Fundamentos: Algoritmos, Inteiros e Matrizes

Inteiros Divisão

Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos

Fundamentos: Algoritmos, Inteiros e Matrizes

Centro de Informática UFPE

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números 1 Inteiros e Divisão

2 Primos e Máximo Divisor Comum

3 Inteiros e Algoritmos

4 Aplicações de Teoria dos Números

Inteiros e Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos

- Sejam $a \in b$ inteiros, com $a \neq 0$.
- a divide b se existe um inteiro c, tal que b = ac.

a divide b

а

b | |

Por exemplo, a = 3, b = 12

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

- Sejam $a \in b$ inteiros, com $a \neq 0$.
- a divide b se existe um inteiro c, tal que b = ac.
- Exemplo. 5 divide 10, pois existe um inteiro c=2, tal que $10=5\cdot 2$.
- Exemplo. 5 não divide 11, pois não existe um inteiro c, tal que 11=5c.

a divide b
a

Por exemplo, a = 3, b = 12

Inteiros e Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos

- Quando a divide b, dizemos que
 - a é um fator de b.
 - b é um múltiplo de a.
- Notação: a | b
- Formalmente: $a \mid b \equiv \exists c(b = ac)$, no domínio dos inteiros.
- a / b denota que a não divide b.

Inteiros e Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Exercícios

- 5 | 13?
- 13 | 5?
- 84 | 252?
- 3 | −9?
- 2 | 12345678?

Inteiros e Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

- Sejam a, b, c inteiros.
- Se $(a \mid b)$ e $(a \mid c)$, então $(a \mid (b+c))$.

Inteiros e Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Teorema.

- Sejam *a*, *b*, *c* inteiros.
- Se $(a \mid b)$, então $(a \mid bc)$, para todo inteiro c.

а

b | |

bc _____

Inteiros e Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

- Sejam *a*, *b*, *c* inteiros.
- Se $(a \mid b)$ e $(b \mid c)$, então $a \mid c$.
- а
- b _____
- c

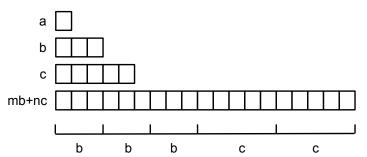
Inteiros e Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

- Sejam *a*, *b*, *c* inteiros.
- Se $(a \mid b)$ e $(a \mid c)$, então $a \mid (mb + nc)$, para $m \in n$ inteiros.



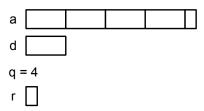
Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

- Seja *a* um inteiro e *d* um inteiro positivo.
- Então, existem inteiros q e r únicos, com $0 \le r < d$, tal que a = dq + r
- d é o divisor, a é o dividendo, q é o quociente e r é o resto.
- Atenção: o divisor é sempre positivo e o resto é sempre maior ou igual a zero.



Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Notação.

- $q = a \operatorname{div} d$
- $r = a \mod d$

$$q = 4$$

Primos Máximo Divisor

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Exemplos.

- 32 **div** 5 = 6.
- 32 **mod** 5 = 2.

Primos Máximo Divisor

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Exercícios. Calcule:

- 21 div 3.
- 21 mod 3.
- 1 div 9.
- 1 mod 9.
- 0 div 5325.
- 0 mod 5325.

Primos o Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

- E quanto à divisão −10 div 3?
- No mundo dos reais: -10/3 = -3,333...
- Divisão de inteiros: -10 div 3 = -4
- Por que -10 div $3 \neq -3$? Dica. Calcule o resto para q = -3 e verifique se ele é positivo ou negativo.

Inteiros e Divisão O Algoritmo da Divisão

• Divisão de números negativos requer mais cuidado:

$$a \operatorname{div} d = \lfloor a/d \rfloor$$

Lembre-se: $a \in Z$ e d > 0.

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Procedimento para calcular $q = a \operatorname{div} d e r = a \operatorname{mod} d$

- \bullet Calcule a/d (divisão de reais)
- **2** Calcule $q = \lfloor a/d \rfloor$
- 3 Calcule o resto usando $a = d \cdot q + r$

Primos o Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Exemplo.

$$\mathbf{1}$$
 $-10/3 = -3,333...$

2
$$q = \lfloor -10/3 \rfloor = \lfloor -3, 333... \rfloor = -4$$

3 Se
$$-10 = 3 \cdot (-4) + r$$
, então $r = 2$

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Inteiros e Divisão O Algoritmo da Divisão

Exercícios. Calcule:

- -2002 div 87.
- −2002 **mod** 87.

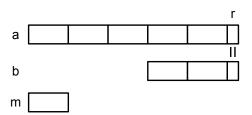
Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

- Sejam a e b inteiros e m um inteiro positivo.
- $a \in congruente \ a \ b \ m\'odulo \ m \ se \ m \ divide \ a b$.
- Notação: $a \equiv b \pmod{m}$.



Primos Máximo Divisor Comum

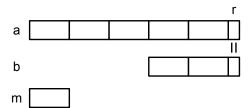
Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- Sejam a e b inteiros e m um inteiro positivo.
- $a \equiv b \pmod{m}$ se, e somente se, $(a \mod m) = (b \mod m)$.



Primos o Máximo Divisor Comum

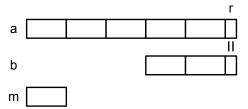
Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- Sejam a e b inteiros e m um inteiro positivo.
- $a \equiv b \pmod{m}$ se, e somente se, $(a \mod m) = (b \mod m)$.
- Exemplo. 42 é congruente a 7 módulo 5.



Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão

Aritmética Modular

Exercício.

