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PREFACE

TO THE STUDENT

Welcome!

You are about to embark on the study of a fascinating and important subject: the
theory of computation. It comprises the fundamental mathematical properties of
computer hardware, software, and certain applications thereof. In studying this
subject we seek to determine what can and cannot be computed, how quickly,
with how much memory, and on which type of computational model. The subject
has obvious connections with engineering practice, and, as in many sciences, it
also has purely philosophical aspects.

I know that many of you are looking forward to studying this material but some
may not be here out of choice. You may want to obtain a degree in computer sci-
ence or engineering, and a course in theory is required—God knows why. After

all ien’s theamy Lo nd worer of all irrelevans?
ally IDJ.I. l, Lll\.’Uly al\,allc, UUILJ.I.S’ a].l.l_l WULOL Ul all’ 111\.’1\.’\‘(1 1L,

To see that theory is neither arcane nor boring, but instead quite understand-
able and even interesting, read on. Theoretical computer science does have many
fascinating big ideas, but it also has many small and sometimes dull details that
can be tiresome. Learning any new subject is hard work, but it becomes easier
and more enjoyable if the subject is properly presented. My primary objective in
writing this book is to expose you to the genuinely exciting aspects of computer
theory, without getting bogged down in the drudgery. Of course, the only way
to determine whether theory interests you is to try learning it.

xi
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Theory is relevant to practice. It provides conceptual tools that practitioners
use in computer engineering. Designing a new programming language for a spe-
cialized application? What you learned about grammars in this course comes in
handy. Dealing with string searching and pattern matching? Remember finite
automata and regular expressions. Confronted with a problem that seems to re-
quire more computer time than you can afford? Think back to what you learned
about NP-completeness. Various application areas, such as modern cryptographic
protocols, rely on theoretical principles that you will learn here.

Theory also is relevant to you because it shows you a new, simpler, and more
elegant side of computers, which we normally consider to be complicated ma-
chines. The best computer designs and applications are conceived with elegance
in mind. A theoretical course can heighten your aesthetic sense and help you
build more beautiful systems.

Finally, theory is good for you because studying it expands your mind. Com-
puter technology changes quickly. Specific technical knowledge, though useful
today, becomes outdated in just a few years. Consider instead the abilities to
think, to express yourself clearly and precisely, to solve problems, and to know
when you haven't solved a problem. These abilities have lasting value. Studying
theory trains you in these areas.

Practical considerations aside, nearly everyone working with computers is cu-
rious about these amazing creations, their capabilities, and their limitations. A
whole new branch of mathematics has grown up in the past 30 years to answer

certain basic questions. Here’s a big one that remains unsolved: If I give you a

large number, say, with 500 digits, can you find its factors (the numbers that di-

vide it evenly), in a reasonable amount of time? Even using a supercomputer, no
one presently knows how to do that in all cases within the lifetime of the universe!
The factoring problem is connected to certain secret codes in modern cryptosys-
tems. Find a fast way to factor and fame is yours!

TO THE EDUCATOR

This book is intended as an upper-level undergraduate or introductory graduate
text in computer science theory. It contains a mathematical treatment of the sub-
ject, designed around theorems and proofs. I have made some effort to accom-
modate students with little prior experience in proving theorems, though more
experienced students will have an easier time.

My primary goal in presenting the material has been to make it clear and in-
teresting. In so doing, I have emphasized intuition and “the big picture” in the
subject over some lower level details.

For example, even though I present the method of proof by induction in Chap-
ter 0 along with other mathematical preliminaries, it doesn’t play an important
role subsequently. Generally I do not present the usual induction proofs of the
correctness of various constructions concerning automata. If presented clearly,
these constructions convince and do not need further argument. An induction
may confuse rather than enlighten because induction itself is a rather sophisti-
cated technique that many find mysterious. Belaboring the obvious with an in-
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duction risks teaching students that mathematical proof is a formal manipulation
instead of teaching them what is and what is not a cogent argument.

A second example occurs in Parts II and III, where I describe algorithms in
prose instead of pseudocode. I don’t spend much time programming Turing ma-
chines (or any other formal model). Students today come with a programming
background and find the Church-Turing thesis to be self-evident. Hence I don’t
present lengthly simulations of one model by another to establish their equiva-
lence.

Besides giving extra intuition and suppressing some details, I give what might
be called a classical presentation of the subject material. Most theorists will find
the choice of material, terminology, and order of presentation consistent with
that of other widely used textbooks. T have introduced original terminology in
only a few places, when I found the standard terminology particularly obscure
or confusing. For example 1 introduce the term mapping reducibility instead of
many—one veductbility.

Practice through solving problems is essential to learning any mathematical
subject. In this book, the problems are organized into two main categories called
Exercises and Problems. The Exercises review definitions and concepts. The Prob-
lems require some ingenuity. Problems marked with a star are more difficult. I
have tried to make both the Exercises and Problems interesting challenges.

THE CURRENT EDITION

Introduction to the Theory of Computation first appeared as a Preliminary Edition in
paperback. The current edition differs from the Preliminary Edition in several
substantial ways. The final three chapters are new: Chapter 8 on space complex-
ity; Chapter 9 on provable intractability; and Chapter 10 on advanced topics in
complexity theory. Chapter 6 was expanded to include several advanced topics
in computability theory. Other chapters were improved through the inclusion of
additional examples and exercises.

Comments from instructors and students who used the Preliminary Edition
were helpful in polishing Chapters 0-7. Of course, the errors they reported have
been corrected in this edition.

Chapters 6 and 10 give a survey of several more advanced topics in computabil-
ity and complexity theories. They are not intended to comprise a cohesive unit
in the way that the remaining chapters are. These chapters are included to allow
the instructor to select optional topics that may be of interest to the serious stu-
dent. The topics themselves range widely. Some, such as Turing reducibility and
alternation, are direct extensions of other concepts in the book. Others, such as
decidable logical theories and cryptography, are brief introductions to large fields.

FEEDBACK TO THE AUTHOR

The internet provides new opportunities for interaction between authors and
readers. I have received much e-mail offering suggestions, praise, and criticism,
and reporting errors for the Preliminary Edition. Please continue to correspond!
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I try to respond to each message personally, as time permits. The e-mail address
for correspondence related to this book is

A web site that contains a list of errata is maintained. Other material may be
added to that site to assist instructors and students. Let me know what you would
like to see there. The location for that site is

http://www-math.mit.edu/"sipser/book.html.
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INTRODUCTION

Let’s begin with an overview of thdse areas in the theory of computation that we
present in this course. Then, you’ll have a chance to learn and/or review some
mathematical concepts that you will need later.

0.1

AUTOMATA, COMPUTABILITY, AND COMPLEXITY

"This book focuses on three traditionally central areas of the theory of computa-
tion: automata, computability, and complexity. They are linked by the question:

What ave the fundamental capabilities and limitations of computers?

'This question goes back to the 1930s when mathematical logicians first began
to explore the meaning of computation. Technological advances since that time
have greatly increased our ability to compute and have brought this question out
of the realm of theory into the world of practical concern.

In each of the three areas—automata, computability, and complexity—this
question is interpreted differently, and the answers vary according to the inter-
pretation. Following this introductory chapter, we’ll explore each area in a sep-
arate part of this book. Here, we introduce these parts in reverse order because
starting from the end you can better understand the reason for the beginning.
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COMPLEXITY THEORY

Computer problems come in different varieties; some are easy and some hard.
For example, the sorting problem is an easy one. Say that you need to arrange
a list of numbers in ascending order. Even a small computer can sort a million
numbers rather quickly. Compare that to a scheduling problem. Say that you
must find a schedule of classes for the entire university to satisfy some reasonable
constraints, such as that no two classes take place in the same room at the same
time. The scheduling problem seems to be much harder than the sorting prob-
lem. If you have just a thousand classes, finding the best schedule may require
centuries, even with a supercomputer.

What makes some problems computationally hard and others easy?

This is the central question of complexity theory. Remarkably, we don’t know
the answer to it, though it has been intensively researched for the past 25 years.
Later, we explore this fascinating question and some of its ramifications.

In one of the important achievements of complexity theory thus far, re-
searchers have discovered an elegant scheme for classifying problems according
to their computational difficulty. It is analogous to the periodic table for classify-
ing elements according to their chemical properties. Using this scheme, we can
demonstrate a method for giving evidence that certain problems are computa-
tionally hard, cven if we are unable to prove that they are so.

You have several options when you confront a problem that appears to be com-
putationally hard. First, by understanding which aspect of the problem is at the
root of the difficulty, you may be able to alter it so that the problem is more easily
solvable. Second, you may be able to settle for less than a perfect solution to the
problem. In certain cases finding solutions that only approximate the perfect one
is relatively easy. Third, some problems are hard only in the worst case situation,
but easy most of the time. Depending on the application, you may be satisfied
with a procedure that occasionally is slow but usually runs quickly. Finally, you
may consider alternative types of computation, such as randomized computation,
that can speed up certain tasks.

One applied area that has been affected directly by complexity theory is the
ancient field of cryptography. In most fields, an easy computational problem is
preferable to a hard one because easy ones are cheaper to solve. Cryptography
is unusual because it specifically requires computational problems that are hard,
rather than easy, because secret codes should be hard to break without the secret
key or password. Complexity theory has pointed cryptographers in the direction
of computationally hard problems around which they have designed revolution-
ary new codes.

COMPUTABILITY THEORY

During the first half of the twentieth century, mathematicians such as Kurt
Godel, Alan Turing, and Alonzo Church discovered that certain basic problems
cannot be solved by computers. One example of this phenomenon is the problem
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of determining whether a mathematical statement is true or false. This task is the
bread and butter of mathematicians. It seems like a natural for solution by com-
puter because it lies strictly within the realm of mathematics. But no computer
algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers that eventually would help lead to
the construction of actual computers.

The theories of computability and complexity are closely related. In complex-
ity theory, the objective is to classify problems as easy ones and hard ones, whereas
in computability theory the classification of problems is by those that are solvable

A il cn thot crn et JRUURUSIPI T SN tooe cpuatal o PR
aida uiose tnat are not. CUlllputh ht‘y tuuu_y introduces several of f the concepts
used in complexity theory.

AUTOMATA THEORY

Automata theory deals with the definitions and properties of mathematical mod-
els of computation. These models play a role in several applied areas of computer
science. One model, called the finite automaton, is used in text processing, com-
pilers, and hardware design. Another model, called the context-free grammar, is
used in programming languages and artificial intelligence.

Automata theory is an excellent place to begin the study of the theory of com-
putation. The theories of computability and complexity require a precise defi-
nition of a computer. Automata theory allows practice with formal definitions of
computation as it introduces concepts relevant to other nontheoretical areas of
computer science.

O 2
.

MATHEMATICAL NOTIONS AND TERMINOLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, tools, and notation that we expect to use.

SETS

A set is a group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbols, and even other sets. The objects in a set are
called its elements or members. Sets may be described formally in several ways.
One way is by listing its elements inside braces. Thus the set

{7,21,57}

contains the elements 7, 21, and 57. The symbols € and ¢ denote set membership

ad nenmeniherch T <t ben an
and nonmembership, respectively. We write 7 € {7,21,57} and 8 ¢ {7,21,57}.

For two sets A and B, we say that A is a subset of B, written A C B, if every
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member of A also is amember of B. We say that A is a proper subset of B, written
A € B, if Ais a subset of B and not equal to B.

The order of describing a set doesn’t matter, nor does repetition of its mem-
bers. We get the same set by writing {57,7,7,7,21}. If we do want to take the
number of occurrences of members into account we call the group a multiset in-
stead of a set. Thus {7} and {7, 7} are different as multisets but identical as sets.
An infinite set contains infinitely many elements. We cannot write a list of all
the elements of an infinite set, so we sometimes use the .. .” notation to mean,
“continue the sequence forever.” Thus we write the set of natural numbers N
as

{1,2,3,... }.
The set of integers Z is written
{...,-2,-1,0,1,2,...}.

The set with 0 members is called the empty set and is written 0.

When we want to describe a set containing elements according to some rule,
we write {n| rule about n}. Thus {n|n = m? for some m € N’} means the set of
perfect squares.

If we have two sets A and B, the union of A and B, written AU B, is the set we
get by combining all the elements in A and B into a single set. The intersection
of A and B, written A N B, is the set of elements that are in both A and B. The
complement of A, written 4, is the set of all elements under consideration that
are not in A.

As is often the case in mathematics, a visual picture helps clarify a concept. For
sets, we use a type of picture called a Venr diagram. It represents sets as regions
enclosed by circular lines. Let the set START-t be the set of all English words that
start with the letter “t.” For example, in the following figure the circle represents
the set START-t. Several members of this set are represented as points inside the
circle.

START-t
terrific

tundra

theory

FIGURE 0.1
Venn diagram for the set of English words starting with “t”

Similarly, we represent the set END-z of English words that end with “z” in
the following figure.
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END-Z
quartz

jazz

razzmatazz

FIGURE 0.2
Venn diagram for the set of English words ending with “z”

To represent both sets in the same Venn diagram we must draw them so that
they overlap, indicating that they share some elements, as shown in the following
figure. For example, the word ropaz is in both sets. The figure also contains a
circle for the set START-j. It doesn’t overlap the circle for START-t because no
word lies in both sets.

START-t END-Z START-]

topaz jazz

FIGURE 0.3
Overlapping circles indicate common elements

The next two Venn diagrams depict the union and intersection of sets A and B.

(b)

FIGURE 0.4
Diagrams for (a) AUB and (b) AN B
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SEQUENCES AND TUPLES

A sequence of objects is a list of these objects in some order. We usually designate
a sequence by writing the list within parentheses. For example, the sequence 7,

a1 BT g b e

41, 91 would be written

(7,21,57).

In a set the order doesn’t matter, but in a sequence it does. Hence (7,21, 57) is
not the same as (57,7, 21). Repetition is not permitted in a set but is allowed in a
sequence, so (7,7,21,57) is different from both of the other sequences, whereas
the set {7,21, 57} is identical to the set {7,7,21,57}.

As with sets, sequences may be finite or infinite. Finite sequences often are
called tuples. A sequence with £ elements is a k-tuple. Thus (7,21,57) is a
3-tuple. A 2-tuple is also called a pair.

Sets and sequences may appear as elements of other sets and sequences. For
example, the power set of A is the set of all subsets of A. If A is the set {0, 1}, the
powersetof Aistheset {{, {0}, {1}, {0,1} }. The setof all pairs whose elements
are Os and 1sis { (0,0), (0,1), (1,0), (1,1) }

If A and B are two sets, the Cartesian product or cross product of A and B,
written A x B, is the set of all pairs wherein the first element is a member of A
and the second element is a member of B.

EXAMPLE o" ..............................................................................................................................

If A={1,2}and B = {=,vy, 2},

AxB={(La), (Ly), (1,2), (2,2), (2,9), (2,2) }.

We can also take the Cartesian product of k sets, 41, Ay, ... , Ay, written
A1 X Az x -+ - x Ay, Itis the set consisting of all k-tuples (a1, ag, . . . , ax) where
a; € Ai.

EXAMPLE (0,2 o se et pe st s e st b s et b e s s st et s s et
If A and B are as in Fxample 0.1,

AxBxA={(1=z1),(1,z2), (1,y1), (1,4,2), (1,2,1), (1,z2),
(2,2,1), (2,2,2), (2,9, 1), (2,4,2), (2,2,1), (2,2,2) }

If we have the Cartesian product of a set with itself, we use the shorthand

k
P

AXx Ax---x A= A*,
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EXAMPLE 0.3 ..............................................................................................................................

The set N2 equals A x N. It consists of all pairs of natural numbers. We also
may write it as {(4, 7)| 4, > 1}. w

FUNCTIONS AND RELATIONS

Functions are central to mathematics. A fumction is an object that sets up an
input-output relationship. A function takes an input and produces an output. In
every function, the same input always produces the same output. If f is a function
whose output value is b when the input value is a, we write

fla) = b.

A function also is called a mapping, and, if f(a) = b, we say that f maps a to b.

For example, the absolute value function abs takes a number z as input and
returns z if x is positive and —z if = is negative. Thus abs(2) = abs(—2) = 2.
Addition is another example of a function, written add. The input to the addition
function is a pair of numbers and the output is the sum of those numbers.

The set of possible inputs to the function is called its domain. The outputs of
a function come from a set called its range. The notation for saying that f is a
function with domain D and range R is

f: D—R.

In the case of the function abs, if we are working with integers, the domain and
the range are Z, so we write abs: Z— Z. In the case of the addition function
for integers, the domain is the set of pairs of integers Z x Z and the range is Z,
so we write add: Z x Z— Z. Note that a function may not necessarily use all
the elements of the specified range. The function abs never takes on the value
—1 even though —1 € Z. A function that does use all the elements of the range
is said to be onto the range.

We may describe a specific function in several ways. One way is with a proce-
dure for computing an output from a specified input. Another way is with a table
that lists all possible inputs and gives the output for each input.

EXAMPLE Qo oo s s s
Consider the function f: {0,1,2,3,4}—{0,1,2,3,4}.
fn)

pww»—to‘;
O e =
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This function adds 1 to its input and then outputs the result modulo 5. A number
modulo m is the remainder after division by m. For example, the minute hand
on a clock face counts modulo 60. When we do modular arithmetic we define
Zm =1{0,1,2,... ,m — 1}. With this notation, the aforementioned function f

has the form f: Z5—— Zs.

EXAMPLE 0.5 ..............................................................................................................................

Sometimes a two-dimensional table is used if the domain of the function is the
Cartesian product of two sets. Here is another function ¢: 24 x Z,—— Z4. The
entry at the row labeled i and the column labeled 7 in the table is the value of

(i, ) S

N = DD
LN =Oo
O WD
— O W NN
N = O W W

The function g is the addition function modulo 4.

When the domain of a function f is A; x - - x Ay for some sets A1, . .. Ak,
the input to f is a k-tuple (ay, as, . . . , ai) and we call the a; the arguments to f.
A function with & arguments is called a k-ary function and k is called the arity of
the function. If & is 1, f has a single argument and f is called a unary function.
Ifkis 2, f is a binary function. Certain familiar binary functions are written in a
special infix notation, with the symbol for the function placed between its two ar-
guments, rather than in prefix notation, with the symbol preceding. For example,
the addition function add usually is written in infix notation with the + symbol
between its two arguments as in @ + b instead of in prefix notation add(a, b).

A predicate or property is a function whose range is { TRUE, FALSE}. For ex-
ample, let even be a property that is TRUE if its input is an even number and
FALSE if its input is an odd number. Thus even(4) = TRUE and even(5) =
FALSE.

A property whose domain is a set of k-tuples A x - x Ais called a relation,
a k-ary relation, or a k-ary relation on A. A common case is a 2-ary relation,
called a binary relation. When writing an expression involving a binary relation,
we customarily use infix notation. For example, “less than” is a relation usually
written with the infix operation symbol <. “Equality,” written with the = sym-
bol is another familiar relation. If Ris a binary relation, the statement a Rb means
that a Rb = TRUE. Similarlyif Risa k-ary relation, the statement R(ay, ... , ax)
means that R(a;, ... ,ax) = TRUE.
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EXAMPLE Q.8 i bt b b b b e

In a children’s game called Scissors—Paper—Stone, the two players simultaneously
select a member of the set {SCISSORS, PAPER, STONE} and indicate their selec-
tions with hand signals. If the two selections are the same, the game starts over.
If the selections differ, one player wins, according to the relation beats.

beats | SCISSORS PAPER STONE
SCISSORS | FALSE  TRUE  FALSE
PAPER FALSE ~ FALSE TRUE
STONE TRUE  FALSE  FALSE

From this table we determine that SCISSORS beats PAPER is TRUE and that
PAPER beats SCISSORS 1s FALSE.

Sometimes describing predicates with sets instead of functions is more con-
venient. The predicate P: D— {TRUE, FALSE} may be written (D, S), where
S = {a € D| P(a) = TRUE}, or simply S if the domain D is obvious from the
context. Hence the relation beats may be written

{(SCISSORS, PAPER), (PAPER, STONE), (STONE, SCISSORS)}.

A special type of binary relation, called an equivalence relation captures the
notion of two objects being equal in some feature. A binary relation R is an equiv-
alence relation if R satisfies three conditions:

1. R is reflexive if for every x, xRux;
2. R is symmetric if for every = and y, xRy if and only if y Rx; and
3. R is transitive if for every x, y, and z, xRy and y Rz implies z Rz.

EXAMPLE 0.7 ..............................................................................................................................

Define an equivalence relation on the natural numbers, written =7. Fori,j € A/
say thati =7 j, if 1 — j is a multiple of 7. This is an equivalence relation because it
satisfies the three conditions. First, it is reflexive, as i —i = 0, which is a multiple
of 7. Second, it is symmetric, as i — 7 is a multiple of 7 if j — i is a multiple of 7.
Third, it is transitive, as whenever i — j is a multiple of 7 and j — k& is a multiple
of 7, then ¢ — k = (i — 5) + (§ — k) is the sum of two multiples of 7 and hence a
multiple of 7, too.
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GRAPHS

An undirected graph, or simply a graph, is a set of points with lines connecting
some of the points. The points are called #odes or vertices, and the lines are called
edges, as shown in the following figure.

(a) (b)

FIGURE 0.5
Examples of graphs

The number of edges at a particular node is the degree of that node. In Fig-
ure 0.5(a) all the nodes have degree 2. In Figure 0.5(b) all the nodes have degree 3.
No more than one edge is allowed between any two nodes.

In a graph G that contains nodes ¢ and j, the pair (4, j) represents the edge that
connects i and j. The order of ¢ and j doesn’t matter in an undirected graph, so
the pairs (¢, ) and (4, i) represent the same edge. Sometimes we describe edges
with sets, as in {4, j}, instead of pairs because the order of the nodes is unimpor-
tant. If V is the set of nodes of G and F is the set of edges, we say G = (V, E).
We can describe a graph with a diagram or more formally by specifying V and
E. For example, a formal description of the graph in Figure 0.5(a) is

({1,2,3,4,5}, {(1,2), (2,3), (3,4), (4,5), (5,1)}),

and a formal description of the graph in Figure 0.5(b) is

({17 2731 4}7 {(172)7 (]‘73)5 (17 4)7 (2’ 3)7 (27 4)7 (3’ 4)})'

Graphs frequently are used to represent data. Nodes might be cities and edges
the connecting highways, or nodes might be electrical components and edges
the wires between them. Sometimes, for convenience, we label the nodes and/or
edges of a graph, which then is called a labeled graph. The following figure de-
picts a graph whose nodes are cities and whose edges are labeled with the dollar
cost of the cheapest nonstop air fare for travel between those cities if flying non-
stop between them is possible.
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FIGURE 0.6
Cheapest nonstop air fares between various cities

We say that graph G is a subgraph of graph H if the nodes of G are a subset of
the nodes of H. As shown in the following figure, the edges of G are the edges

of H on the corresponding nodes.

Graph H

l‘\ Subgraph G
FIGURE 0.7

“ shown darker

Graph G (shown darker) is a subgraph of H

A path in a graph is a sequence of nodes connected by edges. A simple path
is a path that doesn’t repeat any nodes. A graph is connected if every two nodes
have a path between them. A path is a cycle if it starts and ends in the same node.
A simple cycle is one that doesn’t repeat any nodes except for the first and last. A
graph is a tree if it is connected and has no simple cycles, as shown in the following
figure. The nodes of degree 1 in a tree are called the leaves of the tree. Sometimes
there is a specially designated node of a tree called the root.
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~ ~ LOLUUV
(@) (b) ©

FIGURE 0.8
(a) A path in a graph, (b) a cycle in a graph, and (c) a tree

If it has arrows instead of lines, the graph is a directed graph, as shown in the
following figure. The number of arrows pointing from a particular node is the
outdegree of that node, and the number of arrows pointing to a particular node
is the indegree.

FIGURE 0.9
A directed graph

In a directed graph we represent an edge from i to j as a pair (7, 7). The formal
description of a directed graph G is (V, E) where V is the set of nodes and E is
the set of edges. The formal description of the graph in Figure 0.9 is

({1,2,3,4,5,6}, {(1,2),(1,5),(2,1),(2,4), (5,4), (5,6), (6,1), (6,3)}).

. A path in which all the arrows point in the same direction as its steps is called a
directed path. A directed graph is strongly connected if a directed path connects
every two nodes.
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EXAMPLE 0.8 ..............................................................................................................................

The directed graph representing the relation given in Example 0.6 is

SN TN

SCISSORS PAPER

STONE

Directed graphs are a handy way of depicting binary relations. If R is a binary
relation whose domain is D x D, a labeled graph G = (D, E) represents R, where
E = {(cc y)| «Ry}. Example 0.8 is an illustration.

s the set of nodes and F is the set of edges, the notation for a graph G

of these nodes and edgesis G = (V, E),

STRINGS AND LANGUAGES

Strings of characters are fundamental building blocks in computer science. The
alphabet over which the strings are defined may vary with the application. For
our purposes, we define an alpbabet to be any finite set. The members of the
alphabet are the symbols of the alphabet. We generally use capital Greek letters &
and I to designate alphabets and a typewriter font for symbols from an alphabet.
The following are a few examples of alphabets.

$ = {0,1}
22 = {a’b’c,d7e’f9g5h7i7j7k717m7n707p1q7r7sﬁt7u7vﬂw7x7y7z}

F = {O’ 1’X7Y7Z}

A string over an alpbabet is a finite sequence of symbols from that alphabet,
usually written next to one another and not separated by commas. If ©; = {0,1},
then 01001 is a string over £;. If ©5 = {a,b, ¢, ... ,z}, then abracadabra is a

Strmo' over Tn T’F 24118 2 Striho over Y\. the lpmn'fh of w, writtan |anl ic the number

€I W18 A string over e Iengiy of Wriien wi, 1s e numober
=} f] |

of symbols that it contains. The strmg of length zero is called the empty string
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and is written €. The empty string plays the role of 0 in a number system. If w
has length n, we can write w = wiwz - Wy where each w; € Y. The reverse
of w, written w”, is the string obtained by writing w in the opposite order (i.e.,
Wy W1 - - Wi). String z is a substring of w if z appears consecutively within w.
For example, cad is a substring of abracadabra.

If we have string x of length m and string y of length n, the concatenation
of z and y, written xy, is the string obtained by appending y to the end of x, as
inzy- - Tmy1---Yn. To concatenate a string with itself many times we use the
superscript notation

k
k

e
TT--- X =1x".
The lexicographic ordering of strings is the same as the familiar dictionary or-
dering, except that shorter strings precede longer strings. Thus the lexicographic
ordering of all strings over the alphabet {0,1} is (¢, 0, 1,00, 01, 10, 11,000,...).
A language is a set of strings.

BOOLEAN LOGIC

Boolean logic is a mathematical system built around the two values TRUE and
FALSE. Though originally conceived of as pure mathematics, this system is now
considered to be the foundation of digital electronics and computer design. The
values TRUE and FALSE are called the Boolean values and are often represented
by the values 0 and 1. We use Boolean values in situations with two possibilities,
such as a wire that may have a high or a low voltage, a proposition that may be
true or false, or a question that may be answered yes or no.

We can manipulate Boolean values with specially designed operations, called
the Boolean operations. The simplest such operation is the negation or NOT
operation, designated with the symbol —. The negation of a Boolean value is the
opposite value. Thus -0 = 1 and -1 = 0. The conjunction, or AND, operation
is designated with the symbol A. The conjunction of two Boolean values is 1 if
both of those values are 1. The disjunction, or OR, operation is designated with
the symbol v. The disjunction of two Boolean values is 1 if either of those values
is 1. We summarize this information in the following table:

0AN0=0 Ovo=20 -0 =1
OAN1=0 Ovli=1 -1=0
1A0=0 1vo=1
IAnl=1 1vli=1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and x to
construct complex arithmetic expressions, For example, if P is the Boolean value
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representing the truth of the statement “the sun is shining” and @ represents
the truth of the statement “today is Monday”, we may write P A () to represent
the truth value of the statement “the sun is shining #nd today is Monday” and
similarly for P v @ with and replaced by or. The values P and @ are called the
operands of the operation.

Several other Boolean operations occasionally appear. The exclusive or, or
XOR, operation is designated by the & symbol and is 1 if either but not both of
its two operands are 1. The equality operation, written with the symbol —, is 1
if both of its operands have the same value. Finally, the implication operation is
designated by the symbol — and is 0 if its first operand is 1 and its second operand
is 0; otherwise — is 1. We summarize this information in the following table:

060=0 0—0=1 0—-0=1
0pl1=1 0=1=0 0—-1=1
160=1 1<-0=0 1—-0=0
1$1=0 l-1=1 1—-1=1

We can establish various relationships among these operations. In fact, we can
express all Boolean operations in terms of the AND and NOT operations, as the
following identities show. The two expressions in each row are equivalent. Each
row expresses the operation in the left-hand column in terms of operations above
it and AND and NOT.

PvQ (=P A-Q)
P—-qQ -PvVvQ

Po@ (P-Q)nN(Q—P)
PoQ (P < Q)

The distributive law for AND and OR comes in handy in manipulating
Boolean expressions. It is similar to the distributive law for addition and mul-
tiplication, which states that a x (b+¢) = {(a x b) + (a x ¢). The Boolean version
comes in the following two forms:

* PA(QV R)equals (P AQ)V (P A R), and its dual
* PV (QAR)equals (PvQ)A(PVR).

Note that the dual of the distributive law for addition and multiplication does not
hold in general.



16 CHAPTER O/ INTRODUCTION

SUMMARY OF MATHEMATICAL TERMS

Alphabet
Argument

Binary relation
Boolean operation
Boolean value
Cartesian preduct

Concatenation

Conjunction
Connected graph
Cycle

Directed graph

Disjunction
Domain
Edge
Element
Empty set
Empty string

Equivalence relation

Function
Graph

Intersection
k-tuple
Language
Member
Node
Pair

Path
Predicate
Property
Range
Relation

Sequence
Set

Simple path
String
Symbol
Tree

Union

Vertex

A finite set of objects called symbols
An input to a function
A relation whose domain is a set of pairs
An operation on Boolean values
The values TRUE or FALSE, often represented by O or 1
An operation on sets forming a set of all tuples
of elements from respective sets
An operation on a set, forming the set o
elements not present
An operation that sticks strings from one set together
with strings from another set
Boolean AND operation
A graph with paths connecting every two nodes
A path that starts and ends in the same node
A collection of points and arrows connecting some
pairs of points
Boolean OR operation
The set of possible inputs to a function
Aline in a graph
An object in a set
A set with no members
The string of length zero
A binary relation that is reflexive, symmetric, and transitive
An operation that translates inputs into outputs
A collection of points and lines connecting some
pairs of points
An operation on sets forming the set of common elements
A list of k objects
A set of strings
An object in a set

A pninr in a granh

RV Al d glapil

fall

A list of two elements, also called a 2-tuple

A sequence of nodes in a graph connected by edges

A function whose range is TRUE, FALSE

A predicate

The set from which outputs of a function are drawn

A predicate, most typically when the domain is a set
of k-tuples

A list of objects

A group of objects

A path without repetition

A finite list of symbols from an alphabet

A member of an alphabet

A graph without cycles

An operation on sets combining all elements into a
single set

A point in a graph
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0.3

DEFINITIONS, THEOREMS, AND PROOFS

Theorems and proofs are the heart and soul of mathematics and definitions are its
spirit. These three entities are central to every mathematical subject, including
ours.

Definitions describe the objects and notions that we use. A definition may be
simple, as in the definition of sez given earlier in this chapter, or complex as in
the definition of security in a cryptographic system. Precision is essential to any
mathematical definition. When defining some object we must make clear what
constitutes that object and what does not.

After we have defined various objects and notions, we usually make #matbe-
matical statements about them. Typically a statement expresses that some object
has a certain property. The statement may or may not be true, but like a defini-
tion, it must be precise. There must not be any ambiguity about its meaning.

A proof is a convincing logical argument that a statement is true. In math-
ematics an argument must be airtight, that is, convincing in an absolute sense.
That is rather different from the notion of proof that we use in everyday life or
in the law. A murder trial demands proof “beyond any reasonable doubt.” The
weight of evidence may compel the jury to accept the innocence or guilt of the
suspect. However, evidence plays no role in a mathematical proof. A mathemati-
cian demands proof beyond sy doubt.

A theorem is a mathematical statement proved true. Generally we reserve the
use of that word for statements of special interest. Occasionally we prove state-
ments that are interesting only because they assist in the proof of another, more
significant statement. Such statements are called lemmas. Occasionally a theo-
rem or its proof may allow us to conclude easily that other, related statements are
true. These statements are called corollaries of the theorem.

FINDING PROOFS

The only way to determine the truth or falsity of a mathematical statement is with
a mathematical proof. Unfortunately, finding proofs isn’t always easy. It can’t be
reduced to a simple set of rules or processes. During this course, you will be asked
to present proofs of various statements. Don’t despair at the prospect! Even
though no one has a recipe for producing proofs, some helpful general strategies
are available.

First, carefully read the statement you want to prove. Do you understand all
the notation? Rewrite the statement in your own words. Break it down and con-
sider each part separately.

Sometimes the parts of a multipart statement are not immediately evident.
One frequently occurring type of multipart statement has the form “ P if and only
if Q”, often written “P iff Q”, where both P and Q are mathematical statements.
This notation is shorthand for a two-part statement. The first part is “P only if
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Q,” which means: If P is true, then @ is true, written P = Q. The second is
“p if Q,” which means: If @ is true, then P is true, written P < Q. The first
of these parts is the forward direction of the original statement and the second
is the reverse direction. We write “P if and only if Q” as P <= Q. To prove a
statement of this form you must prove each of the two directions. Often, one of
these directions is easier to prove than the other.

Another type of multipart statement states that two sets A and B are equal.
The first part states that A is a subset of B, and the second part states that B is a
subset of A. Thus one common way to prove that A = B is to prove that every
member of A also is a member of B and that every member of B also is a member
of A.

Next, when you want to prove a statement or part thereof, try to get an in-
tuitive, “gut” feeling of why it should be true. Experimenting with examples is
especially helpful. Thus, if the statement says that all objects of a certain type

I‘IQ‘TP a nqrﬁr‘nlar f\f‘ﬁnPl‘f’U l’\l(‘]{ a ‘FPW ﬁhlP(‘fQ fTF H‘mf tvne and ﬁ]’\QPﬂfP 1']'191‘ fhP\f ac-
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tually do have that property. After domg s0, try to find an object that fails to have
the property, called a counterexample. If the statement actually is true, you will
not be able to find a counterexample. Seeing where you run into difficulty when
you atternpt to find a counterexample can help you understand why the statement
is true.

EXAMPLE 0.9 ..............................................................................................................................

Suppose that you want to prove the statement for every graph G, the sum of the
degrees of all the nodes in G is an even number.

First, pick a few graphs and observe this statement in action. Here are some
examples.

o—0 O0—0—0

sum = 24242 sum = 2+34-4+342

Next, try to find a counterexample, that is, a graph in which the sum is an odd
number.
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Every time an edge is added,
the sum increases by 2.

Can you now begin to see why the statement is true and how to prove it?

If you are still stuck trying to prove a statement, try something easier. Attempt
to prove a special case of the statement. For example, if you are trying to prove
that some property is true for every k > 0, first try to prove it for k£ = 1. If you
succeed, try it for £ = 2, and so on until you can understand the more general
case. If a special case is hard to prove, try a different special case or perhaps a
special case of the special case.

Finally, when you believe that you have found the proof, you must write it up
properly. A well-written proof is a sequence of statements, wherein each one fol-
lows by simple reasoning from previous statements in the sequence. Carefully
writing a proof is important, both to enable a reader to understand it and for you
to be sure that it is free from errors.

The following are a few tips for producing a proof.

* Bepatient. Finding proofs takes time. If you don’t see how to do it right away,
don’t worry. Researchers sometimes work for weeks or even years to find a
single proof.

* Come back to iz. Look over the statement you want to prove, think about it
a bit, leave it, and then return a few minutes or hours later. Let the uncon-
scious, intuitive part of your mind have a chance to work.

* Be neat. When you are building your intuition for the statement you are try-
ing to prove, use simple, clear pictures and/or text. You are trying to develop
your insight into the statement, and sloppiness gets in the way of insight.
Furthermore, when you are writing a solution for another person to read,
neatness will help that person understand i.

* Be concise. Brevity helps you express high-level ideas without getting lost in
details. Good mathematical notation is useful for expressing ideas concisely.
But be sure to include enough of your reasoning when writing up a proof so
that the reader can easily understand what you are trying to say.
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For practice, let’s prove one of DeMorgan’s laws.

THEOREM 0,10  -oroerissssessssssssessetessssssssossess s e esesesessessss s s ssssses s
For any two sets Aand B, AUB = AN B.

First, is the meaning of this theorem clear? If you don’t understand the mean-
ing of the symbols U or N or the overbar, review the discussion on page 4.

To prove this theorem we must show that the two sets AU B and A N B are
equal. Recall that we may prove that two sets are equal by showing that every
member of one set also is a member of the other and vice versa. Before looking
at the following proof, consider a few examples and then try to prove it yourself.

PROOF  This theorem states that two sets, AU B and AN B, are equal. We
prove this assertion by showing that every element of one also is an element of
the other, and vice versa.

Suppose that z is an element of A U B. Then z is notin AU B from the defi-
nition of the complement of a set. Therefore z isnotin A and z is not in B, from
the definition of the union of two sets. In other words, z is in A and z is in B.
Hence the definition of the intersection of two sets shows that z is in AN B.

For the other direction, suppose that z isin ANB. Then z is in both A and B.
Therefore x is notin A and z is not in B, and thus not in the union of these two
sets. Hence z is in the complement of the union of these sets; in other words, z
is in A U B which completes the proof of the theorem.

Let’s try another one.

THEOREM .1 1 sttt setn e e san e st saa s st sss s spe st smmsnons ssasssastates

In any graph G, the sum of the degrees of the nodes of G is an even number.

PROOF  Every edge in G is connected to two nodes. Each edge contributes 1
to each node to which it is connected. Therefore each edge contributes 2 to the
sum of the degrees of all the nodes. Hence, if G contains e edges, then the sum
of the degrees of all the nodes of G is 2e, which is an even number.

...................................................................................................................................................................
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TYPES OF PROOF

Several types of arguments arise frequently in mathematical proofs. Here, we de-
scribe a few that often occur in the theory of computation. Note that a proof may
contain more than one type of argument because the proof may contain within
it several different subproofs.

PROOF BY CONSTRUCTION

Many theorems state that a particular type of object exists. One way to prove
such a theorem is by demonstrating how to construct the object. This technique
is a proof by construction.

Let’s use a proof by construction to prove the following theorem. We define
a graph to be k-regular if every node in the graph has degree .

THEOREM 0."2 .........................................................................................................................

For each even number n greater than 2, there exists a 3-regular graph with n

PROOF Let n be an even number greater than 2. Construct a graph G =
(V, E) with n nodes as follows. The set of nodes of Gis V = {0,1, ... ,n — 1},
and the set of edges of GG is the set

E={{i,i+1}| for0<i<n-2}U{{n—-1,0}}
U {{{, i+ n/2}]| for0 <i<n/2—1}.

Picture the nodes of this graph written consecutively around the circumference of
a circle. In that case the edges described in the top line of E go between adjacent
pairs around the circle. The edges described in the bottom line of E go between
nodes on opposite sides of the circle. This mental picture clearly shows that every
node in G has degree 3.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PROOF BY CONTRADICTION

In one common form of argument for proving a theorem, we assume that the

londe +4 atv ~herimaecler Falon
theorem 1s false and then show that this ’&SSumPtu’)ﬁ 1€aas 1o ail ooviIousLy false

consequence, called a contradiction. We use this type of reasoning frequently in
everyday life, as in the following example.
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Jack sees Jill, who has just come in from outdoors. On observing that she is com-
pletely dry, he knows that it is not raining. His “proof” that it is not raining is
that, if it were raining (the assumption that the statement is false), 7ill would be wet
(the obviously false consequence). Therefore it must not be raining.

