCW=UUCP

Use Case Points Gautam Banerjee

 5

Technical and Environmental Factors

The method also employs a technical factors multiplier corresponding to the Technical
Complexity Adjustment factor of the FPA method, and an environmental factors multiplier in order
to quantify non-functional requirements such as ease of use and programmer motivation.
Various factors influencing productivity are associated with weights, and values are assigned to
each factor, depending on the degree of influence.

0 means no influence, 3 is average, and 5 means strong influence throughout.

See Tables below

 Technical Factors

 Environment Factors

The adjustment factors are multiplied by the unadjusted use case points to produce the adjusted
use case points, yielding an estimate of the size of the software.

The Technical Complexity Factor (TCF) is calculated by multiplying the value of each factor (T1-
T13) by its weight and then adding all these numbers to get the sum called the TFactor. The
following formula is applied:

TCF=0.6+(0.01*TFactor)

Use Case Points Gautam Banerjee

 6

The Environmental Factor (EF) is calculated by multiplying the value of each factor (F1-F8) by its
weight and adding the products to get the sum called the EFactor. The following formula is
applied:

EF= 1.4+(-0.03*EFactor)

The adjusted use case points (UPC) are calculated as follows:
UPC= UUCP*TCF*EF

Producing Estimates

Karner proposed a factor of 20 staff hours per use case point for a project estimate. Field
experience has shown that effort can range from 15 to 30 hours per use case point, therefore
converting use case points directly to hours may be an uncertain measure. Steve Sparks
therefore suggests it should be avoided. Schneider and Winters suggest a refinement of Karner's
proposition based on experience level of staff and stability of the project. The number of
environmental factors in F1 through F6 that are above 3 are counted and added to the number of
factors in F7 through F8 that are below 3. If the total is 2 or less, they propose 20 staff hours per
UCP; if the total is 3 or 4, the value is 28 staff hours per UCP. When the total exceeds 4, it is
recommended that changes should be made to the project so that the value can be adjusted.
Another possibility is to increase the number of staff hours to 36 per use case point. The reason
for this approach is that the environmental factors measure the experience level of the staff and
the stability of the project. Negative numbers mean extra effort spent on training team members
or problems due to instability. However, using this method of calculation means that even small
adjustments of an environmental factor, for instance by half a point, can make a great difference
to the estimate.

Contact gautambanerjee@msn.com for further exchange of information.