Quais destes s\(\tilde{a}\) congruentes?

a)
$$13 \equiv 5 \pmod{8}$$

b)
$$13 \equiv 5 \; (mod \; 3)$$

c)
$$12 \equiv 30 \pmod{15}$$

d)
$$8 \equiv 10 \pmod{2}$$

 Encontre pelo menos 3 outros números congruentes a 42 módulo 5.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- O operador de congruência modular é comutativo e transitivo.
- $(a \equiv b \pmod{m}) \equiv (b \equiv a \pmod{m})$
- $(a \equiv b \pmod{m}) \land (b \equiv c \pmod{m}) \rightarrow (a \equiv c \pmod{m})$

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- O operador de congruência modular é comutativo e transitivo.
- $(a \equiv b \pmod{m}) \equiv (b \equiv a \pmod{m})$
- $(a \equiv b \pmod{m}) \land (b \equiv c \pmod{m}) \rightarrow (a \equiv c \pmod{m})$
- Exemplo.

$$(5 \equiv 11 \; (\textit{mod} \; 3)) \; = \; (11 \equiv 5 \; (\textit{mod} \; 3))$$

Exemplo.

$$(5 \equiv 11 \ (\textit{mod}\ 3)) \land (11 \equiv 17 \ (\textit{mod}\ 3)) \rightarrow (5 \equiv 17 \ (\textit{mod}\ 3))$$

Primos o Máximo Divisor Comum

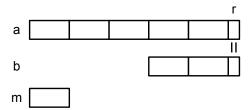
Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- Seja *m* um inteiro positivo.
- $a \equiv b \pmod{m}$ se, e somente se, existe um k tal que a = b + km.



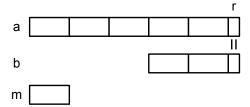
Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão

- Seja *m* um inteiro positivo.
- $a \equiv b \pmod{m}$ se, e somente se, existe um k tal que a = b + km.
- Qual o valor de k na figura abaixo?



Primos e Máximo Divisor Comum

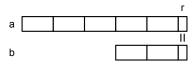
Inteiros e Algoritmo

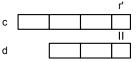
Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- Seja *m* um inteiro positivo.
- Suponha $a \equiv b \pmod{m}$ e $c \equiv d \pmod{m}$.
- Então, $a + c \equiv b + d \pmod{m}$ e $ac \equiv bd \pmod{m}$





Primos Máximo Divisor Comum

Inteiros e Algoritmo

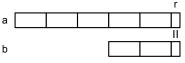
Aplicações de Teoria dos Números

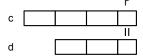
Inteiros e Divisão

Aritmética Modular

Exemplo.

- Sabemos que $13 \equiv 8 \pmod{5}$ e $11 \equiv 6 \pmod{5}$.
- Pelo teorema, $(13 + 11) \equiv (8 + 6) \pmod{5}$.
- E também: $(13 \cdot 11) \equiv (8 \cdot 6) \pmod{5}$.





Caso particular do teorema.

- Sabemos que $x \equiv x \pmod{m}$.
- Pelo teorema, podemos sempre somar ou multiplicar os 2 lados de uma equivalência por um número.
- Exemplo. $13 \equiv 8 \pmod{5}$. Como temos que $3 \equiv 3 \pmod{5}$, $(13+3) \equiv (8+3) \pmod{5}$ e $(13\cdot 3) \equiv (8\cdot 3) \pmod{5}$.

Primos e Máximo Divisor Comum

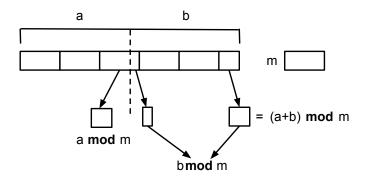
Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aritmética Modular

- Sejam m um inteiro positivo e a e b inteiros. Então:
- $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$
- $ab \mod m = ((a \mod m)(b \mod m)) \mod m$



Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: hashing

 Suponha que temos que armazenar o CPF e nome das pessoas:

123456789-38	Pelé
322766292-60	Maradona
123263420-34	Zico
969603020-52	Kuki
632523234-63	Ronaldo
639570309-23	Kaká

- Armazenar o CPF na íntegra pode ser ineficiente.
- Por exemplo, encontrar o dono do CPF "639570309-23" pode ser demorado pelo tamanho do número.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: hashing

- Uma solução é utilizar uma função h que mapeia um número longo (como o CPF) para um número curto.
- Por exemplo. h(63957030923) = 123.
- O computador poderia então procurar por 123 (mais rápido) ao invés de procurar por 63957030923.
- A função h é chamada de função de hash.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações do Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: hashing

• Suponha a função $h(k) = k \mod 200$.

138	Pelé
60	Maradona
34	Zico
52	Kuki
63	Ronaldo
123	Kaká

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: hashing

• Suponha a função $h(k) = k \mod 200$.

138	Pelé
60	Maradona
34	Zico
52	Kuki
63	Ronaldo
123	Kaká

• Problema: E se Romário, CPF "625234132-63", for cadastrado? Note que h(62523413263) = 63.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: hashing

• Suponha a função $h(k) = k \mod 200$.

138	Pelé
60	Maradona
34	Zico
52	Kuki
63	Ronaldo
123	Kaká

- Problema: E se Romário, CPF "625234132-63", for cadastrado? Note que h(62523413263) = 63.
- Este evento chama-se *colisão*. Existem muitas políticas para resolução de colisão.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

- Um teste de stress em um celular é feito da seguinte forma:
 - 1 Conecte o celular em um computador.
 - 2 Faça o computador enviar sinais de pressionamento de teclas ao celular.
 - 3 Verifique se o celular travou. Se sim, envie o problema aos programadores e reinicie o celular.
 - 4 Volte ao passo 2.

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Inteiros e Divisão

- Um teste de stress em um celular é feito da seguinte forma:
 - 1 Conecte o celular em um computador.
 - 2 Faça o computador enviar sinais de pressionamento de teclas ao celular.
 - 3 Verifique se o celular travou. Se sim, envie o problema aos programadores e reinicie o celular.
 - 4 Volte ao passo 2.
- Que teclas o computador escolhe para pressionar?
- No teste de *stress*, escolhemos teclas aleatoriamente.
- Em simulações, é muito comum precisarmos gerar números aleatoreamente.

Primos o Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

- Como fazer um computador sortear números?
- Se um programa de computador gera números, estes números não podem ser verdadeiramente aleatórios, pois são gerados de forma previsível.
- Chamamos números que são gerados de forma sistemática e parecem aleatórios de pseudo aleatórios.

- Sejam os inteiros m (módulo), a (multiplicador), c (incremento) e x₀ (semente).
- $2 \le a < m$, $0 \le c < m$ e $0 \le x_0 < m$.
- Sequência de números x_i:

$$x_{n+1} = (ax_n + c) \mod m$$

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: números aleatórios

Exemplo.