Next, let’s prove by contradiction that the square root of 2 is an irrational num-
ber. A number is rational if it is a fraction m/n where m and n are integers; in
other words, a rational number is the razio of integers m and n. For example, 2/3

obviously is a rational number. A number is frrational if it is not rational.

Gialy 1o 4 141U aL 11U R A

THEOREM 0.14 ---------------------------------------------------- L T P P P T P Py ssesesns sases

V2 is irrational.

PRooOF First, we assume

that v/2 is rational. Thus

where both m and n are integers. If both m and n are divisible by the same integer
greater than 1, divide both by that integer. Doing so doesn’t change the value of

the fraction. Now, both m and n cannot be even numbers.

We multiply both sides of the equation by 1 and obtain

nv2 =m.
We square both sides and obtain
2n? = m?.

Because m? is 2 times the integer n?, we know that m? is even. Therefore m, too,
is even, as the square of an odd number always is odd. So we can write m = 2k
for some integer k. Then, substituting 2k for m, we get

2n? = (2k)?
= 4k2.
Dividing both sides by 2 we obtain
n? = 2k?.
But this result shows that n? is even and hence that n is even. Thus we have es-

tablished that both m and n are even. But we had earlier reduced m and n so that
they were not both even, a contradiction.
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PROOF BY INDUCTION

Proof by induction is an advanced method used to show that all elements of an
infinite set have a specified property. For example, we may use a proof by induc-
tion to show that an arithmetic expression computes a desired quantity for every
assignment to its variables or that a program works correctly at all steps or for all
inputs.

To illustrate how proof by induction works, let’s take the infinite set to be the
natural numbers, A" = {1,2,3, ...}, and say that the property is called P. Qur
goal is to prove that P(k) is true for each natural number k. In other words, we
want to prove that P(1) is true, as well as P(2), P(3), P(4), and so on.

Every proof by induction consists of two parts, the induction step and the basis.
Each part is an individual proof on its own. The induction step proves that for
each ¢ > 1, if P(i) is true, then so is P(i + 1). The basis proves that P(1) is true.

When we have proven both of these parts, the desired result follows, namely,
that P(i) is true for each i. Why? First, we know that P(1) is true because the
basis alone proves it. Second, we know that P(2) is true because the induction
step proves that, if P(1) is true then P(2) is true, and we already know that P( 1)
is true. Third, we know that P(3) is true because the induction step proves that, if
P(2) is true then P(3) is true, and we already know that P(2) is true. This process
continues for all natural numbers, showing that P(4) is true, P(5) is true, and so
on.

Once you understand the preceding paragraph, you can easily understand vari-
ations and generalizations of the same idea. For example, the basis doesn’t neces-
sarily need to start with 1; it may start with any value b. In that case the induction
proot shows that P(k) is true for every k that is at least b.

In the induction step the assumption that P(3) is true is called the induction
hypotbesis. Sometimes having the stronger induction hypothesis that P(5) is true
for every j <1 is useful. The induction proof still works because, when we want
to prove that P(: + 1) is true we have already proved that P(4) is true for every
J <.

'The format for writing down a proof by induction is as follows.

Basis: Prove that P(1) is true.

Induction step: For each i > 1, assume that P(i) 1s true and use this assumption
to show that P(i+ 1) is true.

Now, let’s prove by induction the correctness of the formula used to calculate
the size of monthly payments of home mortgages. When buying a home, many
people borrow some of the money needed for the purchase and repay this loan
over a certain number of years. Typically, the terms of such repayments stipulate
that a fixed amount of money is paid each month to cover the interest, as well as
part of the original sum, so that the total is repaid in 30 years. The formula for
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calculating the size of the monthly payments is shrouded in mystery, but actually
is quite simple. It touches many people’s lives, so you should find it interesting.
We use induction to prove that it works, making ita good illustration of that tech-
nique.

First, we set up the names and meanings of several variables. Let P be the prin-
cipal, the amount of the original loan, Let I be the yearly interest rate of the loan,
where I = 0.06 indicates a 6% rate of interest. Let Y be the monthly payment.
For convenience we define another variable M from I, for the monthly multi-
plier. It is the rate at which the loan changes each month because of the interest
onit. So M =1+ 1/12.

Two things happen each month. First, the amount of the loan tends to increase
because of the monthly multiplier. Second, the amount tends to decrease because
of the monthly payment. Let P; be the amount of the loan outstanding after the
tth month. Then Py = P is the amount of the original loan, P, = M P, — Y is
the amount of the loan after one month, P, = M P; —Y is the amount of the loan
after two months, and so on. Now we are ready to state and prove a theorem by
induction on ¢ that gives a formula for the value of P;.

THEOREM 0.15 -------------------------------------------------------------------------------------------------------------------------

For each ¢t > 0,
Mt—1

Lyl

M-1)

Pt:PMf—Y(
\

PROOF

Basis: Prove that the formula is true for ¢t = 0. If ¢ = 0, then the formula states

that
MY —1
P = 0 _y .
y = PM (M~1>

We can simplify the right-hand side by observing that M = 1. Thus we get
PO - P)

which holds because we have defined P, to be P. Therefore we have proved that
the basis of the induction is true.

Induction step: For each k > 0 assume that the formula is true for ¢ = & and
show that it is true for ¢t = k + 1. The induction nypothesis states that

MF—1
P, = PMF Yy .
k (3r=1)

Our objective is to prove that

Py = PMF1 _y (_]\J_’ffi:_l) )

M—-1
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We do so with the following steps. First, from the definition of Py from P,
we know that

Pk;+1:PkM—1/.

Therefore, using the induction hypothesis to calculate Py,

ME—1
Piy1 = {PM’“—Y(M_I)}MmY.

Multiplying through by M and rewriting Y yields

Mkt _ M M-1
Py = PM*1 Y (—————) —Y ( )

M—1 M—1
METL

=PM Yy [ — " .
(=)

Thus the formula is correct for ¢ = k + 1, which proves the theorem.

........................................................................................................................................................................

Problem 0.13 asks you to use this formula to calculate actual mortgage pay-
ments.

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain. Write a short informal English description of each set.

a. {1,3,5,7,...}.

b {...,—4,-2,0,2,4,..., }.

c. {n|n = 2m for some m in N'}.

d. {n|n = 2m for some m in N, and n = 3k for some k in N'}.

e. {w| wis astring of Os and 1s and w equals the reverse of w}.

f. {n|nisanintegerandn = n+ 1}.
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

CHAPTER O/ INTRODUCTION

Write formal descriptions of the following sets.

ntaining the numbers 1, 10,

~rd 100
aliu UU-

The set containing all integers that are greater than 5.
The set containing all natural numbers that are less than 5.

The set containing the string aba.

o 2p T

The set containing the empty string.

™

The set containing nothing at all.
Let A be the set {x,y,z}, and B be the set {x,y}.

Is A a subset of B?

Is B a subset of A?

Whatis AU B?

Whatis AN B?

Whatis A x B?

What is the power set of B?

I

gl

If A has a elements and B has b elements, how many elements are in A x B? Explain
your answer.

If C is a set with ¢ elements, how many elements are in the power set of C? Explain
your answer.

Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9, 10}. The unary function
f: X—Y and the binary function g: X x ¥—Y are described in the following
tables.

_n | f(n) g6 7 8 9 10
1 6 1110 10 10 10 10
2 7 217 8 9 10 6
3 6 317 7 8 8 9
4] 7 419 8 7 6 10
5] 6 5/ 6 6 6 6 6
a. What is the value of f(2)?
b. What are the range and domain of f?
c. What is the value of g(2, 10)?
d. What are the range and domain of g?
e. What is the value of g(4, f(4))?
For each part, give a relation that satisfies the condition.
a. Reflexive and symmetric but not transitive
b. Reflexive and transitive but not symmetric
c. Symmetric and transitive but not reflexive
Consider the undirected graph G = (V| E) where V| the set of nodes, is {1,2,3,4}
and E, the set of edges, is {{1,2}, {2,3}, { } {2,4}, {1,4}}. Draw the
graph G. What is the degree of node 1? of node 3? Indicate a path from node 3

to node 4 on your drawing of G.
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0.9 Write a formal description of the following graph.

PROBLEMS
0.10 Find the error in the following proof that 2 = 1.

0.11

*0.12

0.13

Consider the equation a = b. Multiply both sides by a to obtain a? = ab. Subtract
b? from both sides to get a? — b* = ab — b*. Now factor each side, (a+b)(a —b) =
b(a — b), and divide each side by (a — b}, to get a+b = b. Finally, let e and b equal 1,
which shows that 2 = 1.

Find the error in the following proof that all horses are the same color.
CLAIM: In any set of h horses, all horses are the same color.
PROOF: By induction on h.

Basis: For h = 1. In any set containing just one horse, all horses clearly are the
same color.

Induction step: For k > 1 assume that the claim is true for 4 = k and prove that
it is true for A = k + 1. Take any set H of k + 1 horses. We show that all the horses
in this set are the same color. Remove one horse from this set to obtain the set Hy
with just k horses. By the induction hypothesis, all the horses in H; are the same
color. Now replace the removed horse and remove a different one to obtain the set
H>. By the same argument, all the horses in Hz are the same color. Therefore all
the horses in H must be the same color, and the proof is complete.

Ramsey’s theorem. Let G be a graph. A cligue in G is a subgraph in which every two
nodes are connected by an edge. An anti-clique, also called an independent set, is a
subgraph in which every two nodes are not connected by an edge. Show that every
graph with n nodes contains either a clique or an anti-clique with at least $ log, n
nodes.

Use Theorem 0.15 to derive a formula for calculating the size of the monthly pay-
ment for a mortgage in terms of the principal P, interest rate I, and the number
of payments t. Assume that, after ¢ payments have been made, the loan amount is
reduced to 0. Use the formula to calculate the dollar amount of each monthly pay-
ment for a 30-year mortgage with 360 monthly payments on an initial loan amount
of $100,000 with an 8% annual interest rate.
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REGULAR LANGUAGES

The theory of computation begins with a question: What is a computer? Tt is
perhaps a silly question, as even my four-year-old daughter knows that this thing
I type on is a computer. But these real computers are quite complicated—too
much so to allow us to set up a manageable mathematical theory of them di-
rectly. Instead we use an idealized computer called a computational model. As
with any model in science, a computational model may be accurate in some ways
but perhaps not in others. Thus we will use several different computational mod-
els, depending on the features we want to focus on. We begin with the simplest
model, called the finite state machine or finite automaton.

Finite automata are good models for computers with an extremely limited
amount of memory. What can a computer do with such a small memory? Many
useful things! In fact, we interact with such computers all the time, as they lie at
the heart of various electromechanical devices.

As shown in the following figures, the controller for an automatic door is one
example of such a device. Often found at supermarket entrances and exits, auto-
matic doors swing open when sensing that a person is approaching. An automatic

31
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door has a pad in front to detect the presence of a person about to walk through
the doorway. Another pad is located to the rear of the doorway so that the con-
troller can hold the door open long enough for the person to pass all the way
through and also so that the door does not strike someone standing behind it as

it opens.

front rear

pad pad

door

FicUure 1.1
Top view of an automatic door

The controller is in either of two states: “OPEN” or “CLOSED,” representing
the corresponding condition of the door. As shown in the following figures, there
are four possible input conditions: “FRONT” (meaning that a person is standing
on the pad in front of the doorway), “REAR” (meaning that a person is standing on
the pad to the rear of the doorway), “BO'TH” (meaning that people are standing
on both pads), and “NEITHER” (meaning that no one is standing on either pad).

REAR FRONT
BOTH REAR
NEITHER BOTH

NEITHER

FIGURE 1.2
State diagram for automatic door controller
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input signal

| NEITHER FRONT REAR BOTH
state CLOSED | CLOSED OPEN CLOSED CLOSED
OPEN CLOSED OPEN OPEN OPEN

FIGURE 1.3
State transition table for automatic door controller

The controller moves from state to state, depending on the input it receives.
When in the CLOSED state and receiving input NEITHER or REAR, it remains in
the CLOSED state. In addition, if the input BOTH is received, it stays CLOSED
because opening the door risks knocking someone over on the rear pad. But if
the input FRONT arrives, it moves to the OPEN state. In the OPEN state, if input
FRONT, REAR, or BOTH is received, it remains in OPEN. If input NEITHER
arrives, it returns to CLOSED.

For example, a controller might start in state CLOSED and receive the fol-
lowing series of input signals: FRONT, REAR, NEITHER, FRONT, BOTH,
NEITHER, REAR, NEITHER. It then would go through the series of states:
CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED, CLOSED,
CLOSED.

Thinking of an automatic door controller as a finite automaton is useful be-
cause that suggests standard ways of representation as in Figures 1.2 and 1.3, This
controller is a computer that has just a single bit of memory, capable of recording
which of the two states the controller is in. Other common devices have con-
trollers with somewhat larger memories, In an elevator controller a state may
represent the floor the elevator is on and the inputs might be the signals received
from the buttons. This computer might need several bits to keep track of this
information. Controllers for various household appliances such as dishwashers
and electronic thermostats, as well as parts of digital watches and calculators, are
additional examples of computers with limited memories. The design of such
devices requires keeping the methodology and terminology of finite automata in
mind.

Finite automnata and their probabilistic counterpart Markov chains are useful
tools when we are attempting to recognize patterns in data. These devices are
used in speech processing and in optical character recognition. Markov chains
have even been used to model and predict price changes in financial markets.

We will now take a close look at finite automata from a mathematical perspec-
tive. We will develop a precise definition of a finite automaton, terminology for
describing and manipulating finite automata, and theoretical results that describe
their power and limitations. Besides giving us a clearer understanding of what fi-
nite automata are and what they can and cannot do, the theoretical development
allows us to practice and become more comfortable with mathematical defini-
tions, theorems, and proofs in a relatively simple setting.
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In beginning to describe the mathematical theory of finite automata, we do so
in the abstract, without reference to any particular application. The following
figure depicts a finite automaton called M;.

FIGURE 1.4
A finite automaton called M; that has three states

Figure 1.4 is called the state diagram of M. It has three states, labeled ¢1, go,
and gs. The start state, q,, is indicated by the arrow pointing at it from nowhere.
The accept state, g2, is the one with a double circle. The arrows going from one
state to another are called transitions.

When this automaton receives an input string such as 1101, it processes that
string and produces an output. The output is either accept or reject. We will
consider only this yes/no type of output for now to keep things simple. The pro-
cessing begins in M, s start state. The automaton receives the symbols from the
input string one by one from left to right. After reading each symbol, M; moves
from one state to another along the transition that has that symbol as its label.
When it reads the last symbol, M; produces its output. The output is accept if
M 1s now in an accept state and reject if it is not.

For example, when we feed the input string 1101 to the machine M; in Fig-
ure 1.4, the processing proceeds as follows.

. start in state qq;
. read 1, follow transition from ¢, to ¢o;

read 1, follow transition from g5 to go;

=W N e

. read 0, follow transition from g5 to gs;
5. read 1, follow transition from g¢s to go;

6. accept because M is in an accept state gz at the end of the input.

Experimenting with this machine on a variety of input strings reveals that it
accepts the strings 1, 01, 11, and 0101010101. In fact, M, accepts any string that
ends with a 1, as it goes to its accept state gy whenever it reads the symbol 1. In
addition, it accepts strings 100, 0100, 110000, and 0101000000, and any string
that ends with an even number of 0s following the last 1. It rejects other strings,
suchas 0, 10, 101000. Can you describe the language consisting of all strings that
M accepts? We will do so shortly.
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FORMAL DEFINITION OF A FINITE AUTOMATON

In the preceding section we used state diagrams to introduce finite automata.
Now we define finite automata formally. Though state diagrams are easier to
grasp intuitively, we need the formal definition, too, for two specific reasons.
First, a formal definition is precise. It resolves any uncertainties about what
is allowed in a finite automaton. If you were uncertain about whether finite au-
tomata were allowed to have 0 accept states or whether they must have exactly
one transition exiting every state for each possible input symbol, you could con-

ult the formal definition and verify that the answer is ves in both cases. Second

1L i1 AL ar BLLLLIARAIR Qale VA iy Liial LUL QlISHYLL A3 FL3 2020 UL Ladta. DRI,

ormal definition provides notation. Good notation helps you think and express
vour thoughts clearly.

The language of a formal definition is somewhat arcane, having some similar-
ity to the language of a legal document. Both need to be precise, and every detail
must be spelled out.

A finite automaton has several parts. It has a set of states and rules for going
from one state to another, depending on the input symbol. It has an input al-
phabet that indicates the allowed input symbols. It has a start state and a set of
accept states. The formal definition says that a finite automaton is a list of those
five objects: set of states, input alphabet, rules for moving, start state, and accept
states. In mathematical language a list of five elements is often called a 5-tuple.
Hence we define a finite automaton to be a 5-tuple consisting of these five parts.

We use something called a transition function, frequently denoted 8, to define
the rules for moving. If the finite automaton has an arrow from a state z to a
state y labeled with the input symbol 1, that means that, if the automaton is in
state z when it reads a 1, it then moves to state y. We can indicate the same thing
with the transition function by saying that §(z, 1) = y. This notation is a kind of
mathematical shorthand. Putting it all together we arrive at the formal definition
of finite automata.

DEFINITION LT sttt s s s s s s s s
A finite automaton is a 5-tuple (Q, X, 6, qo, F'), where

1. Q) is a finite set called the states,

2. ¥ is a finite set called the alpbabet,

3.6: Q x X—(Q) is the tmnsit‘icmﬁmr:tion,1
4. gy € Q is the start state, and

5. F € Q is the set of accept states.?

The formal definition precisely describes what we mean by a finite automa-
ton. For example, returning to the earlier question of whether 0 accept states is

IRefer back to page 7 if you are uncertain about the meaning of §: Q x E— Q.
2Acce:pt states sometimes are called final states.
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allowable, you can see that setting F" to be the empty set @ yields 0 accept states,
w]"ll(‘h 18 allowable, Fnrrhermnre thP_ transition function 8 Sppr'i'ﬁpc exactly one

next state for each possible combination of a state and an input symbol. Th;t an-
swers our other question affirmatively, showing that exactly one transition arrow
exits every state for each possible input symbol.

We can use the notation of the formal definition to describe individual finite
automata by specifying each of the five parts listed in Definition 1.1. For example,
let’s return to the finite automaton M; depicted in Figure 1.4.

FIGURE 1.5
The finite automaton M,

We can describe M, formally by writing M; = (Q, %, 6, 1, F), where
L Q= {q,q,4q},

2. ¥=4{0,1},
3. 6 is described as

0 1
91 |91 g2
g2 | g3 gz
a3 | 42 Qg2

4. q is the start state, and
5. F = {QQ}

If Ais the set of all strings that machine M accepts, we say that A is the lan-
guage of machine M and write L(M) = A. We say that M recognizes A or
that M accepts A. Because the term accepr has different meanings when we refer
to machines accepting strings and machines accepting languages, we prefer the
term recognize for languages in order to avoid confusion.

A machine may accept several strings, but it always recoghizes only one lan-
guage. If the machine accepts no strings, it still recognizes one language, namely,
the empty language 9.
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A = {w| w contains at least one 1 and

an even number of Os follow the last 1}.

Then L(M;) = A, or equivalently, M; recognizes A.

EXAMPLE 1.2 ..............................................................................................................................

FIGURE 1.6
State diagram of the two-state finite automaton M,

In the formal description M, = ({ql, g2}, {0,1}, 6, q1, {QQ}). The transition
function 6 is

o 1
1| @1 g2
qz | @1 g2

Remember that the state diagram of M5 and the formal description of M, con-
tain the same information, only in different form. You can always go from one to
the other if necessary.

A good way to begin understanding any machine is to try it on some sample
input strings. When you do these “experiments” to see how the machine is work-
ing, its method of functioning often becomes apparent. On the sample string
1101 the machine M, starts in its start state ¢; and proceeds first to state ¢ after
reading the first 1, and then to states gz, q1, and g after reading 1, 0, and 1. The
string is accepted because the state g3 is an accept state. But string 110 leaves M;
In state gy, so it is rejected. After trying a few more examples, you would see that
M3 accepts all strings that end in a 1. Thus L(M>5) = {w| w endsin a 1}. 2

=
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EXAMPLE 1.3 ..............................................................................................................................

Consider the finite automaton Ms.

FIGURE 1.7
State diagram of the two-state finite automaton M;

Machine Mj is similar to Ma except for the location of the accept state. As
usual, the machine accepts all strings that leave it in an accept state when it has
finished reading. Note that, because the start state is also an accept state, M
accepts the empty string €. As soon as a machine begins reading the empty string
itis at the end, so if the start state is an accept state, ¢ is accepted. In addition to
the empty string, this machine accepts any string ending with a 0. Here,

L(M3;) = {w| w is the empty string € or ends in a 0}.

EXAMPLE '|.4 ..............................................................................................................................

The following figure shows a five-state machine M,

FIGURE 1.8
Finite automaton M,
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My has two accept states, ¢; and r; and operates over the alphabet ¥ = {a, b}.
Some experimentation shows that it accepts strings a, b, aa, bb, and bab, but not
strings ab, ba, or bbba. This machine begins in state s, and after it reads the first
symbol in the input, it either goes left into the g states or right into the  states.
In either case it can never return to the start state (in contrast to the previous
examples), as it has no way to get from any other state back to 5. If the first symbol
in the input string is a, then it goes left and accepts when the string ends with an
a. Similarly, if the first symbol is a b, the machine goes right, and accepts when
the string ends in b. So My accepts all strings that start and end with a, or that
start and end with b. In other words, My accepts strings that start and end with
the same symbol.

EXAMPLE '|.5 ..............................................................................................................................

The following diagram shows machine M5, which has a four-symbol input alpha-
bet, ¥ = {(RESET), 0,1, 2}. We treat (RESET) as a single symbol.

FIGURE 1.9
Finite automaton AM;

My keeps a running count of the sum of the numerical input symbols it reads,
modulo 3. Every time it receives the (RESET) symbol it resets the count to 0. It
accepts if the sum is 0, modulo 3, or in other words, if the sum is a multiple of 3.

EXAMPLE .0 i st eessss s s s asesssssssmsesssssossassssssesssvrasssss s ons

Describing a finite automaton by state diagram is not possible in some cases.
That may occur when the diagram would be too big to draw or if, as in this ex-
ample, the description depends on some unspecified parameter. In these cases we
resort to a formal description to specify the machine.
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Consider a generalization of Example 1.5 using the same four symbol alpha-
bet . For each 7 > 1 let A; be the language of all strings where the sum of the
numbers is a multiple of ¢, except that the sum is reset to 0 whenever the symbol
(RESET) appears. For each A; we give a finite automaton B, recognizing A;. We
describe the machine B; formally as follows: B; = (Q;. £, 8;, qo, {qo}), where Q;
is the set of ¢ states {qo,¢1, ¢z, ... ,¢;_1}, and we design the transition function
é; so that for each j, if B; is in ¢, the running sum is j, modulo i. For each ¢; let

6:(¢5,0) = qj,

6;{q;,1) = qx where k = j + 1 modulo 1,
6i(q;,2) = qx where k = j + 2 modulo i, and
6i(g;, {(RESET)) = qq.

FORMAL DEFINITION OF COMPUTATION

So far we have described finite automata informally, using state diagrams, and
with a formal definition, as a 5-tuple. The informal description is easier to grasp
at first, but the formal definition is useful for making the notion totally precise,
resolving any ambiguities that may have occurred in the informal description.
Next we do the same for a finite automaton’s computation. We already have an
informal idea of the way it computes, and we now formalize it mathematically.

Let M = (Q.%,8,q0, F) be a finite automaton and w = wjwy--- w,
be a string over the alphabet £. Then M accepts w if a sequence of states
To,T1, - .. , Ty exists in @ with the following three conditions:

L. 5 = qo,

2. é(’f'@,w,;+1):7"¢+1 fori:(), ,77,—1, and

3.r, € F.

Condition 1 says that the machine starts in the start state. Condition 2 says that
the machine goes from state to state according to the transition function. Condi-
tion 3 says that the machine accepts its input if it ends up in an accept state. We
say that A vecognizes language A if A = {w| M accepts w}.

DEFINITION .7 i e rmem s s s sssssisssasessssessstsssstsssssesssessssesssesssessasssseses

A language is called a regular language if some finite automaton recognizes it.
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EXAMPLE T 8 sttt st e e st e
'Take machine Mj; from Example 1.5. Let w be the string
10{RESET)22(RESET)012

Then Mj accepts w according to the formal definition of computation because
the sequence of states it enters when computing on w is

L(M;) = {w]| the sum of the symbols in w is 0 modulo 3,
except that (RESET) resets the count to 0}.

As M5 recognizes this language, it is a regular language.

DESIGNING FINITE AUTOMATA

Whether it be of automaton or artwork, design is a creative process. As such it
cannot be reduced to a simple recipe or formula. However, you might find a par-
ticular approach helpful when designing various types of automata. That is, put
yourself in the place of the machine you are trying to design and then see how
you would go about performing the machine’s task. Pretending that you are the
machine is a psychological trick that helps engage your whole mind in the design
process.

Let’s design a finite automaton using the “reader as automaton” method just
described. Suppose that you are given some language and want to design a finite
automaton that recognizes it. Pretending to be the automaton, you receive an
input string and must determine whether it is a member of the language the au-

tomaton is supposed to recognize. You get to see the symbols in the string one

by one. After each symbol you must decide whether the string seen so far is in
the language. The reason is that you, like the machine, don’t know when the end
of the string is coming, so you must always be ready with the answer.

First, in order to make these decisions, you have to figure out what youneed to
remember about the string as you are reading it. Why not simply remember all
you have seen? Bear in mind that you are pretending to be a finite automaton and
that this type of machine has only a finite number of states, which means a finite
memory. Imagine that the input is extremely long, say, from here to the moon, so
that you could not possibly remember the entire thing. You have a finite memory,
say, a single sheet of paper, which has a limited storage capacity. Fortunately, for
many languages you don’t need to remember the entire input. You only need
to remember certain crucial information. Exactly which information is crucial
depends on the particular language considered.

For example, suppose that the alphabetis {0,1} and that the language consists
of all strings with an odd number of 1s. You want to construct a finite automaton
F to recognize this language. Pretending to be the automaton, you start getting
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an input string of 0s and 1s symbol by symbol. Do you need to remember the
entire string seen so far in order to determine whether the number of 1s is odd?
Of course not. Simply remember whether the number of 1s seen so far is even
or odd and keep track of this information as you read new symbols. If you read
a 1, flip the answer, but if you read a 0, leave the answer as is.

But how does this help you design E;? Once you have determined the neces-
sary information to remember about the string as it is being read, you represent
this information as a finite list of possibilities. In this instance, the possibilities
would be

1. even so far, and
2. odd so far.

Then you assign a state to each of the possibilities. These are the states of F1, as
shown in the following figure.

Godd

FIGURE 1.10
The two states geven and goqq

Next, you assign the transitions by seeing how to go from one possibility to
another upon reading a symbol. So, if state geven represents the even possibility
and state g,4q represents the odd possibility, you would set the transitions to flip
state on a 1 and stay put on a 0, as shown in the following figure.

FIGURE 1.11
Transitions telling how the possibilities rearrange

Next, you set the start state to be the state corresponding to the possibility
associated with having seen 0 symbols so far (the empty string €). In this case the
start state corresponds to state ge.en because 0 is an even number. Last, set the
accept states to be those corresponding to possibilities where you want to accept
the input string. Set g,44 to be an accept state because you want to accept when
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you have seen an odd number of 1s. These additions are shown in the following
figure.

FIGURE 1.12
Adding the start and accept states

EXAMPLE '|.9 ..............................................................................................................................

This example shows how to design a finite automaton F» to recognize the regu-
lar language of all strings that contain the string 001 as a substring. For example,
0010, 1001, 001, and 11111110011111 are all in the language, but 11 and 0000
are not. How would you recognize this language if you were pretending to be E;?
As symbols come in, you would inidally skip over all 1s. If you come to a 0, then
you note that you may have just seen the first of the three symbols in the pattern
001 you are seeking. If at this point you see a 1, there were too few 0s, so you
go back to skipping over 1s. But if you see a 0 at that point, you should remem-
ber that you have just seen two symbols of the pattern. Now you simply need to
continue scanning until you see a 1. If you find it, remember that you succeeded
in finding the pattern and continue reading the input string until you get to the
end.
So there are four possibilities: You

1. haven’t just seen any symbols of the pattern,
2. have just seen a 0,
3. have just seen 00, or

4. have seen the entire pattern 001.

Assign the states o, g, 0ns. and ass« to these nossibilities. You can assign

e s 40 400, 2128 (501 R LAl oL eI AAINATY, AU Lall 4

transitions by observing that from g reading a 1 you stay in g, but reading a 0 you
move to qo. In go reading a 1 you return to ¢, but reading a 0 you move to goo.
In goo, reading a 1 you move to goo1, but reading a 0 leaves you in gqo. Finally, in
qoo1 reading a O or a 1 leaves you in goos. The start state is g, and the only accept
state is goo1, as shown in the following figure.
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FicUrRe 1.13
Accepts strings containing 001

THE REGULAR OPERATIONS

In the preceding two sections we introduced and defined finite automata and reg-
ular languages. We now begin to investigate their properties. Doing so will help
develop a toolbox of techniques to use when you design automata to recognize
particular languages. The toolbox also will include ways of proving that certain
other languages are nonregular (i.e., beyond the capability of finite automata).

In arithmetic, the basic objects are numbers and the tools are operations for
manipulating them, such as + and x. In the theory of computation the objects are
languages and the tools include operations specifically designed for manipulating
them. We define three operations on languages, called the regular operations,
and use them to study properties of the regular languages.

DEFIN'TION I.lo --------------------------------------------------------------------------------------------------------------------

Let A and B be languages. We define the regular operations union, concatena-
tion, and star as follows.

* Union: AUB = {z|x € Aorx € B}.
* Concatenation: Ao B = {2y|x € Aand y € B}.

* Star: A* = {z1x5 ... 24| k > 0and each z; € A}.

You are already familiar with the union operation. It simply takes all the strings
in both 4 and B and lumps them together into one language.

The concatenation operation is a little trickier. It attaches a string from A in
front of a string from B in all possible ways to get the strings in the new language.

The star operation is a bit different from the other two because it applies to a
single language rather than two. That is, the star operation is a unary operation
instead of a binary operation. It works by attaching any number of strings in A
together to get a string in the new language. Because “any number” includes 0
as a possibility, the empty string € is always a member of A*, no matter what A
is.
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EXAMPLE 1.11 e DI hnessssssEssEEssasiassEEEEERannarrrrrnomnn ey

Let the alphabet ¥ be the standard 26 letters {a,b,... ,z}. If A = {good, bad}
and B = {boy, girl}, then

AU B = {good, bad, boy, girl},
Ao B = {goodboy, goodgirl, badboy, badgirl}, and

A* = {e, good, bad, goodgood, goodbad, badgood, badbad,
goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ... }.

Let N'= {1,2,3,... } be the set of natural numbers. When we say that A is
closed under multiplication we mean that, for any z and y in A, the product z x y
alsoisin V. In contrast V is not closed under division, as 1 and 2 are in A" but 1/2
is not. Generally speaking, a collection of objects is closed under some operation
if applying that operation to members of the collection returns an object still in
the collection. We show that the collection of regular languages is closed under
all three of the regular operations. In Section 1.3 we show that these are useful
tools for manipulating regular languages and understanding the power of finite

automata, R/ ‘/'e be(ﬁn xyirh the nnion oneration
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THEOREM 1.12 -------------------------------------------------------------------------------------------------------------------------

The class of regular languages is closed under the union operation.

In other words, if A; and A; are regular languages, so is A; U Aj.

PROOF IDEA  We have regular languages A; and A, and want to show that
A1 U Ajy also is regular. Because A; and A, are regular, we know that some finite
automaton M, recognizes A; and some finite automaton M, recognizes A;. To
prove that A; U A is regular we demonstrate a finite automaton, call it M, that
recognizes A; U As.

This is a proef by construction. We construct M from M; and M,. Machine
M must accept its input exactly when either M; or M would accept it in order
to recognize the union language. It works by simulating both My and My and

P PV .

accepting if either of the simulations accept.

How can we make machine M simulate A and M,? Perhaps it first simulates
M, on the input and then simulates M3 on the input. But we must be careful
here! Once the symbols of the input are read and used to simulate M, we cannot
“rewind the input tape” to try the simulation on M. We need another approach.

Pretend that you are M. As the input symbols arrive one by one, you simulate
both M, and M, simultaneously. That way only one pass through the input is
necessary. But can you keep track of both simulations with finite memory? All
you need to remember is the state that each machine would be in if it had read
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up to this point in the input. Therefore you need to remember a pair of states.
How many possible pairs are there? If A/, has &y states and M has ks states, the
number of pairs of states, one from M; and the other from Mj, is the product
k| x ko. This product will be the number of states in M, one for each pair. The
transitions of M go from pair to pair, updating the current state for both M, and
M,. The accept states of M are those pairs wherein either M; or M5 is in an
accept state.

PROOF

Let M; recognize Aq, where M = (Q1, %, 61,41, Fy), and
M, recognize Ay, where My = (Qa, 2, 69, qo, F2).

Construct M to recognize A; U Ay, where M = (Q, %, 8, qo, F).

1. @ = {(r1,r2)| 1 € Q1 and ry € Qs }.
This set is the Cartesian product of sets (01 and Q5 and is written Q1 x Q5.
It is the set of all pairs of states, the first from ¢4 and the second from Q5.

2. ¥, the alphabet, is the same as in M, and Ma. In this theorem and in all sub-
sequent similar theorems, we assume for simplicity that both M; and M,
have the same input alphabet £. The theorem remains true if they have
different alphabets, £, and £5. We would then modify the proof to let
Y =3 U,

3. 6, the transition function, is defined as follows. For each (r1,r2) € @ and
eacha € X, let

6{((r1,m2),a) = (61(r1,a),b2(r2,a)).

Hence § gets a state of M (which actually is a pair of states from A; and
M), together with an input symbol, and returns M’s next state.

4. gy is the pair (g1, ¢2).

5. F'is the set of pairs in which either member is an accept state of My or M.
We can write it as

F = {(?‘1,?"2)| ry € Fiorrg € Fz}

This expression is the same as F' = (F} X Q2) U (Q1 x F»). (Note that it is
not the same as F' = F} x Fy. What would that give us instead?3)

This concludes the construction of the finite automaton M that recognizes the
union of A; and A,. This construction is fairly simple, and thus its correctness
is evident from the strategy that is described in the proof idea. More compli-
cated constructions require additional discussion to prove correctness. A formal

3This expression would define M’s accept states to be those for which soth members of the
pair are accept states. In this case M would accept a string only if both M and M2 accept
it, so the resulting language would be the /ntersection and not the union. In fact, this result
proves that the class of regular languages is closed under intersection.
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correctness proof for a construction of this type usually proceeds by induction.
For an example of a construction proved correct, see the proof of Theorem 1.28.
Most of the constructions that you will encounter in this course are fairly simple
and so do not require a formal correctness proof.

We have just shown that the union of two regular languages is regular, thereby
proving that the class of regular languages is closed under the union operation.
We now turn to the concatenation operation and attempt to show that the class
of regular languages is closed under that operation, too.

THEOREM 1

"The class of regular languages is closed under the concatenation operation.

In other words, if A and A are regular languages then so is 4; o A,.

To prove this theorem let’s try something along the lines of the proof of the
union case. As before, we can start with finite automata M; and M, recognizing
the regular languages A; and A,. But now, instead of constructing automaton M
to accept its input if either M or M, accept, it must accept if its input can be bro-
ken into two pieces, where M accepts the first piece and My accepts the second
piece. The problem is that Af doesn’t know where to break its input (i.e., where
the first part ends and the second begins). To solve this problem we introduce a
new technique called nondeterminism.

NONDETERMINISM

Nondeterminism is a useful concept that has had great impact on the theory of
computation. So far in our discussion, every step of a computation follows in a
unique way from the preceding step. When the machine is in a given state and
reads the next input symbol, we know what the next state will be—it is deter-
mined. We call this deterministic computation. In a nondeterministic machine,
several choices may exist for the next state at any point.

Nondeterminism is a generalization of determinism, so every deterministic fi-
nite automaton is automatically a nondeterministic finite automaton. As the fol-
lowing figure shows, nondeterministic finite automata may have additional fea-
tures.
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FIGURE 1.14
The nondeterministic finite automaton N;

The difference between a deterministic finite automaton, abbreviated DFA,
and a nondeterministic finite automaton, abbreviated NFA, is immediately appar-
ent. First, every state of a DFA always has exactly one exiting transition arrow
for each symbol in the alphabet. The nondeterministic automaton shown in Fig-
ure 1.14 violates that rule. State ¢; has one exiting arrow for 0, but it has two for
1; g2 has one arrow for 0, but it has none for 1. In an NFA a state may have zero,
one, or many exiting arrows for each alphabet symbol.

Second, in a DFA, labels on the transition arrows are symbols from the alpha-
bet. This NFA has an arrow with the label e. In general, an NFA may have arrows
labeled with members of the alphabet or . Zero, one, or many arrows may exit
from each state with the label e.

How does an NFA compute? Suppose that we are running an NFA on an input
string and come to a state with multiple ways to proceed. For example, say that
we are in state ¢; in NFA Ny and that the next input symbol is a 1. After reading
that symbol, the machine splits into multiple copies of itself and follows 4/ the
possibilities in parallel. Each copy of the machine takes one of the possible ways
to proceed and continues as before. If there are subsequent choices, the machine
splits again. If the next input symbol doesn’t appear on any of the arrows exiting
the state occupied by a copy of the machine, that copy of the machine dies, along
with the branch of the computation associated with it. Finally, if any one of these
copies of the machine is in an accept state at the end of the input, the NFA accepts
the input string.

If a state with an € symbol on an exiting arrow is encountered, something sim-
ilar happens. Without reading any input, the machine splits into multiple copies,
one following each of the exiting e-labeled arrows and one staying at the current
state. Then the machine proceeds nondeterministically as before.

Nondeterminism may be viewed as a kind of parallel computation wherein
several “processes” can be running concurrently. When the NFA splits to follow
several choices, that corresponds to a process “forking” into several children, each
proceeding separately. If at least one of these processes accepts then the entire
computation accepts.

Another way to think of a nondeterministic computation is as a tree of possi-
bilities. The root of the tree corresponds to the start of the computation. Every
branching point in the trec corresponds to a point in the computation at which
the machine has multiple choices. The machine accepts if at least one of the com-
putation branches ends in an accept state, as shown in the following figure.
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FIGURE 1.15
Deterministic and nondeterministic computations with an accepting
branch

Let’s consider some sample runs of the NFA N; shown in Figure 1.14. On input
010110 start in the start state ¢; and read the first symbol 0. From ¢; there is only
one place to go on a 0, namely, back to ¢;, so remain there.

Next read the second symbol 1. In ¢; on a 1 there are two choices: either stay
in g; or move to ¢2. Nondeterministically, the machine splits in two to follow
each choice. Keep track of the possibilities by placing a finger on each state where
amachine could be. So you now have fingers on states ¢; and ¢2. An € arrow exits
state g2 so the machine splits again; keep one finger on g3, and move the other
to ¢3. You now have fingers on ¢q, ¢2, and gs.

When the third symbol 0 is read, take each finger in turn. Keep the finger
on ¢; in place, move the finger on ¢ to ¢3, and remove the finger that has been
on g3. That last finger had no 0 arrow to follow and corresponds to a process that
simply “dies.” At this point you have fingers on states ¢; and g3.

When the fourth symbol 1 is read, split the finger on ¢; into fingers on states
¢1 and ¢, then further split the finger on ¢, to follow the £ arrow to ¢z, and move
the finger that was on g3 to ¢4. You now have a finger on each of the four states.