- Seja $x_0 = 2$.
- Seja $x_{n+1} = (3x_n + 4) \mod 5$.

$$x_0 = 2$$

$$x_1 = (3x_0 + 4) \mod 5 = (3 \cdot 2 + 4) \mod 5 = 10 \mod 5 = 0$$

 $x_2 = (3x_1 + 4) \mod 5 = (3 \cdot 0 + 4) \mod 5 = 4 \mod 5 = 4$

Exercício. Calcule x_3 , x_4 , x_5 , x_6 , x_7 e x_8 .

Primos o Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: criptografia

- Dada a mensagem "Náutico Campeão", como enviar sem que um espião possa entender?
- Precisamos de uma função invertível f que embaralhe as letras.
- f("Náutico Campeão") = "@36kagni35*7sKL320".
- O destinatário, conhecedor de f^{-1} , faria f^{-1} ("@36kagni35*7sKL320") = "Náutico Campeão";

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Inteiros e Divisão

Aplicações de Congruências: criptografia

- Júlio César utilizava um método de criptografia simples.
- Cada letra era substituída pela letra 3 posições adiante.
- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- "A" vira "D", "B" vira "E", ..., "X" vira "A", etc.
- Exercício. Como ficaria "Náutico Campeão" criptografado?
- Exercício. Qual a função f?
 Dica: faça com que f mapeie uma letra na outra (não a frase toda). Assuma que as letras são modeladas como números: A=0, B=1, C=2, ..., Z=25.

Aplicações de Congruências: criptografia

- ABCDEFGHIJKLMNOPQRSTUVWXYZ
- "Náutico Campeão" vira "QDXWLFR FDPSHDR".
- Para cada letra, aplicar f(p) = (p + 3) mod 26, onde A=0, B=1, C=2, D=3, ...
- Exercício. Qual a função f^{-1} ?

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Exercícios recomendados

Seção 3.4

- Fazer todos
- Os de prova de teorema são opcionais
- Discrete Mathematics and Its Applications Kenneth Rosen, 6a edição

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números 1 Inteiros e Divisão

2 Primos e Máximo Divisor Comum

3 Inteiros e Algoritmos

4 Aplicações de Teoria dos Números

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

- Um inteiro positivo *p* maior que 1 é *primo* se seus únicos fatores positivos são 1 e *p*.
- Exemplos: 2, 3, 5, 7, 11, etc.

Aplicações do Teoria dos Números

- Um inteiro maior que 1 não-primo é chamado de composto.
- Ou seja, n é composto se existe um inteiro 1 < a < n tal que $a \mid n$.
- Exemplos: 4, 6, 8, 9, 10, etc.

Teorema Fundamental da Aritmética.

- Todo inteiro maior que 1 pode ser escrito unicamente como um primo ou um produto de primos.
- Os fatores são descritos em ordem não decrescente.
- Exemplos.

 $http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/superscript{ and the properties of the$

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos

Teorema.

- Se n é um inteiro composto, então n tem um divisor primo $d \le \sqrt{n}$.
- Exemplo. Seja n o inteiro composto 30. Então, n possui um divisor primo $d \le \sqrt{30}$. Note que 2 é divisor primo de 30 e menor ou igual que $\sqrt{30} = 5,477$.

Primos e Máximo Divisor Comum

Inteiros e Algoritmos

Aplicações d Teoria dos

Primalidade

 Um dos grandes desafios da computação é descobrir se n é um número primo ou não. Aplicações de Teoria dos Números

- Um dos grandes desafios da computação é descobrir se n é um número primo ou não.
- O teorema anterior diz: Se n é um inteiro composto, então n tem um divisor primo $d \le \sqrt{n}$.

Aplicações de Teoria dos Números

- Um dos grandes desafios da computação é descobrir se n é um número primo ou não.
- O teorema anterior diz: Se n é um inteiro composto, então n tem um divisor primo $d \le \sqrt{n}$.
- Sabemos que $p \to q \equiv \neg q \to \neg p$.

Aplicações do Teoria dos Números

- Um dos grandes desafios da computação é descobrir se *n* é um número primo ou não.
- O teorema anterior diz: Se n é um inteiro composto, então n tem um divisor primo $d \le \sqrt{n}$.
- Sabemos que $p \rightarrow q \equiv \neg q \rightarrow \neg p$.
- Ou seja, se n não tem divisor primo d ≤ √n, então n não é composto.
- Ou: se *n não* tem divisor primo $d \le \sqrt{n}$, então *n* é primo.

Aplicações do Teoria dos Números

- Teorema. Se n $n\tilde{a}o$ tem divisor primo $d \leq \sqrt{n}$, ent $\tilde{a}o$ n é primo.
- Este teorema poupa-nos trabalho. Para saber se n é primo, não precisamos testar se n é divisível pelos números 2, 3, 4, 5, 6, 7, 8, ..., n 1.
- Apenas testamos se n é divísivel pelos *primos* 2, 3, 5, 7, 11, 13, ..., \sqrt{n} .
- Exercício. Usando o teorema acima, mostre que 97 é primo (sabendo que $\sqrt{97} = 9, 8$).

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Fatoração

- Como fatorar o número *n*?
- Qual o algoritmo que fatora 105 em 3 · 5 · 7?

Aplicações do Teoria dos Números Fatoração: "algoritmo" ineficiente para n = 105.

- 105 **mod** 2 = 0? Não! Teste com o próximo primo...
- 105 mod 3 = 0? Sim! $\frac{3}{2}$ é um fator. Faça n = 105 div 3 = 35 e recomece dividindo por 3.
- 35 **mod** 3 = 0? Não!
- 35 **mod** 5 = 0? Sim! 5 é um fator. Faça n = 35 **div** 5 = 7 e recomece dividindo por 5.
- 7 **mod** 5 = 0? Não!
- 7 mod 7 = 0? Sim! 7 é um fator. Como 7 div 7 = 1, o algoritmo termina.

Aplicações de Teoria dos Números Fatoração: "algoritmo" ineficiente para n = 105.

- 105 **mod** 2 = 0? Não! Teste com o próximo primo...
- 105 mod 3 = 0? Sim! $\frac{3}{2}$ é um fator. Faça n = 105 div 3 = 35 e recomece dividindo por 3.
- 35 **mod** 3 = 0? Não!
- 35 **mod** 5 = 0? Sim! 5 é um fator. Faça n = 35 **div** 5 = 7 e recomece dividindo por 5.
- 7 **mod** 5 = 0? Não!
- 7 mod 7 = 0? Sim! 7 é um fator.
 Como 7 div 7 = 1, o algoritmo termina.
- Não precisávamos testar 7 **mod** 5 e 7 **mod** 7, pois $\sqrt{7} = 2, 6$. Se 7 não tem divisor primo $\leq 2, 6$, então 7 é primo.