When the fifth symbol 1 is read, the fingers on ¢; and ¢3 result in fingers on
states qi, ¢z, g3, and g4, as you saw with the fourth symbol. The finger on state
g2 1s removed. The finger that was on ¢4 stays on ¢4. Now you have two fingers
On ¢4, SO remove one, because you only need to remember that ¢4 is a possible
state at this point, not that it is possible for multiple reasons. :

When the sixth and final symbol 0 is read, keep the finger on ¢, in place, move
the one on ¢, to g3, remove the one that was on g3, and leave the one on ¢4 in
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place. You are now at the end of the string, and you accept if some finger is on an
accept state. You have fingers on states q;, g3, and g4, and as ¢4 is an accept state,
N accepts this string. The computation of N; on input 010110 is depicted in
Figure 1.16.

What does N; do on input 010? Start with a finger on ¢;. After reading the 0
you still have a finger only on ¢y, but after the 1 there are fingers on ¢, g2, and
qs (don’t forget the € arrow). After the third symbol 0, remove the finger on g3,
move the finger on ¢, to g3, and leave the finger on ¢; where it is. At this point
you are at the end of the input, and as no finger is on an accept state, V; rejects

this input.

Symbol read

FIGURE 1.16
The computation of N on input 010110

By continuing to experiment in this way, you will see that N7 accepts all strings
that contain either 101 or 11 as a substring.

Nondeterministic finite automata are useful in several respects. As we will
show, every NFA can be converted into an equivalent DFA, and constructing NFAs
is sometimes easier than directly constructing DFAs. An NFA may be much smaller
than its deterministic counterpart, or its functioning may be easier to understand.
Nondeterminism in finite automata is also a good introduction to nondetermin-
ism in more powerful computational models because finite automata are espe-
cially easy to understand. Now we turn to several examples of NFAs.
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Let A be the language consisting of all strings over {0,1} containing a 1 in the
third position from the end (e.g., 000100 is in A but 0011 is not). The following
four-state NFA N; recognizes A.

FIGURE 1.17
The NFA N; recognizing A

One good way to view the computation of this NFA is to say that it stays in the
start state g1 until it “guesses” that it is three places from the end. At that point,
if the input symbol is a 1, it branches to state ¢, and uses g3 and g, to “check” on
whether its guess was correct.

As mentioned, every NFA can be converted into an equivalent DFA, but some-
times that DFA may have many more states. The smallest DFA for 4 contains eight
states. Furthermore, understanding the functioning of the NFA is much easier, as
you may see by examining the following figure for the DFA.

FIGURE 1.18
A DFA recognizing A

Suppose that we added e to the labels on the arrows going from ¢ to g3 and
from g3 to q4 in machine N; in Figure 1.17. In other words, both arrows would
then have the label 0, 1, & instead of just 0, 1. What language would N recognize
with this modification? Try modifying the DFA in Figure 1.18 to recognize that
language. i
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EXAMPLE 1.15 ..........................................................................................................................

Consider the following NFA N3 that has an input alphabet {0} consisting of a sin-
gle symbol. An alphabet containing only one symbol is called a unary alphabet.

FIGURE 1.19
The NFA N3

This machine demonstrates the convenience of having & arrows.. It accepts
all strings of the form 0% where k is a multiple of 2 or 3. (Remember that the
superscript denotes repetition, not numerical exponentiation.) For example, N3
accepts the strings &, 00, 000, 0000, and 000000, but not 0 or 00000.

Think of the machine operating by inidally guessing whether to test for a mul-
tiple of 2 or a multiple of 3 by branching into either the top loop or the bottom
loop and then checking whether its guess was correct. Of course, we could re-
place this machine by one that doesn’t have € arrows or even any nondeterminism
at all, but the machine shown is the easiest one to understand for this language.

EXAMPLE TJ. T8 s s e e s

We give another example of an NFA in the following figure. Practice with it to
satisfy yourself that it accepts the strings €, a, baba, and baa, but that it doesn’t
accept the strings b, bb, and babba. Later we use this machine to illustrate the
procedure for converting NFAs to DFAs.
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FIGURE 1.20
The NFA N,

FORMAL DEFINITION OF A
NONDETERMINISTIC FINITE AUTOMATON

The formal definition of a nondeterministic finite automaton is similar to that of
a deterministic finite automaton. Both have states, an input alphabet, a transition
function, a start state, and a collection of accept states. However, they differ in
one essentlal way: in the type of transition function. In a DFA the transition func-
tion takes a state and an input symbol and produces the next state. In an NFA the
transition function takes a state and an input symbol or the empty string and pro-
duces the set of possible next states. In order to write the formal definition, we need
to set up some additional notation. For any set Q) we write P((Q) to be the collec-
tion of all subsets of Q. Here P(Q) is called the power set of (. For any alphabet
% we write 3. to be X U {e}. Now we can easily write the formal description of
the type of the transition function in an NFA. Tt is §: Q x L.— P(Q), and we
are ready to give the formal definition.

DEFINITION .17 i s as srsssmsssn sessssesssssessssessssssnssstsssstonssessssssen
A nondeterministic finite automaton is a 5 -tuple (@, X, 6, go, F'), where

1. @ is a finite set of states,

2. X is a finite alphabet,

3. 6: Q x X.—>P(Q) is the transition function,
4. g9 € Q is the start state, and

5. F C Q is the set of accept states.
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EXAMPLE 1'18 ..........................................................................................................................
Recall the NFA Ni:

0,1

The formal description of Ny is (@, 3, 6, q1, F'), where

Y

1. Q= {Q1,QQ,Q3,Q4},
2. X = {0,1},

3. 6 is given as

0 1 £

q | {¢} {g, 2} 0
a2 | {g3} ¢ {ga} ,
g3 | 9 {q4} {
qa | @} {aa} 0

4, g, is the start state, and
5. F = {aqs}.

The formal definition of computation for an NFA also is similar to that for a
DFA. Let N = (Q, X, 8, qo, F') be an NFA and w a string over the alphabet 3. Then
we say that IV accepts w if we can write w as w = y1y2 - - Ym, where each y;
is a member of X, and a sequence of states vy, ry, ... , 7, exists in ( with the
following three conditions:

L. 7o = qo,
2. 701 €6(ri,yip1), fori=0,...,m—1,and
3.r, € F.

Condition 1 says that the machine starts out in the start state. Condition 2 says
that state r;, | is one of the allowable next states when N is in state r; and reading
Yir1. Observe that 8(r;, yi41) is the set of allowable next states and so we say that
Ti+1 1s a member of that set. Finally, Condition 3 says that the machine accepts
its input if the last state is an accept state.

EQUIVALENCE OF NFAS AND DFAS

Deterministic and nondeterministic finite automata recognize the same class of
languages. Such equivalence is both surprising and useful. Itis surprising because
NFAs appear to have more power than DFAs, so we might expect that NFAs recog-
nize more languages. It is useful because describing an NFA for a given language
sometimes is much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.
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THEOREM 1.19 .........................................................................................................................

Every nondeterministic finite automaton has an equivalent deterministic finite
automaton.

PROOF IDEA If a language is recognized by an NFA, then we must show the
existence of a DFA that also recognizes it. The idea is to convert the NFA into an
equivalent DFA that simulates the NFA.

Recall the “reader as automaton” strategy for designing finite automata. How
would you simulate the NFA if you were pretending to be a DFA? What do you
need to keep track of as the input string is processed? In the examples of NFAs
you kept track of the various branches of the computation by placing a finger on
each state that could be active at given points in the input. You updated the fingers
by moving, adding, and removing them according to the way the NFA operates.
All you needed to keep track of was the set of states with fingers.

If k is the number of states of the NFA, it has 2% subsets of states. Each subset
corresponds to one of the possibilities that DFA must remember, so the DFA sim-
ulating the NFA will have 2* states. Now we need to figure out which will be the
start state and accept states of the DFA, and what will be its transition function.
We can discuss this more easily after setting up some formal notation.

PROOF Let N = (Q,%,6,qo, F) be the NFA recognizing some language A,
We construct a DFA M recognizing A. Before doing the full construction, let’s
first consider the easier case wherein N has no & arrows. Later we take the &
arrows into account.

Construct M = (Q', 2,8, g0, F').
1. Q' =P(Q).

Every state of M is a set of states of N. Recall that P(Q) is the set of subsets
of Q.

2.ForRe Q anda € Xlet §’'(R,a) = {g € Q| g € é(r,a) for some r € R}.
If R is a state of M, it is also a set of states of N. When M reads a symbol
a in state R, it shows where a takes each state in R. Because each state may
go to a set of states, we take the union of all these sets. Another way to write
this expression is

&' (R,a) = U 5(r,a). 4
reR
3. q0' = {qo}-
M starts in the state corresponding to the collection containing just the
start state of NV.

4. F' = {R € Q'| R contains an accept state of N'}.
The machine M accepts if one of the possible states that N could be in at
this point is an accept state.

#The notation Urcr 8(r, a) means: the union of the sets §(r, a) for each possible r in R.




56 CHAPTER 1 / REGULAR LANGUAGES

Now we need to consider the € arrows. To do so we set up an extra bit of
notation. For any state R of M we define F(R) to be the collection of states that
can be reached from R by going only along & arrows, including the members of
R themselves. Formally, for R C Q let

E(R) = {q| ¢ can be reached from R by traveling along 0 or more & arrows}.

Then we modify the transition function of A to place additional fingers on all

states that can be reached by going along & arrows after every step. Replacing
8(r, a) by E(é6(r,a)) achieves this effect. Thus

8 (R,a) ={q € Q|q € E(§(r,a)) for some r € R}.

Additionally we need to modify the start state of M to move the fingers initially
to all possible states that can be reached from the start state of NV along the &
arrows. Changing ¢o’ to be E({qo}) achieves this effect. We have now completed
the construction of the DFA M that simulates the NFA N,

The construction of M obviously works correctly. At every step in the com-
putation of M on an inpug, it clearly enters a state that corresponds to the subset
of states that N could be in at that point. Thus our proof is complete.

........................................................................................................................................................................

If the construction used in the preceding proof were more complex we would
need to prove that it works as claimed. Usually such proofs proceed by induction
on the number of steps of the computation. Most of the constructions that we use
in this book are straightforward and so do not require such a correctness proof.
"To see an example of a more complex construction that we do prove correct turn
to the proof of Theorem 1.28.

Theorem 1.19 states that every NFA can be converted into an equivalent DFA.
Thus nondeterministic finite automata give an alternative way of characterizing
the regular languages. We state this fact as a corollary of Theorem 1.19.

COROLLARY 1.20 ...................................................................................................................

A language is regular if and only if some nondeterministic finite automaton rec-
ognizes it.

One direction of the “if and only if” states that a language is regular if some
NFA recognizes it. Theorem 1,19 shows that any NFA can be converted into an
equivalent DFA, so if an NFA recognizes some language, so does some DFA, and
hence the language is regular. The other direction states that a language is regular
only if some NFA recognizes it. That s, if a language is regular, some NFA must
be recognizing it. Obviously, this condition is true because a regular language
has a DFA recognizing it and any DFA is also an NFA.
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EXAMPLE 'I ’21 ..........................................................................................................................

Let’s illustrate the procedure of converting an NFA to a DFA using the machine
N, that was given in Example 1.16. For clarity, we have relabeled the states of
Ny to be {1,2,3}. Thus in the formal description of Ny = (@, {a,b}, 6,1, {1}),
the set of states @ is {1, 2, 3} as shown in the following figure.

To construct a DFA D that is equivalent to Ny, we first determine D’s states.
Ny has three states, {1,2, 3}, so we construct D with eight states, one for each
subset of N,’s states. We label each of D’s states with the corresponding subset.
Thus D’s state set is

{0, {1}, {2}, {3}, {1.2}, {1,3},{2,3}, {1,2,3}}.

FIGURE 1.21
The NFA N4

Next, we determine the start and accept states of D. The start state is E({1}),
the set of states that are reachable from 1 by traveling along e arrows, plus 1 itself.
An g arrow goes from 1 to 3,s0 E£({1}) = {1, 3}. The new accept states are those
containing N4’ accept state; thus {{1}, {1,2},{1,3},{1,2,3} }.

Finally, we determine D’ transition function. Each of D’s states goes to one
place on input a, and one place on input b. We illustrate the process of determin-
ing the placement of D’ transition arrows with a few examples.

In D, state {2} goes to {2,3} on input a, because in Ny, state 2 goes to both
2 and 3 on input a and we can’t go farther from 2 or 3 along € arrows. State {2}
goes to state {3} on input b, because in Ny, state 2 goes only to state 3 on input
b and we can’t go farther from 3 along € arrows.

State {1} goes to @ on a, because no a arrows exit it. It goes to {2} on b.

State {3} goes to {1,3} on a, because in Ny, state 3 goes to 1 on a and 1in turn
goes to 3 with an & arrow. State {3} on b goes to §.

State {1,2} on a goes to {2,3} because 1 points at no states with a arrows and
2 points at both 2 and 3 with a arrows and neither point anywhere with € arrows.
State {1,2} on b goes to {2,3}. Continuing in this way we obtain the following
diagram for D.
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FIGURE 1.22
A DFA D that is equivalent to the NFA Ny

We may simplify this machine by observing that no arrows point at states {1}
and {1, 2}, so they may be removed without affecting the performance of the ma-
chine. Doing so yields the following figure.

FIGURE 1.23
DFA D after removing unnecessary states

CLOSURE UNDER THE REGULAR OPERATIONS

Now we return to the closure of the class of regular languages under the regu-
lar operations that we began in Section 1.1. Our aim is to prove that the union,
concatenation, and star of regular languages are still regular. We abandoned the
original attempt to do so when dealing with the concatenation operation was too
complicated. The use of nondeterminism makes the proofs much easier.

First, let’s consider again closure under union. Earlier we proved closure un-

der union by simulating deterministically both machines simultaneously via a
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Cartesian product construction. We now give a new proof to illustrate the tech-
nique of nondeterminism. Reviewing the first proof, on page 45, may be worth-
while to see how much easier and more intuitive the new proof is.

THEOREM ].22 .........................................................................................................................

The class of regular languages is closed under the union operation.

- e~ IX7~ L,w .
PROOF IDEA Vv il 1

\'4 U«
Ay U Ay is regular. The idea is to tak two NFAs, N1 and N2 for A1 and Ag, an
combine them into one new NFA, V.

Machine N must accept its input if either N} or Ny accepts this input. The
new machine has a new start state that branches to the start states of the old ma-
chines with & arrows. In this way the new machine nondeterministically guesses
which of the two machines accepts the input. If one of them accepts the input,
N will accept it, too.

We represent this construction in the following figure. On the left we indicate
the start and accept states of machines N; and N, with large circles and some
additional states with small circles. On the right we show how to combine N}
and N, into N by adding additional transition arrows.

o

N D
"[00 e
08© 08©
S Y
"Go | oo
q © o ©
5O 5O

—  / L \—/)

FIGURE 1.24
Construction of an NFA N to recognize A; U Ay
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PROOF

Let N1 = (Q1, %, 61,q1, F1) recognize Ay, and
Ng = (QQ, E, 62, qz, FZ) I'CCOgIliZC Ag.

Construct N = (Q, %, 6, go, I) to recognize A; U A,.
1. Q@ = {q0} UQ1 U Q2.

The states of N are all the states of N7 and N, with the addition of a new
start state ¢g.

2. The state gq is the start state of V.

3. The accept states F' = F} U F.
The accept states of N are all the accept states of Ny and Ny. That way N
accepts if either Ny accepts or N, accepts.

4. Define 6 so that for any ¢ € Q and any a € %,

6i(g,a) g€
b2(g,a) ¢ € Q2
{g1,92} gq=qgoanda=¢
0 q=qoand a # &.

6(g,a) =

Now we can prove closure under concatenation. Recall that earlier, without
nondeterminism, completing the proof would have been difficult.

THEOREM 1.23 .........................................................................................................................

The class of regular languages is closed under the concatenation operation.

PROOF IDEA We have regular languages A; and A and want to prove that
Ay o Ay is regular. The idea is to take two NFAs, Ny and IV, for A, and A,, and
combine them into a new NFA N as we did for the case of union, but this time in
a different way, as shown in Figure 1.25.

Assign N’s start state to be the start state of N;. The accept states of Ny have
additional & arrows that nondeterministically allow branching to N, whenever
N7 is in an accept state, signifying that it has found an initial piece of the input
that constitutes a string in A;. The accept states of N are the accept states of
Na only. Therefore it accepts when the input can be split into two parts, the first
accepted by V1 and the second by N2. We can think of N as nondeterministically
guessing where to make the split.
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FiIGURE 1.25

Construction of N to recognize A; o Ag

PROOF
Let N7 = (Q1,%, 61, q1, F1) recognize Ay, and
Ny = (Q2, £, 82, ga, F) recognize As.

Construct N = (Q, X2, 8, q1, F») to recognize A; o As.

1. Q = Q1 UQs.
The states of NV are all the states of N1 and No.
2. The state ¢ is the same as the start state of N;.

W

. The accept states F, are the same as the accept states of Ny.

4. Define § so thatforany g € Q and any a € ¥,

61(q,a) geQiandg & I
61(q,a) ge Franda #¢€
6 —_
(@9 =16, (0.0)Uip) geFanda=e
b2(q,a) q € Qo

........................................................................................................................................................................
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THEOREM 1.24 .........................................................................................................................

The class of regular languages is closed under the star operation.

PROOF IDEA We have a regular language A; and want to prove that A7 also
is regular. We take an NFA Ny for A; and modify it to recognize Aj, as shown in
the following figure. The resulting NFA N will accept its input whenever it can
be broken into several pieces and N accepts each piece.

We can construct N like N; with additional & arrows returning to the start
state from the accept state. This way, when processing gets to the end of a piece
that V7 accepts, the machine NV has the option of jumping back to the start state
to try to read in another piece that Ny accepts. In addition we must modify N
so that it accepts &, which always is a member of A}. One (slightly bad) idea is
simply to add the start state to the set of accept states. This approach certainly
adds € to the recognized language, but it may also add other, undesired strings.
Exercise 1.11 asks for an example of the failure of this idea. The way to fix this
problem is to add a new start state, which also is an accept state, and which has
an & arrow to the old start state. This solution has the desired effect of adding e
to the language without adding anything else.

FIGURE 1.26
Construction of N to recognize A*

PROOF Let Ny = (Q1,%, 61, q1, F1) recognize A;.
Construct N = (@, %, 6, qo, F') to recognize Aj.

L Q={q}UQ:
The states of N are the states of N7 plus a new start state.

2. The state gqq is the new start state.

3. F = {qo} U .
The accept states are the old accept states plus the new start state.
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4. Define 6 so that for any ¢ € @ and any a € %,

-

é1(q, a) geQrandq & Fy
51(q,a) ge Flanda # ¢
5@&):T&W¢UUMJ ge Fanda=¢
{a1} g=qoanda=¢
U g=qoanda # €.

1.3

REGULAR EXPRESSIONS

In arithmetic, we can use the operations + and x to build up expressions such as
(5+3) x4

Similarly, we can use the regular operations to build up expressions describing
languages, which are called regular expressions. An example is:

(0U1)0".

The value of the arithmetic expression is the number 32. The value of a regular
expression is a language. In this case the value is the language consisting of all
strings starting with a 0 or a 1 followed by any number of 0s. We get this result by
dissecting the expression into its parts. First, the symbols 0 and 1 are shorthand
for the sets {0} and {1}. So (0U1) means ({0}U{1}). The value of this part is the
language {0,1}. The part 0* means {0}*, and its value is the language consisting
of all strings containing any number of 0s. Second, like the x symbol in algebra,
the concatenation symbol o often is implicitin regular expressions. Thus (0U1)0*
actually is shorthand for (0U1)00*. The concatenation attaches the strings from
the two parts to obtain the value of the entire expression.

Regular expressions have an important role in computer science applications.
In applications involving text, users may want to search for strings that satisfy
certain patterns. Regular expressions provide a powerful method for describing
such patterns. Utilities such as AWK and GREP in UNIX, modern program-

ming languages such as PERL, and text editors all pmvide mechanisms for the
description of patterns using regular expressions.
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EXAM PLE 1 .25 ..........................................................................................................................
Another example of a regular expression is
(ou1)”

It starts with the language (0 U 1) and applies the * operation. The value of
this expression is the language consisting of all possible strings of Os and 1s. If
¥ = {0,1}, we can write X as shorthand for the regular expression (0U1). More
generally, if ¥ is any alphabet, the regular expression % describes the language
consisting of all strings of length 1 over this alphabet, and ¥* describes the lan-
guage consisting of all strings over that alphabet. Similarly £*1 is the language
that contains all strings that end in a 1. The language (0X*) U (£*1) consists of
all strings that either start with a 0 or end with a 1.

In arithmetic, we say that x has precedence over + to mean that, when there
is a choice, we do the x operation first. Thus in 2+ 3 x 4 the 3 x 4 is done before
the addition. To have the addition done first we must add parentheses to obtain
(2 4+ 3) x 4. In regular expressions, the star operation is done first, followed by
concatenation, and finally union, unless parentheses are used to change the usual
order.

FORMAL DEFINITION OF A REGULAR EXPRESSION

DEFINITION 1,260 et st st st
Say that R is a regular expression if R is

1. a for some a in the alphabet %,

2. e,

3.0,

4. (R1 U R»), where Ry and R, are regular expressions,
5. (Ry o R;), where Ry and R; are regular expressions, or
6. (R7), where Ry is a regular expression.

In items 1 and 2, the regular expressions a and € represent the languages {a}
and {e}, respectively. In item 3, the regular expression () represents the empty
language. In items 4, 5, and 6, the expressions represent the languages obtained
by taking the union or concatenation of the languages R; and Rs, or the star of
the language R;, respectively.

Don’t confuse the regular expressions € and §l. The expression € represents
the language containing a single string, namely, the empty string, whereas 0 rep-
resents the language that doesn’t contain any strings.

Scemingly, we are in danger of defining the notion of regular expression in
terms of itself. If true, we would have a circular definition, which would be in-
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valid. However, R, and R, always are smaller than R. Thus we actually are
defining regular expressions in terms of smaller regular expressions and thereby
avoiding circularity. A definition of this type is called an inductive definition.
Parentheses in an expression may be omitted. If they are, evaluation is done
in the precedence order: star, then concatenation, then union.
When we want to make clear a distinction between a regular expression R and
the language that it describes, we write L(R) to be the language of R.

EXAMPLE 1 .27 ..........................................................................................................................

In the following examples we assume that the alphabet ¥ is {0,1}.

. 0710 = {w]| w has exactly a single 1}.

. X*1%* = {w| w has at least one 1}.

. £*001%* = {w| w contains the string 001 as a substring}.

. (EX)* = {w| w is a string of even length}.’

. (¥XX)* = {w] the length of w is a multiple of three}.

. 01U 10 = {01, 10}.

. 0X*0U 1¥*1 U0 U 1 = {w| w starts and ends with the same symbol}.

. (0Ue)l* =01* U 1*.
The expression 0 U & describes the language {0, €}, so the concatenation
operation adds either O or € before every string in 1*.

9. (0Ue)(1Ue) ={e,0,1,01}.
10. 10 = 0.
Concatenating the empty set to any set yields the empty set.
11. 0* = {e}.
The star operation puts together any number of strings from the language

to get a string in the result. If the language is empty, the star operation can
put together O strings, giving only the empty string.

W I N T s W N

If we let R be any regular expression, we have the following identities. They
are good tests of whether you understand the definition.

RU® =R.
Adding the empty language to any other language will not change it.

Roe=R.
Adding the empty string to any string will not change it.

The length of a string is the number of symbols that it contains.
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However, exchanging (} and € in the preceding identities may cause the equalities
to fail.

R U £ may not equal R.
For example, if R = 0, then L(R) = {0} but L(RUe) = {0,e}.

R o () may not equal R.
For example, if R = 0, then L(R) = {0} but L(R o 0) = 0.

ming languages. Elemental objects in a programming language, called tokens,
such as the variable names and constants, may be described with regular ex-
pressions. For example, a numerical constant that may include a fractional part
and/or a sign may be described as a member of the language

{+,-,e} (DD*UDD*.D*UD*.D D*),

where D = {0,1,2,3,4,5,6,7,8,9} is the alphabet of decimal digits. Examples
of generated strings are: 72, 3.14159, +7., and -.01 .

Once the syntax of the tokens of the programming language have been de-
scribed with regular expressions, automatic systems can generate the lexical an-
alyzer, the part of a compiler that initially processes the input program.

ENCE WITH FINITE AU

Regular expressions and finite automata are equivalentin their descriptive power.
This fact is rather remarkable, because finite automata and regular expressions
superficially appear to be rather different. However, any regular expression can
be converted into a finite automaton that recognizes the language it describes,
and vice versa. Recall that a regular language is one that is recognized by some
finite automaton.

THEOREM ].28 .........................................................................................................................

A language is regular if and only if some regular expression describes it.

"This theorem has two directions. We state and prove each direction as a separate
]Pmmq

AwEialiiCis

LEMMA 1.0 ittt e s s b e e s s

If a language is described by a regular expression, then it is regular.

PROOF IDEA  Say that we have a regular expression R describing some lan-
guage A. We show how to convert R into an NFA recognizing A. By Corol-
lary 1.20, if an NFA recognizes A then A is regular.
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PROOF Let’sconvert R into an NFA N. We consider the six cases in the formal
definition of regular expressions.

1. R = a for some a in X. Then L(R) = {a}, and the following NFA recog-
nizes L(R). ‘

~( =)

N N

Note that this machine fits the definition of an NFA but not that of a DFA
because it has some states with no exiting arrow for each possible input sym-
bol. Of course, we could have presented an equivalent DFA here but an NFA
is all we need for now, and it is easier to describe.

Formally, N = ({q1,¢2}, =, 6, g1, {g2}), where we describe & by saying
that §(q1, a) = {g2}, 6(r,b) = Q for r # q, or b # a.

2. R=e&. Then L(R) = {e}, and the following NFA recognizes L(R).

—()

N/

Formally, N = ({g:}, %,6,¢1, {q1}), where 6(r, b) = 0 for any r and b.
3. R=0. Then L(R) = @, and the following NFA recognizes L{R).

O

Formally, N = ({¢}, £,6, ¢, 0), where 6(r,b) = 0 for any r and b.

4. R= R; URs.
5. R= R, o R;.
6. R = R}.

For the last three cases we use the constructions given in the proofs that the
class of regular languages is closed under the regular operations. In other words,
we construct the NFA for R from the NFAs for R, and R, (or just R; in case 6)
and the appropriate closure construction.

........................................................................................................................................................................
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That ends the first part of the proof of Theorem 1.28, giving the easier direc-
tion of the if and only if. Before going on to the other direction let’s consider
some examples whereby we use this procedure to convert a regular expression to
an NFA.

EXAMPLE 1.30 ..........................................................................................................................

We convert the regular expression (ab U a)* to an NFA in a sequence of stages.
We build up from the smallest subexpressions to larger subexpressions until we
have an NFA for the original expression, as shown in the following diagram. Note
that this procedure generally doesn’t give the NFA with the fewest states. In this
example, the procedure gives an NFA with eight states, but the smallest equivalent
NFA has only two states. Can you find it?

ab O>0O—~—-02>0

\
i.
O
O
@

(abUa)* ——>

FIGURE 1.27
Building an NFA from the regular expression (ab U a)*
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EXAMPLE 1.3‘ ..........................................................................................................................

In this second example we convert the regular expression (aUb)*aba to an NFA.
A few of the minor steps are not shown.

aba

(alUb)*aba

FIGURE 1.28
Building an NFA from the regular expression (a U b)*aba

Now let’s turn to the other direction of the proof of Theorem 1.28.

LEMMA 1.32 ................................................................................................................................

rr-

If a language is regular, then it is described by a regular expression.

PROOF IDEA We need to show that, if a language A is regular, a regular ex-
pression describes it. Because A is regular, it is accepted by a DFA. We describe a
procedure for converting DFAs into equivalent regular expressions.
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We break this procedure into two parts, using a new type of finite automa-
ton called a generalized nondeterministic finite automaton, GNFA. First we show
how to convert DFAs into GNFAs and then GNFAs into regular expressions.

Generalized nondeterministic finite automata are simply nondeterministic fi-
nite automata wherein the transition arrows may have any regular expressions as
labels, instead of only members of the alphabet or . The GNFA reads blocks of
symbols from the input, not necessarily just one symbol at a time as in an ordinary
NFA. The GNFA moves along a transition arrow connecting two states by reading
a block of symbols from the input, which themselves constitute a string described
by the regular expression on that arrow. A GNFA is nondeterministic and so may
have several different ways to process the same input string. It accepts its input if
its processing can cause the GNFA to be in an accept state at the end of the input.
The following figure presents an example of a GNFA.

ab*

aa

FIGURE 1.29
A generalized nondeterministic finite automaton

For convenience we require that GNFAs always have a special form that meets
the following conditions.

* The start staté has transition arrows going to every other state but no arrows
coming in from any other state.

* There is only a single accept state, and it has arrows coming in from every
other state but no arrows going to any other state. Furthermore, the accept
state is not the same as the start state.

* Except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself,



We can easily convert a DFA into a GNFA in the special form. We simply add a

new start state with an £ arrow to the old start state and a new accent state with e
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arrows from the old accept states. If any arrows have multiple labels (or if there
are multiple arrows going between the same two states in the same direction),
we replace each with a single arrow whose label is the union of the previous la-
bels. Finally, we add arrows labeled @ between states that had no arrows. This
last step won’t change the language recognized because a transition labeled with
# can never be used. From here on we assume that all GNFAs are in the special
form.

Now we show how to convert a GNFA into a regular expression. Say that the
GNFA has k states. Then, because a GNFA must have a start and an accept state
and they must be different from each other, we know that k > 2. fk > 2, we
construct an equivalent GNFA form with k — 1 states. This step can be repeated
on the new GNFA until it is reduced to two states. If k = 2, the GNFA has a single
arrow that goes from the start state to the accept state. The label of this arrow
is the equivalent regular expression. For example, the stages in converting a DFA
with three states to an equivalent regular expression are shown in the following
figure.

g

The crucial step is in constructing an equivalent GNFA with one fewer state
when k > 2. We do so by selecting a state, ripping it out of the machine, and
repairing the remainder so that the same language is still recognized. Any state
will do, provided that it is not the start or accept state. We are guaranteed that
such a state will exist because k& > 2. Let’s call the removed state gp,.

After removing g,i;, we repair the machine by altering the regular expressions

that label each of the remaining arrows. The new labels compensate for the ab-

sence of q;;, by adding back the lost computations. The new label going from a
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state g; to a state g; is a regular expression that describes all strings that would take
the machine from ¢; to g; either directly or via grip- We illustrate this approach
in the following figure.

1y

@ (Ry) (Ro)* (Rs) U (R @
Rl @ R3
<R

2
before after

FIGURE 1.31
Constructing an equivalent GNFA with one fewer state

In the old machine if ¢; goes to g,ip with an arrow labeled Ry, grip goes to itself
with an arrow labeled Ry, qvip goes to ¢; with an arrow labeled R3, and g; goes
to q; with an arrow labeled R4, then in the new machine the arrow from ¢; to g;

gets the label
(R1)(Rz2)"(R3) U (B4).

We make this change for each arrow going from any state ¢; to any state g,
including the case where ¢; = g;. The new machine recognizes the original lan-

guage.

PROOF Let’s now carry out this idea formally. First, to facilitate the proof,
we formally define the new type of automaton introduced. A GNFA is similar to a

nondeterministic finite automaton except for the transition function, which has
the form

o: (Q - {Q'accept}) X (Q - {QStart})__’R-

The symbol R is the collection of all regular expressions over the alphabet &, and
Gstare A0d Gaccepe are the start and accept states. If §(¢;,¢;) = R, the arrow from
state g; to state ¢; has the regular expression R as its label. The domain of the
transition function is (Q — {accepe})} X (@ — {@sur }) because an arrow connects
every state to every other state, except that no arrows are coming from ¢accepe OF
gOing to QStart-
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DEFINITION ].33 ....................................................................................................................
A generalized nondeterministic finite automaton, (Q, %, 4, gsure, Gaccept)> 15 @
5-tuple where

. @ is the finite set o
. X is the input alphabet,

61 (Q — {Gaccepe}) X (@ — {@starc} ) — R 1s the transition function,

« Gseart 18 the start state, and

R W N e

- Gaccept 15 the accept state.
A GNFA accepts a string w in 2* if w = wyws - - - wg, where each w; is in T~
and a sequence of states qo, q, . . . , g exists such that

1. go = @suar; 1s the start state,

2, gr = Gaccept Is the accept state, and

3. for each i, we have w, € L(R;), where R; = 6(g;_1, ¢;); in other words, R;
is the expression on the arrow from ¢;_1 to g¢;.

Returning to the proof of Lemma 1.32, we let M be the DFA for language
A. Then we convert M to a GNFA G by adding a new start state and a new ac-
cept state and additional transition arrows as necessary. We use the procedure
CONVERT(G), which takes a GNFA and returns an equivalent regular expression.
This procedure uses recursion, which means that it calls itself. An infinite loop
is avoided because the procedure calls itself only to process a GNFA that has one
fewer state. The case where the GNFA has two states is handled without recur-
sion.

CONVERT(G):
1. Let k be the number of states of 5.

2. If k = 2, then G must consist of a start state, an accept state, and a single
arrow connecting them and labeled with a regular expression R.
Return the expression R.

3. If k > 2, we select any state gri, € Q different from gy and gaceepr and let

o

G’ be the GNFA (Q', Z, &', gstart, Qaccepr ) Where
Q' =Q- {grip},
and for any ¢; € Q' — {qaccept} and any ¢; € Q' — {Gstarc } let
&'(gi, q5) = (R1)(R2)"(R3) U (Ra),

for R1 = 6(gi, ¢rip), R2 = 6(duip, Grip)s B3 = 8(rip, 4;), and Ry = 8(¢i, ¢;)-
4. Compute CONVERT(G") and return this value.
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Next we prove that CONVERT returns a correct value.

CLAIM 1.34 ..................................................................................................................................

For any GNFA G, CONVERTY(G) is equivalent to G.

We prove this claim by induction on %, the number of states of the GNFA.

Basis: Prove the claim true for & = 2 states. If G has only two states, it can have
only a single arrow, which goes from the start state to the accept state. The reg-
ular expression label on this arrow describes all the strings that allow G to get to
the accept state. Hence this expression is equivalent to G.

Induction step: Assume that the claim is true for & — 1 states and use *his as-
sumption to prove that the claim is true for & states. First we show that G and
G’ recognize the same language. Suppose that G accepts an input w. Then in an
accepting branch of the computation G enters a sequence of states

Qstarts 91,492,435 -+ - Gaccept-

If none of them is the removed state ¢rip,, clearly G’ also accepts w. The reason
is that each of the new regular expressions labeling the arrows of G’ contains the
old regular expression as part of a union.

If q,i, does appear, removing each run of consecutive gy;, states forms an ac-
cepting computation for G'. The states ¢; and ¢; bracketing a run have a new
regular expression on the arrow between them that describes all strings taking ¢;
to g; via g, on G. So G’ accepts w.

For the other direction, suppose that G’ accepts an input w. As each arrow
between any two states ¢; and ¢; in G’ describes the collection of strings taking
¢; to q; in G, either directly or via ¢ip, G must also accept w. Thus G and G’ are
equivalent.

The induction hypothesis states that when the algorithm calls itself recursively
on input G, the result is a regular expression that is equivalent to G’ because G’
has k& — 1 states. Hence the regular expression also is equivalent to G, and the
algorithm is proved correct.

This concludes the proof of Claim 1.34, Lemma 1.32, and Theorem 1.28.

EXAMPLE T30 sttt e et s s s s

In this example we use the preceding algorithm to convert a DA into a regular
expression. We begin with the two-state DFA in Figure 1.32(a).

In (b) we make a four-state GNFA by adding a new start state and a new accept
state, called s and a instead of gsare an1d Gaccepe SO that we can draw them conve-
niently. To avoid cluttering up the figure, we do not draw the arrows that are
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labeled @, even though they are actually present. Note that we replace the label
a, b on the self-loop at state 2 on the DFA with the label aUb at the corresponding
point on the GNFA. We do so because the DFA’ label represents two transitions,
one for a and the other for b, whereas the GNFA may have only a single transition
going from 2 to itself.

In (c) we remove state 2, and update the remaining arrow labels. In this case
the only label that changes is the one from 1 to a. In (b) it was 0, but in (c) it is
b(aUb)*. We obtain this result by following step 3 of the CONVERT procedure.
State g; is state 1, state g; is a, and q;;, is 2,50 Ry = b, Ry = a U b, R3 = £, and
R4 = §. Therefore the new label on the arrow from 1 to a is (b)(aUDb)*(g) UO.
We simplify this regular expression to b(a U b)*.

In (d) we remove state 1 from (c) and follow the same procedure. Because only
the start and accept states remain, the label on the arrow joining them is the reg-
ular expression that is equivalent to the original DFA.

(L

a,b

) D

(@) (b)
NG
blaUb)* a*b(auUb)*
(©) (d)

FIGURE 1.32
Converting a two-state DFA to an equivalent regular expression
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EXAMP'—E 1.36 ..........................................................................................................................

In this example we begin with a three-state DFA. The steps in the conversion ap-
pear in the following figure.

(baUa){aa U b)*ab U bb

(©) (d)

203 o

(a(aaUb)*abUb) ((baUa)(aaUb)*abUbb)*((baUa)(aaUb)* Ue)Ua(aaUb)*

©

EICIIRE 1 29
rirounc oD

Converting a three state DFA to an equivalent regular expression
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1.4

NONREGULAR LANGUAGES

'Io understand the power of finite automata you must also understand their lim-
itations. In this section we show how to prove that certain languages cannot be
recognized by any finite automaton,

Let’s take the language B = {0"1"| n > 0}. If we attempt to find a DFA
that recognizes B, we discover that the machine seems to need to remember how
many Os have been seen so far as it reads the input. Because the number of 0s isn’t
limited, the machine will have to keep track of an unlimited number of possibil-
ities. But it cannot do so with any finite number of states.

Next, we present a method for proving that languages such as B are not regu-
lar. Doesn’t the argument already given prove nonregularity, because the number
of Os is unlimited? It does not. Just because the language appears to require un-
bounded memory doesn’t mean that it is necessarily so. It does happen to be true
for the language B, but other languages seem to require an unlimited number of

possibilities, yet actually are regular. For example, consider two languages over
the alphabet & = {0,1}:

C = {w| w has an equal number of 0s and 1s}, and

D = {w]w has an equal number of occurrences of 01 and 10 as substrings}.

At first glance a recognizing machine appears to need to count in each case,
and therefore neither language appears to be regular. As expected, C is not reg-
ular, but surprisingly D is regular!® Thus our intuition can sometimes lead us
astray, which is why we need mathematical proofs for certainty. In this section
we show how to prove that certain languages are not regular.

THE PUMPING LEMMA FOR REGULAR LANGUAGES

Our technique for proving nonregularity stems from a theorem about regular
languages, traditionally called the pumping lemma. This theorem states that all
regular languages have a special property. If we can show that a language does not
have this property, we are guaranteed that it is not regular. The property states
that all strings in the language can be “pumped” if they are at least as long as a
certain special value, called the pumping length. That means each such string

contains a section that can be repeated any number of times with the resulting
string remaining in the language.

6See Problem 1.41.
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THEOREM 1.37 .........................................................................................................................

Pumping lemma If A is a regular language, then there is a number p (the
pumping length) where, if s is any string in A of length at least p, then s may
be divided into three pieces, s = xyz, satisfying the following conditions:

1. for each i > 0, zy*z € A,
2. |y| > 0, and
3. |zy| < p.

Recall the notation where |s| represents the length of string s, y* means that 4
copies of y are concatenated together, and 4° equals €.

When s is divided into zyz, either x or z may be £, but condition 2 says that
y # e. Observe that without condition 2 the theorem would be trivially true.
Condition 3 states that the pieces x and y together have length at most p. Itis an
extra technical condition that we occasionally find useful when proving certain
languages to be nonregular. See Example 1.39 for an application of condition 3.

PROOF IDEA Let M = (Q,X%, 4,41, F) be a DFA that recognizes A. We assign
the pumping length p to be the number of states of M. We show that any string
sin A of length at least p may be broken into the three pieces zyz satisfying our
three conditions. What if no strings in A are of length at least p? Then our task
is even easier because the theorem becomes vacuously true: Obviously the three
conditions hold for all strings of length at least p if there aren’t any such strings.