Fatoração

Inteiros o Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

```
input:
primo := 2;
while (primo \leq \sqrt{n}) {
   if (n mod primo == 0) {
      print(primo);
      n := n div primo;
   else {
      primo := prox_primo(primo);
print(n);
```

Exercício: ache os fatores de n=1617 usando o algoritmo acima.

Aplicações de Teoria dos Números

Teorema.

Existem infinitos números primos.

Prova.

- Suponha que os primos são *finitos*: p_1, p_2, \ldots, p_n .
- Seja $Q = p_1 p_2 \dots p_n + 1$
- Escolha um primo qualquer da lista, digamos p_j .
- Note que p_j não divide Q.
 - Por que não?
 - Porque, se p_j divide Q, ele também divide o número $Q p_1 p_2 \dots p_n$.
 - Mas, o número $Q p_1 p_2 \dots p_n = 1$ (definição de Q).
 - E 1 não é divisível por nenhum primo.
- Portanto, nenhum primo da lista p_1, p_2, \ldots, p_n divide Q.
- Ou seja, Q é primo e não pertence à lista inicial de todos os primos!
- Provamos por contradição que existem infinitos primos.

Aplicações de Teoria dos Números

Curiosidade

- Existe um interesse em achar números primos grandes.
- Os maiores primos encontrados seguem o padrão 2^p 1, onde p é primo.
- Estes primos são chamados de primos de Mersenne.
- 25 de janeiro de 2013: $2^{57.885.161} 1$ (17.425.170 de dígitos)
- Great Internet Mersenne Prime Search: http://www.mersenne.org

Primos

Inteiros Divisão

Primos e Máximo Divisor Comum

Algoritmo

Aplicações do Teoria dos Números

Teorema do Número Primo

- Seja $\pi(x)$ o número de primos existentes menores ou iguais a x.
- Exemplo. $\pi(10) = 4$, pois existem 4 primos menores ou iguais a 10: 2, 3, 5 e 7.
- Não sabemos como calcular $\pi(x)$, mas temos uma aproximação.
- $\pi(x)$ é aproximadamente $x/(\ln x)$, quando x tende ao infinito.
- Provado em 1896 por Jacques Hadamard e Charles-Jean-Gustave-Nicholas de la Valleé-Poussin

Aplicações de Teoria dos Números

Teorema do Número Primo

- $\pi(x)$ é aproximadamente $x/(\ln x)$, quando x tende ao infinito.
- Exercício. Qual a probabilidade aproximada de escolhermos um número n entre 1 e x tal que n seja primo?

Aplicações de Teoria dos Números

Teorema do Número Primo

- $\pi(x)$ é aproximadamente $x/(\ln x)$, quando x tende ao infinito.
- Exercício. Qual a probabilidade aproximada de escolhermos um número n entre 1 e x tal que n seja primo?
- Como temos aproximadamente x/(ln x) números primos entre 1 e x, a chance de escolher um número destes entre x possibilidades é

$$\frac{x/(\ln x)}{x} = \frac{1}{\ln x}$$

Aplicações de Teoria dos Números

- Sejam *a* e *b* inteiros.
- Assuma que $a \neq 0$ ou $b \neq 0$ (ou ambos).
- O maior inteiro d tal que (d | a) e (d | b) é o Máximo Divisor Comum de a e b.
- Notação: mdc(a, b)

Aplicações d Teoria dos Números

Máximo Divisor Comum

Exemplo

- Qual o mdc(16,20)?
- Os divisores de 16 são: 1, 2, 4, 8 e 16.
- Os divisores de 20 são: 1, 2, 4, 5, 10 e 20.
- Os divisores comuns são: 1, 2 e 4.
- O máximo divisor comum é 4.

Aplicações de Teoria dos Números

Máximo Divisor Comum

Exercício

Qual o mdc(100,80)?

Aplicações de Teoria dos Números

- Os inteiros a e b são primos relativos se o mdc(a, b) = 1.
- Exemplo. mdc(7,8) = 1.
- Exercício. Quais dos pares abaixo são primos relativos?
 - a) (10, 43)
 - b) (53, 12)
 - c) (56, 20)
 - d) $(2^{57.885.161} 1, 2^{57.885.161} 1)$

- Os inteiros a_1 , a_2 , a_3 , ..., a_n são primos relativos 2 a 2 se o $mdc(a_i, a_j) = 1$, para $1 \le i < j \le n$.
- Exemplo. 10, 43, 11, 2^{57.885.161} 1

Aplicações do Teoria dos Números

- Podemos achar o mdc(a, b) através da fatoração.
- Temos que fatorar a e b numa forma padrão (ou forma normal):
- $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$

Máximo Divisor Comum

- Podemos achar o mdc(a, b) através da fatoração.
- Temos que fatorar a e b numa forma padrão (ou forma normal):
- $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- Exemplo. Sejam a = 10 e b = 12.

$$a = 2 \cdot 5$$
$$b = 2 \cdot 2 \cdot 3$$

• Na forma normal:

$$a = 2^1 \cdot 3^0 \cdot 5^1$$

 $b = 2^2 \cdot 3^1 \cdot 5^0$

• Qual o *mdc*(*a*, *b*)?

Aplicações de Teoria dos

•
$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$

•
$$b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$$

•
$$mdc(a,b) = p_1^{min(a_1,b_1)} p_2^{min(a_2,b_2)} \dots p_n^{min(a_n,b_n)}$$

Inteiros Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos • Sejam a = 10 e b = 12

•
$$a = 2^1 \cdot 3^0 \cdot 5^1$$

 $b = 2^2 \cdot 3^1 \cdot 5^0$

- $mdc(a, b) = 2^{min(1,2)} \cdot 3^{min(0,1)} \cdot 5^{min(1,0)}$
- Ou seja, $mdc(a, b) = 2^1 \cdot 3^0 \cdot 5^0 = 2$

Aplicações do Teoria dos Números

Máximo Divisor Comum

Exercício.

- Sejam a = 52 e b = 36.
- Use a fatoração de a e b e calcule o mdc(a, b).