If s in A has length at least p, consider the sequence of states that M goes
through when computing with input s. It starts with ¢; the start state, then goes
10, say, ¢s, then, say, gao, then go, and so on, until it reaches the end of s in state
¢13. With s in A, we know that M accepts s, so g13 is an accept state.

If we let n be the length of s, the sequence of states ¢1, g3, ¢20, 9, - - - , ¢13 has
length n + 1. Because n is at least p, we know that n + 1 is greater than p, the
number of states of M. Therefore the sequence must contain a repeated state.
This result is an example of the pigeonhole principle, a fancy name for the rather
obvious fact that if p pigeons are placed into fewer than p holes, some hole has to
have more than one pigeon in it.

The following figure shows the string s and the sequence of states that M goes

through when processing s. State gg is the one that repeats.

8§ = 81 83 83 S84 S5 Sg ?SnT
91 93 g %17 @9 e G35 d13

FIGURE 1.34
Example showing state gg repeating when M reads s
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We now divide s into the three pieces x, y, and 2. Piece z is the part of s
appearing before gg, piece y is the part between the two appearances of gq, and
piece z is the remaining part of s, coming after the second occurrence of gy. So
z takes M from the state ¢; to qo, y takes M from gg back to gg and z takes M
from gy to the accept state ¢13, as shown in the following figure.

M N

FIGURE 1.35
Example showing how the strings z, y, and z affect M

Let’s see why this division of s satisfies the three conditions. Suppose that we
run M on input zyyz. We know that z takes M from ¢ to gg, and then the first y
takes it from ¢g back to gg, as does the second ¥, and then z takes it to g;5. With
13 being an accept state, M accepts input zyyz. Similarly, it will accept 2y’ z for
any i > 0. For the case i = 0, xy*z = xz, which is accepted for similar reasons.
That establishes condition 1.

Checking condition 2, we see that |y| > 0, as it was the part of s that occurred
between two different occurrences of state gqg.

In order to get condition 3, we make sure that gg is the first repetition in the
sequence. By the pigeonhole principle, the first p+ 1 states in the sequence must
contain a repetition. Therefore |zy| < p.

PROOF LetM = (Q,X,6,q1, F') be a DFA recognizing A and p be the number
of states of M.

Lets = s180-- - s, beastringin A of length n, where n > p. Letry, ... ,rqq
be the sequence of states that M enters while processing s, so r;+1 = 8(r;, s;) for
1 <4 < n. This sequence has length n+1, which is at least p4- 1. Among the first
p + 1 elements in the sequence, two must be the same state, by the pigeonhole
principle. We call the first of these r; and the second ;. Because ; occurs among
the first p + 1 places in a sequence starting at r1, we have [ < p + 1. Now let
T=81-8_1,Yy=258;--5-_1,and z = 8-+~ 8.

As  takes M from 7 to r;, y takes M from r; to r;, and 2 takes M from r;
to rn41, which is an accept state, M must accept zy'z for i > 0. We know that
J# 1,50yl > 0;and! < p+1,s0 |zy| < p. Thus we have satisfied all conditions
of the pumping lemma.

........................................................................................................................................................................
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To use the pumping lemma to prove that a language B is not regular, first as-
sume that B is regular in order to obtain a contradiction. Then use the pumping
lemma to guarantee the existence of a pumping length p such that all strings of
length p or greater in B can be pumped. Next, find a string s in B that has length
p or greater but that cannot be pumped. Finally, demonstrate that s cannot be
pumped by considering all ways of dividing s into z, y, and z (taking condition 3
of the pumping lemma into account if convenient) and, for each such division,
finding a value ¢ where zy'z € B. This final step often involves grouping the
various ways of dividing s into several cases and analyzing them individually. The
existence of s contradicts the pumping lemma if B were regular. Hence B cannot
be regular.

Finding s sometimes takes a bit of creative thinking. You may need to hunt
through several candidates for s before you discover one that works. Try mem-
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discuss the task of finding s in some of the following examples.

EXAMPLE 1.38 ..........................................................................................................................

Let B be the language {0™1"|n > 0}. We use the pumping lemma to prove that
B is not regular. The proof is by contradiction.

Assume to the contrary that B is regular. Let p be the pumping length given
by the pumping lemma. Choose s to be the string 0P17. Because s is a member
of B and s has length more than p, the pumping lemma guarantees that s can be
split into three pieces, s = ryz, where for any i > 0 the string zy'z is in B. We
consider three cases to show that this result is impossible.

1. The string y consists only of 0s. In this case the string zyyz has more 0s
than 1s and so is not a member of B, violating condition [ of the pumping
lemma. This case is a contradiction.

2. The string y consists only of 1s. This case also gives a contradiction.

3. The string y consists of both 0s and 1s. In this case the string zyyz may
have the same number of 0s and 1s, but they will be out of order with some
1s before 0s. Hence it is not a member of B, which is a contradiction.

Thus a contradiction is unavoidable if we make the assumption that B is regular,
so B is not regular.

In this example, finding the string s was easy, because any string in B of
length p or more would work. In the next two examples some choices for s do
not work, so additional care is required.

EXAMPLE  1.30 i i iss st sss s s st s e s sssn s snsasssusa s shats s

Let C = {w| w has an equal number of 0s and 1s}. We use the pumping lemma
to prove that C' is not regular. The proof is by contradiction.
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Assume to the contrary that C is regular. Letp be the pumping length given by
the pumping lemma. As in Example 1.38, let s be the string 0717, With s being
a member of C and having length more than p, the pumping lemma guarantees
that s can be split into three pieces, s = xyz, where for any i > 0 the string
xy'z is in C. We would like to show that this outcome is impossible. But wait, it
is possible! If we let  and z be the empty string and y be the string 0717, then
zy'z always has an equal number of 0s and 1s and hence is in C'. So it seems that
s can be pumped.

Here condition 3 in the pumping lemma is useful. It stipulates that when
pumping s it must be divided so that |zy| < p. That restriction on the way that
s may be divided makes it easier to show that the string s = 0P1” we selected
cannot be pumped. If |zy| < p, then y must consist only of 0s, so zyyz ¢ C.
Therefore s cannot be pumped. That gives us the desired contradiction.’

Selecting the string s in this example required more care than in Example 1.38.
If we had chosen s = (01)? instead, we would have run into trouble because we
need a string that cannot be pumped and that string can be pumped, even taking
condition 3 into account. Can you see how to pump it? One way to do so sets
& =€,y =01,and z = (01)? 1. Then zy*z € C for every value of i. If you fail
on your first attempt to find a string that cannot be pumped, don’t despair. Try
another one!

An alternative method of proving that C' is nonregular follows from our
knowledge that B is nonregular. If C' were regular, C N 0*1* also would be regu-
lar. "The reasons are that the language 0*1* is regular and that the class of regular
languages is closed under intersection (proved in the footnote on page 46). But
C M 0*1* equals B, and we know that B is nonregular from Example 1.38.

EXAMPLE ].40 ..........................................................................................................................

Let F' = {ww| w € {0,1}*}. We show that I is nonregular using the pumping
lemma,

Assume to the contrary that F'is regular. Let p be the pumping length given by
the pumping lemma. Let s be the string 071071. Because s is a member of F and
s has length more than p, the pumping lemma guarantees that s can be split into
three pieces, s = zyz, satisfying the three conditions of the lemma. We show
that this outcome is impossible.

Condition 3 is once again crucial, because without it we could pump s if we let
z and z be the empty string. With condition 3 the proof follows because y must
consist only of 0s, so zyyz & F.

OhQPWP that we chace ¢ — = 0F1q or1 to he 1 cf—r'r\n- 1-110!‘: ev]-n'

1
AL Vi laiay WO CIiUST O LWL A gl ilie Lila ALl

the nonregularity of F, as opposed to, say, the string 0707, Even though 070”
a member of F, it fails to demonstrate a contradiction because it can be pumped.

"We could have used condition 3 in Example 1.38, as well, to simplify its proof.
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EXAMPLE 'I .41 ..........................................................................................................................

Here we demonstrate a nonregular unary language. Let D = {1"°|n > 0}. In
other words, D contains all strings of 1s whose length is a perfect square. We use
the pumping lemma to prove that D is not regular. The proofis by contradiction.

Assume to the contrary that D is regular. Let p be the pumping length given
by the pumping lemma. Let s be the string 17°. Because s is a member of D and s

nnnnnnnnn thhant oo~ ha onl s
has length at least Ps the pumping lemma guar dlltCCD tnat s can ode DPJJL into three

pieces, s = zyz, where for any ¢ > 0 the string zy'z is in D. As in the preceding
examples, we show that this outcome is impossible. Doing so in this case requires
a little thought about the sequence of perfect squares:

0,1,4,9,16,25,36,49, ...

Note the growing gap between successive members of this sequence. Large
members of this sequence cannot be near each other.

Now consider the two strings zy*z and zy'** 2. These strings differ from each
other by a single repetition of y, and consequently their lengths differ by the
length of y. If we choose i very large, the lengths of zy'z and zy*+' z cannot both
be perfect squares because they are too close together. Thus zy'z and zy'*t1z
cannot both be in D, a contradiction.

To turn this idea into a proof, we calculate a value of i that gives the contradic-
tion. If m = n? is a perfect square, the difference between it and the next higher
perfect square (n + 1)? is
nf=n?+2n+1-n?
=2n+1
= 2v/m + 1.

The pumping lemma states that both |zy*z| and |zy**!2| are perfect squares for
any i. But, by letting |zy* z| be m as above, we see that they both cannot be perfect
squares if |y| < 24/|zy*z| 4 1 because they would be too close together.

Calculating the value for ¢ that leads to a contradiction is now easy. Observe
that |y| < |s| = p?. Leti = p*; then

y| < p* = /p?
< 2¢/pt 41
< 24/ |zytz| + 1.

(n+1)% —

EXAMPLE T2 it et e st s s st s s p s e snn e n st s

Sometimes “pumping down” is useful when we apply the pumping lemma. We
use the pumping lemma to show that £ = {0°17]i > j} is not regular. The proof
is by contradiction.

Assume that E is regular. Let p be the pumping length for E given by the
pumping lemma. Let s = 0P+11P. Then s can be split into zyz, satisfying the
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conditions of the pumping lemma. By condition 3, y consists only of 0s. Let’s
examine the string zyyz to see whether it can be in E. Adding an extra copy of
y increases the number of 0s. But, £ contains all strings in 0*1* that have more
Os than 1s, so increasing the number of 0s will still give a string in E. No contra-
diction occurs. We need to try something else.

The pumping lemma states that zy‘z € E even when ¢ = 0, so let’s consider
the string zy°z = zz. Removing string y decreases the number of 0s in s. Recall
that s has just one more 0 than 1. Therefore 2z cannot not have more 0s than 1s,
so it cannot be a member of E. Thus we obtain a contradiction.

EXERCISES
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ing questions about these machines.

a. What is the start state of M;?
b. What is the set of accept states of M;?
c. What is the start state of Ms?

. What is the set of accept states of Mz?

d

e. What sequence of states does M; go through on input aabb?
. Does M accept the string aabb?

g

. Does Ms accept the string e?

1.2 Give the formal description of the machines M; and M> pictured in Exercise 1.1.
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1.3 The formal description ofa DFA M is ({q1, 92, g3, 44, 5}, {u, 4}, 6, g3, {¢3}) , where
§ is given by the following table. Give the state diagram of this machine.

u d
251 qr g2
g2 | 1 g3
3 1 92 g4
g4 | 93 @5
gs | 94 Qs

1.4 Give state diagrams of DFAs recognizing the following languages. In all cases the
alphabet is {0,1}.

{w| w begins with a 1 and ends with a 0}.

{w| w contains at least three 1s}.

{w| w contains the substring 0101, i.e., w = £0101y for some = and y}.

{w| w has length at least 3 and its third symbol is a 0}.

{w}w starts with 0 and has odd length, or starts with 1 and has even length}.

{w| w doesn’t contain the substring 110}.

{w] the length of w is at most 5}.

Fom o=t B0 T

{w| w is any string except 11 and 111},

ot
.

{w] every odd position of wisa 1}.

{w| w contains at least two Os and at most one 1}.
{e,0}.

{w| w contains an even number of Os, or exactly two 1s}.

The empty set.

P B~

All strings except the empty string.

1.5 Give NFAs with the specified number of states recognizing each of the following
languages.

The language {w| w ends with 00} with three states.

The language of Exercise 1.4¢ with five states.

The language of Exercise 1.4 with six states.

The language {0} with two states.

The language 0*1*0%0 with three states.

-0 s T

The language {e} with one state.
g. The language 0™ with one state.
1.6 Use the construction given in the proof of Theorem 1.22 to give the state diagrams
of NFAs recognizing the union of the languages described in
a. Exercises 1.4a and 1.4b.
b. Exercises 1.4c and 1.4f.

1.7 Use the construction given in the proof of Theorem 1.23 to give the state diagrams
of NFAs recognizing the concatenation of the languages described in

a. Exercises 1.4g and 1.4i.
b. Exercises 1.4b and 1.4m.
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1.8 Use the construction given in the proof of Theorem 1.24 to give the state diagrams
of NFAs recognizing the star of the language described in

a. Exercise 1.4b.
b. Exercise 1.4j.
¢. Exercise 1.4m,

1.9 Prove that every NFA can be converted to an equivalent one that has a single accept
state

1.10 a. Show that, if M is a DFA that recognizes language B, swapping the accept and
non-accept states in M yields a new DFA that recognizes the complement of
B. Conclude that the class of regular languages is closed under complement,

b. Show by giving an example that, if M is an NFA that recognizes language
', swapping the accept and non-accept states in M doesn’t necessarily yield
a new NFA that recognizes the complement of €. Ts the class of languages
recognized by NFAs closed under complement? Explain your answer.

1.11 Give a counterexample to show that the following construction fails to prove Theo-
rem 1.24, the closure of the class of regular languages under the star operation.? Let
N1 = (@1, %, 61, q1, F1) recognize A;. Construct N = (Q1,%,6,q1, F) as follows.
N is supposed to recognize A,
a. The states of V are the states of N;.
b. The start state of N is the same as the start state of N;.

c. FF= {Q'1} U Fi.
The accept states F are the old accept states plus its start state.

d. Define 6 so that for any ¢ € Q and any a € .,

5(q, a) = 61(q,a) g Fioras#e
’ 61(q,a)U{q1} g€ Flanda=e.

(Suggestion: Convert this formal construction to a picture, as in Figure 1.26.)

1.12 Use the construction given in Theorem 1.19 to convert the following two nonde-
terministic finite automata to equivalent deterministic finite automata.

s=N_ a TN £

0 RO

b a,b

a a,b
(3D

(2) (b)

81n other words, you must present a finite automaton, Vi, for which the constructed au-
tomaton NV does not recognize the star of N1% language.
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1.13 Give regular expressions generating the languages of Exercise 1.4.

1.14 Use the procedure described in Lemma 1.29 to convert the following regular ex-
pressions to nondeterministic finite automata.

a. (0U1)*000(0 U 1)*
b. (((00)*(11)) U o1)”
c. §*

1.15 For each of the following languages, give two strings that are members and two
strings that are 7ot members—a total of four strings for each part. Assume the al-
phabet 3 = {a,b} in all parts.

a. a"b*,

b. a(ba)”b.

c. a*Ub",

d. (aaa)”.

e. XaX"bX"a¥".

f. aba U bab.

g. (eUa)b.

h. (aUbalUbb)Z*.

1.16 Use the procedure described in Lemma 1.32 to convert the following finite au-
tomata to regular expressions.

]

(a) (b)

1.17 Use the pumping lemma to show that the following languages are not regular.

a. A, = {0"1"2"|n > 0}.
b. A; = {www|w € {a,b}*}.
c. Az = {aznl n > 0}. (Here, a?" means a string of 2™ a’s.)

1.18 Describe the error in the following “proof” that 0*1* is not a regular language. (An
error must exist because 0*1* is regular.) The proof is by contradiction. Assume
that 0*1* is regular. Let p be the pumping length for 0*1* given by the pumping
lemma. Choose s to be the string 0717, You know that s is a member of 0*1*, but
Example 1.38 shows that s cannot be pumped. Thus you have a contradiction. So
0™1" is not regular.
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1.19 A finite state transducer (FST) is a type of deterministic finite automaton whose
output is a string and not just accept or reject. The following are state diagrams
of finite state transducers 7} and 7.

Each transition of an FST is labeled with two symbols, one designating the input
symbol for that transition and the other designating the output symbol. The two
symbols are written with a slash, /, separating them. In 7, the transition from ¢;
to g has input symbol 2 and output symbol 1. Some transitions may have mul-
tiple input—output pairs, such as the transition in T} from g¢; to itself. When an
FST computes on an input string w, it takes the input symbols w; - - - wy, one by one
and, starting at the start state, follows the transitions by matching the input labels
with the sequence of symbols w1 - - w, = w. Every time it goes along a transi-
tion, it outputs the corresponding output symbol. For example, on input 2212011,
machine T enters the sequence of states g1, g2, g2, g2, ¢, q1, q1, ¢1 and produces
output 1111000. On input abbb, T outputs 1011. Give the sequence of states en-
tered and the output produced in each of the following parts.

T on input 011.

131 on input 211.

T on input 0202,
T5 on input b.

T3 on input bbab.
T5 on input bbbbbb.
g. 7> oninput e.

=0 R T

1.20 Read the informal definition of the finite state transducer given in Exercise 1.19.
Give a formal definition of this model, following the pattern in Definition 1.1 on
page 35. Assume that an FST has an input alphabet = and an output alphabet I" but
not a set of accept states. Include a formal definition of the computation of an FST.
(Hint: An FSTisa S-tuple. It’s transition function is of the form §: Q@ x 5— Q xI".)

1.21 Using the solution you gave to Exercise 1.20, give a formal description of the ma-
chines Ty and T% pictured in Exercise 1.19.
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Read the informal definition of the finite state transducer given in Exercise 1.19.
Give the state diagram of an FST with the following behavior. Its input and output
alphabets are {0,1}. Its output string is identical to the input string on the even po-
sitions but inverted on the odd positions. For example, on input 0000111 it should

~Artnnrt 1010010
UuLtJu\. AV LV L.

PROBLEMS

1.23

1.24

1.25

1.26

1.27

Prove that the following languages are not regular.
a. {0"10"| m,n > 0}.
b. The complement of {0"1"| n > 0}.
c. {0"1"{m#mn}
d. {w|w € {0,1}" is not a palindrome}.”

For any string w = wyws - - - wy, the reverse of w, written w™, is the string w in
reverse order, wy, - - - wawi. For any language A, let A® = {w™|w € A}.
Show that if A is regular, sois A®.
1
gHi

== {[3)[8.[1)

Y3 contains all size 3 columns of Os and 1s. A string of symbols in 23 gives three
rows of Os and 1s. Consider each row to be a binary number and let

B = {w € 33| the bottom row of w is the sum of the top two rows}.

For example,

) 1 1 o] 1
HIHI R I HES
Show that B is regular. (Hint: Working with B¥ is easier. You may assume the
resuft claimed in Problem 1.24.)

Let
T2 ={[c]. [}, o], [1]}-

Here, ¥ contains all columns of 0s and 1s of height two. A string of symbols in £z
gives two rows of 0s and 1s. Consider each row to be a binary number and let

C = {w € 3| the bottom row of w is three times the top row}.

For example, [7] [7] [1] [2] € C, but [$][}] [5] € C- Show that C is regular.

1
You may assume the result claimed in Problem 1.24.

Let X2 be the same as in Problem 1.26. Consider each row to be a binary number
and let

D = {w € ¥3| the top row of w is a larger number than is the bottom row}.

For example, (0] [:1[3] [5] € C, bue [2] [3] [3] [2] & C. Show that C is regu-

o] 1
lar.

A palindrome is a string that reads the same forward and backward.
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1.29

1.30

1.31

1.32

1.33

1.34

“1.35

1.36

1.37
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Let 33 be the same as in Problem 1.26. Consider the top and bottom rows to be
strings of Os and 1s and let

£ = {w € ;| the bottom row of w is the reverse of the top row of w}.

Show that E is not regular.

Let B, = {a*| where k is a multiple of n}. Show that for each n > 1, the language
B is regular.

Let Cn = {z| z is a binary number that is a multiple of n}. Show that for each
n > 1, the language Ch, is regular.

Consider a new kind of finite automaron called an all-paths-NFA. An all-paths-NFA
M isa 5-tuple (Q), 3,6, qo, F) that accepts x € £~ if every possible computation of
M on z ends in a state from F. Note, in contrast, that an ordinary NFA accepts a
string if some computation ends in an accept state. Prove that all-paths-NFAs rec-
ognize the class of regular languages.

Say that string x is a prefix of string y if a string 2 exists where zz = y and that z is
a proper prefix of y if in addition = # y. In each of the following parts we define an
operation on a language A. Show that the class of regular languages is closed under
that operation.

a. NOPREFIX(A) = {w € A| no proper prefix of w is a member of A}.
b. NOEXTEND(A) = {w € A|w is not the proper prefix of any string in A}.

Read the informal definition of the finite state transducer given in Exercise 1.19.
Prove that no FST can output w™ for every input w if the input and output alphabets
are {0,1}.

Let @ and y be strings and let L be any language. We say that = and y are distin-
guishable by L if some string z exists whereby exactly one of the strings 2z and y2
is a member of L; otherwise, for every string z, zz € L whenever yz € L and we
say that  and y are indistinguisbable by L. Tf  an y are indistinguishable by L we
write = y. Show that =7, is an equivalence relation.

Read Problem 1.34. Let L be a language and let X be a set of strings. Say that X is
pairwise distinguishable by L if every two distinct strings in X are distinguishable
by L. Define the index of L to be the maximum number of elements in any set that
is pairwise distinguishable by L. The index of I may be finite or infinite.

a. Show that if L is recognized by a DFA with k states, L has index at most k.

b. Show that if the index of L is a finite number k, it is recognized by a DFA with
k states.

¢. Conclude that L is regular iff it has finite index. Moreover, its index is the
size of the smallest DFA recognizing it.

Let ¥ = {0,1,+,=} and
ADD = {xz=y+z| z,y, z are binary integers, and z is the sum of y and z}.

Show that ADD is not regular.

Show that the language F = {a"v?c¥| 4,5,k > O and ifi = 1 then j = k} satisfies
the three conditions of the pumping lemma even though it is not regular. Explain
why this fact does not contradict the pumping lemma.
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1.41
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The pumping lemma says that every regular language has a pumping length p, such
that every string in the language can be pumped if it has length p or more. If p is
a pumping length for language A, so is any length p" > p. The minimum pump-
ing length for A is the smallest p that is a pumping length for A. For example, if
A = 017, the minimum pumping length is 2. The reason is, the string s = 0 € A
of length 1 cannot be pumped, and any string in A of length 2 or more contains a 1
and hence can be pumped by dividing it so that z = 0, ¥ = 1, and z is the rest.
For each of the following languages, give the minimum pumping length and justify
your answer.

. 0001*.
. 0% 1T,

. (01)*.
. 01,

£,

o 0 T

The construction in Theorem 1.28 shows that every GNFA is equivalent to a GNFA
with only two states. We can show that an opposite phenomenon occurs for DFAs.
Prove that for every k > 1 a language Ax C {0,1}" exists that is recognized by a
DFA with k states but not by one with only k& — 1 states.

If A isa set of natural numbers and k is a natural number greater than 1, let
Br(A) = {w| w is the representation in base k of some number in A}.

Here, we do not allow leading Os in the representation of a number. For example,
B2({3,5}) = {11,101} and B3({3,5}) = {10, 12}. Give an example of a set A for
which Ba(A) is regular but B3(A) is not regular. Prove that your example works.

Let

D = {w|w contains an equal number of occurrences of the substrings 01 and 10}.
Thus 101 € D because 101 contains a single 01 and a single 10, but 1010 ¢ D
because 1010 contains two 10s and one 01. Show that D is a regular language.

If A is any language, let A 1 be the set of all first halves of strings in A so that

A%_ = {z| forsome y, |z| = |y| and zy € A}.

Show that, if A is regular, then so is A%_.

If A is any language, let A be the set of all strings in A with their middle thirds

removed so that

11
373

Ay_1 = {zz| forsome y, |z| = |y| = |z| and zyz € A}.

1
3

is not necessarily regular.

Show that, if A is regular, then A !

1
3
Give a family of languages E,, where each E,, can be recognized by an n-state NFA
but requires at least ¢” states on a DFA for some constant ¢ > 1. Prove that your
languages have this property.



CONTEXT-FREE
LANGUAGES

In Chapter 1 we introduced two different, though equivalent, methods of de-
scribing languages: finite automata and regular expressions. We showed that many
languages can be described in this way but that some simple languages, such as
{0™1"| n > 0}, cannot.

In this chapter we introduce context-free grammars, a more powerful method
of describing languages. Such grammars can describe certain features that have
a recursive structure which makes them useful in a variety of applications.

Context-free grammars were first used in the study of human languages. One
way of understanding the relationship of terms such as noun, verb, and preposition
and their respective phrases leads to a natural recursion because noun phrases
may appear inside verb phrases and vice versa. Context-free grammars can cap-
ture important aspects of these relationships.

An important application of context-free grammars occurs in the specification
and compilation of programming languages. A grammar for a programming lan-
guage often appears as a reference for people trying to learn the language syntax.
Designers of compilers and interpreters for programming languages often start
by obtaining a grammar for the language. Most compilers and interpreters con-
tain a component called a parser that extracts the meaning of a program prior to
generating the compiled code or performing the interpreted execution. A num-
ber of methodologies facilitate the construction of a parser once a context-free
grammar is available. Some tools even automatically generate the parser from
the grammar.

91
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The collection of languages associated with context-free grammars are called
the context-firee languages. They include all the regular languages and many ad-
ditional languages. In this chapter, we give a formal definition of context-free
grammars and study the properties of context free languages. We also introduce
pushdown automata, a class of machines recognizing the context-free languages.
Pushdown automata are useful because they allow us to gain additional insight
into the power of context-free grammars.
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CONTEXT-FREE GRAMMARS

The following is an example of a context-free grammar, which we’ll call G1.

A > 0A1
A—> B
B - #

A grammar consists of a collection of substitution rules, also called produc-
tions. Each rule appears as a line in the grammar and comprises a symbol and a
string, separated by an arrow. The symbol is called a variable. The string consists
of variables and other symbols called terminals. The variable symbols often are
represented by capital letters. The terminals are analogous to the input alphabet
and often are represented by lowercase letters, numbers, or special symbols. One
variable is designated the start variable. Tt usually occurs on the left-hand side of
the topmost rule. For example, grammar G contains three rules. G’ variables
are A and B, where A is the start variable. Its terminals are 0, 1, and #.

You use a grammar to describe a language by generating each string of that
language in the following manner.

1. Write down the start variable. It is the variable on the left-hand side of the
top rule, unless specified otherwise.

2. Find a variable that is written down and a rule that starts with that variable.
Replace the written down variable with the right-hand side of that rule.

3. Repeat step 2 until no variables remain.

For example, grammar G generates the string 000#111. The sequence of
substitutions to obtain a string is called a derivation. A derivation of string
000#111 in grammar (7 is

A= 0A1 = 00411 = 0004111 = 0008111 = 000#111

You may also represent the same information in a more pictorial way using a parse
tree. An example of a parse tree appears in the following figure.
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PN

S

FIGURE 2.1
Parse tree for 000#111 in grammar G

All strings generated in this way constitute the language of the grammar. We
write L(G1) for the language of grammar G;. Some experimentation with the
grammar (71 shows us that L(G;) is {0"#1™| n > 0}. Any language that can be
generated by some context-free grammar is called a context-free language (CFL).
For convenience when presenting a context-free grammar, we abbreviate several
rules with the same left-hand variable, such as A — 041 and A — B, into a
single line A — 0A1 | B, using the symbol “ | ” as an “or.”

The following is a second example of a context-free grammar called G, which
describes a fragment of the English language.

(SENTENCE) — (NOUN-PHRASE)(VERB-PHRASE)
(NOUN-PHRASE)} — (CMPLX-NOUN]) | (CMPLX-NOUN)(PREP-PHRASE)
(VERB-PHRASE) — (CMPLX-VERB) | (CMPLX-VERB){PREP-PHRASE)

(PREP-PHRASE) — (PREP)(CMPLX-NOUN)
(CMPLX-NOUN) — {ARTICLE){NOUN)
(CMPLX-VERB) — (VERB) | (VERB)(NOUN-PHRASE)
(ARTICLE) — a | the
(NOUN) — boy | girl | flower
(VERB) — touches | likes | sees
(PREP) — with

Grammar G, has ten variables (the capitalized grammatical terms written in-
side brackets); 27 terminals (the standard English alphabet plus a space charac-
ter); and eighteen rules. Strings in L(G2) include the following three examples.

a boy sees
the boy sees a flower
a girl with a flower likes the boy

Each of these strings has a derivation in grammar G. The following is a deriva-
tion of the first string on this list.
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(SENTENCE) = (NOUN-PHRASE){VERB-PHRASE)
= (CMPLX-NOUN){VERB-PHRASE)
= (ARTICLE)(NOUN)(VERB-PHRASE)
= a (NOUN)(VERB-PHRASE)
= a boy (VERB-PHRASE)
= a boy (CMPLX-VERB)
= a boy (VERB)

= a boy sees

FORMAL DEFINITION OF A CONTEXT-FREE GRAMMAR

Let’s formalize our notion of a context-free grammar (CFG).

DEFINITION 20T o s s s e
A context-free grammar is a 4-tuple (V, X, R, ), where

1. V is a finite set called the variables,
2. ¥ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of rules, with each rule being a variable and a string of vari-
ables and terminals, and

4. S € V is the start variable.

If u, v, and w are strings of variables and terminals, and A — wisa rule of
. . . * .
the grammar, we say that uAv yields uwv, written uAv = vwv. Write u = v if
u = v or if a sequence uy, ug, ..., tj exists for k > 0 and

U= U = Uz = ... = U = V.

The language of the grammar is {w € £*| S = w}.
In grammar G, V = {4, B}, ~ = {0,1,#},5 = A,and Ris the collection of
the three rules appearing on page 92. In grammar G2,

V = {{SENTENCE), (NOUN-PHRASE), (VERB-PHRASE),
(PREP-PHRASE), (CMPLX-NOUNY), (CMPLX-VERB),
(ARTICLE), (NOUN), (VERB), (PREP) },

and¥ = {a,b,c,...,z, “"}. The symbol “ ”is the blank symbol, placed invisibly
after each word (a, boy, etc.), so the words won’t run together.

Often we specify a grammar by writing down only its rules. We can identify
the variables as the symbols that appear on the left-hand side of the rules and

the terminals as the remaining symbols. By convention, the start variable is the
variable on the left-hand side of the first rule.
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EXAMPLE 2.2 ot st et s ss s s s s s s s s s R s s e
Consider grammar G3 = ({S}, {a,b}, R, S). The set of rules, R, is
S — aSb | SS | e.

This grammar generates strings such as abab, aaabbb, and aababb. You can
see more easily what this language is if you think of a as a left parenthesis “(”
and b as a right parenthesis “)”. Viewed in this way, L(G3) is the language of all
strings of properly nested parentheses.

EXAMPLE 2.3 ..............................................................................................................................

Consider grammar G4 = (V, X, R, (EXPR)).
V is {(EXPR), (TERM), (FACTOR)} and ¥ is {a, +, x, (,)}. The rules are

(EXPR) — (EXPR)+(TERM) | (TERM)
(TERM) — (TERM)x(FACTOR) | (FACTOR)
(FACTOR) — ((EXPR)) |a

The two strings a+axa and (a+a) xa can be generated with grammar G. The
parse trees are shown in the following figure.

(EXPR)
\
/(TERM>
/(EXPR) (T/ERM)
(ﬁXPR) A (FAC’T0R> (FACTOR)
/ CIEZRM) \ (TACTORY G;XPR) <TF|‘RM>
FACTOR / VTR ' '
{ ) (FACTOR) (T‘\ERM> (FACTOR)
( (FACTOR)
a + a X a ( a + a ) X a

FIGURE 2.2
Parse trees for the strings a+axa and (a+a) xa

A compiler translates code written in a programming language into another
form, usually one more suitable for execution. To do so the compiler extracts the
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meaning of the code to be compiled in a process called parsing. One represen-
tation of this meaning is the parse tree for the code, in the context-free grammar
for the programming language. We discuss an algorithm that parses context-free
languages later in Theorem 7.14 and in Problem 7.38.

Grammar G4 describes a fragment of a programming language concerned
with arithmetic expressions. Observe how the parse trees in Figure 2.2 “group”
the operations. The tree for a+axa groups the x operator and its operands
(the second two a’s) together as one operand of the + operator. In the tree for
(a+a) xa, the grouping is reversed. These groupings fit the standard precedence
of multiplication before addition and the use of parentheses to override the stan-
dard precedence. Grammar G, is designed to capture these precedence relations.

DESIGNING CONTEXT-FREE GRAMMARS

As with the design of finite automata, discussed on page 41 in Section 1.1, the
design of context-free grammars requires creativity. Indeed, context-free gram-
mars are even trickier to construct than finite automata because we are more
accustomed to programming a machine for specific tasks than we are to describ-
ing languages with grammars. The following techniques are helpful, singly or in
combination, when you're faced with the problem of constructing a CFG.

First, many CFGs are the union of simpler CFGs. If you must construct a CFG
for a CFL that you can break into simpler pieces, do so and then construct individ-
ual grammars for each piece. These individual grammars can be easily combined
into a grammar for the original language by putting all their rules together and
then adding the new rule S — S; | S5 | --- | Sk, where the variables S; are the
start variables for the individual grammars. Solving several simpler problems is
often easier than solving one complicated problem.

For example, to geta grammar for the language {0"1"|n > 0}U{170"|n > 0},
first construct the grammar

Sl — 0511 ‘ g
for the language {0"1"| n > 0} and the grammar
SQ — 1520 . g

for the language {1"0™} n > 0} and then add the rule § — S | S5 to give the
grammar

S — 51 |8,
Sl—>0511‘€
Sg—»lSQO‘E.
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Second, constructing a CFG for a language that happens to be regular is easy if
you can first construct a DFA for that language. You can convert any DFA into an
equivalent CFG as follows. Make a variable R; for each state ¢; of the DFA. Add
the rule R; — aR; to the CFGif 6(q;, a) = g; is a transition in the DFA. Add the
rule R; — e if ¢; is an accept state of the DFA. Make R the start variable of the
grammar, where g is the start state of the machine. Verify on your own that the
resulting CFG generates the same language that the DFA recognizes.

"Third, certain context-free languages contain strings with two substrings that
are “linked” in the sense that a machine for such a language would need to re-
member an unbounded amount of information about one of the substrings to
verify that it corresponds properly to the other substring. This situation occurs
in the language {0”1"| n > 0} because a machine would need to remember the
number of Os in order to verify that it equals the number of 1s. You can construct
a CFG to handle this situation by using a rule of the form R — uRwv, which gen-
erates strings wherein the portion containing the u’s corresponds to the portion
containing the v’s.

Finally, in more complex languages, the strings may contain certain structures
that appear recursively as part of other (or the same) structures. That situation
occurs in the grammar that generates arithmetic expressions in Example 2.3. Any
time the symbol a appears, an entire parenthesized expression might appear re-
cursively instead. “To achieve this effect, place the variable symbol generating the
structure in the location of the rules corresponding to where that structure may
recursively appear.

AMBIGUITY

Sometimes a grammar can generate the same string in several different ways.
Such a string will have several different parse trees and thus several different
meanings. This result may be undesirable for certain applications, such as pro-
gramming languages, where a given program should have a unique interpreta-
tion.

If a grammar generates the same string in several different ways, we say that
the string is derived ambiguously in that grammar. If a grammar generates some
string ambiguously we say that the grammar is ambiguous.

For example, let’s consider grammar Gs:

(EXPR} — (EXPR)+(EXPR) | (EXPR)x(EXPR) | ((EXPR)) | a

'This grammar generates the string a+axa ambiguously. The following figure
shows the two different parse trees.
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(EXPR) (EXPR)
\ AN
(EXPR) (EXPR) (EXPR) (EXPR}
/< \ \ / / >\
(EXPR) | (EXPR) (EXPR) | (EXPR)
( \ / \
a + a X a a + a X a

FIGURE 2.3
"The two parse trees for the string a+axa in grammar G

This grammar doesn’t capture the usual precedence relations and so may
group the + before the x or vice versa. In contrast grammar G4 generates exactly
the same language, but every generated string has a unique parse tree. Hence G4
is unambiguous, whereas G5 is ambiguous.

Grammar Gy on page 93 is another example of an ambiguous grammar. The
sentence the girl touches the boy with the flower has two different
derivations. In Exercise 2.8 you are asked to give the two parse trees and observe
their correspondence with the two different ways to read that sentence.

Now we formalize the notion of ambiguity. When we say that a grammar gen-
erates a string ambiguously, we mean that the string has two different parse trees,
not two different derivations, Two derivations may differ merely in the order in
which they replace variables yet not in their overall structure. To concentrate on
structure we define a type of derivation that replaces variables in a fixed order. A
derivation of a string w in a grammar G is a leftmost derivation if at every step
the leftmost remaining variable is the one replaced. The derivation on page 94
is a Jeftmost derivation.

........................................................................................................................

DEFINITION 2.4

A string w is derived ambiguously in context-free grammar G if it has two or
more different leftmost derivations. Grammar G is ambiguous if it generates
some string ambiguously.

Sometimes when we have an ambiguous grammar we can find an unambigu-
ous grammar that generates the same language. Some context-free languages,
however, can only be generated by ambiguous grammars. Such languages are
called inberently ambiguous. Problem 2.24 asks you to prove that the language
{0%192%| i = j or j = k} is inherently ambiguous.

CHOMSKY NORMAL FORM

When working with context-free grammars, it is often convenient to have them
in simplified form. One of the simplest and most useful forms is called the Chom-
sky normal form. We will find Chomsky normal form useful when we are giving
algorithms for working with context-free grammars in Chapters 4 and 7.
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DEFINITICON 2.5 ........................................................................................................................
A context-free grammar is in Chomsky normal form if every rule is of the form

A — BC
A —a

where a is any terminal and A, B, and C are any variables—except that B and C
may not be the start variable. In addition we permit the rule S — &, where S is
the start variable.

THEOREM 2.6 ............................................................................................................................

Any context-free language is generated by a context-free grammar in Chomsky
normal form.

........................................................................................................................................................................

PROOF IDEA We can convert any grammar G into Chomsky normal form.
The conversion has several stages wherein rules that violate the conditions are
replaced with equivalent ones that are satisfactory. First, we add a new start sym-
bol. Then, we ehmmate all e rules of the form A — . We also eliminate all #nit
rules of the form A — B. In both cases the grammar is then patched up to be
sure that it still generates the same language. Finally, we convert the remaining

rules into the proper form.

PROOF First, we add a new start symbol Sy and the rule S5 — S, where S was
the original start symbol. This change guarantees that the start symbol doesn’t
occur on the right-hand side of a rule.

Second, we take care of all € rules. We remove an e-rule A — ¢, where A
lb ot LhC start Vallab}.c .I.llC[l 1U1 CdLll occurrence Of an ﬂ on U]C I‘lgnt ﬂana
side of a rule, we add a new rule with that occurrence deleted. In other words,
if R — wAu is a rule in which u and v are strings of variables and terminals, we
add rule R — uwv. We do so for each occurrence of an A, so the rule R — wAvAw
causes us to add R — wwAw, R — uAvw, and R — uvw. If we have the rule
R — A, we add R — € unless we had previously removed the rule R — €. We
repeat these steps until we eliminate all € rules not involving the start variable.

Third, we handle all unit rules. We remove a unit rule A — B. Then, when-
ever arule B — u appears, we add the rule A — w unless this was a unit rule
previously removed. As before, u is a string of variables and terminals. We re-

1] o0
peat these steps until we eliminate all unit rules.