Mínimo Múltiplo Comum

- Sejam a e b inteiros positivos.
- O mínimo múltiplo comum de a e b ou mmc(a, b) é o menor inteiro positivo que é divisível por a e b.
- A fatoração também pode ser utilizada para calcularmos o mmc.
- Seja $a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$
- Seja $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$
- $mmc(a,b) = p_1^{max(a_1,b_1)} p_2^{max(a_2,b_2)} \dots p_n^{max(a_n,b_n)}$

Inteiros Divisão

Primos e Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos

Exemplo.

- Sejam a = 8 e b = 10.
- $a = 2 \cdot 2 \cdot 2$
- $b = 2 \cdot 5$
- Normalizando:

$$a=2^3\cdot 5^0$$

$$b=2^1\cdot 5^1$$

•
$$mmc(a, b) = 2^{max(3,1)} \cdot 5^{max(0,1)} = 2^3 \cdot 5^1 = 40$$

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Mínimo Múltiplo Comum

Exercício.

- Sejam a = 12 e b = 15.
- Ache o mmc(a, b) utilizando fatoração.

Inteiros e Algoritmo

Aplicações d Teoria dos Números

Exercícios recomendados

Seção 3.5

- Fazer todos
- Os de prova de teorema são opcionais
- Discrete Mathematics and Its Applications Kenneth Rosen, 6a edição

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmos

Aplicações de Teoria dos Números 1 Inteiros e Divisão

Primos e Máximo Divisor Comum

3 Inteiros e Algoritmos

4 Aplicações de Teoria dos Números

Inteiros e Algoritmos

Aplicações d Teoria dos Números

- Euclides propôs um algoritmo para calcular o *mdc*.
- O algoritmo de Euclides é mais eficiente que a técnica da fatoração.

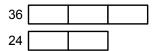
- Suponha que queremos calcular mdc(96,36).
- Dividindo 96 por 36, temos: $96 = 36 \cdot 2 + 24$.
- Note que
 - Um divisor de 96 e 36 também é divisor de 24.
 - Um divisor de 36 e 24 também é divisor de 96.
- Ou seja, um divisor de (96,36) também é divisor de (36,24)
- Portanto, o mdc(96, 36) = mdc(36, 24).

96				
36				

Inteiros e Algoritmos

Aplicações do Teoria dos Números

- Podemos então reduzir o problema de calcular o mdc(96, 36) no problema de calcular o mdc(36, 24).
- Ao dividir 36 por 24, temos $36 = 24 \cdot 1 + 12$.
- Nosso problema agora é reduzido ao do mdc(24, 12).



- Dividindo 24 por 12, temos $24 = 12 \cdot 2 + 0$.
- Portanto, 12 divide 24.
- O mdc(24, 12) = 12.
- E também o mdc(24, 12) = mdc(36, 24) = mdc(96, 36) = 12

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmos

Aplicações de Teoria dos Números Resumindo: para calcular o mdc(96, 36), fazemos:

$$96 = 36 \cdot 2 + 24$$

 $36 = 24 \cdot 1 + 12 \leftarrow mdc$
 $24 = 12 \cdot 2 + 0$

O algoritmo finaliza quando o resto é 0. O mdc(96,36) é 12.

Algoritmo de Euclides

Interros Divisão

Máximo Divisor Comum

Inteiros e Algoritmos

Aplicações de Teoria dos

Lema

- Sejam *a*, *b*, *q* e *r* inteiros.
- Se a = bq + r, então mdc(a, b) = mdc(b, r).

Aplicações de Teoria dos Números

Algoritmo de Euclides

Exercício. Use o algoritmo de Euclides para calcular

- mdc(16, 36)
- mdc(156, 64)
- *mdc*(320, 168)

Inteiros e Algoritmos

Aplicações de Teoria dos Números

```
procedure mdc(a, b: positive integers)
    x = a;
    y = b;
    while y ≠ 0 {
        r = x mod y;
        x = y;
        y = r;
    }
```

- Ao término do laço, como sabemos qual é o mdc(a, b)?
- Para 2 números m < n, qual a diferença em executar mdc(m,n) e mdc(n,m)?

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmos

Aplicações de Teoria dos Números 1 Inteiros e Divisão

2 Primos e Máximo Divisor Comum

3 Inteiros e Algoritmos

4 Aplicações de Teoria dos Números

Inverso de a módulo m

- \overline{a} é o *inverso* de *a* módulo *m* se, e somente se, $\overline{a}a \equiv 1 \pmod{m}$.
- Exemplo. O inverso de 3 módulo 7 é -2, pois

$$(-2\cdot 3)\equiv 1\ (\textit{mod}\ 7)$$

Exercício. Calcule −6 mod 7.

Inverso de a módulo m

Mas, nem sempre \overline{a} existe!

Teorema.

- Se a e m são primos relativos, então \overline{a} existe.
- E mais: \overline{a} é único (módulo m).
- Ou seja, existe um único 0 < ā < m e todos outros inversos são congruentes a ā módulo m.

Inverso de a módulo m

Como calcular \overline{a} , o inverso de a módulo m?

- Primeiro, certifique-se que \overline{a} existe. Ou seja, verifique se mdc(a, m) = 1.
- Descubra s e t tal que 1 = sa + tm.
 - Existe um procedimento para se resolver esta equação.
- s é o inverso de a módulo m.

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Como calcular s e t, tal que 1 = sa + tm?

• Primeiro passo: faça o Algoritmo de Euclides iniciando com a divisão de a por m e verifique se mdc(a, m) = 1.

Inteiros e Algoritmos

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

• Primeiro passo: faça o Algoritmo de Euclides iniciando com a divisão de 55 por 34 e verifique se mdc(55, 34) = 1.

$$55 = 34 \cdot 1 + 21$$

$$34 = 21 \cdot 1 + 13$$

$$21 = 13 \cdot 1 + 8$$

$$13 = 8 \cdot 1 + 5$$

$$8 = 5 \cdot 1 + 3$$

$$5 = 3 \cdot 1 + 2$$

$$3 = 2 \cdot 1 + 1 \leftarrow mdc$$

$$2 = 1 \cdot 2 + 0$$

O mdc(55,34) = 1. Portanto, \bar{a} existe.

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Como calcular s e t, tal que 1 = sa + tm?

 Segundo passo: enumere cada equação gerada pelo Algoritmo de Euclides.