Finally, we convert all remaining rules into the proper form. We replace each
rule A — wujuy - - uy, where k > 3 and each wu; is a variable or terminal symbol,
with the rules A — u; A1, A — usAs, As — ugAs, ..., Ak_s — Up_1Ug.
‘The A;’s are new variables. If k > 2, we replace any terminal u; in the preceding
rule(s) with the new variable U; and add the rule U; — u;.

............................................................................
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EXAM PLE 2.7 ------------------------------------------------------------------------------------------------------------------------------

Let Gg be the following CFG and convert it to Chomsky normal form by using the
conversion procedure just given. ‘The following series of grammars illustrates the
steps in the conversion. Rules shown in bold have been just added. Rules shown
in gray have just been removed.

1. The original CFG G is shown on the left. The result of applying the first
step to make a new start symbol appears on the right.

Sg — S
S — ASA|aB g’—»ASA[aB
A— B|S A—B|S
B——>b|€ B*—>b‘€

2. Remove ¢ rules B — &, shown on the left, and A — &, shown on the right.

Sp — 8§ Sog — 8

S — ASA|aB|a S — ASA|aB|a|SA|AS|S
A— B|S|e A— B|S|e

B —-ble B —b

3a. Remove unit rules S — S, shown on the left, and S — S, shown on the
right.

Sy — S Sg— S| ASA|aB|a|SA|AS
S — ASA|aB|a|SA|AS| S S — ASA|aB|a|SA|AS
A— B|S A—B|S

B —-b B —b

3b. Remove unitrules A — Band A — S.

So — ASA|aB|a|SA| AS So — ASA|aB|a|SA|AS

S — ASA|aBla|SA| AS S —- ASA|aB|a|SA| AS
A—-DB|S|b A— S/b|ASA|aB|a|SA|AS
B -b B —b

4. Convert the remaining rules into the proper form by adding additional vari-
ables and rules. The final grammar in Chomsky normal form is equivalent to G
and appears as follows. (Actually the procedure given in Theorem 2.6 produces
several variables U; along with several rules U; — a. We simplified the resulting
grammar by using a single variable U/ and rule U — a.)
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So—eAAllUB|a|SA]AS
S — AA, |UB|a|SA|AS
A—>b|AA1|UB|a|SA|AS
A1—>SA

U—a

B—5b

2 2 BoO% OB % ¥ ¥ 4 OB M B B BB Y OB BB R EE B S SN Sa oy ¥ ononom
.
PUSHDOWN AUTOMATA

In this section we introduce a new type of computational model called pushdown
automata. These automata are like nondeterministic finite automata but have an
extra component called a stack. The stack provides additional memory beyond
the finite amount available in the control. The stack allows pushdown automata
to recognize some nonregular languages.

Pushdown automata are equivalent in power to context-free grammars. This
equivalence is useful because it gives us two options for proving that a language is
context free. We can give either a context-free grammar generating it or a push-
down automaton recognizing it. Certain languages are more easily described in
terms of generators, whereas others are more easily described in terms of recog-
nizers.

The following figure is a schematic representation of a finite automaton. The
control represents the states and transition function, the tape contains the input
string, and the arrow represents the input head, pointing at the next input symbol
to be read.

state
cowol | [aTas]o] impr
FIGURE 2.4

Schematic of a finite automaton

With the addition of a stack component we obtain a schematic representation
of a pushdown automaton, as shown in the following figure.
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state
control .
[aTo]o] inpu

X

y | stack
z

FIGURE 2.5
Schematic of a pushdown automaton

A pushdown automaton (PDA), can write symbols on the stack and read them
back later. Writing a symbol “pushes down” all the other symbols on the stack.
At any time the symbol on the top of the stack can be read and removed. The
remaining symbols then move back up. Writing asymbol on the stack is often re-
ferred to as pushing the symbol, and removing a symbol is referred to as popping
it. Note that all access to the stack, for both reading and writing, may be done
only at the top. In other words a stack is a “last in, first out” storage device. If
certain information is written on the stack and additional information is written
afterward, the earlier information becomes inaccessible until the later informa-
tion is removed.

Plates on a cafeteria serving counter illustrate a stack. The stack of plates rests
on a spring so that when a new plate is placed on top of the stack, the plates below
it move down. The stack on a pushdown automaton is like a stack of plates, with
each plate having a symbol written on it.

A stack is valuable because it can hold an unlimited amount of information.
Recall that a finite automaton is unable to recognize the language {0"1"|n > 0}
because it cannot store very large numbers in its finite memory. A PDA is able to
recognize this language because it can use its stack to store the number of Os it
has seen. ‘Thus the unlimited nature of a stack allows the PDA to store numbers of
unbounded size. ‘The following informal description shows how the automaton

for this language works.

Read symbols from the input. As each 0 is read, push it onto the stack. As
soon as 1s are seen, pop a 0 off the stack for each 1 read. If reading the input
is finished exactly when the stack becomes empty of Os, accept the input. If
the stack becomes empty while 1s remain or if the 1s are finished while the
stack still contains 0s or if any Os appear in the input following 1s, reject the

input.

As mentioned earlier, pushdown automata may be nondeterministic. This fea-
ture is crucial because, in contrast with the finite automata situation, nondeter-
minism adds power to the capability that pushdown automata would have if they
were allowed only to be deterministic. Some languages, such as {o"1™| n > 0},
do not require nondeterminism, but others do. We give a language requiring
nondeterminism in Example 2.11.
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FORMAL DEFINITION OF A PUSHDOWN AUTOMATON

The formal definition of a pushdown automaton is similar to that of a finite au-
tomaton, except for the stack. The stack is a device containing symbols drawn
from some alphabet. The machine may use different alphabets for its input and
its stack, so now we specify both an input alphabet ¥ and a stack alphabet I".

At the heart of any formal definition of an automaton is the transition function,
for that describes its behavior. Recall that ¥, = X U {e} and [ = T' U {e}.
The domain of the transition function is Q x ¥, x I'.. Thus the current state,
next input symbol read, and top symbol of the stack determine the next move of
a pushdown automaton. FEither symbol may be e causing the machine to move
without reading a symbol from the input or without reading a symbol from the
stack.

For the range of the
automaton to do when it is in a particular situation. It may enter some new state
and possibly write a symbol on the top of the stack. The function é can indicate
this action by returning a member of ) together with a member of I, thatis, a
member of @ x I'.. Because we allow nondeterminism in this model, a situation
may have several legal next moves. The transition function incorporates nonde-
terminism in the usual way, by returning a set of members of @} x I}, thatis, a
member of P(Q x I,). Putting it all together, our transition function § takes the
formé: @ x X, x I.—P(Q x I}).

DEFINITION i.g ........................................................................................................................

A pushdown automaton is a 6-tuple (Q, %, T, 6, o, F'), where Q, X, I', and F are
all finite sets, and

1. Q is the set of states,

3. T is the stack alphabet,
4. 6: ¥ x T.—P(Q x T) is the transition function,
5 .

A pushdown automaton M = (Q, %, T, 6, qo, F') computes as follows. It ac-
cepts input w if w can be written as w = wyws - - - Wy, where each w; € X, and
sequences of states rg,r1,... ,"n € Q and strings sy, $1,... ,Sm € I'* exist that
satisfy the next three conditions. The strings s; represent the sequence of stack
contents that M has on the accepting branch of the computation.

1. 7y = go and sp = €. This condition signifies that M starts out properly, in
the start state and with an empty stack.

2. Fori =0,...,m — 1, we have (r;11,b) € 6(r;, wiy1,0), where s; = at
and s;; = bt for some a,b € I and ¢ € I'*. This condition states that M
moves properly according to the state, stack, and next input symbol.

3. 7, € F. This condition states that an accept state occurs at the input end.
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EXAMPLES OF PUSHDOWN AUTOMATA

EX‘AMPLE 2.9 ------------------------------------------------------------------------------------------------------------------------------

The following is the formal description of the PDA from page 102 that recognizes
the language {0"1"| n > 0}. Let M be (Q, %, T, 8, q1, F), where

Q= {q1,492,93, G4}
¥ = {0,1},

& is given by the following table, wherein blank entries signify 0.

Input: 0 1 €
Stack:Ol$| € 0 ‘$\€ 0 | $ \ £
q1 ) {(QQ5$)}
q2 {(q2,0)} {(g3,¢)}
q3 {(gs.€)} {{qs,€)}
qd4

We can also use a state diagram to describe a PDA, as shown in the following
three figures. Such diagrams are similar to the state diagrams used to describe
finite automata, modified to show how the PDA uses its stack when going from
state to state. We write “a,b — ¢” to signify that when the machine is reading
an a from the input it may replace the symbol b on the top of the stack with a
c. Any of a, b, and ¢ may be €. If a is €, the machine may make this transition
without reading any symbol from the input. If b is &, the machine may make this
transition without reading and popping any symbol from the stack. If ¢ is €, the
machine does not write any symbol on the stack when going along this transition.

FIGURE 2.6
State diagram for the PDA M; that recognizes {0"1"| n > 0}
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‘The formal definition of a PDA contains no explicit mechanism to allow the
PDA to test for an empty stack. This PDA is able to get the same effect by initially
placing a special symbol $ on the stack. Then if it ever sees the $ again, it knows
that the stack effectively is empty. Subsequently, when we refer to testing for an
empty stack in an informal description of a PDA, we implement the procedure in
the same way.

Similarly, PDAs cannot test explicitly for having reached the end of the input
string, "T'his PDA is able to achieve that effect because the accept state takes effect
only when the machine is at the end of the input. Thus from now on, we assume
that PDAs can test for the end of the input, and we know that we can implement
it in the same manner.

EXAMPLE .10 s ittt e b s b
This example illustrates a pushdown automaton that recognizes the language
{a'b?c*|4,5,k > 0andi=jori = k}.

Informally the PDA for this language works by first reading and pushing the a’.
When the a’s are done the machine has all of them on the stack so that it can
match them with either the b’s or the ¢’s. This maneuver is a bit tricky because
the machine doesn’t know in advance whether to match the a’s with the b’ or
the ¢’s. Nondeterminism comes in handy here.

Using its nondeterminism, the PDA can guess whether to match the a’s with the
b’s or with the ¢’, as shown in the following figure. Think of the machine as hav-
ing two branches of its nondeterminism, one for each possible guess. If either of
them match, that branch accepts and the entire machine accepts. In fact we could
show, though we do not do so, that nondeterminism is essential for recognizing
this language with a PDA.

FIGURE 2.7
State diagram for PDA M that recognizes
{a?c*| 4,5,k > 0and i = jori =k}
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EXAMPLE 2.1 ‘ ..........................................................................................................................

In this example we give a PDA Mj recognizing the language {ww™|w € {0,1}}.
Recall that w® means w written backwards. The informal description of the PDA
follows.

Begin by pushing the symbols that are read onto the stack. At each point

nondeterministically guess that the middle of the string has been reached

and then change into popping off the stack for each symbol read, checking

to see that they are the same. If they were always the same symbol and the
1.

S S b cain thia ac the innnt ic finiche ccent: i
StacK empti€s at tne sdaimne ume 4ds nic input 1s ﬁumh\.d, accept, otherwise

reject.

The following is the diagram of this machine.

FIGURE 2.8
State diagram for the PDA Mj that recognizes {ww™|w € {0,1}*}

EQUIVALENCE WITH CONTEXT-FREE GRAMMARS

In this section we show that context-free grammars and pushdown automata are
equivalent in power. Both are capable of describing the class of context-free lan-
guages. We show how to convert any context-free grammar into a pushdown
automaton that recognizes the same language and vice versa. Recalling that we
defined a context-free language to be any language that can be described with a
context-free grammar, our objective is the following theorem.

THEOREM 2,12 oot sttt assts s s s s s s s s s s s

A language is context free if and only if some pushdown automaton recognizes it.

As usual for “if and only if” theorems, we have two directions to prove. In this
theorem, both directions are interesting. First, we do the easier forward direc-
tion.
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LEMMA 2.1 3 i sssns e sestnms s e seseessees s e eeeeneseeseseesssatans e sttt s e

If a language is context free, then some pushdown automaton recognizes it.

PROOF IDEA  Let A be a CFL. From the definition we know that A has a CFG,
G, generating it. We show how to convert G into an equivalent PDA, which we
call P.

‘The PDA P that we now describe will work by accepting its input w, if G gen-
erates that input, by determining whether there is a derivation for w. Recall that
a derivation is simply the sequence of substitutions made as a grammar generates
a string. Each step of the derivation yields an intermediate string of variables
and terminals. We design P to determine whether some series of substitutions
using the rules of G can lead from the start variable to w.

One of the difficulties in testing whether there is a derivation for w is in fig-
uring out which substitutions to make. The PDA’s nondeterminism allows it to
guess the sequence of correct substitutions. At each step of the derivation one
of the rules for a particular variable is selected nondeterministically and used to
substitute for that variable.

The PDA P begins by writing the start variable on its stack. It goes through a
series of intermediate strings, making one substitution after another. Eventually
it may arrive at a string that contains only terminal symbols, meaning that it has
derived a string using the grammar. Then P accepts if this string is identical to
the string it has received as input.

Implementing this strategy on a PDA requires one additional idea. We need to
see how the PDA stores the intermediate strings as it goes from one to another.
Simply using the stack for storing each intermediate string is tempting. However,
that doesn’t quite work because the PDA needs to find the variables in the inter-
mediate string and make substitutions. The PDA can access only the top symbol
on the stack and that may be a terminal symbol instead of a variable. The way
around this problem is to keep only part of the intermediate string on the stack:
the symbols starting with the first variable in the intermediate string. Any ter-
minal symbols appearing before the first variable are matched immediately with
symbols in the input string. The following figure shows the PDA P.

control

o0[1]1]o]o[1]
N——’

—

—— p—m
01 A1 AQ

Slo[=[=[=k

FIGURE 2.9
P representing the intermediate string 0141 A0
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The following is an informal description of P.

1. Place the marker symbol $ and the start variable on the stack.

2. Repeat the following steps forever.

a. If the top of stack is a variable symbol A, nondeterministically select
one of the rules for A and substitute A by the string on the right-hand
side of the rule.

b. Tf the top of stack is a terminal symbol a, read the next symbol from
the input and compare it to a. If they match, repeat. If they do not
match, reject on this branch of the nondeterminism.

c. If the top of stack is the symbol $, enter the accept state. Doing so
accepts the input if it has all been read.

PROOF We now give the formal details of the construction of the pushdown
automaton P = (Q,%,T,8,q1, F). To make the construction clearer we use
shorthand notation for the transition function. This notation provides a way to
write an entire string on the stack in one step of the machine. We can simulate
this action by introducing additional states to write the string one symbol at a
time, as implemented in the following formal construction.

Let g and r be states of the PDA, and let a be in X and s be in L. Say that
we want the PDA to go from ¢ to 7 when it reads a and pops s. Furthermore we
want it to push the entire string u = uy - - - w; on the stack at the same time. We
can implement this action by introducing new states g1, ... , ¢i-1 and setting the
transition function

8(q,a, s) to contain (q;,uz),
6((]1,5,5) = {(q27ul—1)}7
6(Q21 E,E) = {(Q3aul—2)}7

8(qi-1,8,€) = {(ru)}-

We use the notation (r,u) € 8(g, @, s) to mean that when g is the state of the
automaton, ¢ is the next input symbol, and s is the symbol on the top of the stack,
the PDA may read the @ and pop the s, then push the string u onto the stack and
go on to the state r. The following figure shows this implementation pictorially.
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FIGURE 2.10
Implementing the shorthand (r, zyz) € §(q, a, 5)

"T'he states of P are Q = {gsar, Gloops Gaccept } U F, where E is the set of states
we need for implementing the shorthand just described. The start state is gy
The only accept state is Gaccept-

The transition function is defined as follows. We begin by initializing the stack
to contain the symbols $ and S, implementing step 1 in the informal description:
6(Gstart, €,€) = {(Qioop, 5%)}. Then we put in transitions for the main loop of
step 2.

First, we handle case (a) wherein the top of the stack contains a variable. Let
6(qioops €5 A) = {(Qloop, w)| where A — w is a rule in R}.

Second, we handle case (b) wherein the top of the stack contains a terminal.
Let 6(Qloop; a, a) = {(QIoopa 5)}

Finally, we handle case (c) wherein the empty stack marker $ is on the top of
the stack. Let 6(qioop, €, $) = {(Gaccept; €) }-

The state diagram is shown in the following figure.

! €,e—5%

e, A—w forrule A—w

QIoop .
a,a—e for terminal a

e

Ei

FIGURE 2.11
State diagram of P

_)s

!

........................................................................................................................................................................
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EXAMPLE 2. T4 e L S
We use the procedure developed in Lemma 2.13 to construct a PDA P; from the
following CFG &

ah b,b—e
=

FIGURE 2.12
State diagram of Py

-

Now we prove the reverse direction of Theorem 2.12. For the forward direc-
tion we gave a procedure for converting a CFG into a PDA. The main idea was to
design the automaton so that it simulates the grammar. Now we want to give a
procedure for going the other way: converting a PDA into a CFG. We design the
grammar to simulate the automaton. This task is a bit tricky because “program-
ming” an automaton is easier than “programming” a grammar.

PROOF IDEA We have a PDA P, and we want to make a CFG G that generates
all the strings that P accepts. In other words, G should generate a string if that
string causes the PDA to go from its start state to an accept state.
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To achieve this outcome we design a grammar that does somewhat more. For
each pair of states p and q in P the grammar will have a variable Apg- This variable
generates all the strings that can take P from p with an empty stack to ¢ with an
empty stack. Observe that such strings can also take P from p to g, regardless of
the stack contents at p, leaving the stack at g in the same condition as it was at P

First, we simplify our task by modifying P slightly to give it the following three
features.

1. It has a single accept state, Qaccept-
2. Tt empties its stack before accepting.

3. Each transition either pushes a symbol onto the stack (a push move) or pops
one off the stack (a pop move), but does not do both at the same time.

Giving P features 1 and 2 is easy. "o give it feature 3, we replace each transi-
tion that simultaneously pops and pushes with a two transition sequence that goes
through a new state, and we replace each transition that neither pops nor pushes
with a two transition sequence that pushes then pops an arbitrary stack symbol.

1o design G so that A,,, generates all strings that take P from p to g, starting
and ending with an empty stack, we must understand how P operates on these
strings. For any such string z, P’ first move on z must be a push, because every
move is either a push or a pop and P can’t pop an empty stack. Similarly the last
move on z must be a pop, because the stack ends up empty.

Two possibilities occur during P’s computation on z. FEither the symbol
popped at the end is the symbol that was pushed at the beginning, or not. If so,
the stack is empty only at the beginning and end of P’ computation on z. If not,
the initially pushed symbol must get popped at some point before the end of z
and thus the stack becomes empty at this point. We simulate the former possi-
bility with the rule A,; — aA,.b where a is the input symbol read at the first
move, b is the symbol read at the last move, 7 is the state following p, and s the
state preceding g. We simulate the latter possibility with the rule Apg — Apr Ay,
where r is the state when the stack becomes empty.,

PROOF Saythat P = (Q,X,T, 6, qo, {4accept }) and construct G. The variables
of G are {A,,| p,q € Q}. The start variable is Ao e - NOW we describe G’s
rules.

* Foreachp,q,r,s € Q, t € T,and a,b € %, if 8(p, a, €) contains (r,t) and
6(s, b, ) contains (g, €) put the rule Apg — aArsbin G.

* For each p, q,7 € Q put the rule Apg — App Ay in G
* Finally, for each p € Q put the rule App — ein G.

You may gain some intuition for this construction from the following figures.
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height _—— generated

by qu

Input string
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by A, by Arq
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Input string
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generated
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FIGURE 2.14
PDA computation corresponding to the rule Ayy — aApsb

Now we prove that this construction works by demonstrating that Ap, gener-
ates r if and only if (iff) x can bring P from p with empty stack to ¢ with empty
stack. We consider each direction of the iff as a separate claim.

CLAIM 2.1 6 oo e aa s RS
If A,, generates z, then z can bring P from p with empty stack to g with empty
stack.

We prove this claim by induction on the number of steps in the derivation of
x from Apg.
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Basis: The derivation has 1 step.

A derivation with a single step must use a rule whose right-hand side contains no
variables. The only rules in G where no variables occur on the right-hand side
are Ay, — €. Clearly, input € takes P from p with empty stack to p with empty
stack so the basis is proved.

Induction step: Assume true for derivations of length at most k, where k > 1,
and prove true for derivations of length & - 1.

Suppose that A, = z with k + 1 steps. The first step in this derivation is either
Apq = ad.sbor Apy = Apr Ay, We handle these two cases separately.

In the first case, consider the portion y of x that A,, generates, so z = ayb.
Because A,; = y with k steps, the induction hypothesis tells us that P can go
from r on empty stack to s on empty stack. Because A,, — aA,sb is a rule of G,
6(p, a,€) contains (r,t) and 6(s, b, ) contains (g, €). Hence, if P starts at p with
an empty stack, after reading a it can go to state  and push ¢ on the stack. Then
reading string y can bring it to s and leave ¢ on the stack. Then after reading b
it can go to state ¢ and pop t off the stack. Therefore z can bring it from p with
empty stack to ¢ with empty stack.

In the second case, consider the portions y and = of z that A,,. and A, respec-
tively generate, so x = yz. Because A4,, = y in at most k stepsand A,, = zinat
most  steps, the induction hypothesis tells us that y can bring P from p to r, and
z can bring P from r to g, with empty stacks at the beginning and end. Hence z
can bring it from p with empty stack to g with empty stack. This completes the
induction step.

CLAIM 2.17 ..................................................................................................................................

If  can bring P from p with empty stack to ¢ with empty stack, A, generates z.

We prove this claim by induction on the number of steps in the computation
of P that goes from p to ¢ with empty stacks on input z.

Basis: The computation has 0 steps.

If a computation has 0 steps, it starts and ends at the same state, say, p. So we
must show that A, = z. In 0 steps, P only has time to read the empty string,
so x = €. By construction, G has the rule A,,, — &, so the basis is proved.

Induction step: Assume true for computations of length at most k, where & > 0,
and prove true for computations of length & + 1.

Suppose that P has a computation wherein z brings p to g with empty stacks in
k + 1 steps. Either the stack is empty only at the beginning and end of this com-
putation, or it becomes empty elsewhere, too.

In the first case, the symbol that is pushed at the first move must be the same as
the symbol that is popped at the last move. Call this symbol ¢. Let a be the input
read in the first move, b be the input read in the last move, r be the state after the
first move, and s be the state before the last move. Then & (p, a, €) contains (r, t)
and 6(s, b, t) contains (g, €), and so rule A, — aA,zbisin G.
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Let y be the portion of  without a and b, so z = ayb. Input y can bring P
from 7 to s without touching the symbol ¢ that is on the stack and so P can go
from r with an empty stack to s with an empty stack on input y. We have removed
the first and last steps of the & + 1 steps in the original computation on z so the
computation on y has (k + 1) — 2 = k — 1 steps. Thus the induction hypothesis
tells us that A,, = y. Hence Apg = 1.

In the second case, let 7 be a state where the stack becomes empty other than
at the beginning or end of the computation on z. Then the portions of the com-
putation from p to r and from r to ¢ each contain at most & steps. Say that y is
the input read during the first portion and z is the mput read durmg the second
portion. The induction hypothe51s tells us that A, = y and 4,4 = z. Because
rule Ay — Apr Ay isin G, Apg = z, and the proof is complete.

That completes the proof of Lemma 2.15 and of Theorem 2.12.

We have just proved that pushdown automata recognize the class of context-
free languages. This proof allows us to establish a relationship between the reg-
ular languages and the context-free languages. Because every regular language
is recognized by a finite automaton and every finite automaton is automatically a
pushdown automaton that simply ignores its stack, we now know that every reg-
ular language is also a context-free language.

COROLLARY 2.'8 ...................................................................................................................

Every regular language is context free.

context-free
languages

regular
languages

FIGURE 2.15
Relationship of the regular and context-free languages
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2.3

NON-CONTEXT-FREE LANGUAGES

In this section we present a technique for proving that certain languages are not
context free. Recall that in Section 1.4 we introduced the pumping lemma for
showing that certain languages are not regular. Here we present a similar pump-
ing lemma for context-free languages. It states that every context-free language
has a special value called the pumping length such that all longer strings in the
language can be “pumped.” This time the meaning of pumped is a bit more com-
plex. It means that the string can be divided into five parts so that the second and
the fourth parts may be repeated together any number of times and the resulting
string still remains in the language.

THE PUMPING LEMMA FOR CONTEXT-FREE LANGUAGES

THEOREM 2.19 .........................................................................................................................

Pumping lemma for context-free languages If A is a context-free language,
then there is a number p (the pumping length) where, if s is any string in A of
length at least p, then s may be divided into five pieces s = uvzyz satisfying the
conditions:

1. For each i > 0, wuv'zy'z € A,
2. |vy| > 0, and
3. jvzy| < p.

When s is being divided into uvzyz, condition 2 says that either v or y is not
the empty string. Otherwise the theorem would be trivially true. Condition 3
states that the pieces v, z, and y together have length at most p. This technical
condition sometimes is useful in proving that certain languages are not context
free.

PROOF IDEA Let A be a CFlL and let G be a CFG that generates it. We must
show that any sufficiently long string s in A can be pumped and remain in A. The
idea behind this approach is simple.

Let s be a very long string in A. (We make clear later what we mean by “very
long.”) Because s is in 4, it is derivable from G and so has a parse tree. The
parse tree for s must be very tall because s is very long. That is, the parse tree
must contain some long path from the start variable at the root of the tree to
one of the terminal symbols at a leaf. On this long path some variable symbol R
must repeat because of the pigeonhole principle. As the following figure shows,
this repetition allows us to replace the subtree under the second occurrence of
R with the subtree under the first occurrence of R and still get a legal parse tree.
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Therefore we may cut s into five pieces uvzyz as the figure indicates, and we may
repeat the second and fourth pieces and obtain a string still in the language. In
other words, uv*zy*z is in A for any ¢ > 0.

T

/N

x

FIGURE 2.16
Surgery on parse trees

Let’s now turn to the details to obtain all three conditions of the pumping
lemma. We also show how to calculate the pumping length p.

PROOF Let G be a CFG for CFL A. Let b be the maximum number of symbols
in the right-hand side of a rule. We may assume that b6 > 2. In any parse tree
using this grammar we know that a node can have no more than b children. In
other words at most b leaves are 1 step from the start variable; at most b? leaves
are at most 2 steps from the start variable; and at most b” leaves are at most h
steps from the start variable. So, if the height of the parse tree is at most k, the
length of the string generated is at most b".

Let |V| be the number of variables in G. We set p to be bV |42, Because b > 2,
we know that p > b!VI+1, 50 a parse tree for any string in A of length at least p
requires height at least |V| + 2.

Suppose that s is a string in A of length at least p. We now show how to
pump s. Let 7 be a parse tree for s. If s has several parse trees, we choose 7 to
be a parse tree that has the smallest number of nodes. As |s| > p, we know that
7 has height at least |V'| + 2, so the longest path in 7 has length at least |V| + 2.
This path must have at least |[V'] + 1 variables because only the leaf is a terminal.
With G having only |V variables, some variable R appears more than once on
the path. For convenience later, we select R to be a variable that repeats among
the lowest |V| + 1 variables on this path.
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We divide s into wvryz according to Figure 2.16. Each occurrence of R has
a subtree under it, generating a part of the string s. The upper occurrence of R
has a larger subtree and generates vzy, whereas the lower occurrence generates
just z with a smaller subtree. Both of these subtrees are generated by the same
variable, so we may substitute one for the other and still obtain a valid parse tree.
Replacing the smaller by the larger repeatedly gives parse trees for the strings
wv'zy’z at each i > 1. Replacing the larger by the smaller generates the string
uzz. That establishes condition 1 of the lemma. We now turn to conditions 2
and 3.

To get condition 2 we must be sure that both v and y are not . If they were,
the parse tree obtained by substituting the smaller subtree for the larger would
have fewer nodes than 7 does and would still generate s. This resultisn’t possible
because we had already chosen 7 to be a parse tree for s with the smallest number
of nodes. That is the reason for selecting 7 in this way.

In order to get condition 3 we need to be sure that vzy has length at most p.
In the parse tree for s the upper occurrence of R generates vry. We chose R so
that both occurrences fall within the bottom |V'|+1 variables on the path, and we
chose the longest path in the parse tree, so the subtree where R generates vzy is
at most |V| + 2 high. A tree of this height can generate a string of length at most
plvViI+2 — P.

........................................................................................................................................................................

For some tips on using the pumping lemma to prove that languages are not
context free, review page 80 where we discuss the related problem of proving
nonregularity with the pumping lemma for regular languages.

EXAMPLE 2'20 ..........................................................................................................................

Use the pumping lemma to show that the language B = {a"b™c"|n > 0} is not
context free.

We assume that B is a CFL and obtain a contradiction. Let p be the pumping
length for B that is guaranteed to exist by the pumping lemma. Select the string
§ = a"bPc?. Clearly s is a member of B and of length at least p. The pumping
lemma states that s can be pumped, but we show that it cannot. In other words,
we show that no matter how we divide s into uvzyz, one of the three conditions
of the lemma is violated.

First, condition 2 stipulates that either v or y is nonempty. Then we consider
one of two cases, depending on whether substrings v and y contain more than
one type of alphabet symbol.

1. When both v and y contain only one type of alphabet symbol, v does not
contain both a’s and b’ or both b’ and c’s, and the same holds for 3. In this
case the string uv?zy?z cannot contain equal numbers of a’s, b’, and c.
Therefore it cannot be a member of B. That violates condition 1 of the
lemma and is thus a contradiction.

2, When either v or y contain more than one type of symbol uv?zy?z may
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contain equal numbers of the three alphabet symbols but won’t contain
them in the correct order. Hence it cannot be a member of B and a con-
tradiction occurs,

One of these cases must occur. Because both cases result in a contradiction, a
contradiction is unavoidable. So the assumption that B is a CFL must be false.
Thus we have proved that B is not a CFL.

EXAMPLE I T

Let ¢ = {a'b’c¥| 0 < i < j < k}. We use the pumping lemma to show that C
is not a CFL. This language is similar to language B in Example 2.20, but proving
that it is not context free is a bit more complicated.

Assume that C'is a CFL and obtain a contradiction. Letp be the pumping length
given by the pumping lemma. We use the string s = a”b”c” that we used earlier,
but this time we must “pump down” as well as “pump up.” Let s = uvryz and
again consider the two cases that occurred in Example 2.20.

1. When both v and y contain only one type of alphabet symbol, v does not
contain both a’s and b’ or both b’s and ¢’s, and the same holds for y. Note
that the reasoning used previously in case 1 no longer applies. The reason
is that (7 contains strings with unequal numbers of a’s, b’s, and c’s as long
as the numbers are not decreasing. We must analyze the situation more
carefully to show that s cannot be pumped. Observe that because v and
y contain only one type of alphabet symbol, one of the symbols a, b, or c
doesn’t appear in v or y. We further subdivide this case into three subcases
according to which symbol does not appear.

a. The a’s do not appear. Then we try pumping down to obtain the
string uv’2y°z = uzz. That contains the same number of a% as s
does, but it contains fewer b’s or fewer ¢’s. Therefore it is not a mem-
ber of C, and a contradiction occurs.

b. The b’s do not appear. Then either a’s or ¢’s must appear in v or y be-
cause both can’t be the empty string. If a's appear, the string uv’zy® >
contains more a’s than b, so it is not in C. If ¢’s appear, the string
w20z contains more b’s than c’s, so it is not in C. Either way a
contradiction occurs.

c. The ¢’s do not appear. Then the string uv”zy*z contains more a’s or
more b’s than.c’s, so it is not in C, and a contradiction occurs.
2. When either v or y contain more than one type of symbol, uv?zy®z will

not contain the symbols in the correct order. Hence it cannot be a member
of C, and a contradiction occurs.

"Thus we have shown that s cannot be pumped in violation of the pumping lemma
and that C is not context free.
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EXAMPLE 2.22 ..........................................................................................................................

Let D = {ww|w € {0,1}*}. Use the pumping lemma to show that D is not a CFL.
Assume that D is a CFL and obtain a contradiction. Let p be the pumping length
given by the pumping lemma.

This time choosing string s is less obvious. One possibility is the string
0P1071. It is a member of D and has length greater than p, so it appears to be
a good candidate. But this string czz be pumped by dividing it as follows, so it is
not adequate for our purposes.

0P1 0P1
000---000 0 1 0 000---0001
S e S o N Ny e, e’
u voox oy z

Let’s try another candidate for s. Intuitively, the string 0P 1P0P 1P seems to cap-
ture more of the “essence” of the language D than the previous candidate did. In
fact, we can show that this string does work, as follows.

We show that the string s = 0P1P0P1P cannot be pumped. This time we use
condition 3 of the pumping lemma to restrict the way that s can be divided. It
says that we can pump s by dividing s = uvzyz, where |vzy| < p.

First, we show that the substring vzy must straddle the midpoint of s. Other-
wise, if the substring occurs only in the first half of s, pumping s up to uv?zy?z
moves a 1 into the first position of the second half, and so it cannot be of the form
ww. Similarly, if vzy occurs in the second half of s, pumping s up to uv?zy?=z
moves a 0 into the last position of the first half, and so it cannot be of the form
ww.

But if the substring vzy straddles the midpoint of s, when we try to pump s
down to uzz it has the form 071707 17, where i and j cannot both be p. This string
is not of the form ww. Thus s cannot be pumped, and D is not a CFL.

OB OH 8 B OB % B OB OO OB OB OB OB OB OB OB OB O® OB OB OB OB EOB OB B B oW

EXERCISES

2.1 Recall the CFG G4 that we gave in Example 2.3. For convenience, let’s rename its
variables with single letters as follows.

E—-FE+T|T

T > TxF|F

Fo(B)|a
Give parse trees and derivations for each string.

. a

. atata

. ((a))

a
b. a+a
c
d
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2.2 a. Use the languages A = {a™b"c"|m,n > 0} and B = {a"b"c”|m,n > 0}
together with Example 2.20 to show that the class of context-free languages
is not closed under intersection.

b. Use part (a) and DeMorgan’s law (Theorem 0.10) to show that the class of
context-free languages is not closed under complementation.

2.3 Answer each part for the following context-free grammar G:

R — XRX|S
S — aTb|bTla
T = XTX|X|e

<

A—>aib

What are the variables and terminals of G? Which is the start variable?
Give three examples of strings in L(G).
Give three examples of strings ot in L(G).
True or False: T = aba.

True or False: T = aba.

True or False: T = T.

True or False: T = T.

True or False: XXX = aba.

True or False: X = aba.

True or False: T = X X.

True or False: T = X X X.

True or False: § = €.

R om0 B0 FoE

-

.5:—?~‘~.—-

Give a description in English of L(G).

2.4 Give context-free grammars that generate the following languages. In all parts the
alphabet X is {0,1}.
a. {w| w contains at least three 1s}
b. {w|w starts and ends with the same symbol}
c. {w| the length of w is odd}
d. {w| the length of w is odd and its middle symbol is a 0}
e. {w| w contains more 1s than Os}
f. {w|w = w™, thatis, w is a palindrome}
. The empty set

s

2.5 Give informal descriptions and state diagrams of pushdown automata for the lan-
guages in Fxercise 2.4.

2.6 Give context-free grammars generating the following languages.

a. The set of strings over the alphabet {a,b} with twice as many a’ as b’s.

b. The complement of the language {a"b™| n > 0}.

c. {w#z| w™ is a substring of z for w,z € {0,1}"}.

d. {z #zo#- - #x.| k > 1, each z; € {a,b}", and for some i and j, z: = x ¢}

2.7 Give informal English descriptions of PDAs for the languages in Exercise 2.6.
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2.8 Show that the string the girl touches the boy with the flower has two
different derivations in grammar Gz on page 93. Describe in English the two dif-
ferent meanings of this sentence.

2.9 Give a context-free grammar that gen

L
I
-
N
o
o,
(9]
-
=
™
IV

0 and either ¢ = j or j = k}.

Is your grammar ambiguous? Why or why not?

2.10 Give an informal description of a pushdown automaton that recognizes the lan-
guage A in Exercise 2.9.

2.11 Convert the CFG G4 given in Exercise 2.1 to an equivalent PDA using the procedure
given in Theorem 2.12.

2.12 Convert the CFG G given in Fxercise 2.3 to an equivalent PDA using the procedure
given in Theorem 2.12.

2.13 Let G = (V,%, R, S) be the following grammar. V = {S,T,U}; = = {0, #}; and

R is the set of rules:
S - TT|U

T~—>0TJTO|#
U — oU00 | #

a. Describe L(G) in English.
t IL.(G

b. Prove tha (

i
) is not regular,

2.14 Convert the following CFG into an equivalent CFG in Chomsky normal form, using
the procedure given in Theorem 2.6.

A — BAB|B|e
B—>00}6

PROBLEMS

2.15 Show that the class of context-free languages is closed under the regular operations,
union, concatenation, and star.

2.16 Use the result of Problem 2.15 to give another proof that every regular language is
context free, by showing how to convert a regular expression directly to an equiva-
lent context-free grammar.

2.17 a. Let C be a context-free language and R be a regular language. Prove that the
language C'N R is context free.

[

b. Use part (a) to show that the language A = {w|w € {a,b, c}* and contains

e.qusa] numbers of a’s, b’s, and C’S} is not 2 CF
2.18 Use the pumping lemma to show that the following languages are not context free.
a. {0"1"0"1"| n > 0}
b. {0"#0%"#0°"| n > 0}
¢. {w#x{ w is a substring of x, where w, z € {a,b}*}.
d. {z1#xo# - #x,| k > 2, each z; € {a,b}*, and for some i # j, z; = x;}.

2.19 Show that, if G is 2 CFG in Chomsky normal form, then for any string w € L(G)
of length n > 1, exactly 2n — 1 steps are required for any derivation of w.
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2.20

*2.21

2.22

2.23

*2.24
*2.25

*2.26
*2.27

*2.28
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Let G be a CFG in Chomsky normal form that contains b variables. Show that, if G
generates some string using a derivation with at least 2° steps, L(G) is infinite.

Let G = (V,Z, R, {STMT)) be the following grammar.

[y A OoT e\ Tr T TITNAT T QT

(STMT) — (ASSIGN) | {IF-THEN) | {IF-THEN-ELSE) | (BEGIN-END)
(IF-THEN) — if condition then (STMT)
(IF-THEN-ELSE) — if condition then (STMT) else (STMT)
(BEGIN-END) — begin (STMT-LIST) end
(STMT-LIST) — (STMT—LIST)(STMT) | (STMT)
(ASSIGN) — a:=

¥ = {if,condition, then, else, begin, end,a:=1}.
V = {{STMT), (IF-THEN), {IF-THEN-ELSE), (BEGIN-END), (STMT-LIST),
(ASSIGN) }

G is a natural-looking grammar for a fragment of a programming language, but G
is ambiguous.

a. Show that G is ambiguous.
b. Give a new unambiguous grammar for the same language.

Consider the language B = L(G), where G is the grammar given in Exercise 2.13.
The pumping lemma for context-free languages, Theorem 2.19, states the existence
of a pumping length p for B. What is the minimum value of p that works in the
pumping lemma? Justify your answer.

Give an example of a language that is not context free but that does satisfy the three
conditions of the pumping lemma. Prove that your example works. (See the anal-
ogous fact for regular languages in Problem 1.37.)

Show that the language A in Exercise 2.9 is inherently ambiguous.

Let CFG G be
S — aSb|bY |Ya

Y — bY |aY |e
Give a simple description of L(G) in English. Use that description to give a CFG
for L(G), the complement of L(G).
Let C = {z#y| z,y € {0,1}" and z # y}. Show that C is a context-free language.

Let D = {zy|z,y € {0,1}* and |z| = |y| butz # y}. Show that D is a context-free
language.

Prove the following stronger form of the pumping lemma, wherein we require both
pieces v and y to be nonempty when the string s is broken up.