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

 Segundo passo: enumere cada equação gerada pelo Algoritmo de Euclides.

$$55 = 34 \cdot 1 + 21$$
 (1)

$$34 = 21 \cdot 1 + 13 \quad (2)$$

$$21 = 13 \cdot 1 + 8 \qquad (3)$$

$$13 = 8 \cdot 1 + 5$$
 (4)

$$8 = 5 \cdot 1 + 3$$
 (5)

$$\delta = 5 \cdot 1 + 3 \qquad (5)$$

$$5 = 3 \cdot 1 + 2 \tag{6}$$

$$3 = 2 \cdot 1 + 1$$
 (7)

$$2 = 1 \cdot 2 + 0 \tag{8}$$

Inverso de a módulo m

Como calcular s e t, tal que 1 = sa + tm?

Terceiro passo: isole o 1 da penúltima equação.

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

• Terceiro passo: isole o resto 1 da penúltima equação.

O penúltimo passo é:

$$3 = 2 \cdot 1 + 1$$
 (7)

Isolando o 1, temos:

$$1 = 3 - 2 \cdot 1$$

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Como calcular s e t, tal que 1 = sa + tm?

- Quarto passo: substitua na equação o valor do resto da equação de cima. Repita até chegar na equação 1 = sa + tm
- **Muito importante**: **não** simplifique os números que aparecem à esquerda da igualdade. Chamaremos estes números de *indestrutíveis*.

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

• Quarto passo: substitua na equação o valor do resto da equação de cima. Repita até chegar na equação 1=s55+t34

Antes de começarmos a substituição, veja em vermelho os números indestrutíveis:

$$55 = 34 \cdot 1 + 21$$
 (1)

$$34 = 21 \cdot 1 + 13$$
 (2)

$$21 = 13 \cdot 1 + 8$$
 (3)

$$13 = 8 \cdot 1 + 5$$
 (4)

$$8 = 5 \cdot 1 + 3$$
 (5)

$$5 = 3 \cdot 1 + 2$$
 (6)

$$3 = 2 \cdot 1 + 1$$
 (7)

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

 Quarto passo: substitua na equação o valor do resto da equação de cima.

Os indestrutíveis estão em vermelho.

. . .

Inteiros Divisão

Primos o Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

1	=	$2 \cdot 8 - 3 \cdot 5$	[Continuação]
	=	$2 \cdot 8 - 3 \cdot (13 - 8)$	[Subst. (4)]
	=	$2\cdot 8 - 3\cdot 13 + 3\cdot 8$	[Aritmética]
	=	$5 \cdot 8 - 3 \cdot 13$	[Aritmética]
	=	$5 \cdot (21 - 13) - 3 \cdot 13$	[Subst. (3)]
	=	$5\cdot 21 - 5\cdot 13 - 3\cdot 13$	[Aritmética]
	=	$5\cdot 21 - 8\cdot 13$	[Aritmética]
	=	$5 \cdot 21 - 8 \cdot (34 - 21)$	[Subst. (2)]
	=	$5 \cdot 21 - 8 \cdot 34 + 8 \cdot 21$	[Aritmética]
	=	$13 \cdot 21 - 8 \cdot 34$	[Aritmética]
	=	$13 \cdot (55 - 34) - 8 \cdot 34$	[Subst. (1)]
	=	$13 \cdot 55 - 13 \cdot 34 - 8 \cdot 34$	[Aritmética]
	=	$13 \cdot 55 - 21 \cdot 34$	[Aritmética]

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Como calcular s e t, tal que 1 = sa + tm?

• Quinto passo: verifique se s é de fato \overline{a} . Ou seja, verifique se $\overline{a}a \equiv 1 \pmod{m}$

Inverso de a módulo m

Exemplo. Cálculo do inverso de 55 módulo 34.

- Quinto passo: verifique se 13 é de fato $\overline{55}$. Ou seja, verifique se $(13 \cdot 55) \equiv 1 \pmod{34}$
- Calculamos primeiro o quociente:

$$(13.55) \text{ div } 34 = \lfloor 715/34 \rfloor = \lfloor 21.02 \rfloor = 21$$

• Agora, usamos a equação a = bq + r para achar o resto:

$$715 = 34 \cdot 21 + r$$
 : $r = 715 - 714$: $r = 1$

 Como o resto é 1, verificamos que nossos cálculos estavam corretos e, portanto, 13 é o inverso de 55 módulo 34. Inteiros e Algoritmo

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Exercício.

- Calcule o inverso de
 - a) 35 módulo 11.
 - b) 43 módulo 15.
 - c) 15 módulo 43.

Verifique se seu cálculo está correto.

Aplicações de Teoria dos Números

Congruências Lineares

Inverso de a módulo m

Por que isso funciona? Seja a premissa 1 = sa + tm. Concluímos que $s = \overline{a}$.

1.
$$1 = sa + tm$$
 [Premissa]
2. $1 \equiv 1 \pmod{m}$ [Def. $\equiv \pmod{m}$]
3. $sa + tm \equiv 1 \pmod{m}$ [Subst (1) em (2)]
4. $tm \equiv 0 \pmod{m}$ [Def. $\equiv \pmod{m}$]
5. $-tm \equiv 0 \pmod{m}$ [Mult (4) por -1]
6. $sa \equiv 1 \pmod{m}$ [Soma (3) e (5)]
7. $s = \overline{a}$ [Def. \overline{a}]

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números • Sejam $a, b \in Z$ inteiros e $m \in Z^+$.

Um congruência linear é uma equação do tipo

$$ax \equiv b \pmod{m}$$

• Como resolver essa equação?

Aplicações de Teoria dos Números

Congruências Lineares

Para resolver a equação $ax \equiv b \pmod{m}$:

- Encontre o inverso de a módulo m, ā.
- Calcule āb.
- A solução é $x \equiv \overline{a}b \pmod{m}$.

Exemplo.

- Seja a equivalência $35x \equiv 4 \pmod{3}$.
- O inverso de 35 módulo 3 é -1.
- $\bar{a}b = (-1) \cdot 4$
- Então, a solução é $x \equiv -4 \pmod{3}$.

Aplicações de Teoria dos Números

Congruências Lineares

Exercício.

- Calcule a solução de
 - a) $3x \equiv 2 \pmod{7}$.
 - b) $5x \equiv 2 \pmod{34}$
 - c) $74x \equiv 5 \pmod{33}$

Congruências Lineares

Por que isso funciona?

Premissas: $ax \equiv b \pmod{m}$ e \overline{a} existe.

Conclusão: $x \equiv \overline{a}b \pmod{m}$.

```
1. ax \equiv b \pmod{m} [Premissa]

2. \overline{a}ax \equiv \overline{a}b \pmod{m} [Mult. (1) por \overline{a}]

3. \overline{a}a \equiv 1 \pmod{m} [Premissa e def. \overline{a}]

4. \overline{a}ax \equiv x \pmod{m} [Mult. (3) por x]

5. x \equiv \overline{a}ax \pmod{m} [Comutatividade em (4)]

6. x \equiv \overline{a}b \pmod{m} [Transitividade em (5) e (2)]
```

Aplicações de Teoria dos Números

Teorema Chinês do Resto

O que é, o que é?

- Quando dividido por 3, dá resto 2.
- Quando dividido por 5, dá resto 3.
- Quando dividido por 7, dá resto 2.

Aplicações de Teoria dos Números

Teorema Chinês do Resto

O que é, o que é?

- Quando dividido por 3, dá resto 2.
- Quando dividido por 5, dá resto 3.
- Quando dividido por 7, dá resto 2.
- Resposta: 23 (módulo 105)
- Que outro número é também solução para esse problema?

Aplicações de Teoria dos Números

Teorema Chinês do Resto

O que é, o que é?

- $x \equiv 2 \pmod{3}$
- $x \equiv 3 \pmod{5}$
- $x \equiv 2 \pmod{7}$

Teorema Chinês do Resto

- Sejam m_1, m_2, \ldots, m_n primos relativos 2 a 2.
- Sejam a_1, a_2, \ldots, a_n inteiros.
- O sistema de congruências

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_n \pmod{m_n}$

tem solução única (módulo $m = m_1 m_2 \dots m_n$).

 Ou seja, existe uma solução x, 0 ≤ x < m e, todas as demais soluções y são x ≡ y (mod m). Como resolver esse sistema?

- Seja $m = m_1 m_2 \dots m_n$.
- Seja $M_k = m/m_k$. Ou seja, M_k é m sem o termo m_k .
- Calcule y_k , o inverso de M_k módulo m_k .
- A solução é $x = a_1 M_1 y_1 + a_2 M_2 y_2 + \ldots + a_n M_n y_n$.

Por que isso funciona?

Vamos provar que $a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \equiv a_1 \pmod{m_1}$.

- $1.\ \textit{M}_1\textit{y}_1\equiv 1\ (\textit{mod}\ \textit{m}_1)$
- 2. $a_1 M_1 y_1 \equiv a_1 \pmod{m_1}$
- $3. M_2 \equiv 0 \ (mod \ m_1)$
- 4. $M_3 \equiv 0 \; (mod \; m_1)$
- 5. $a_2M_2y_2 \equiv 0 \pmod{m_1}$
- 6. $a_3M_3y_3 \equiv 0 \ (mod \ m_1)$
- 7. $a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \equiv a_1 \pmod{m_1}$

```
[Premissa]
[Mult 2 lados de (1) por a<sub>1</sub>]
```

[Def.
$$\equiv (mod \ m_1) \ e \ M_2 = m_1 m_3$$
]

[Def.
$$\equiv$$
 (mod m_1) e $M_3 = m_1 m_2$]
[Mult 2 lados de (3) por $a_2 y_2$]

[Mult 2 lados de (4) por
$$a_3y_3$$
]

$$[(2)+(5)+(6)]$$

Por que isso funciona?

De forma similar ao slide anterior, podemos provar que

$$a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \equiv a_2 \pmod{m_2}$$

 $a_1M_1y_1 + a_2M_2y_2 + a_3M_3y_3 \equiv a_3 \pmod{m_3}$

Assim como, para provar para mais de 3 equações, o raciocínio é o mesmo.

Exemplo. Seja o sistema

$$x \equiv 2 \pmod{3}$$

 $x \equiv 3 \pmod{5}$

$$x \equiv 2 \pmod{7}$$

- $\lambda = 2 \pmod{1}$
- Como 3, 5 e 7 são primos relativos 2 a 2, podemos usar o Teorema Chinês do Resto.
- $M_1 = (3 \cdot 5 \cdot 7)/3 = 35$, $M_2 = 21$ e $M_3 = 15$.
- $y_1 = -1$ (inverso de 35 módulo 3)
- $y_2 = 1$ (inverso de 21 módulo 5)
- $y_3 = 1$ (inverso de 15 módulo 7)
- A solução é

$$x = (2 \cdot 35 \cdot -1) + (3 \cdot 21 \cdot 1) + (2 \cdot 15 \cdot 1) = 23$$

Inteiros

Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números Exercício.

$$x \equiv 2 \pmod{3}$$

$$x \equiv 1 \pmod{4}$$

$$x \equiv 3 \pmod{5}$$

Pseudoprimos

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Pequeno Teorema de Fermat

- Se p é primo e a não é divisível por p, então $a^{p-1} \equiv 1 \pmod{p}$
- Exemplo. 11 é primo e 30 não é divisível por 11. $30^{10} = 590.490.000.000.000$. 590.490.000.000.000 **mod** 11 = 1.

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Pequeno Teorema de Fermat

- Outra variação do teorema.
- Exemplo. $2^{11} \mod 11 = 2 \mod 11 = 2$.

Aplicações de Teoria dos Números

Pseudoprimos

- Dado um *n*, como saber se ele é primo?
- Sabemos que, se n não tem divisor primo $d \le \sqrt{n}$, então n é primo.

Pseudoprimos

- Dado um *n*, como saber se ele é primo?
- Sabemos que, se n não tem divisor primo $d \le \sqrt{n}$, então n é primo.
- Ou seja, temos que encontrar todos os primos menores que \sqrt{n} e testar se estes primos dividem n. Se nenhum deles divide n, então n é primo.

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

- Dado um n, como saber se ele é primo?
- Sabemos que, se n não tem divisor primo $d \le \sqrt{n}$, então n é primo.
- Ou seja, temos que encontrar todos os primos menores que \sqrt{n} e testar se estes primos dividem n. Se nenhum deles divide n, então n é primo.
- Existem formas mais eficientes para testar primalidade.