If A is a context-free language, then there is a number k where, if s is any string in
A of length at least k, then s may be divided into five pieces, s = uvzyz, satisfying
the conditions:

a. Foreachi >0, wvizy'z € A,
b. v # e and y # £, and
c. jvay| < k.
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THE CHURCH-TURING
THESIS

So far in our development of the theory of computation we have presented sev-
eral models of computing devices. Finite automata are good models for devices
that have a small amount of memory. Pushdown automata are good models for
devices that have an unlimited memory that is usable only in the last in, first out
manner of a stack, We have shown that some very simple tasks are beyond the
capabilities of these models. Hence they are too restricted to serve as models of
general purpose computers.

3 ] BOE OB OB OB S B E H NS ER YD EEERER B Y EEBE LY
-
TURING MACHINES

We turn now to a much more powerful model, first proposed by Alan Turing
in 1936, called the Turing machine. Similar to a finite automaton but with an
unlimited and unrestricted memory, a Turing machine is a much more accurate
model of a general purpose computer. A Turing machine can do everything that
areal computer can do. Nonetheless, even a Turing machine cannot solve certain
problems. In a very real sense, these problems are beyond the theoretical limits
of computation.

The Turing machine model uses an infinite tape as its unlimited memory. It
has a tape head that can read and write symbols and move around on the tape.

125
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Initially the tape contains only the input string and is blank everywhere else. If
the machine needs to store information, it may write this information on the tape.
To read the information that it has written, the machine can move its head back
over it. The machine continues computing until it decides to produce an output.
The outputs accept and reject are obtained by entering designated accepting and
rejecting states. If it doesn’t enter an accepting or a rejecting state, it will go on
forever, never halting.

control

a[o[als ol o

FIGURE 3.1
Schematic of a Turing machine

The following list summarizes the differences between finite automata and
‘Turing machines.

1. A Turing machine can both write on the tape and read from it.
2. The read—write head can move both to the left and to the right.
3. The tape is infinite.

4. The special states for rejecting and accepting take immediate effect.

Let’s consider a Turing machine A for testing membership in the language
B = {w#w| w € {0,1}*}. That is, we want to design M; to accept if its input is
a member of B. To understand M; better, put yourself in its place by imagining
that you are standing on a mile-long input consisting of millions of characters.
Your goal is to determine whether the input is a member of B, that is, whether
the input comprises two identical strings separated by a # symbol. The input is
too long for you to remember it all, but you are allowed to move back and forth
over the input and make marks on it. Of course, the obvious strategy is to zig-zag
to the corresponding places on the two sides of the # and determine whether they
match. Use marks to keep track of which places correspond.

We design M, to work in the same way. It makes multiple passes over the
input string with the read—write head. On each pass it matches one of the char-
acters on each side of the # symbol. To keep track of which symbols have been
checked already, M; crosses off each symbol as it is examined. If it crosses off all
the symbols, that means that everything matched successfully, and M; goes into
an accept state. If it discovers a mismatch, it enters a reject state. In summary,
M7’ algorithm is as follows.
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M; = “On input string w:

1. Scan the input to be sure that it contains a single # symbol. If
not, reject.

2. Zig-zag across the tape to corresponding positions on either side
of the # symbol to check on whether these positions contain the
same symbol. If they do not, reject. Cross off symbols as they
are checked to keep track of which symbols correspond.

3. When all symbols to the left of the # have been crossed off, check
for any remaining symbols to the right of the #. If any symbols

remain, reject; otherwise accept.”

The following figure contains several snapshots of M;’s tape while it is com-
puting in stages 2 and 3 when started on input 011000#011000.

011000#011000u ...
x11000#0110000uw ...
x11000#x11000u .
x11000#x11000wu ...
xx1000#x11000wu ...

X XXXXX#EXXXXXXuU..
accept

FIGURE 3.2
Snapshots of Turing machine M; computing on input 011000#011000

This description of Turing machine M; sketches the way it functions but does
not give all its details. We can describe Turing machines in complete detail by
giving formal descriptions analogous to those introduced for finite and pushdown
automata. The formal description specifies each of the parts of the formal defini-
tion of the Turing machine model to be presented shortly. In actuality we almost
never give formal descriptions of Turing machines because they tend to be very

big.

FORMAL DEFINITION OF A TURING MACHINE

The heart of the definition of a Turing machine is the transition function & be-
cause it tells us how the machine gets from one step to the next. For a Turing
machine, § takes the form: Q@ x ' — @Q x I' x {L, R}. That is, when the ma-
chine is in a certain state q and the head is over a tape square containing a symbol
a, and if &(g, a) = (r, b, L), the machine writes the symbol b replacing the a, and
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goes to state r. The third component is either L or R and indicates whether the
head moves to the left or right after writing. In this case the L indicates a move

to the left.

DEFINITION 3.1 ........................................................................................................................

A Turing machine is a 7-tuple, (Q,%,T', 6, go, Gaccepe, Greject), Where Q, X, T are all
finite sets and

1. Q is the set of states,

2. ¥ is the input alphabet not containing the special blank symbol v,
3. I is the tape alphabet, whereu € 'and ¥ C T,

4. §: Q x '—>Q x I' x {L., R} is the transition function,

5. qp € Q is the start state,

6. Gaccepr € @ is the accept state, and

7. Greject € @ is the reject state, where greject 7 Gaceept-

A Turing machine M = (Q, %, T', 6, qu, Gaccept, Greject) cOomptes as follows. Ini-
tially M receives its input w = wiwz ... wy, € L* on the leftmost n squares of
the tape, and the rest of the tape is blank (i.e., filled with blank symbols). The
head starts on the leftmost square of the tape. Note that & does not contain the
blank symbol, so the first blank appearing on the tape marks the end of the inpu.
Once M starts, the computation proceeds according to the rules described by the
transition function. If M ever tries to move its head to the left off the left-hand
end of the tape, the head stays in the same place for that move, even though the
transition function indicates I.. The computation continues until it enters either
the accept or reject states at which point it halts. If neither occurs, M goes on
forever.

As a Turing machine computes, changes occur in the current state, the cur-
rent tape contents, and the current head location. A setting of these three items
is called a configuration of the Turing machine. Configurations often are repre-
sented in a special way. For a state ¢ and two strings wand v over the tape alphabet
T we write u g v for the configuration where the current state is g, the current tape
contents is uv, and the current head location is the first symbol of v. The tape
contains only blanks following the last symbol of v. For example, 1011¢701111
represents the configuration when the tape is 101101111, the current state is gz,
and the head is currently on the second 0. The following figure depicts a Turing
machine with that configuration.
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FIGURE 3.3
A Turing machine with configuration 1011¢701111

Here we formalize our intuitive understanding of the way that a Turing ma-
chine computes. Say that configuration C yields configuration C if the Turing
machine can legally go from C; to (5 in a single step. We define this notion for-
mally as follows.

Suppose that we have a, b, and ¢ in T, as well as v and v in T* and states g;
and ¢,. In that case ua g; bv and v ¢; acv are two configurations. Say that

uag;bv  yields wg;acy

if in the transition function 6(¢;, &) = (¢;, ¢, L). That handles the case where the
Turing machine moves leftward. For a rightward move, say that

uaq bv  yields wuacq;v

if 0(qi,b) = (g;. . R).

Special cases occur when the head is at one of the ends of the configuration.
For the left-hand end, the configuration ¢; bv yields ¢; cv if the transition is left
moving (because we prevent the machine from going off the left-hand end of the
tape), and it yields ¢ ¢;v for the right moving transition. For the right-hand end,
the configuration ua g; is equivalent to ua ¢; u because we assume that blanks fol-
low the part of the tape represented in the configuration. Thus we can handle this
case as before, with the head no longer at the right-hand end.

The start configuration of M on inputw is the configuration ¢y w, which indi-
cates that the machine is in the start state gy with its head at the leftmost position
on the tape. In an accepting configuration the state of the configuration is gaccepe-
In a rejecting configuration the state of the configuration is gygjeer. Accepting and
rejecting configurations are balting configurations and accordingly do not yield
further configurations. A Turing machine M accepts input w if a sequence of con-
figurations C', Cy, ... , C} exists where

1. C4 ig the start configuration of M on input w,
2. each C; vields C; 1, and

3. C} is an accepting configuration.

The collection of strings that M accepts is the language of M, denoted L(M).
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DEF]NITION 3.2 ........................................................................................................................

Call a language Turing-recognizable if some Turing machine recognizes it.

When we start a TM on an input, three outcomes are possible. The machine
may accept, reject, or loop. By loop we mean that the machine simply does not halt.
It is not necessarily repeating the same steps in the same way forever as the con-
notation of looping may suggest. Looping may entail any simple or complex be-
havior that never leads to a halting state.

A Turing machine M can fail to accept an input by entering the greject State
and rejecting, or by looping. Sometimes distinguishing a machine that is loop-
ing from one that is merely taking a long time is difficult. For this reason we
prefer Turing machines that halt on all inputs; such machines never loop. These
machines are called deciders because they always make a decision to accept or re-
ject. A decider that recognizes some language also is said to decide that language.

DEFINITION 3'3 ........................................................................................................................

Call a lang‘uage Turing-decidable or simply decidable if some "Turing machine
decides it.

Every decidable language is Turing-recognizable but certain Turing-recognizable
languages are not decidable. We now give some examples of decidable languages.
We present examples of languages that are Turing-recognizable but not decidable
after we develop a technique for proving undecidability in Chapter 4.

EXAMPLES OF TURING MACHINES

As we did for finite and pushdown automata, we can give a formal description of
a particular Turing machine by specifying each of its seven parts. However, go-
ing to that level of detail for Turing machines can be cumbersome for all but the
tiniest machines. Accordingly, we won't spend much time giving such descrip-
tions. Mostly we will give only higher level descriptions because they are precise
enough for our purposes and are much easier to understand. Nevertheless, it is
important to remember that every higher level description is actually just short-
hand for its formal counterpart. With patience and care we could describe any
of the Turing machines in this book in complete formal detail.

To help you make the connection between the formal descriptions and the
higher level descriptions, we give state diagrams in the next two examples. You
may skip over them if you already feel comfortable with this connection.

v, : . .
1t is called a recursively enumerable language in some other text
21t is called a recursive language in some other textbooks.
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EXAMPLE Sl et s e sra b sttt R SRS s e s

Here we describe a TM Ay that recognizes the language consisting of all strings
of 0s whose length is a power of 2. It decides the language A = {02"| n > 0}.

M, = *On input string w:
1. Sweep left to right across the tape, crossing off every other 0.
2. Ifinstage 1 the tape contained a single 0, accept.
3. Tfin stage 1 the tape contained more than a single 0 and the
number of 0s was odd, reject.
4, Return the head to the left-hand end of the tape.
5. Gotostage 1.”

Each iteration of stage 1 cuts the number of 0s in half. As the machine sweeps
across the tape in stage 1, it keeps track of whether the number of Os seen is even
or odd. If that number is odd and greater than 1, the original number of 0s in the
input could not have been a power of 2. Therefore the machine rejects in this
instance. However, if the number of Os seen is 1, the original number must have
been a power of 2. So in this case the machine accepts.

Now we give the formal description of My = (Q, . T, 6, G1, Gacceprs Greject)-

* Q= {q1,92,93,04, G5, Gaccepts Greject )

* ¥ ={0},and

* I' = {0x,u}.

» We describe 6 with a state diagram (see Figure 3.4).

» The start, accept, and reject states are qi, Gaccepts aA0d Greject-

In the state diagram in Figure 3.4 the label 0 — u,R appears on the transition
from q; to g2. It signifies that, when in state ¢, with the head reading 0, the ma-
chine goes to state go, writes u, and moves the head to the right. In other words,
8(q1,0) = (qz,u,R). For clarity we use the shorthand 0 — R in the transition
from g3 to g4, as meaning that the machine moves to the right when reading 0 in
state g3 but doesn’t alter the tape, so 6(g3,0) = (g4,0,R).

This machine begins by writing a blank symbol over the leftmost 0 on the tape
so that it can find the left-hand end of the tape in stage 4. Whereas we would
normally use a more suggestive symbol such as # for the left-hand end delimiter,
we use a blank here to keep the tape alphabet, and hence the state diagram, small.
Example 3.6 gives another method of finding the left-hand end of the tape.

We give a sample run of this machine on input 0000. The starting config-
uration is q;0000. The sequence of configurations the machine enters appears
following Figure 3.4. Read down the columns and left to right.
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FIGURE 3.4
State diagram for Turing machine M

A sample run of M3 on input 0000:

q10000 ugsx0xu UX (5 XXU
ug2000 q5ux0xu U5 XX XU
uxqs00 ugex0xu g5UXXXU
ux0q40 Lxgo Oxu L2 XXXU
ux0xgsu UXXQ3XU UX@oXXu
uxOgsxu UXXX(3u UXXg@2XU
uxqs0xu UXXgsXu UXXXqaU
UXXXUaccept .

EXAMPLE 3.5 oottt £ 8 R e
The following is a formal description of My = (@, %, T, 6, g1, Gaccept, Greject ), the
Turing machine that we informally described on page 127 for deciding the lan-
guage B = {w#w| w € {0,1}*}.

*Q= {Q1, -+« 3 14, Gaccept, Qreject}a

* > :‘{0,1,#}, and I' = {0,1,#,x,u}.

» We describe 6 with a state diagram (see Figure 3.5).

» The start, accept, and reject states are qi, gaccept, 3Nd Greject-

In Figure 3.5 depicting the state diagram of TM Mj, you will find the label
0,1 — R on the transition going from g3 to itself. That label means that the
machine stays in g3 and moves to the right when it reads a 0 or a 1 in state g3. It
doesn’t change the symbol on the tape.
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FIGURE 3.5
State diagram for Turing machine M;

As in Example 3.4, the machine starts by writing a blank symbol to delimit the
left-hand edge of the tape. This time it may overwrite a 0 or a 1 when doing so,
and it remembers the overwritten symbol by using the finite control.

Stage 1 is implemented by states ¢; through g7, and stages 2 and 3 by the re-
maining states. To simplify the figure, we don’t show the reject state or the tran-
sitions going to the reject state. Those transitions occur implicitly whenever a
state lacks an outgoing transition for a particular symbol. Thus, because in state
¢s no outgoing arrow with a # is present, if a # occurs under the head when the
machine is in state g3, it goes to state dreject: e
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EXAMPLE 3.6 ..............................................................................................................................

Here, a Turing machine Mj is doing some elementary arithmetic. It decides the
language C' = {a'bic¥|i x j = kand i, j, k > 1}.

M3 = “On input string w:

1. Scan the input from left to right to be sure that it is a member
of a*b*c* and reject if it isn’t.

2. Return the head to the left-hand end of the tape.

3. Cross off an a and scan to the right until a b occurs. Shuttle be-
tween the b% and the c’s, crossing off one of each until all bs are
gone.

4. Restore the crossed off b%s and repeat stage 3 if there is another
a to cross off, Tf all a’ are crossed off, check on whether all ¢’s
also are crossed off. If yes, accept; otherwise, reject.”

Let’s examine the four stages of M3 more closely. In stage 1 the machine op-
erates like a finite automaton. No writing is necessary as the head moves from
left to right, keeping track using its states of whether the input is in the proper
form.

Stage 2 looks equally simple but contains a subtlety. How can the Turing ma-
chine find the left-hand end of the input tape? Finding the right-hand end of the
input is easy because it is terminated with a blank symbol. But the left-hand end
has no terminator initially. One technique that allows the machine to find the
left-hand end of the tape is for it to mark the leftmost symbol in some way when
the machine starts with its head on that symbol. Then the machine may scan left
until it finds the mark when it wants to reset its head to the left-hand end. Ex-
ample 3.4 illustrated this technique, using a blank symbol to mark the left-hand
tape symbol.

A trickier method of finding the left-hand end of the tape takes advantage
of the way that we defined the Turing machine model. Recall that, if the ma-
chine tries to move its head beyond the left-hand end of the tape, it stays in the
same place. We can use this feature to make a left-hand end detector. To detect
whether the head is sitting on the left-hand end the machine can write a special
symbol over the current position, while recording the symbol that it replaced in
the control. Then it can attempt to move the head to the left. If itis still over the
special symbol, the leftward move didn’t succeed, and thus the head must have
been at the left-hand end. If instead it is over a different symbol, some symbols
remained to the left of that position on the tape. Before going farther, the ma-
chine must be sure to restore the changed symbol to the original.

Stages 3 and 4 have straightforward implementations using several states each.



3.1 TURING MACHINES 135

EXAMPLE 3‘7 ..............................................................................................................................

Here, a Turing machine M} is solving what is called the element distinctness prob-
lern. It is given a list of strings over {0,1} separated by #s and its job is to accept
if all the strings are different. The language is

E = {#z#xo# - #x} each z; € {0,1}" and z; # z, for each i # j}.

Machine M, works by comparing 2, with z, through ;, then by comparing
with 3 through z;, and so on. An informal description of the TM M deciding
this language follows.

M4 = “On input w:

1. Place a mark on top of the lefunost tape symbol. If that symbol
was a blank, accept. If that symbol was a #, continue with the
next stage. Otherwise, reject.

2. Scan right to the next # and place a second mark on top of it. If
no # is encountered before a blank symbol, only z; was present,
SO accept.

3. By zig-zagging, compare the two strings to the right of the
marked #s. If they are equal, reject.

I hon smnwe # o
Move Lhc llghullual of Lhc WO marks to tne next # s

o
the right. If no # symbol is encountered before a blank sym-
bol, move the leftmost mark to the next # to its right and the
rightmost mark to the # after that. This time, if no # is available
for the rightmost mark, all the strings have been compared, so
acecept.

5. Goto Stage 3.”

-

This machine illustrates the technique of marking tape symbols. In stage 2,
the machine places a mark above a symbol, # in this case, In the actual 1mple—
mentation, the machine has two dlfferent symbols, # and #, in its tape alphabet.
Saying that the machine places a mark above 2 # means that the machine writes
the symbol # at that location. Removing the mark means that the machine writes
the symbol without the dot. In general we may want to place marks over various
symbols on the tape. To do so we merely include versions of all these tape sym-
bols with dots in the tape alphabet.

We may conclude from the preceding examples that the described languages
A, B, C, and F are decidable. All decidable languages are Turing-recognizable,
so these languages are also Turing-recognizable. Demonstrating a language that
is Turing-recognizable but not decidable is more difficult, which we do in Chap-
ter 4.
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3.2

VARIANTS OF TURING MACHINES

Alternative definitions of Turing machines abound, including versions with mul-
tiple tapes or with nondeterminism. They are called variants of the Turing ma-
chine model. The original model and its reasonable variants all have the same
power—they recognize the same class of languages. In this section we describe
some of these variants and the proofs of equivalence in power. We call this in-
variance to certain changes in the definition robustness. Both finite aatomata and
pushdown automata are somewhat robust models, but Turing machines have an
astonishing degree of robustness.

To illustrate the robustness of the Turing machine model let’s vary the type
of transition function permitted. In our definition, the transition function torces
the head to move to the left or right after each step; the head may not simply
stay put. Suppose that we had allowed the Turing machine the ability to stay put.
The transition function would then have the form §: @ xI'-— @ xT'x {L. R, 5}.
Might this feature allow Turing machines to recognize additional languages, thus
adding to the power of the model? Of course not, because we can convertany ™
with the “stay put” feature to one that does not have it. We do so by replacing
each stay put transition with two transitions, one that moves to the right and the
second back to the left.

This small example contains the key to showing the equivalence of Turing ma-
chine variants. To show that two models are equivalent we simply need to show
that we can simulate one by the other.

MULTITAPE TURING MACHINES

A multitape Turing machine is like an ordinary Turing machine with several
tapes. Each tape has its own head for reading and writing. Initially the input ap-
pears on tape 1, and the others start out blank. The transition function is changed
to allow for reading, writing, and moving the heads on all the tapes simultane-
ously. Formally, it is

k k

. k ok
6: @ xTF——@Q xT" x {L,R}",

where k is the number of tapes. The expression
6((]@,@1, ,ak) = (Qjabl; ,bk,L,R, ,L)

means that, if the machine is in state g; and heads 1 through k are reading symbols
ay through a,, the machine goes to state ¢;, writes symbols by through by, and
moves each head to the left or right as specified.

Multitape Turing machines appear to be more powerful than ordinary Turing
machines, but we can show they are equivalent in power. Recall that two ma-
chines are equivalent if they recognize the same language.
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THEOREM 3‘8 ............................................................................................................................

Every multitape Turing machine has an equivalent single tape Turing machine.

PROOF We show how to convert a multitape TM A1 to an equivalent single
tape TM S. The key idea is to show how to simulate M with §.

Say that M has k tapes. Then S simulates the effect of k tapes by storing their
information on its single tape. It uses the new symbol # as a delimiter to separate
the contents of the different tapes. In addition to the contents of these tapes, S
must keep track of the locations of the heads. It does so by writing a tape symbol
with a dot above it to mark the place where the head on that tape would be. Think
of these as “virtual” tapes and heads. As before, the “dotted” tape symbols are
simply new symbols that have been added to the tape alphabet. The following

figure illustrates how one tape can be used to represent three tapes.

lol1foft]ofu].

|a|a‘a|u|...

|
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1. Flrst S puts its tape into the format that represents all £ tapes of
M. The formatted tape contains

Ty e u.u.u TS
le’wQ e 'wn FUFLUF - - #F

2. 'losimulate a single move, S scans its tape from the first #, which
marks the left-hand end, to the (k + 1)st #, which marks the
right-hand end, in order to determine the symbols under the
virtual heads. Then S makes a second pass to update the tapes
according to the way that Af’s transition function dictates.

TFQT‘ anv hnlnf Q maoaoves ane n{:fhn < hTa] kpaAc tn fl—u: r]ght Opf

[5)
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a #, this action signifies that A/ has moved the corresponding
head onto the previously unread blank portion of that tape. So
S writes a blank symbol on this tape cell and shifts the tape con-
tents, from this cell until the rightmost #, one unit to the right.
Then it continues the simulation as before.”

-
o
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A language is Turing-recognizable if and only if some multitape Turing machine
recognizes it.

pPROOF A Turing-recognizable language is recognized by an ordinary (single-
tape) Turing machine, which is a special case of a multitape Turing machine.
That proves one direction of this corollary. The other direction follows from
Theorem 3.8.

........................................................................................................................................................................

NONDETERMINISTIC TURING MACHINES

A nondeterministic Turing machine is defined in the expected way. At any point
in a computation the machine may proceed according to several possibilities. "The
transition function for a nondeterministic Turing machine has the form

§: @ xT—P(Q x T x{L,R}).

The computation of a nondeterministic Turing machine is a tree whose branches
correspond to different possibilities for the machine. If some branch of the com-
putation leads to the accept state, the machine accepts its input. If you feel the
need to review nondeterminism, turn to Section 1.2 on page 47. Now we show
that nondeterminism does not affect the power of the Turing machine model.

THEOREM 3"'0 .........................................................................................................................

Every nondeterministic Turing machine has an equivalent deterministic ‘Turing
machine.

PROOF IDEA  We show that we can simulate any nondeterministic TM N with
a deterministic TM D. The idea behind the simulation is to have D try all possible
branches of N’s nondeterministic computation. If D ever finds the accept state on
one of these branches, D accepts. Otherwise, D’s simulation will not terminate.

We view N’ computation on an input w as a tree. Each branch of the tree
represents one of the branches of the nondeterminism. Each node of the tree is
a configuration of N. The root of the tree is the start configuration. The TM D
searches this tree for an accepting configuration. Conducting this search care-
fully is crucial lest D fail to visit the entire tree. A tempting, though bad, idea
is to have D explore the tree by using depth first search. The depth first search
strategy goes all the way down one branch before backing up to explore other
branches. If D were to explore the tree in this manner, D could go forever down
one infinite branch and miss an accepting configuration on some other branch.
Hence we design D to explore the tree by using breadth first search instead. This
strategy explores all branches to the same depth before going on to explore any
branch to the next depth. This method guarantees that D will visit every node in
the tree until it encounters an accepting configuration.
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PROOF The simulating deterministic TM D has three tapes. By Theorem 3.8
this arrangement is equivalent to having a single tape. The machine D uses its
three tapes in a particular way, as illustrated in the following figure. Tape 1 always
contains the input string and is never altered. Tape 2 maintains a copy of N’s tape
on some branch of its nondeterministic computation. Tape 3 keeps track of D’s
location in N’s nondeterministic computation tree.

] [oJoft]ofu]... inputtape
D=
Fc|x‘#|0|1‘x|u]... simulation tape
Y
Il|2‘3I3|2‘3|1|2J1|1|3|u]... address tape

FIGURE 3.7
Deterministic TM D simulating nondeterministic TM N

Let’s first consider the data representation on tape 3. Every node in the tree
can have at most b children, where b is the size of the largest set of possible choices
given by N’s transition function. To every node in the tree we assign an address
that is a string over the alphabet ¥, = {1,2, ... ,b}. We assign the address 231
to the node we arrive at by starting at the root, going to its 2nd child, going to
that node’s 3rd child, and finally going to that node’s 1st child. Each symbol in
the string tells us which choice to make next when simulating a step in one branch
in N’s nondeterministic computation. Sometimes a symbol may not correspond
to any choice if too few choices are available for a configuration. In that case the
address is invalid and doesn’t correspond to any node. Tape 3 contains a string
over . It represents the branch of N computation from the root to the node
addressed by that string, unless the address is invalid. The empty string is the
address of the root of the tree. Now we are ready to describe D.

1. Initially tape 1 contains the input w, and tapes 2 and 3 are empty.
2. Copy tape I to tape 2.

3. Use tape 2 to simulate N with input w on one branch of its nondetermin-
istic computation. Before each step of NV consult the next symbol on tape 3
to determine which choice to make among those allowed by N’s transition
function. If no more symbols remain on tape 3 or if this nondeterministic
choice is invalid, abort this branch by going to stage 4. Also go to stage 4
if a rejecting configuration is encountered. If an accepting configuration is
encountered, accept the input.

4. Replace the string on tape 3 with the lexicographically nextstring. Simulate
the next branch of Ns computation by going to stage 2.

........................................................................................................................................................................
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COROLLARY 3.1 1 ............. TP L L Ll T T T R L LY TP L e T e PP TP LR

A language is Turing-recognizable if and only if some nondeterministic Turing
machine recognizes it.

PROOF Any deterministic TM is automatically a nondeterministic TM and so

one direction of this theorem follows immediately. The other direction follows
from Theorem 3.10.

........................................................................................................................................................................

We can modify the proof of Theorem 3.10 so that if N always halts on all
branches of its computation, D will always halt. We call a nondeterministic Tur-
ing machine a decider if all branches halt on all inputs. Exercise 3.3 asks you to
modify the proof in this way to obtain the following corollary to Theorem 3.10.

COROLLARY 3.12 ...................................................................................................................

A language is decidable if and only if some nondeterministic Turing machine de-
cides it.

ENUMERATORS

As we mentioned in an earlier footnote, some people use the term recursively enu-
merable language for Turing-recognizable language. That term originates from
a type of Turing machine variant called an enumerator. Loosely defined, an enu-
merator is a Turing machine with an attached printer. The Turing machine can
use that printer as an output device to print strings. Every time the Turing ma-
chine wants to add a string to the list, it sends the string to the printer. Exer-
cise 3.4 asks you to give a formal definition of an enumerator. The following
figure depicts a schematic of this model.

aa
baba
abba

A 4

printer

control

A 4
lo[1]o]o|u]... worktape

FIGURE 3.8

r
Schematic of an enumerator
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An enumerator starts with a blank input tape. If the enumerator doesn’t halt,
it may print an infinite list of strings. The language enumerated by E is the col-
lection of all the strings that it eventually prints out. Moreover, E may generate
the strings of the language in any order, possibly with repetitions. Now we are
ready to develop the connection between enumerators and Turing-recognizable

languages.
THEOREM 3.13 .........................................................................................................................

A language is Turing-recognizable if and only if some enumerator enumerates it.

PROOF  First we show that if we have an enumerator E that enumerates a lan-
guage A, a TM M recognizes A. The TM M works in the following way.

M = “On inpurt w:
1. Run E. Every time that E outputs a string, compare it with w.
2. Ifw ever appears in the output of F, accept.”

Clearly, M accepts those strings that appear on E’s list.

Now we do the other direction. If TM M recognizes a language A, we can con-
struct the following enumerator E for A. Say that sy, s9, 83, ... is a list of all
possible strings in *.

FE = “Ignore the input.
1. Repeat the following fori =1,2,3, ...
2. Run M for i steps on each input, 51, 55, ... , s;.
3. Ifany computations accept, print out the corresponding s 5

If M accepts a particular string s, eventually it will appear on the list generated
by E. In fact, it will appear on the list infinitely many times because M runs from
the beginning on each string for each repetition of step 1. This procedure gives
the effect of running M in parallel on all possible input strings.

EQUIVALENCE WITH OTHER MODELS

So far we have presented several variants of the Turing machine model and have
shown them to be equivalent in power. Many other models of general purpose
computation have been proposed. Some of these models are very much like Tur-
ing machines, while others are quite different. All share the essential feature of
Turing machines, namely, unrestricted access to unlimited memory, distinguish~
ing them from weaker models such as finite automata and pushdown automata.
Remarkably, 2/l models with that feature turn out to be equivalent in power, so
long as they satisfy certain reasonable requirements.

3For example, one requirement is the ability to perform only a finite amount of work in a
single step.
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To understand this phenomenon consider the analogous situation for pro-
gramming languages. Many, such as Pascal and LISP, look quite different from
one another in style and structure. Can some algorithm be programmed in one
of them and not the others? Of course not—we can compile LISP into Pascal and
Pascal into LISP, which means that the two languages describe exactly the same
class of algorithms. So do all other reasonable programming languages. The
widespread equivalence of computational models holds for precisely the same
reason. Any two computational models that satisfy certain reasonable require-
ments can simulate one another and hence are equivalent in power.

This equivalence phenomenon has an important philosophical corollary. Even
though there are many different computational models, the class of algorithms
that they describe is unique. Whereas each individual computational model has
a certain arbitrariness to its definition, the underlying class of algorithms that it
describes is natural because it is the same class that other models describe. This
phenomenon also has had profound implications for mathematics, as we show in
the next section.

THE DEFINITION OF ALGORITHM

Informally speaking, an algorithm is a collection of simple instructions for car-
rying out some task. Commonplace in everyday life, algorithms sometimes are
called procedures or recipes. Algorithms also play an important role in mathematics.
Ancient mathematical literature contains descriptions of algorithms for a variety
of tasks, such as finding prime numbers and greatest common divisors. In con-
temporary mathematics algorithms abound.

Even though algorithms have had a long history in mathematics, the notion of
algorithm itself was not defined precisely until the twentieth century. Before that,
mathematicians had an intuitive notion of what algorithms were and relied upon
that notion when using and describing them. But that intuitive notion was in-
sufficient for gaining a deeper understanding of algorithms. The following story
relates how the precise definition of algorithm was crucial to one important math-
ematical problem.

HILBERT’S PROBLEMS

In 1900, mathematician David Hilbert delivered a now-famous address at the
International Congress of Mathematicians in Paris. In his lecture, he identified
twenty-three mathematical problems and posed them as a challenge for the com-
ing century. The tenth problem on his list concerned algorithms.

Before describing that problem, let’s briefly discuss polynomials. A polyno-
mial is a sum of terms, where each term is a product of certain variables and a
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constant called a coefficient. For example,
6-z-z-x Yy 2z z=06xy2>
1s a term with coefficient 6, and
6z°y2z? + 3zy? — 2% — 10

is a polynomial with four terms over the variables z, y, and z. A root of a polyno-
mial is an assignment of values to its variables so that the value of the polynomial
is 0. This polynomial has a root at & = 5, y = 3, and z = 0. This root is an inte-
gral root because all the variables are assigned integer values. Some polynomials
have an integral root and some do not.

Hilbert’s tenth problem was to devise an algorithm that tests whether a poly-
nomial has an integral root. He did not use the term #/gorithm but rather “a pro-
cess according to which it can be determined by a finite number of operations.”
Interestingly, in the way he phrased this problem, Hilbert explicitly asked that
an algorithm be “devised.” Thus he apparently assumed that such an algorithm
must exist—someone need only find it.

As we now know, no algorithm exists for this task; it is algorithmically unsolv-
able. For mathematicians of that period to come to this conclusion with their
intuitive concept of algorithm would have been virtually impossible. The intu-
itive concept may have been adequate for giving algorithms for certain tasks, but
it was useless for showing that no algorithm exists for a particular task. Proving
that an algorithm does not exist requires having a clear definition of algorithm.
Progress on the tenth problem had to wait for that definition.

The definition came in the 1936 papers of Alonzo Church and Alan Turing.
Church used a notational system called the A-calculus to define algorithms. Tur-
ing did it with his “machines.” These two definitions were shown to be equiva-
lent. This connection between the informal notion of algorithm and the precise
definition has come to be called the Church-Turing thesis.

The Church-Turing thesis provides the definition of algorithm necessary to
resolve Hilbert’s tenth problem. In 1970, Yuri Matijasevi¢, building on work of
Martin Davis, Hilary Putnam, and Julia Robinson, showed that no algorithm ex-
ists for testing whether a polynomial has integral roots. In Chapter 4 we develop
the techniques that form the basis for proving that this and other problems are
algorithmically unsolvable.

Intuitive notion
of algorithms

Turing machine

equals algorithms

FIGURE 3.9
The Church-Turing Thesis

*Translated from the original German.
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Let’s phrase Hilbert’s tenth problem in our terminology. Doing so helps to
introduce some themes that we explore in Chapters 4 and 5. Let

D = {p| p is a polynomial with an integral root}.

Hilbert's tenth problem asks in essence whether the set D is decidable. The an-
swer is negative. In contrast we can show that D is Turing-recognizable. Before
doing so, let’s consider a simpler problem. It is an analog of Hilbert’s tenth prob-

lem for polynomials that have only a single variable, such as 423 — 222 + 2 - T,
Let

D; = {p| pis a polynomial over z with an integral root}.

Here is a Turing machine M; that recognizes Dy:

M, = “The input is a polynomial p over the variable .
1. Evaluate p with z set successively to the values 0, 1, -1, 2, =2,
3, —3, ... If at any point the polynomial evaluates to 0, accept.”

If p has an integral root, M; eventually will find it and accept. If p does not have
an integral root, M will run forever. For the multivariable case, we can present a
similar Turing machine M that recognizes D. Here, M goes through all possible
settings of its variables to integral values.

Both M, and M are recognizers but not deciders. We can convert M, to be
a decider for D; because we can calculate bounds within which the roots of a
single variable polynomial must lie and restrict the search to these bounds. In
Problem 3.18 you are asked to show that the roots of such a polynomial must lie
between the values

where k is the number of terms in the polynomial, ¢pax is the coefficient with
largest absolute value, and ¢; is the coefficient of the highest order term. If a
root is not found within these bounds, the machine rejects. Matijasevic’s theorem
shows that calculating such bounds for multivariable polynomials is impossible.

TERMINOLOGY FOR DESCRIBING TURING MACHINES

We have come to a turning point in the study of the theory of computation. We
continue to speak of Turing machines, but our real focus from now on is on al-
gorithms. That is, the Turing machine merely serves as a precise model for the
definition of algorithm. We will skip over the extensive theory of Turing ma-
chines themselves and not spend much time on the low-level programming of
Turing machines. We only need to be comfortable enough with Turing machines
to believe they capture all algorithms.

With that in mind, let’s standardize the way we describe Turing machine algo-
rithms. Initially, we ask: What is the right level of detail to give when describing
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such algorithms? Students commonly ask this question, especially when prepar-
ing solutions to exercises and problems. Let’s entertain three possibilities. The
first is the formal description that spells out in full the Turing machine’ states, tran-
sition function, and so on. It is the lowest, most detailed, level of description.
The second is a higher level of description, called the implementation description,
in which we use English prose to describe the way that the Turing machine moves
its head and the way that it stores data on its tape. At this level we do not give de-
tails of states or transition function. Third is the bigh-level description, wherein we
use English prose to describe an algorithm, ignoring the implementation model.
At this level we do not need to mention how the machine manages its tape or
head.

In this chapter we have given formal and implementation-level descriptions of
various examples of Turing machines. Practice with lower level Turing machine
descriptions helps you understand Turing machines and gain confidence in using
them. Once you feel confident, high-level descriptions are sufficient.

We now set up a format and notation for describing Turing machines. The in-
put to a Turing machine is always a string. If we want to provide an object other
than a string as input, we must first represent that object as a string. Strings can
easily represent polynomials, graphs, grammars, automata, and any combination
of those objects. A Turing machine may be programmed to decode the repre-
sentation so that it can be interpreted in the way we intend. Our notation for
the encoding of an object O into its representation as a string is (O). If we have
several objects Oy, Oz, ... , O, we denote their encoding into a single string by
(01,04, ... ,0). The encoding itself can be done in many reasonable ways. It
does not matter which one we pick, because a Turing machine can always trans-
late one such encoding into another.

In our format, we describe Turing machine algorithms with an indented seg-
ment of text within quotes. We break the algorithm into stages, each usually in-
volving many individual steps of the Turing machine’s computation. We indicate
the block structure of the algorithm with further indentation. The first line of
the algorithm describes the input to the machine. If the input description is sim-
ply w, the input is taken to be a string. If the input description is the encoding
of an object as in (A), the Turing machine first implicitly tests whether the input
properly encodes an object of the desired form and rejects it if it doesn’t.

EXAMPLE 3.14 ..........................................................................................................................

Let A be the language consisting of all strings representing undirected graphs
that are connected. Recall that a graph is conmected if every node can be reached
from every other node by traveling along the edges of the graph. We write

A = {{G)| G is a connected undirected graph}.

The following is a high-level description of a TM M that decides A.
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M = “On input (&), the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are marked.
3.  For each node in G, mark it if it is attached by an edge to a
node that is already marked.
4. Scan all the nodes of G to determine whether they all are
marked. If they are, accept; otherwise reject.”

For additional practice, let’s examine some implementation-level details of
Turing machine M. Usually we won’t give this level of detail in the future and
you won't need to do so either, unless specifically requested in an exercise. First,
we must understand how (G) encodes the graph G as a string. Consider an en-
coding that is a list of the nodes of G followed by a list of the edges of G. Each
node is a decimal number, and each edge is the pair of decimal numbers that rep-
resent the nodes at the two endpoints of the edge. The following figure depicts
this graph and its encoding.

(1,2,3,4)((1,2),(2,3),(3,1),(1,4))

FIGURE 3.10
A graph G and its encoding (G)

When M receives the input (G), it first checks to determine that the input is
the proper encoding of some graph. To do so, M scans the tape to be sure that
there are two lists and that they are in the proper form. The first list should be a
list of distinct decimal numbers, and the second should be a list of pairs of decimal
numbers. Then M checks several things. First, the node list should contain no
repetitions, and second, every node appearing on the edge list should also appear
on the node list. For the first, we can use the procedure given in Example 3.7
for TM M, that checks element distinctness. A similar method works for the sec-
ond check. If w passes these checks, it is the encoding of some graph G. This
verification completes the input check, and M goes on to stage 1.

For stage 1, M marks the first node with a dot on the lefrmost digit.

For stage 2, M scans the list of nodes to find an undotted node n; and flags it
by marking it differently, say, by underlining the first symbol. Then M scans the
list again to find a dotted node n2 and underlines it, too.

Now M scans the list of edges. For each edge, M tests whether the two under-
lined nodes n; and ny are the ones appearing in that edge. If they are, M dots n,,
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removes the underlines, and goes on from the beginning of stage 2. If they aren’t,
M checks the next edge on the list. If there are no more edges, {71, n2} is not
an edge of G. Then M moves the underline on 7, to the next dotted node and
now calls this node n,. It repeats the steps in this paragraph to check, as before,
whether the new pair {n1,n2} is an edge. If there are no more dotted nodes, n;
is not attached to any dotted nodes. Then M sets the underlines so that n; is the
next undotted node and n; is the first dotted node and repeats the steps in this
paragraph. If there are no more undotted nodes, M has not been able to find any
new nodes to dot, so it moves on to stage 4.