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Primalidade

• Pelo Pequeno Teorema de Fermat Se n é primo (e 2 não é divisível por n), então $2^{n-1} \equiv 1 \pmod{n}$

Aplicações de Teoria dos Números

- Pelo Pequeno Teorema de Fermat Se n é primo (e 2 não é divisível por n), então $2^{n-1} \equiv 1 \pmod{n}$
- Infelizmente, o converso não é verdade.
 Ou seja, se 2ⁿ⁻¹ ≡ 1 (mod n), então n pode ser primo ou pode ser composto.

Aplicações de Teoria dos Números

- Pelo Pequeno Teorema de Fermat Se n é primo (e 2 não é divisível por n), então $2^{n-1} \equiv 1 \pmod{n}$
- Infelizmente, o converso não é verdade.
 Ou seja, se 2ⁿ⁻¹ ≡ 1 (mod n), então n pode ser primo ou pode ser composto.
- Resumindo: em tese, este teorema n\u00e3o serve para teste de primalidade. Ou serve?

Interros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Primalidade

• Na verdade, se $2^{n-1} \equiv 1 \pmod{n}$, então há uma grande chance de n ser primo.

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

- Na verdade, se $2^{n-1} \equiv 1 \pmod{n}$, então há uma grande chance de n ser primo.
- Existem muito mais primos que satisfazem
 2ⁿ⁻¹ ≡ 1 (mod n) do que compostos que satisfazem esta
 congruência.

Algoritmo

Aplicações de Teoria dos Números

- Na verdade, se $2^{n-1} \equiv 1 \pmod{n}$, então há uma grande chance de n ser primo.
- Existem muito mais primos que satisfazem $2^{n-1} \equiv 1 \pmod{n}$ do que compostos que satisfazem esta congruência.
- "Muito mais" significa:
 Existem 455.052.512 de primos menores que 10¹⁰.
 E apenas 14.884 compostos que satisfazem a congruência

Inteiros Divisão

Primos Máximo Divisor Comum

Algoritmo

Aplicações de Teoria dos Números

- Na verdade, se $2^{n-1} \equiv 1 \pmod{n}$, então há uma grande chance de n ser primo.
- Existem muito mais primos que satisfazem $2^{n-1} \equiv 1 \pmod{n}$ do que compostos que satisfazem esta congruência.
- "Muito mais" significa:
 Existem 455.052.512 de primos menores que 10¹⁰.
 E apenas 14.884 compostos que satisfazem a congruência
- Estes compostos s\u00e3o chamados de pseudoprimos.

Aplicações de Teoria dos Números

Pseudoprimos

- Seja *b* um inteiro positivo.
- Se n é um inteiro composto e $b^{n-1} \equiv 1 \pmod{n}$, então n é chamado de pseudoprimo na base <math>b.

Inteiros Divisão

Primos Máximo Divisor Comum

Inteiros e Algoritmo

Aplicações de Teoria dos Números

Resumindo

- Se n satisfaz $b^{n-1} \equiv 1 \pmod{n}$, então n é primo ou é pseudoprimo Apesar de sabermos que há grandes chances de ser primo, não temos 100% de certeza.
- Se n não satisfaz esta congruência, então n é composto.

Aplicações de Teoria dos Números

Pseudoprimos

Teste de Primalidade

- $2^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)
- $3^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare $(n \in composto)$
- •
- $b_m^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)

Pseudoprimos

Teste de Primalidade

- $2^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare $(n \in composto)$
- $3^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare $(n \in composto)$
- •
- $b_m^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)
- Se n passar em todas as bases que testamos, então, ainda não temos uma conclusão.
 - Existem números compostos que passam em todas as bases. São chamados de números de Carmichael.

Pseudoprimos

Teste de Primalidade

- $2^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)
- $3^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)
- •
- $b_m^{n-1} \equiv 1 \pmod{n}$? Se sim, continue. Senão, pare (n é composto)
- Se n passar em todas as bases que testamos, então, ainda não temos uma conclusão.
 - Existem números compostos que passam em todas as bases. São chamados de números de Carmichael.
- Para casos difíceis, temos que usar outros algoritmos (que são probabilísticos: o algoritmo submete n a uma série de testes e, a probabilidade de n ser composto e passar em todos os testes é quase zero.)

Aplicações de Teoria dos Números

- Qualquer pessoa pode enviar uma mensagem para qualquer outra sem precisar combinar previamente como criptografar a mensagem.
- Uma pessoa deixa pública uma chave (números) a ser usada para criptografar a mensagem.
- Outra pessoa utiliza esta chave para criptografar a mensagem.
- Apenas o destinatário sabe como decriptografar (usando uma chave privada).

Aplicações de Teoria dos Números

- O algoritmo utiliza-se de 2 primos grandes (tipicamente com 200 dígitos cada) multiplicados um pelo outro.
- O resultado é um número de 400 dígitos.
- Para quebrar o código, deve-se fatorar um número de 400 dígitos.
- Hoje, o melhor algoritmo de fatoração leva 2 bilhões de anos para fatorar.

- Chave pública: n e e, onde n é o produto dos primos p e q
- Função para criptografar: $C = M^e \mod n$
- Chave privada: d, onde d é o inverso de e módulo (p-1)(q-1)
- Função para decriptografar: $M = C^d \mod n$

- Chave pública: $n \in e$, onde $n \in o$ produto dos primos $p \in q$
- Função para criptografar: $C = M^e \mod n$
- Chave privada: d, onde d é o inverso de e módulo (p-1)(q-1)
- Função para decriptografar: $M = C^d \mod n$
- Exemplo:

```
Sejam n=2537, e=13 e M=3.
Então C=3^{13} mod 2537=1087.
Sejam d=937. Então M=1087^{937} mod 2537=3.
Neste exemplo, usamos p=43 e q=59.
```

- Chave pública: n e e, onde n é o produto dos primos p e q
- Função para criptografar: $C = M^e \mod n$
- Chave privada: d, onde d é o inverso de e módulo (p-1)(q-1)
- Função para decriptografar: $M = C^d \mod n$
- Exemplo:

```
Sejam n=2537, e=13 e M=3.
Então C=3^{13} mod 2537=1087.
Sejam d=937. Então M=1087^{937} mod 2537=3.
Neste exemplo, usamos p=43 e q=59.
```

- Mais detalhes: Seção 3.7 de Discrete Mathematics
- História da criptografia: The Code Book de Simon Singh.