For stage 4, M scans the list of nodes to determine whether all are dotted.
If they are, it enters the accept state; otherwise it enters the reject state. This
completes the description of TM M.

B

EXERCISES

3.1 This exercise concerns TM M; whose description and state diagram appear in Ex-
ample 3.4. In each of the parts, give the sequence of configurations that M5 enters
when started on the indicated input string.

a. 0.

b. 0o0.

c. 000.

d. 000000.

3.2 This exercise concerns TM M; whose description and state diagram appear in Ex-
ample 3.5. In each of the parts, give the sequence of configurations that M, enters
when started on the indicated input string.

11,
1#1.
1##1.
10#11.
10#10.

o &0 Fop

3.3 Modify the proof of Theorem 3.10 on page 138 to obtain Corollary 3.12 showing
that a language is decidable iff some nondeterministic TM decides it. (You may as-
sume the following theorem about trees. If every node in a tree has finitely many
children and every branch of the tree has finitely many nodes, the tree itself has
finitely many nodes.)

3.4 Give a formal definition of an enumerator. Consider it to be a type of two-tape
Turing machine that uses its second tape as the printer. Include a definition of the
enumerated language.
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3.5 FExamine the formal definition of a Turing machine to answer the following ques-
tions, and explain your reasoning.

a. Can a Turing machine ever write the blank symbol u on its tape?
b. Can the tape alphabet I" be the same as the input alphabet 3?
c¢. Can a Turing machine’s head ever be in the same location in two successive
steps?
d. Can a Turing machine contain just a single state?
3.6 In Theorem 3.13 we showed that a language is Turing-recognizable iff some enu-

merator enumerates it. Why didn’t we use the following simpler algorithm for the
forward direction of the proof? As before, s1,s2,. .. is a list of all strings in £*.

E = “Ignore the input.

1. Repeat the following f

2. Run M on s;.
3.  Ifit accepts, print out s,.”

ori = 1

Ly Lyndy ..

3.7 Explain why the following is not a description of a legitimate Turing machine.

Mg = “The input is a polynomial p over variables z1, ... , Zx.
1. Try all possible settings of 1, ... , z& to integer values.
2. Evaluate p on all of these settings.
3. Ifany of these settings evaluates to 0, accept; otherwise, reject.”

3.8 Give implementation-level descriptions of Turing machines that decide the follow-
ing languages over the alphabet {0,1}:

a. {w|w contains an equal number of Os and 1s}.
b. {w]| w contains twice as many Os as 1s}.
c. {w| w does not contain twice as many Os as 1s}.

PROBLEMS

3.9 Let a k-PDA be a pushdown automaton that has k stacks. Thus a 0-PDA is an NFA
and a 1-PDA is a conventional PDA. You already know that 1-PDAs are more pow-
erful (recognize a larger class of languages) than 0-PDAs.

a. Show that 2-PDAs are more powerful than 1-PDAs.

b. Show that 3-PDAs are not more powerful than 2-PDAs.
(Hint: Simulate a Turing machine tape with two stacks.)

3.10 Say that a write-once Turing machine is a single-tape TM that can alter each tape
square at most once {including the input portion of the tape). Show that this variant
Turing machine model is equivalent to the ordinary Turing machine model. (Hint:
As a first step consider the case whereby the Turing machine may alter each tape
square at most twice.

Use lots of tape.)

3.11 A Turing machine with doubly infinite tape is similar to an ordinary Turing ma-
chine except that its tape is infinite to the left as well as to the right. The tape is
initially filled with blanks except for the portion that contains the input. Compu-
tation is defined as usual except that the head never encounters an end to the tape
as it moves leftward. Show that this type of Turing machine recognizes the class of
Turing-recognizable languages.
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A Turing machine with left reset is similar to an ordinary Turing machine except
that the transition function has the form

8: Q x '—Q x T x {R, RESET}.

If 5(¢,a) = (r,b, RESET), when the machine is in state g reading an a, the ma-
chine’s head jumps to the left-hand end of the tape after it writes b in the tape and
enters state 7. Note that these machines do not have the usual ability to move the
head one symbol left. Show that Turing machines with left reset recognize the class
of Turing-recognizable languages.

A Turing machine with stay put instead of left is similar to an ordinary Turing ma-
chine except that the transition function has the form

§: @xI'—@Q xTI x{R,S}.

At each point the machine can move its head right or let it stay in the same position.
Show that this Turing machine variant is zot equivalent to the usual version. What
class of languages do these machines recognize?

Show that the collection of decidable languages is closed under the operations of
union.

concatenation.

star.

complementation.

o &0 Fop

intersection.

Show that the collection of Turing-recognizable languages is closed under the op-
erations of

a. union.

b. concatenation.

C. star.

d. intersection.

Show that a language is decidable iff some enumerator enumerates the language in
lexicographic order.

Show that single-tape TMs that cannot write on the portion of the tape containing
the input string can only recognize regular languages.

Letcia™ 4+ co2™ ' 4+ -+ cpt +cnyy bea polynomial with a root at z = . Let
Cmax be the largest absolute value of a ¢;. Show that
Cmax
To|<(n+1 .
ol < (n-+ 1) 322

Let A be the language containing only the single string s, where

0 if God does not exist
1 if God does exist.

Is A decidable? Why or why not? (Note that the answer doesn’t depend on your
religious convictions.)






DECIDABILITY

In Chapter 3 we introduced the Turing machine as a model of a general purpose
computer and defined the notion of algorithm in terms of Turing machines by
means of the Church-Turing thesis.

In this chapter we begin to investigate the power of algorithms to solve prob-
lems. We demonstrate certain problems that can be solved algorithmically and
others that cannot. Our objective is to explore the limits of algorithmic solv-
ability. You are probably familiar with solvability by algorithms because much
of computer science is devoted to solving problems. The unsolvability of certain
problems may come as a surprise.

Why should you study unsolvability? After all, showing that a problem is un-
solvable doesn’t appear to be of any use if you have to solve it. You need to study
this phenomenon for two reasons. First, knowing when a problem is algorith-
mically unsolvable is useful because then you realize that the problem must be
simplified or altered before you can find an algorithmic solution. Like any tool,
computers have capabilities and limitations that must be appreciated if they are to
be used well. The second reason is cultural. Even if you deal with problems that
clearly are solvable, a glimpse of the unsolvable can stimulate your imagination
and help you gain an important perspective on computation.

151
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4.1

DECIDABLE LANGUAGES

In this section we give some examples of languages that are decidable by algo-
rithms. For example, we present an algorithm that tests whether a string is a
member of a context-free language. This problem is related to the problem of
recognizing and compiling programs in a programming language. Seeing algo-
rithms solving various problems concerning automata is helpful, because later
you will encounter other problems concerning automata that cannot be solved
by algorithms.

DECIDABLE PROBLEMS CONCERNING
REGULAR LANGUAGES

We begin with certain computational problems concerning finite automata. We
give algorithms for testing whether a finite automaton accepts a string, whether
the language of a finite automaton is empty, and whether two finite automata are
equivalent.

For convenience we use languages to represent various computational prob-
lems because we have already set up terminology for dealing with languages. For
example, the acceptance problem for DFAs of testing whether a particular finite
automaton accepts a given string can be expressed as a language, Apra. This
language contains the encodings of all DFAs together with strings that the DFAs
accept. Let

Apra = {(B,w)| B is a DFA that accepts input string w}.

The problem of testing whether a DFA B accepts an input w is the same as the
problem of testing whether (B, w) is a member of the language Apfa. Similarly,
we can formulate other computational problems in terms of testing membership
in a language. Showing that the language is decidable is the same as showing that
the computational problem is decidable.

In the following theorem we show that Apga is decidable. Hence this theo-
rem shows that the problem of testing whether a given finite automaton accepts
a given string is decidable.

THEOREM .1 ottt s st b s s s s et s e
Apga is a decidable language.

PROOF IDEA The proofidea is very simple. We only need to presenta TM M
that decides Apga.
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M = *On input (B, w), where B is a DFA and w is a string:
1. Simulate B on input w.

2. If the simulation ends in an accept state, accept. If it ends in a
nonaccepting state, reject.”

PROOF Wemention justa few implementation details of this proof. For those
of you familiar with writing programs in any standard programming language,

imagine how you would write a program to carry out the simulation.

First, let’s examine the input (B, w). Itis a representation of a DFA B together
with a string w. One reasonable representation of B is simply a list of its five
components, Q, ¥, §, go, and F'. When M receives its input, M first checks on
whether it properly represents a DFA B and a string w. If not, M rejects.

Then M carries out the simulation in a direct way. It keeps track of B’ current
state and B’ current position in the input w by writing this information down
on its tape. Initially, B’ current state is go and B’ current input position is the
leftmost symbol of w. The states and position are updated according to the spec-
ified transition function §. When M finishes processing the last symbol of w, M
accepts the input if B is in an accepting state; M rejects the input if B isin a
nonaccepting state.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

We can prove a similar theorem for nondeterministic finite automata. Let

Anra = {(B,w)| B is an NFA that accepts input string w}.

THEOREM 4.2 ............................................................................................................................

Anra is a decidable language.

PROOF We present a TM NV that decides Anga. We could design N to operate
like M, simulating an NFA instead of a DFA. Instead, we’ll do it differently to illus-
trate a new idea: have V use M as a subroutine. Because M is designed to work
with DFAs, N first converts the NFA it receives as input to a DFA before passing it
to M.

N =*“On input (B, w) where B is an NFA, and w is a string:
1. Convert NFA B to an equivalent DFA C using the procedure for
this conversion given in Theorem 1.19.

2. RunTM M from Theorem 4.1 on input {C, w).
3. If M accepts, accept; otherwise reject.”

Running TM M in stage 2 means incorporating M into the design of NV as a
subprocedure.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Smnlarly, we can test whether a regula expression generates a given string.
Let Arex = {(R,w)| R is a regular expression that generates string w}.

THEOREM 4.3 ..... et theeeet e aatennienennrrreratonte st ansiEtonetens antEeansEausstonnsenrutaersencsnasttrares Cetreererenarranee

Agex is a decidable language.
PrRooF T

P = “On input (R, w) where R is a regular expression and w is a string:
1. Convert regular expression R to an equivalent DFA A by using
the procedure for this conversion given in Theorem 1.28.
2. Run TM M on input (A, w).
3. If M accepts, accept; if M rejects, reject.”

........................................................................................................................................................................
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ing the Turing machine with a DFA, NFA or regular expression are all equlvalent
because the machine is able to convert one form of encoding to another.

Now we turn to a different kind of problem concerning finite automata: emzpti-
ness testing for the language of a finite automaton. In the preceding theorems we
had to test whether a finite automaton accepts a particular string. In the next
proof we must test whether a finite automaton accepts any strings at all. Let

EDFA = {(A)I A is a DFA and L(A) = @}

THEOREM 4.4 ............................................................................................................................
Epea is a decidable language

PROOF A DFA accepts some string if and only if reaching an accept state from
1']'19 start state I'\v rravphno- q]nr\a‘ rhp arrows nF rhp DFA 1S anQI]’)]P TO test th_lS

il SLate 15 @iMilg WAL QLIS AL LUIL MR S0 peas LR

condition we can design a TMT that uses a marking algorithm similar to that used
in Example 3.14.

T = “On input (A) where A is a DFA:
1. Mark the start state of A.
2. Repeat untl no new states get marked:
3.  Mark any state tbat has a transition coming into it from any

state that is already marked.
4. If no accept state is marked, accept; otherwise reject.”
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The next theorem states that testing whether two DFAs recognize the same lan-
guage is decidable. Let

EQpea = {(A, B)] Aand B are DFAs and L{A) = L(B)}.

THEOREM 4.5 ............................................................................................................................

EQpka is a decidable language.

PROOF Io prove this theorem we use Theorem 4.4. We construct a new DFA
C from A and B, where C' accepts only those strings that are accepted by either
A or B but not by both. Thus, if A and B recognize the same language, C will
accept nothing. The language of C'is

L(C) = (L(A) mﬁ) U (L(A) N L(B)).

"This expression is sometimes called the symmetric difference of L(A) and L(B)
and is illustrated in the following figure. Here L{A) is the complement of L(A).
The symmetric difference is useful here because L(C) = 0 if and only if L(A) =
L{B). We can construct C from A and B with the constructions for proving
the class of regular languages closed under complementation, union, and inter-
section. These constructions are algorithms that can be carried out by Turing
machines. Once we have constructed C' we can use Theorem 4.4 to test whether

L{C) is empty. If it is empty, L(A) and L(B) must be equal.
F =“On input (A4, B), where A and B are DFAs:
1. Construct DFA C as described.

2. Run TMT from Theorem 4.4 on input (C').
3. If T accepts, accept. If T rejects, reject.”

L(4) I(B)

FIGURE 4.1
The symmetric difference of L(4) and L(B)
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DECIDABLE PROBL.LEMS CONCERNING
CONTEXT-FREE LANGUAGES

Here, we describe algorithms to test whether a CFG generates a particular string
and to test whether the language of a CFG is empty. Let

Acre = {{G,w}| G is a CFG that generates string w}.

THEOREM 4‘6 ............................................................................................................................

Acrg 1s a decidable language.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

PROOF IDEA For CFG (G and string w we want to test whether G generates w.
One idea is to use G to go through all derivations to determine whether any is a
derivation of w. This idea doesn’t work, as infinitely many derivations may have
to be tried. If G does not generate w, this algorithm would never halt. This idea
gives a Turing machine that is an recognizer, but not a decider, for Acrg.

To make this "Turing machine into a decider we need to ensure that the al-
gorithm tries only finitely many derivations. In Problem 2.19 on page 121 we
showed that, if G were in Chomsky normal form, any derivation of w has 2n — 1
steps, where 7 is the length of w. In that case checking only derivations with
2n — 1 steps to determine whether G generates w would be sufficient. Only
finitely many such derivations exist. We can convert GG to Chomsky normal form
by using the procedure given in Section 2.1.

PROOF The TM S for Acgg follows.

S = “On input (G, w), where G is a CFG and w is a string:
1. Convert G to an equivalent grammar in Chomsky normal form.
2. Listall derivations with 2n — 1 steps, where 7 is the length of w,
except if n = 0, then instead list all derivations with 1 step.
3. Ifany of these derivations generate w, accept; if not, reject.”

------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The problem of testing whether a CFG generates a particular string is related
to the problem of compiling programming languages. The algorithm in TM 5 is
very inefficient and would never be used in practice, but it is easy to describe and
we aren’t concerned with efficiency here. In Part Three of this book we address
issues concerning the running time and memory use of algorithms. In the proof
of Theorem 7.14, we describe a more efficient algorithm for recognizing context-
free languages.

Recall that we have given procedures for converting back and forth between
CFGs and PDAs in Theorem 2.12. Hence everything we say about the decidability
of problems concerning CFGs applies equally well to PDAs.
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Let’s turn now to the emptiness testing problem for the language of a CFG. As
we did for DFAs, we can show that the problem of testing whether a CFG generates
any strings at all is decidable. Let

ECFG = {<G>| G is a CFG and L(G) = @}

THEOREM 4.7 ............................................................................................................................

FEcrg is a decidable language.

PROOF IDEA 'Io find an algorithm for this problem we might attempt to use
TM S from Theorem 4.6. It states that we can test whether a CFG generates some
particular string w. To determine whether L(G) =  the algorithm might try
going through all possible w’s, one by one. But there are inﬁnitely many s to
try, so this method could end up running forever. We need to take a different
approach.

In order to test whether the language of a grammar is empty, we need to test
whether the start variable can generate a string of terminals. The algorithm does
s0 by solving a more general problem. It determines for each variable whether that
variable is capable of generating a string of terminals. When the algorithm has
determined that a variable can generate some string of terminals, the algorithm
keeps track of this information by placing a mark on that variable.

First, the algorithm marks all the terminal symbols in the grammar. Then, it
scans all the rules of the grammar. If it ever finds a rule that permits some variable
to be replaced by some string of symbols all of which are already marked, the
algorithm knows that this variable can be marked, too. The algorithm continues
in this way until it cannot mark any additional variables. The TM R implements
this algorithm.

PROOF

R = “On input (G), where G is a CFG:
1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Mark any variable A where G hasarule A — U;Us -+ Uy and
each symbol Uy, ... , Uy has already been marked.

4. If the start symbol is not marked, accept; otherwise reject.”
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Next we consider the problem of testing whether two context-free grammars
generate the same language. Let

EQcrc = {(G,H)| G and H are CFls and L(G) = L(H)}.

Theorem 4.5 gave an algorithm that decides the analogous language EQpga for
finite automata. We used the decision procedure for Fpga to prove that EQpra is
decidable. Because Ecpc also is decidable, you might think that we can use a sim-
ilar strategy to prove that EQ ¢ is decidable. But something goes wrong with
this idea! The class of context-free languages is not closed under complementa-
tion or intersection as you proved in Exercise 2.2. In fact, EQcrg isnot decidable,
and you will see the technique for proving so in Chapter 5.

Now we show that every context-free language is decidable by a Turing ma-
chine.

THEOREM 4.8 ............................................................................................................................

Every context-free language is decidable.

PROOF IDEA Let A be a CFL. Our objective is to show that A is decidable.
One (bad) idea is to convert a PDA for A directly into a TM. That isn’t hard to do
because simulating a stack with the TM’s more versatile tape is easy. The PDA for
A may be nondeterministic, but that seems okay because we can convert it into a
nondeterministic TM and we know that any nondeterministic TM can be converted
into an equivalent deterministic TM. Yet, there is a difficulty. Some branches of
the PDA’s computation may go on forever, reading and writing the stack with-
out coming to a halt. The simulating TM then would also have some nonhalting
branches in its computation, and so the TM would not be a decider. A different
idea is necessary. Instead, we prove this theorem with the TM 5 that we designed
in Theorem 4.6 to decide Acrc.

PROOF Let G be a CFG for A and design a TM M that decides A. We build
a copy of G into M. It works as follows.

Mg = “On input w:
1. RunTM S on input (G, w)
2. If this machine accepts, accept; if it rejects, reject.”

Theorem 4.8 provides the final link in the relationship among the four main
classes of languages that we have described so far in this course: regular, context
free, decidable, and Turing-recognizable. The following figure depicts this rela-
tionship.
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THE HALTING PROBLEM

In this section we prove one of the most philosophically important theorems of
the theory of computation: there is a specific problem that is algorithmically un-
solvable. Computers appear to be so powerful that you may believe that all prob-
lems will eventually yield to them. The theorem presented here demonstrates
that computers are limited in a very fundamental way.

What sort of problems are unsolvable by computer? Are they esoteric,
dwelling only in the minds of theoreticians? No! Even some ordinary problems
that people want to solve turn out to be computationally unsolvable.

In one type of unsolvable problem, you are given a computer program and
a precise specification of what that program is supposed to do (e.g., sort a list of
numbers). You need to verify that the program performs as specified (i.e., thatitis
correct). Because both the program and the specification are mathematically pre-
cise objects, you hope to automate the process of verification by feeding these ob-
jects into a suitably programmed computer. However, you will be disappointed.
The general problem of software verification is not solvable by computer.

In this section and Chapter 5 you will encounter several computationally un-
solvable problems. Our objectives are to help you develop a feel for the types of
problems that are unsolvable and to learn techniques for proving unsolvability.

Now we turn to our first theorem that establishes the undecidability of a spe-
cific language: the problem of testing whether a Turing machine accepts a given
input string. We call it Aty by analogy with Apra and Acrg. But, whereas Apra

Acre were decidable, Aty is not. Let

Atm = {{M,w)| M isa TMand M accepts w}.
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THEOREM 4.9 ............................................................................................................................

Atm is undecidable.

Before we get to the proof, let’s first observe that Aty is Turing-recognizable.
Thus Theorem 4.9 shows that recognizers 2re more powerful than deciders. Re-
quirmg a TM to halt on all i inputs restricts the kinds of languages that it can rec-

ognize. The following Turing machine U recognizes Atm.

I = “On input (M, w), where M is a TM and w is a string:
1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever enters its re-
14
ject state, reject.”

Note that this machine loops on input (M, w) if M loops on w, which is why
this machine does not decide Ary. If the algorithm had some way to determine
that A/ was not halting on w, it could reject. Hence Aty is sometimes called
the balting problem. As we demonstrate, an algorithm has no way to make this
determination.

The Turing machine U is interesting in its own right. It is an example of the
universal Titring machine first proposed by Turing. This machine is called univer-
sal because it is capable of simulating any other Turing machine from the descrip-
tion of that machine. The universal Turing machine played an important early
role in stimulating the development of stored-program computers.

THE DIAGONALIZATION METHOD

The proof of the undecidability of the halting problem uses a technique called
diagonalization, discovered by mathematician Georg Cantor in 1873. Cantor was
concerned with the problem of measuring the sizes of infinite sets. If we have two
infinite sets, how can we tell whether one is larger than the other or whether they
are of the same size? For finite sets, of course, answering these questions is easy.
We simply count the elements in a finite set, and the resulting number is its size.
But, if we try to count the elements of an infinite set, we will never finish! So we
can’t use the counting method to determine the relative sizes of infinite sets.

For example, take the set of even integers and the set of all strings over {0,1}.
Both sets are infinite and thus larger than any finite set, but is one of the two
larger than the other? How can we compare their relative size?

Cantor proposed a rather nice solution to this problem. He observed that two
finite sets have the same size if the elements of one set can be paired with the
elements of the other set. This method compares the sizes without resorting to
counting. We can extend this idea to infinite sets. Let’s see what it means more
precisely.
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DEFINITION 4.10 ....................................................................................................................

Assume that we have two sets A and B and a function f from A to B. Say that
[ 1s one-to-ome if it never maps two different elements to the same place, that is,
if f(a) # f(b) whenever a # b. Say that f is ento if it hits every element of B,
that is, if for every b € B there is an a € A such that f(a) = b. Say that A and B
are the same size if there is a one-to-one, onto function f: A— B. A function
that is both one-to-one and onto is called a corvespondence. In a correspondence
every element of A maps to a unique element of B and each element of B has a
unique element of A mapping to it. A correspondence is simply a way of pairing
the elements of A with the elements of B.

EXAMPLE 4.1 T e e e e e e e e e e R e s EaEear e e e rneranan

Let A be the set of natural numbers {1,2,3,...} and let £ be the set of even
natural numbers {2, 4,6, ...}. Using Cantor’s definition of size we can see that
A and € have the same size. The correspondence f mapping A to £ is simply
f(n) = 2n. We can visualize f more easily with the help of a table.

f(n)

2
4
6

w b =3

Of course, this example seems bizarre. Intuitively, £ is smaller than A/ because £
is a proper subset of A/. But pairing each member of A" with its own member of
£ is possible, so we declare these two sets to be the same size. :

DEFINITION 4.12 ....................................................................................................................

A set A is countable if either it is finite or it has the same size as NV

EXAMPLE 4.13 ..........................................................................................................................

Now we turn to an even stranger example. If we let Q be the set of positive ra-
tional numbers, thatis, Q = {Z|m,n € A}, O seems to be much larger than \.
Yet these two sets are the same size. We demonstrate this conclusion by giving
a correspondence with A to show that Q is countable. One easy way to give a
correspondence with A is to list all the elements of Q. Then we pair the first el-
ement on the list with the number 1 from A, the second element on the list with
the number 2 from A, and so on. We must check to be sure that every member
of Q appears only once on the list.

To get this list we make an infinite matrix containing all the positive rational
numbers, as shown in the following figure. The ith row contains all numbers
with numerator i and the jth column has all numbers with denominator j. So
the number ; occurs in the ith row and jth column.
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Now we turn this matrix into a list. One (bad) way to attempt it would be to
begin the list with all the elements in the first row. That isn’t a good approach
because the first row is infinite, so the list would never get to the second row.
Instead we list the elements on the diagonals, starting from the corner, which
are superimposed on the diagram. The first diagonal contains the single element
1, and the second diagonal contains the two elements 2 and . So the first three
elements on the listare , £, and 5. In the third diagonal a complication arises. It
contains ¢, 2, and 1. If we simply added these to the list, we would repeat + = 2.
We avoid doing so by skipping an element when it would cause a repetition. So
we add only the two new elements £ and 1. Continuing in this way we obtain a

list of all the elements of Q.

SR 'S F T S0 ]

FIGURE 4.3
A correspondence of A and Q

After seeing the correspondence of A" and Q, you might think that any two
infinite sets can be shown to have the same size. After all, you need only demon-
strate a correspondence, and this example shows that surprising correspondences
do exist. However, for some infinite sets no correspondence with A exists. These
sets are simply too big. Such sets are called uncountable.

The set of real numbers is an example of an uncountable set. A real number
is one that has a decimal representation. The numbers 7 = 3.14156926. .. and
V2 = 1.4142135... are examples of real numbers. Let R be the set of real
numbers. Cantor proved that R is uncountable. In doing so he introduced the
diagonalization method.

THEOREM . T s s s s rassr s se s sassas sesssassssr anasassasresmassassasssssans

R is uncountable.
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PROOF In order to show that R is uncountable, we show that no correspon-
dence exists between A and R. The proof is by contradiction. Suppose that a
correspondence f existed between A and R. Our job is to show that f fails to
work as it should. For it to be a correspondence, f must pair all the members of
N with all the members of R. But we will find an z in R that is not paired with
anything in NV, which will be our contradiction.

The way we find this x is by actually constructing it. We choose each digit of =
to make x different from one of the real numbers that is paired with an element of
N In the end we are sure that « is different from any real number that is paired.

We can illustrate this idea by giving an example. Suppose that the correspon-
dence f exists. Let f(1) = 3.14159..., f(2) = 55.55555..., f(3) = ...,
and so on, just to make up some values for f. Then f pairs the number 1 with
3.14159... , the number 2 with 55.55555.. .. | and so on. The following table
shows a few values of a hypothetical correspondence f between A and R.

n f(n)

1 3.14159. ..
2 | 65.5b555...
3 0.12345...
4 0.50000...

We construct the desired x by giving its decimal representation. It is a num-
ber between 0 and 1, so all its significant digits are fractional digits following the
decimal point. Our objective is to ensure that z # f(n) for any n. To ensure that
x # f(1) we let the first digit of = be anything different from the first fractional
digit1 of f(1) = 3.14159... . Arbitrarily, weletitbe 4. To ensure thatz # f(2)
we let the second digit of  be anything different from the second fractional digit
5 of f(2) = 55.656555. .. . Arbitrarily, we let it be 6. The third fractional digit
of f(3) = 0.12345... is 3, so we let z be anything different, say, 4. Continu-
ing in this way down the diagonal of the table for f, we obtain all the digits of ,
as shown in the following table. We know that x is not f(n) for any n because
it differs from f(n) in the nth fractional digit. (A slight problem arises because
certain numbers, such as 0.1999 ... and 0.2000. . ., are equal even though their
decimal representations are different. We avoid this problem by never selecting
the digits 0 or 8 when we construct z.)

n f(n)

1] 3.14159...

2 | 55.55555. ..

3| 0.12345... T =0.4641 . ..
4 | 0.50000...

........................................................................................................................................................................
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The preceding theorem has an important application to the theory of com-
putaton. [t shows that some languages are not decidable or even Turing-
recognizable, for the reason that there are uncountably many languages yet only
countably many Turing machines. Because each Turing machine can recognize
a single language and there are more languages than Turing machines, some
languages are not recognized by any Turing machine. Such languages are not
‘Turing-recognizable, as we state in the following corollary.

COROLLARY 4.'| B e e et s en s e e er et e seranaans

Some languages are not Turing-recognizable.

PROOF 'To show that the set of all Turing machines is countable we first ob-
serve that the set of all strings ¥* is countable, for any alphabet ¥. With only
finitely many strings of each length, we may form a list of ©* by writing down all
strings of length 0, length 1, length 2, and so on.

The set of all Turing machines is countable because each Turing machine M
has an encoding into a string (M). If we simply omit those strings that are not
legal encodings of Turing machines, we can obtain a list of all Turing machines.

'Io show that the set of all languages is uncountable we first observe that the
set of all infinite binary sequences is uncountable. An infinite binary sequence is an
unending sequence of Os and Is. Let B be the set of all infinite binary sequences.
We can show that B is uncountable by using a proof by diagonalization similar to
the one we used in Theorem 4.14 to show that R is uncountable.

Let £ be the set of all languages over alphabet . We show that £ is uncount-
able by giving a correspondence with B, thus showing that the two sets are the
same size. Let X* = {s;,59,53,...}. Each language A € £ has a unique se-
quence in B. The ith bit of that sequence isa 1ifs; € Aandisa 0ifs; g A,
which is called the characteristic sequence of A. For example, if A were the lan-
guage of all strings starting with a 0 over the alphabet {0,1}, its characteristic
sequence x 4 would be

X*={e, 0,1 ,00,01,10, 11,000,001, --- } ;
A= 0, 00 , 01 , 000,001, --- } ;
XA = 0 1 0 1 1 0 0 1 1

The function f: £L— B, where f(A) equals the characteristic sequence of A,
is one-to-one and onto and hence a correspondence. Therefore, as B is uncount-
able, £ is uncountable as well.

Thus we have shown that the set of all languages cannot be put into a corre-
spondence with the set of all Turing machines. We conclude that some languages
are not recognized by any Turing machine.



4.2 THE HALTING PROBLEM 165

THE HALTING PROBLEM IS UNDECIDABLE
Now we are ready to prove Theorem 4.9, the undecidability of the language
Atm = {{M,w)| M is a TM and M accepts w}.

PROOF  We assume that Ay is decidable and obtain a contradiction. Suppose
that H is a decider for Atym. On input (M, w), where M isa TMand wis a string,
H halts and accepts if M accepts w. Furthermore, H halts and rejects if M fails
to accept w. In other words, we assume that H is a TM, where

accept  if M accepts w

(0, {

reject  if M does not accept w.

Now we construct a new Turing machine D with I as a subroutine. This new
T calls H to determine what M does when the input to M is its own description
(M). Once D has determined this information, it does the opposite. That is, it
rejects if M accepts and accepts if M does not accept. The following is a descrip-
tion of D.

D = “On input (M), where M is a TM:
1. Run H on input (M, (M)).
2. Output the opposite of what H outputs; that is, if H accepts,
reject and if H rejects, accept.”

Don’t be confused by the idea of running a machine on its own description! That
is similar to running a program with itself as input, something that does occasion-
ally occur in practice. For example, a compiler is a program that translates other
programs. A compiler for the language Pascal may itself be written in Pascal, so
running that program on itself would make sense. In summary,

p(en) -

What happens when we run D with its own description (D) as input? In that case
we get

accept if M does not accept (M)
reject  if M accepts (M).

D((D)) = accept  if D does not accept (D)
| reject  ifD accepts (D).

No matter what D does, it is forced to do the opposite, which is obviously a con-
tradiction. Thus neither TM D nor TM H can exist.

Lets review the steps of this proof. Assume that a TM H decides Ary. Then
use H to build a TM D that when given input (M) accepts exactly when M does
not accept input (M). Finally, run D on itself. The machines take the tollowing
actions, with the last line being the contradiction.
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» H accepts {M, w) exactly when M accepts w.
D rejects (M) exactly when M accepts (M).
* D rejects (D) exactly when D accepts (D).

Where is the diagonalization in the proof of Theorem 4.9? It becomes ap-
parent when you examine tables of behavior for TMs H and D. In these tables
we list all TMs down the rows, M7, Mo, ... and all their descriptions across the
columns, (M), (M,), ... The entries tell whether the machine in a given row
accepts the input in a given column. The entry is accept if the machine accepts
the input but is blank if it rejects or loops on that input. We made up the entries
in the following figure to illustrate the idea.

(My) (M) (Ms) (M)

M | accept accept
My | accept accept accept accept
Ms;

My | accept accept

FIGURE 4.4
Entry 4, j is accept if M, accepts (M;)

In the following figure the entries are the results of running H on inputs cor-
responding to Figure 4.4. So if M3 does not accept input (Ms), the entry for row
M3 and column (M) is reject because H rejects input (Ms, (M3)).

(My) (Mz) (Ms) (My)
My | accept reject accepl reject
My | accept accept accept accept
Ms | reject reject reject reject
My | accept accept reject  reject

FIGURE 4.5
Entry ¢, j is the value of H on input (M;, (M;))

In the following figure, we added D to Figure 4.5. By our assumption, H is a
TMand so is D. Therefore it must occur on the list My, Ms, ... of all TMs. Note
that D computes the opposite of the diagonal entries. The contradiction occurs
at the point of the question mark where the entry must be the opposite of itself.
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(M) (My) (Ms) (My) --- (D)
My | accept reject accept reject - accept
Mas | accept accept accept accept - accept
Mg | reject reject  reject  reject ' reject
My | accept accept reject  reject acecept
D reject  reject accept accept ?

FIGURE 4.6
If D 1s in the figure, a contradiction occurs at

“:”

A TURING-UNRECOGNIZABLE LANGUAGE

In the preceding section we demonstrated a language, namely, Atwm, that is un-
decidable. Now we demonstrate a language that isn’t even Turing-recognizable.
Note that Aty will not suffice for this purpose because we showed that Aty is
Turing-recognizable on page 160. The following theorem shows that, if both
a language and its complement are Turing-recognizable, the language is decid-
able. Hence, for any undecidable language, either it or its complement is not
Turing-recognizable. Recall that the complement of a language is the language
consisting of all strings that are not in the language. We say that a language is co-
Turing-recognizable if it is the complement of a Turing-recognizable language.

THEOREM 4.]6 .........................................................................................................................

A language is decidable if and only if it is both Turing-recognizable and co-
Turing-recognizable.

In other words, a language is decidable if and only if both it and its complement
are Turing-recognizable.

PROOF We have two directions to prove. First, if A is decidable, we can easily
see that both A and its complement A are Turing-recognizable. Any decidable
language is Turing-recognizable, and the complement of a decidable language
also is decidable.

For the other direction, if both 4 and A4 are Turing-recognizable, we let M,
be the recognizer for A and M be the recognizer for A. The following Turing
machine M is a decider for A.
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M = “On input w:
1. Run both M, and M3 on input w in parallel.
2. If M, accepts, accept; if My accepts, reject.”

lating M and the other for simulating M. In this case M takes turns simulating
one step of each machine, which continues until one of them halts.

Now we show that M decides A. Every string w is either in A or A. Therefore
either M; or My must accept w. Because M halts whenever M; or M5 accepts,
M always halts and so it is a decider. Furthermore, it accepts all strings in 4 and
rejects all strings not in A. So M is a decider for A, and thus A is decidable.

Running the two machines in parallel means that M has two tapes, one for simu-

COROLLARY 7 I T
Atw is not Turing-recognizable.
PROOF Wk know that Aty is Turing-recognizable. If Aty also were Turing-

recognizable, Aty would be decidable. Theorem 4.9 tells us that Aty is not
decidable, so ATy must not be Turing-recognizable.

EXERCISES

4.1 Answer all parts for the following DFA A and give reasons for your answers.

1

VAN

L

1
0 0,1
a. Is <M,0100> € Apga?
b. Is (M,011) € Apra?
c. Is (M) € Apfa? N
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d. Is (M,0100) € Agex?
e. Is (ﬂf) € Fppa?
f. Is (M, M) € EQpea?

4.2 Consider the problem of testing whether a DFA and a regular expression are equiv-
alent. Express this problem as a language and show that it is decidable.
4.3 Let ALLpra = {{A)| A is a DFA that recognizes ¥*}. Show that ALLp¢a is decid-
able.
4.4 Let Aecre = {{G)| G is a CFG that generates € }. Show that Aecpg is decidable.
4.5 Let INFINITEpen = {{A)| Aisa DFAand L(A) is an infinite language}. Show that
INFINITEpga is decidable.
4.6 Let X be the set {1,2,3,4,5} and Y be the set {6,7,8,9,10}. We describe the
functions f: X— Y and g: X —Y in the following tables.
n | fn) n | g(n)
1 6 1 10
2 7 2 9
3 6 3 8
4 7 4 7
) 6 5 6
a. Is f one-to-one? Is g? If not, state why.
b. Is f onto? Is ¢g? If not, state why.
c. Is f a correspondence? Is g? If not, state why.
4.7 Let B be the set of all infinite sequences over {0,1}. Show that B is uncountable,
using a proof by diagonalization.
4.8 LetT = {(i,4,k)| 4, j,k € N'}. Show that T is countable.
4.9 Review the way that we define sets to be the same size in Definition 4.10 on
page 161. Show that “is the same size” is an equivalence relation.
PROBLEMS
4.10 Let
A = {{M)| M is a DFA which doesn’t accept
any string containing an odd number of 1s}.
Show that A is decidable.

4.11 Let A = {{R,S5)| Rand S are regular expressions and L(R) C L(S)}. Show that
A is decidable.

4.12 Show that the problem of testing whether a CFG generates some string in 1* is de-
cidable. In other words, show that {(G)| G'isa CFG over {0,1}* and 1*NL(G) # 0}
is a decidable language.

*4.13  Show that the problem of testing whether a CFG generates all strings in 1* is de-

cidable. In other words, show that {{G)| G is a CFG over {0,1}" and 1* C L(G)}
is a decidable language.
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Let A = {(R)| R is a regular expression describing a language containing at least
one string w that has 111 as a substring (L.e., w = 111y for some x and y)}. Show
that A is decidable.

Let

E = {{M)| M is a DFA that accepts

some string of the form ww™ for w € {0,1}"}.

Show that E is decidable.

Prove that EQpyp, is decidable by testing the two DFAs on all strings up toa certain
size. Calculate a size that works.

Let C be a language. Prove that C' is Turing-recognizable iff a decidable language
D exists such that €' = {z| Jy ({z,y) € D)}

Let A and B be two disjoint languages. Say that language C' separates A and B if
A C Cand B C C. Show that any two disjoint co-Turing-recognizable languages
are separable by some decidable language.

Let S = {{M})| M is a DFA that accepts w™ whenever it accepts w}. Show that S
is decidable.

A useless state in a pushdown automaton is never entered on any input string. Con-
sider the problem of testing whether a pushdown automaton has any useless states.
Formulate this problem as a language and show that it is decidable.

Let A be a Turing-recognizable language consisting of descriptions of Turing ma-
chines, {{M1), (M2}, ...}, where every M; is a decider. Prove that some decid-
able language D is not decided by any decider M; whose description appears in A.
(Hint: You may find it helpful to consider an enumerator for A.)

Let B be a Turing-recognizable language consisting of descriptions of Turing ma-
chines, { (M), (Mz), ... }. Show that there is a decidable language C consisting of

Turing machines such that every machine described in B has an equivalent one in
C and vice versa.



REDUCIBILITY

In Chapter 4 we established the Turing machine as our model of a general pur-
pose computer. We presented several examples of problems that are solvable on a
Turing machine and gave one example of a problem, Atpm, that is computationally
unsolvable. In this chapter we examine several additional unsolvable problems.
In doing so we introduce the primary method for proving that problems are com-
putationally unsolvable. It is called reducibility.

A reduction is a way of converting one problem into another problem in such a
way that a solution to the second problem can be used to solve the first problem.
Such reducibilities come up often in everyday life, even if we don’t usually refer
to them this way.

For example, suppose that you want to find your way around a new city. You
know that this would be easy if you had a map. Thus you can reduce the problem
of finding your way around the city to the problem of obtaining a map of the city.

Reducibility always involves two problems, which we call A and B. If A re-
duces to B, we can use a solution to B to solve A. So in our example, A is the
problem of finding your way around the city and B is the problem of obtaining
a map. Note that reducibility says nothing about solving A or B alone, but only
about the solvability of A4 in the presence of a solution to B.

The following are further examples of reducibilities. The problem of traveling
from Boston to Paris reduces to the problem of buying a plane ticket between the
two cities. That problem in turn reduces to the problem of earning the money
for the ticket. And that problem reduces to the problem of finding a job.
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Reducibility also occurs in mathematical problems. For example, the prob-
lem of measuring the area of a rectangle reduces to the problem of measuring its
height and width. The problem of solving a system of linear equations reduces
to the problem of inverting a matrix.

Reducibility plays an important role in classifying problems by decidability
and later in complexity theory as well. When A is reducible to B, solving A can-
not be harder than solving B because a solution to B gives a solution to A. In
terms of computability theory, if A is reducible to B and B is decidable, A also is
decidable. Equivalently, if A is undecidable and reducible to B, B is undecidable.
This last version is key to proving that various problems are undecidable.

In short, our method for proving that a problem is undecidable will be: Show
that some other problem already known to be undecidable reduces to it.
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UNDECIDABLE PROBLEMS FROM
LANGUAGE THEORY

We have already established the undecidability of Arw, the problem of deter-
mining whether a Turing machine accepts a given input. Let’s consider a related
problem, HALT 1w, the problem of determining whether a Turing machine halts
(by accepting or rejecting) on a given input.! We use the undecidability of Arm
to prove the undecidability of HALT tm by reducing Atm to HALTTm. Let

HALTtm = {(M,w)] M is a TMand M halts on input w}.

THEOREM 5.1 ----------------------------------------------------------------------------------------------------------------------------
HALT 1w is undecidable.

........................................................................................................................................................................

PROOF IDEA This proof is by contradiction. We assume that HALT 1y is
decidable and use that assumption to show that Atwm is decidable, contradicting
Theorem 4.9. The key idea is to show that Aty is reducible to HALT tm.

Let’s assume that we have a TM R that decides HALTtm. Then we use R to
construct S, a TM that decides Atm. To get a feel for the way to construct 5,
pretend that you are S. Your task is to decide Atm. You are given an input of the

115 Section 4.2, we used the term balting problem for the language Atm even though
HALTy is the real halting problem. From here on we distinguish between the two by
calling Atwm the acceptance problem.
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form (M, w). You must output accept if M accepts w, and you must output reject
if M loops or rejects on w. Try simulating M on w. Ifit accepts or rejects, do the
same. But you may not be able to determine whether M is looping, and in that
case your simulation will not terminate. That’s bad, because you are a decider
and thus never permitted to loop. So this idea, by itself, does not work.

Instead, use the assumption that we have TM R that decides HALT1y. With
R, you can test whether M halts on w. If R indicates that M doesn’t halt on w,
reject because (M, w) isn’tin Aty. However, if R indicates that M does halt on
w, you can do the simulation without any danger of looping.

"Thus, if TM R exists, we can decide A1y, but we know that Aty is undecidable.
By virtue of this contradiction we can conclude that £ does not exist. Therefore
HALT T\ 1s undecidable.

PROOF Let’s assume for the purposes of obtaining a contradiction that TM R
decides HALT1y. We construct TM S to decide Atwm, with S operating as fol-
lows.

S = “On input (M, w), an encoding of a TM M and a string w:
1. RunTM R on input (M, w).
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M has accepted, accept; if M has rejected, reject.”

Clearly, if R decides HALT 1w, then S decides Atym. Because Aty is undecid-
able, HA LT 1\ also must be undecidable.

........................................................................................................................................................................

Theorem 5.1 illustrates our strategy for proving that a problem is undecidable.
This strategy is common to most proofs of undecidability, except for the unde-
cidability of Aty itself, which is proved directly via the diagonalization method.

We now present several other theorems and their proofs as further examples
of the reducibility method for proving undecidability. Let

Ery = {(M)| M isaTMand L(M) = 0}.

THEOREM 5.2 ............................................................................................................................

Erm is undecidable.

........................................................................................................................................................................

PROOF IDEA  We follow the pattern adopted in Theorem 5.1. We assume for
the purposes of obtaining a contradiction that Ery is decidable and then show
that A1y is decidable—a contradiction. Let R be a TM that decides Erp. We use
R to construct TM S that decides Atym. How will S work when it receives input
(M, w)?
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One idea is for S to run R on input (M) and see whether it accepts. If it does,
we know that L(M) is empty and therefore that M does not accept w. But, if B
rejects (M), all we know is that L{M) is not empty and therefore that M accepts
some string, but we still do not know whether M accepts the particular string w.
So we need to use a different idea.

Instead of running R on (M) werun Kona modification of (M). We modify
(M) to guarantee that M rejects all strings except w, but on input w it works as
usual. Then we use R to test whether the modified machine recognizes the empty
language. The only string the machine can now accept is w, so its language will be
nonempty if and only if it accepts w. If R accepts when it is fed a description of the
modified machine, we know that the modified machine doesn’t accept anything
and that M doesn’t accept w.

PROOF Let’s write the modified machine described in the proof idea using our
standard notation. We call it M;.

M; = “On input z:
1. Ifz # w, reject.
2. Ifz = w, run M on input w and accept if M does.”

This machine has the string w as part of its description. It conducts the test of
whether z = w in the obvious way, by scanning the input and comparing it char-
acter by character with w to determine whether they are the same.

Putting all this together, we assume that TM R decides Etm and construct TM
S that decides Aty as follows.

§ = “On input (M, w), an encoding of a TM M and a string w.
1. Use the description of M and w to construct the TM M just de-
scribed.
2. Run R on input (M).
3. If R accepts, reject; if R rejects, accept.”

Note that S must actually be able to compute a description of M from a de-
scription of M and w. Ttis able to do so because it needs only add extra states to
M that perform the z = w test.

If R were a decider for Etm, S would be a decider for Atm. A decider for Atm
cannot exist, so we know that Fry must be undecidable.

Another interesting computational problem regarding Turing machines con-
cerns testing whether a given Turing machine recognizes a language that also
can be recognized by a simpler computational model. For example we let
REGULARTw be the problem of testing whether a given Turing machine has
an equivalent finite automaton. This problem is the same as testing whether the
Turing machine recognizes a regular language. Let

REGULAR+w = {{(M)| M isaTMand L(M) is a regular language}.
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THEOREM 5.3 ............................................................................................................................

REGULART) is undecidable.

PROOF IDEA  As usual for undecidability theorems, this proof is by reduction
from A1y, We assume that REGULARTwm is decidable by a TM R and use this
assumption to construct a TM S that decides Atm. Less obvious now is how to
use R’s ability to assist S in its task. Nonetheless we can do so.

The idea is for S to take its input (M, w) and modify M so that the resulting
TMrecognizes a regular language if and only if M accepts w. We call the modified
machine My, We design M, to recognize the nonregular language {0"1"|n > 0}
if M does not accept w and the regular language %* if M accepts w. We must
specify how S can construct such an M, from M and w. Here, M, works by
automatically accepting all strings in {0"1"| n > 0}. In addition, if M accepts
w, My accepts all other strings.

PROOF We let R be a TM that decides REGULARTm and construct TM S to
decide Atpm. Then S works in the following manner.

S = “On input (M, w), where M isa TMand w is a string:
1. Construct the following TM M.
My = “On input z:
1. If x has the form 0™1", accept.
2. If = does not have this form, run M on input w and
accept if M accepts w.”
2. Run R on input (Ms).
3. If R accepts, accept; if R rejects, reject.”

........................................................................................................................................................................

Similarly, the problems of testing whether the language of a Turing machine
is a context-free language, a decidable language, or even a finite language, can be
shown to be undecidable with similar proofs. In fact, a general result, called Rice’s
theorem, states that testing any property of the languages recognized by Turing
machines is undecidable. We give Rice’s theorem in Problem 5.22.

So far, our strategy for proving languages undecidable involves a reduction
from Arym. Sometimes reducing from some other undecidable language, such as
Erw, is more convenient when we are showing that certain languages are unde-
cidable. The following theorem shows that testing the equivalence of two Turing
machines is an undecidable problem. We could prove it by a reduction from A,
but we use this opportunity to give an example of an undecidability proof by re-
duction from Ftym. Let

EQTM = {<M1, M2>| Ml and M2 are TMs and L(Ml) = L(Mg)}
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THEOREM 5.4 ............................................................................................................................
EQ+pm is undecidable.

........................................................................................................................................................................

PROOF IDEA Show that, if EQ+,, were decidable, Fru also would be decid-
able, by giving a reduction from Ery to EQry. The ideais simple. Etm is the
problem of testing whether the language of a TMis empty. EQry, is the problem
of testing whether the languages of two TMs are the same. If one of these lan-
guages happens to be §, we end up with the problem of testing whether the lan-
guage of the other machine is empty, that is, the Ery problem. So in a sense, the
Erw problem is a special case of the EQ 1y problem wherein one of the machines
is fixed to recognize the empty language. This idea makes giving the reduction
easy.

PROOF We let TM R decide EQ 1y and construct TM S to decide Erwm as fol-
lows.

S = “On input (M), where M is a TM:
1. Run R on input {M, M), where M; is a TM that rejects all in-
puts.
2. If R accepts, accept; if R rejects, reject.”

If R decides EQy, S decides Ety. But Ety is undecidable by Theorem 5.2,
so EQty also must be undecidable.

........................................................................................................................................................................

REDUCTIONS VIA COMPUTATION HISTORIES

The computation history method is an important technique for proving that Aty
is reducible to certain languages. This method is often useful when the problem
to be shown undecidable involves testing for the existence of something. For ex-
ample, this method is used to show the undecidability of Hilbert’s tenth problem,
testing for the existence of integral roots in a polynomial.

The computation history for a Turing machine on an input is simply the se-
quence of configurations that the machine goes through as it processes the input.
It is a complete record of the computation of this machine.

DEFINITION 5.5 ........................................................................................................................

Let M be a Turing machine and w an input string. An accepting computation his-
tory for M on w is a sequence of configurations, C;, Cs, ... , C;, where C} is the
start configuration of M on w, C} is an accepting configuration of M, and each C;
legally follows from C;_, according to the rules of M. A rejecting computation
bistory for M on w is defined similarly, except that C} is a rejecting configuration.
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Computation histories are finite sequences. If M doesn’t halt on w, no accept-
ing or rejecting computation history exists for A/ on w. Deterministic machines
have at most one computation history on any given input. Nondeterministic ma-
chines may have many computation histories on a single input, corresponding
to the various computation branches. For now, we continue to focus on deter-
ministic machines. Our first undecidability proof using the computation history
method concerns a type of machine called a linear bounded automaton.

DEFINITION 5.6 ........................................................................................................................

A linear bounded automaton is a restricted type of Turing machine wherein the
tape head isn’t permitted to move off the portion of the tape containing the input.
If the machine tries to move its head off either end of the input, the head stays
where it is, in the same way that the head will not move off the left-hand end of
an ordinary lTuring machine’s tape.

A linear bounded automaton is a Turing machine with a limited amount of
memory, as shown schematically in the following figure. Tt can only solve prob-
lems requiring memory that can fit within the tape used for the input. Using a
tape alphabet larger than the input alphabet allows the available memory to be
increased up to a constant factor. Hence we say that for an input of length n, the
amount of memory available is linear in n—thus the name of this model.

control

[a]b]=]b]2]

FIGURE 5.1
Schematic of a linear bounded automaton

Despite their memory constraint, linear bounded automata are quite powerful.
For example, the deciders for Apra, Acee, Epea, and Ecrg all are LBAs. Every CFL
can be decided by an LBA. In fact, coming up with a decidable language that can’t
be decided by an LBA takes some work. We develop the techniques to do so in
Chapter 9.

Here, Aipa is the problem of testing whether an [BA accepts its input. Even
though A ga is the same as the undecidable problem Aty where the Turing ma-
chine is restricted to be an LBA, we can show that A, ga is decidable. Let

Aiga = {(M,w)| M is an LBA that accepts string w}.

Before proving the decidability of A, ga, we find the following lemma useful.
It says that an LBA can have only a limited number of configurations when a string
of length n is the input.
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LEMMA 5.7 ...................................................................................................................................

Let M be an LBA with ¢ states and g symbols in the tape alphabet. There are
exactly gng™ distinct configurations of M for a tape of length n.

PROOF Recall that a configuration of M is like a snapshot in the middle of its
computation. A configuration consists of the state of the control, position of the
head, and contents of the tape. Here, M has g states. The length of its tape is n,
so the head can be in one of n positions, and g™ possible strings of tape symbols
appear on the tape. The product of these three quantities is the total number of
different configurations of M with a tape of length n.

........................................................................................................................................................................

THEOREM 5.8 ............................................................................................................................
ALBA 1S decidable.

PROOF IDEA In order to decide whether LBA M accepts input w, we simulate
M on w. During the course of the simulation, if M halts and accepts or rejects,
we accept or reject accordingly. The difficulty occurs if M loops on w. We need
to be able to detect looping so that we can halt and reject.

The idea for detecting when M is looping is that, as M computes on w, it goes
from configuration to configuration. If M ever repeats a configuration it would
go on to repeat this configuration over and over again and thus be in a loop. Be-
cause M is an LBA, the amount of tape available to it is limited. By Lemma 5.7, M
can be in only a limited number of configurations on this amount of tape. 'There-
fore only a limited amount of time is available to M before it will enter some
configuration that it has previously entered. Detecting that M is looping is pos-
sible by simulating M for the number of steps given by Lemma 5.7. If M has not
halted by then, it must be looping.

PROOF The algorithm that decides A ga is as follows.

L = “On input (M, w), where M is an LBA and w is a string:
1. Simulate M on w for gng™ steps or until it halts.
2. If M has halted, accept if it has accepted and reject if it has re-
jected. If it has not halted, reject.”

If M on w has not halted within gng™ steps, it must be repeating a configura-
tion according to Lemma 5.7 and therefore looping. That is why our algorithm
rejects in this instance.

........................................................................................................................................................................

Theorem 5.8 shows that LBAs and TMs differ in one essential way: For LBAs
the acceptance problem is decidable, but for TMs it isn’t. However, certain other
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problems involving LBAs remain undecidable. One is the emptiness problem
Eipa = {(M}| M is an LBA where L(M) = (}. To prove that E g is unde-
cidable, we give a reduction that uses the computation history method.

THEOREM 5.9 ............................................................................................................................

EiBa i1s undecidable.

........................................................................................................................................................................

PROOF IDEA 'This proof is by reduction from Ary. We show that, if Figa
were decidable, Aty would also be. Suppose that Ey ga is decidable. TIow can we
use this supposition to decide A1p?

For a TM M and an input w we can determine whether M accepts w by con-
structing a certain LBA B and then testing whether L(B) is empty. The language
that B recognizes comprises all accepting computation histories for M on w. If
M accepts w, this language contains one string and so is nonempty. If M does
not accept w, this language is empty. If we can determine whether B’ language
is empty, clearly we can determine whether M accepts w.

Now we describe how to construct B from M and w. Note that we need to
show more than the mere existence of B. We have to show how a Turing machine
can obtain a description of B given descriptions of M and w.

We construct B to accept its input  if  is an accepting computation history
for M onw. Recall that an accepting computation history is the sequence of con-
figurations, C1, Cy, ... , C; that M goes through as it accepts some string w. For
the purposes of this proof we assume that the accepting computation history is
presented as a single string, with the configurations separated from each other by
the # symbol, as shown in the following figure.

Ch Cs Cs Ci

FIGURE 5.2
A possible input to B

The LBA B works as follows. When it receives an input z, B is supposed to
accept if z is an accepting computation for M on w. First, B breaks up x accord-
ing to the delimiters into strings Cy, Cs, . .. , C}. Then, B checks whether the C;
satisfy the three conditions of a computation history.

1. C is the start configuration for M on w.
2. Fach Ciy, legally follows from C;.
3. (i is an accepting configuration for M.
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The start configuration C; for M on w is the string gowiws - - - wn, Where go
is the start state for M on w. Here, B has this string directly built in, so it is able
to check the first condition. An accepting configuration is one that contains the
Gaccepr State, so B can check the third condition by scanning Cj for gaceept- The sec-
ond condition is the hardest to check. For each pair of adjacent configurations,
B checks on whether C; 1 legally follows from C;. This step involves verifying
that C; and C;_1 are identical except for the positions under and adjacent to the
head in C;. These positions must be updated according to the transition func-
tion of M. Then, B verifies that the updating was done properly by zig-zagging
between corresponding positions of C; and Cy.y. To keep track of the current
positions while zig-zagging, B marks the current position with dots on the tape.
Finally, if conditions 1, 2, and 3 are satisfied, B accepts its input.

Note that the LBA B is nof constructed for the purposes of actually running
it on some input—a common confusion. We construct B only for the purpose
of feeding a description of B into the decider for Ega that we have assumed to
exist. Once this decider returns its answer we can invert it to obtain the answer
to whether M accepts w. Thus we can decide Atpm, a contradiction.

PROOF Now we are ready to state the reduction of Aty to Eiga. Suppose
that TM R decides Eiga. Construct TM S that decides Arm as follows.

S = “QOn input (M, w), where M is a TMand w is a string:
1. Construct LBA B from M and w as described in the proof idea.
2. Run R on input (B).
3. If Rrejects, accept; if R accepts, reject.”

B

[ lsla[a]e] i

%Ib

Cz' Ci+1

#IXlX

)

FIGURE 5.3
LBA B checking a TM computation history

Tf R accepts (B), then L(B) = §. Thus M has no accepting computation
history on w and M doesn’t accept w. Consequently S rejects (M, w). Similarly,
if R rejects {B), the language of B is nonempty. The only string that B can accept
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1s an accepting computation history for M on w. Thus M must accept w. Con-

sequently, S accepts (M, w). Figure 5.3 shows such a check of a TM computation
history.

We can also use the technique of reduction via computation histories to es-
tablish the undecidability of certain problems related to context-free gramrnars
and pushdown automata. Recall that in Theorem 4.7 we presented an algorithm
to decide whether a context-free grammar generates any strings, that is, whether
L(G) = 0. Now we show thata related problem is undecidable. It is the problem
of testing whether a context-free grammar generates all possible strings. Proving
that this problem is undecidable is the main step in showing that the equivalence
problem for context-free grammars is undecidable. Let

ALLcrg = {{(G)] G is a CFG and L(G) = £*Y.

THEOREM 5.10 .........................................................................................................................
ALLcgg is undecidable.

PROOF 'This proof is by contradiction. To get the contradiction we assume
that ALLcgg is decidable and use this assumption to show that Aty is decidable.
This proof is similar to that of Theorem 5.9 but with a small extra twist: Itis a
reduction from Aty via computation histories, but we have to modify the rep-
resentation of the computation histories slightly for a technical reason that we
explain later.

We now describe how to use a decision procedure for ALLcrg to decide Apm.
For a TM M and an input w we construct a CFG G that generates all strings if and
only if M does not accept w. So, if M does accept w, G does not generate some
particular string. "This string is—guess what—the accepting computation history
for M on w. That is, G is designed to generate all strings that are nor accepting
computation histories for M on w.

"To make the CFG G generate all strings that fail to be an accepting computa-
tion history for M on w, we utilize the following strategy. A string may fail to be
an accepting computation history for several reasons. An accepting computation
history for M on w appears as #C 1 #Co# - - - #Ci#, where C; is the configuration
of M on the ith step of the computation on w. Then, G generates all strings that

1. do not start with C1,

2. do not end with an accepting configuration, or
3. where some C; does not properly yield C;41 under the rules of M.

tatinn hictaru avicte en 2] errinoc
utation nis u_u_y7 \.sz_lDLJ, U kv SIS

fall one way or another. Therefore G would generate all strings, as desired.
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Now we get down to the actual construction of G. Instead of constructing G,
we construct a PDA D. We know that we can use the construction given in Theo-
rem 2.12 on page 106 to convert D to a CFG . We do so because, for our purposes,
designing a PDA is casier than designing a CFG. In this instance, D will start by
nondeterministically branching to guess which of the preceding three conditions
to check. One branch checks on whether the beginning of the input string is C1
and accepts if it isn’t. Another branch checks on whether the input string ends
with a configuration containing the accept state, Gaccepts and accepts if itisn’t.

The third branch is supposed to accept if some C; does not properly yield
C;+1. It works by scanning over the input until it nondeterministically decides
that it has come to C;. Next, it pushes C; onto the stack until it comes to the end
as marked by the # symbol. Then, D pops the stack to compare with C;1.1. They
are supposed to match except around the head position where the difference is
dictated by the transition function of M. Finally, D accepts ifitis a mismatch or
an improper update.

The problem with this idea is that, when D pops C; off the stack, it is in re-
verse order and not suitable for comparison with C;41. At this point the twist in
the proof appears: We write the accepting computation history differently. Every
other configuration appears in reverse order. The odd positions remain written
in the forward order, but the even positions are written backward. Thus an ac-
cepting computation history would appear as shown in the following figure.

# — # # — # # - # #
N’ — N R ————
Ch CF Cs CR Ci

FIGURE 5.4
Every other configuration written in reverse order

In this modified form the PDA is able to push a configuration so that when it
is popped the order is suitable for comparison with the next one. We design D
to accept any string that is not an accepting computation history in the modified
form.

In Exercise 5.1 you can use Theorem 5.10 to show that EQcg¢ is undecidable.
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A SIMPLE UNDECIDABLE PROBLEM

In this section we show that the phenomenon of undecidability is not confined to
problems concerning automata. We give an example of an undecidable problem
concerning simple manipulations of strings. It is called the Post corvespondence
problem, or PCP.

We can describe this problem easily as a type of puzzle. We begin with a col-
lection of dominos, each containing two strings, one on each side. An individual

domino looks like
[ a
)
and a collection of dominos looks like

b aj fca abc
& 5] 15) 50
"The task is to make a list of these dominos (repetitions permitted) so that the
string we get by reading off the symbols on the top is the same as the string of

symbols on the bottom. This list is called a #atch. For example, the following
list is a match for this puzzle.

S EIEIRIE]

Reading off the top string we get abcaaabc, which is the same as reading off the
bottom, We can also depict this match by deforming the dominos so that the
corresponding symbols from top and bottom line up.

a g& a % c
a blc alala blc
For some collections of dominos finding a match may not be possible. For

example, the collection
(Al

cannot contain a match because every top string is longer than the corresponding
bottom string.

The Post correspondence problem is to determine whether a collection of
dominos has a match. This problem is unsolvable by algorithms.
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Before getting to the formal statement of this theorem and its proof, let’s state
the problem precisely and then express it as a language. An instance of the PCP
is a collection P of dominos:

p={l5] 2 )

and a match is a sequence i1, 12, ... , i, where t; ti, - ty, = bi b, -+ by, The
problem is to determine whether P has a match. Let

PCP = {{P)| P is an instance of the Post correspondence problem
with a match}.

THEOREM 5.1 'I .........................................................................................................................
PCP is undecidable

........................................................................................................................................................................

PROOF IDEA  Conceptually this proof is simple, though it has many technical
details. The main technique is reduction from Aty via accepting computation
histories. We show that from any TM M and input w we can construct an in-
stance P where a match is an accepting computation history for M on w. If we
could determine whether the instance has a match, we would be able to determine
whether M accepts w.

FHow can we construct P so that a match is an accepting computation history
for M on w? We choose the dominos in P so that making a match forces a sim-
ulation of M to occur. In the match, each domino links a position or positions in
one configuration with the corresponding one(s) in the next configuration.

Before getting to the construction we handle two small technical points.
(Don’t worry about them too much on your initial reading through this construc-
tion.) First, for convenience in constructing P, we assume that M on w never
attempts to move its head off the left-hand end of the tape. That requires first
altering M to prevent this behavior. Second, we modify the PCP to require that
a match starts with the first domino,

31
)

Later we show how to eliminate this requirement. We call this problem the mod-
ified Post correspondence problem, MPCP. Let

MPCP = {(P)| P is an instance of the Post correspondence problem
with a match that starts with the first domino}.

Now let’s move into the details of the proof and design P to simulate A on w.

PROOF We let TM R decide the PCP and construct S deciding Arm. Let
M= (Q: E: F: 6) 40, Qaccept Qreject),
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where @, £, T, and 6, are the state set, input alphabet, tape alphabet, and transi-
tion function of M, respectively.

In this case S constructs an instance of the PCP P that has a match if and only
it M accepts w. To do that S first constructs an instance P’ of the MPCP. We
describe the construction in seven parts, each of which accomplishes a particular
aspect of simulating M on w. To explain what we are doing we interleave the
construction with an example of the construction in action.

Part 1. 'The construction begins in the following manner.
#

#gowiweg - - - w, #

Put [ into P’ as the first domino [t—l] i

by

Because P’ is an instance of the MPCP the match must begin with this domino.
Thus the bottom string begins correctly with C; = gow ws - - - wy, the first con-
figuration in the accepting computation history for M on w, as shown in the fol-
lowing figure.

"

# do wlwg\n#’
FIGURE 5.5

Beginning of the MPCP match

In this depiction of the partial match achieved so far, the bottom string con-
sists of #gow ws - - - wy,# and the top string consists only of #. To get a match we
need to extend the top string to match the bottom string. We provide additional
dominos to allow this extension. The additional dominos cause M’s next config-
uration to appear at the extension of the bottom string by forcing a single-step
simulation of M.

In parts 2, 3, and 4, we add to P’ dominos that perform the main part of the
simulation. Part 2 handles head motions to the right, part 3 handles head motions
to the left, and part 4 handles the tape cells not adjacent to the head.

Part 2. Foreverya,b € I'and every q,r € @ where ¢ # Grejecr,

if 6(g,a) = (r,b,R), put [‘;—a] into P’.

7

Part 3. Foreverya,b,c € I'and every ¢, € () where g # Grejects

if 8(q,a) = (., L), pu [

ch} into P’.
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Part 4. Foreverya €,
a
— | into P'.
put [a] Iinto

Now we make up a hypothetical example to illustrate what we have built so far.
Let [ = {0,1,2,u}. Say that w is the string 0100 and that the start state of M is
go. In state gg, upon reading a 0, say that the transition function dictates that M
enters state g7, writes a 2 on the tape, and moves its head to the right. In other
WOI'dS, 6((107 0) = (q77 2, R)

Part 1 places the domino

[avsi00) = [

in P/, and the match begins:

i# go 0 1 0O 0 #1

In addition, part 2 places the domino
5]
2q7
as 6(qo, 0) = (g7, 2, R) and part 4 places the dominos

31 [ (5] e ]

in P’,as 0, 1, 2, and u are the members of I'. That, together with part 5, allows
us to extend the match as follows.

N K
Thus the dominos of parts 2, 3, and 4 let us extend the match by adding the
second configuration after the first one. We want this process to continue, adding

the third configuration, then the fourth, and so on. For it to happen we need to
add one more domino for copying the # symbol.
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Part 5.
*

Ry
LI#

Put [

| #*

]and[

The first of these dominos allows us to copy the # symbol that marks the sep-
aration of the configurations. In addition to that, the second domino allows us

+ Ad - ki > cxrehhnl 1 A F+hao A P ~ ~ o 11lavn tha jmGmitalr
(0O add a oianik ayuluu: u at tihie ena of the L,uﬁuBuL atluﬂ to aimtuatc tne u.l.uﬁiu:xy

many blanks to the right that are suppressed when we write the configuration.

Continuing with the example, let’s say that in state g7, upon reading a 1, M
goes to state ¢s, writes a 0, and moves the head to the right. That is, (g7, 1) =
(g5,0,R). Then we have the domino

] into P’.
d

{Q71

Oﬂxz

19

]inP’.

So the latest partial match extends to

#2 ¢ 100 #1210 ¢10101 %)

‘Then, suppose that in state g5, upon reading a 0, M goes to state go, writes
2, and moves its head to the left. So 6(¢gs,0) = (g9, 2,L.). Then we have the

5] ) (). e [523
qo02]) 7 Lgg121" Lgg22]’ qou2l’

The first one is relevant because the symbol to the left of the head is a 0. The
preceding partial match extends to

#2000 #12gp0 2101

Note that, as we construct a match, we are forced to simulate M on inpat w.
This process continues until M reaches a halting state. If an accept state occurs,
we want to let the top of the partléu match “catch up’ * with the bottom so that
the match is complete. We can arrange for that to happen by adding additional

dominos.
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Part 6. Foreverya €T,
put [——a Gaccept ] and [~———qaccept a} into P’.

Qaccept Gaccept

This step has the effect of adding “pseudo-steps” of the Turing machine after
it has halted, where the head “eats” adjacent symbols until none are left. Con-
tinuing with the previous example, if the partial match up to the point when the
machine halts in an accept state is

# 2 1 Qaccept O 2 #

The dominos we have just added allow the match to continue:

# 2 1 Qaccepto 2 #1211 Qaccept 20141 - # C]accept#

Part 7. Finally we add the domino

|: Gaccept ## ]
#

and complete the match:

# | Qaccepr # #

# Qaccept # | #

That concludes the construction of P/, Recall that P’ is an instance of the
MPCP whereby the match simulates the computation of M on w. To finish the
proof, recall that the MPCP differs from the PCP in that the match is required
to start with the first domino in the list. If we view P’ as an instance of the PCP
instead of the MPCP, it obviously has a match, regardless of whether A halts

on w. Can you find it? (Hint: It is very short.)

We now show how to convert P’ to P, an instance of the PCP which still sim-
ulates M on w. We do so with a somewhat technical trick, The idea is to build
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the requirement of starting with the first domino directly into the problem so
that stating the explicit requirement becomes unnecessary. We need to introduce
some notation for this purpose.

Letu = ujuy - --u, be any string of length n. Define xu, ux, and *ux to be
the three strings

*U = *UpkUg*U3* -+ *Up
Uk = U kU2 KUF* - k Uy *
*UK = kU kU kUG * e * Up *.

lere, xu adds the symbol * before every character in u, ux adds one after each
character in u, and xu* adds one both before and after each character in .
To convert P’ to P, an instance of the PCP, we do the following. If P’ were

the collection
(B[R] (5] 1)

b Bl 52 ) ) [

xbyxl” Lbixd” Lbgxl” Lbgxd” 7 7 Ll O [
Considering P as an instance of the PCP, we see that the only domino that

could possibly start a match is the the first one,

[ xtr ]

*byx ]’
because it is the only one where both the top and the bottom start with the same
symbol, namely . Besides forcing the match to start with the first domino, the
presence of the +s doesn't affect possible matches because they simply interleave
with the original symbols. The original symbols now occur in the even positions
of the match. The domino

* O
)

is there to allow the top to add the extra * at the end of the match.

5.3

MAPPING REDUCIBILITY

We have shown how to use the reducibility technique to prove that various prob-
lems are undecidable. In this section we formalize the notion of reducibility. Do-
ing so allows us to use reducibility in more refined ways, such as for proving that
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certain languages are not Turing-recognizable and for applications in complexity
theory.

The notion of reducing one problem to another may be defined formally in
one of several ways. The choice of which one to use depends on the application.
Our choice is a simple type of reducibility called mapping reducibility.?

Roughly speaking, being able to reduce problem A to problem B by using a
mapping reducibility means that a computable function exists that converts in-
stances of problem A to instances of problem B. If we have such a conversion
function, called a reduction, we can solve A with a solver for B. The reason is that
any instance of A can be solved by first using the reduction to convert it to an in-
stance of B and then applying the solver for B. A precise definition of mapping
reducibility follows shortly.

COMPUTABLE FUNCTIONS

A Turing machine computes a function by starting with the input to the function
on the tape and halting with the output of the function on the tape.

DEFINITION 5.1 2 ittt s s st st ssssasses s essassss sessastes sesssstsssssssessarens

A function f: E*— X* is a computable function if some Turing machine M, on
every input w, halts with just f(w) on its tape.

EXAMPLE 5.'[3 ..........................................................................................................................

All usual arithmetic operations on integers are computable functions. For exam-
ple, we can make a machine that takes input (m,n) and returns m + n, the sum
of m and n. We don’t give any details here, leaving them as exercises. ~

EXAMPLE B5. 4 vttt s e s s an s s s s s

Computable functions may be transformations of machine descriptions. For ex-
ample, one computable function f takes input w and returns the description of a
Turing machine (M’) if w = (M) is an encoding of a Turing machine M. The
machine M’ is a machine that recognizes the same language as M, but never at-
tempts to move its head off the left-hand end of its tape. The function f accom-
plishes this task by adding several states to the description of M. The function
returns € if w is not a legal encoding of a Turing machine. =

2Tt is called smany-one reducibility in some other textbooks.
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FORMAL DEFINITION OF MAPPING REDUCIBILITY

Now we define mapping reducibility. As usual we represent computational prob-
lems by languages.

DEFINITION 5.15 ....................................................................................................................

Language A is mapping reducible to language B, written A <,, B, if there is a
computable function f: X*— E*, where for every w,

w€E A<= f(w) € B.
The function f is called the reduction of A o B.

Thef 1z figu ustr napping reducibility.
° )

FIGURE 5.6
Function f reducing A to B

A mapping reduction of A to B provides a way to convert questions about
membership testing in A to membership testing in B. To test whether w € A,
we use the reduction f to map w to f(w) and test whether f(w) € B. The term
mapping reduction comes from the function or mapping that provides the means
of doing the reduction.

If one problem is mapping reducible to a second, previously solved problem,
we can thereby obtain a solution to the original problem. We capture this idea
in the following theorem.

THEOREM 5. 1 6 .........................................................................................................................
If A <;, B and B is decidable, then A is decidable.

PROOF We let M be the decider for B and f be the reduction from A to B.
We describe a decider N for A as follows.
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N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

Clearly, if w € A, then f(w) € B because f is a reduction from A to B. Thus M
accepts f{w) whenever w € A. Therefore N works as desired.

The following corollary of Theorem 5.16 has been our main tool for proving
undecidability.

COROLLARY 5.17 ...................................................................................................................
If A <., B and A is undecidable, then B is undecidable.

Now we revisit some of our earlier proofs that used the reducibility method
to get examples of mapping reducibilities,

EXAMPLE 5.]8 ..........................................................................................................................

In Theorem 5.1 we used a reduction from Atm to prove that HALT 1y is un-
decidable. This reduction showed how a decider for HALT tm could be used to
give a decider for Aty. We can demonstrate a mapping reducibility from At
to HALT 1 as follows. To do so we must present a computable function f that
takes input of the form (M, w) and returns output of the form (M’ w'), where

(M, w) € Aty ifand only if (M, w’) € HALT 1y.
The following machine F' computes a reduction f.

F =“On input (M, w):
1. Construct the following machine M.
M' = *“On input x:
1. Run M on z.
2. If M accepts, accept.
3. If M rejects, enter a loop.”

2. Output (M’ w).”

EXAMPLE 5.]9 ..........................................................................................................................

The proof of the undecidability of the Post correspondence problem in Theo-
rem 5.11 contains two mapping reductions. First, it shows that Aty <., MPCP
and then it shows that MPCP <, PCP. In both cases we can easily obtain the
actual reduction function and show that it is a mapping reduction. As Exercise 5.6
shows, mapping reducibility is transitive, so these two reductions together imply
that Aty <,, PCP. .
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EXAMPLE 5.20 ............................ PPN

A mapping reduction from Frym to EQry lies in the proof of Theorem 5.4. In
this case the reduction f maps the input (M) to the output (M, Af,), where M,
is the machine that rejects all inputs.

EXAMPLE 5.21 ..........................................................................................................................

The proof of Theorem 5.2 showing that Fry is undecidable illustrates the dif-
ference between the formal notion of mapping reducibility that we have defined
in this section and the informal notion of reducibility that we used earlier in this
chapter. The proof shows that Ety is undecidable by reducing Aty to it. Let’s
see whether we can convert this reduction into a mapping reduction.

From the original reduction we may easily construct a function f that takes
input (M, w) and produces output (M), where M, is the Turing machine de-
scribed in that proof. But M accepts w if and only if L(M;) is not empty so f
is a mapping reduction from Aty to Erm. It still shows that Ery is undecid-
able because decidability is not affected by complementation, but it doesn’t give
a mapping reduction from Ay to Fry. In fact, no such reduction exists, as you
are asked to show in Exercise 5.5.

The sensitivity of mapping reducibility to complementation is important in
the use of reducibility to prove nonrecognizability of certain languages. We can
also use mapping reducibility to show that problems are not Turing-recognizable.
The following theorem is analogous to Theorem 5.16.

THEOREM B2 it s s sem s et s bbb s

If A <,, Band B is Turing-recognizable, then A is Turing-recognizable.

The proof is the same as that of Theorem 5.16, except that A and N are recog-
nizers instead of deciders.

COROLLARY 5.23 ...................................................................................................................

If A <, B and Aisnot Turing-recognizable, then B is not Turing-recognizable.

In a typical application of this corollary, we let A be Ay, the complement
of Atm. We know that Aty is not Turing-recognizable from Corollary 4.17.
The definition of mapping reducibility implies that A <., B means the same
as A <., B. To prove that B isn’t recognizable we may show that Ay <m B.
We can also use mapping reducibility to show that certain problems are neither
Turing-recognizable nor co-Turing-recognizable as in the following theorem.
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THEOREM By cooersoesmmirs oo setstssssses o552 e 18111

EQ+y is neither Turing-recognizable nor co-Turing-recognizable.

PROOF First we show that EQr,, is not Turing-recognizable. We do so by
showing that Aty is reducible to EQmy. The reducing function f works as fol-
lows.

F = “On input (M, w) where M is a TMand w a string:
1. Construct the following two machines M; and Ms.
M; = “On any input:
1. Reject.”
My = “On any input:
1. Run M on w. If it accepts, accept.”
2. Output (M, M>).”

Here, M; accepts nothing. If M accepts w, M accepts everything, and so the
two machines are not equivalent. Conversely, if M doesn’t accept w, Mz accepts
nothing, and they are equivalent. Thus f reduces Arm to EQry, as desired.

To show that EQty is not Turing-recognizable we give a reduction from Aym
to the complement of EQry, namely, EQry. Hence we show that Aty <m
EQ1y- The following TM G computes the reducing function g.

G = “The input is (M, w) where M is a TM and w a string.
1. Construct the following two machines M; and Ms:
M, = “On any input:
1. Accept.”
M5 = “On any input:
1. Run M on w.
2. If it accepts, accept.”
2. Output (M, Ma).”

The only difference between f and g is in machine ;. In f, machine M,
always rejects, whereas in g it always accepts. In both f and g, M accepts w if
and only if Mo always accepts. In g, M accepts w if and only if M) and M3 are
equivalent. That is why g is a reduction from Ay to EQty-

Bom oW ¥ OB OB oW OE OB OB OE R OB IR OEEE LSRR SWS BB =
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EXERCISES

51
52
53

54

5.5
5.6
5.7

Show that FQ g is undecidable.
Show that FQcg is co-Turing-recognizable.

Find a match in the following instance of the PCP.

ms) B 157 (21

If A <\n Band B isaregular language, does that imply that A is a regular language?
Why or why not?

Show that Aty is not mapping reducible to Ery.
Show that <., is a transitive relation.
Show that if A is Turing-recognizable and A <,, A, then A is decidable.

In the proof of Theorem 5.11 we modified the Turing machine M so that it never
tries to move its head off the left-hand end of the tape. Suppose that we did not
make this modification to M. How would we have to modify the PCP construction
to handle this case?

PROBLEMS

5.9
5.10

5.11
5.12

s

Pt

5.14

5.15

5.16

5.17

5.18

1

e 21
G

Show that all Turing-recognizable problems mapping reduce to Arw.

Let J = {w|w = Oz for some x € Aty or w = 1y for some y € Arm }. Show that
neither J nor J is Turing-recognizable.

Give an example of an undecidable language B, where B <, B.

Let § = {(M)| M is a TM that accepts w™ whenever it accepts w}. Show that S is
undecidable.

A useless state in a Turing machine is one that is never entered on any input string.
Consider the problem of testing whether a Turing machine has any useless states.
Formulate this problem as a language and show that it is undecidable.

Consider the problem of testing whether a Turing machine M on an input w ever
attempts to move its head left when its head is on the left-most tape cell. Formulate
this problem as a language and show that it is undecidable.

Consider the problem of testing whether a Turing machine M on an input w ever
attempts to move its head left at any point during its computation on w. Formulate
this problem as a language and show that it is decidable.

Consider the problem of testing whether a two-tape Turing machine ever writes
a nonblank symbol on its second tape. Formulate this problem as a language, and
show that it is undecidable.

Show that the PCP is decidable over a unary alphabet, that is, over the alphabet
¥ ={1}.

Show that the PCP is undecidable over a binary alphabet, that is, over the alphabet
5 = {0,1}.
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5.19

5.20

5.21

*5.22

5.23
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Let AMBIGcre = {(G)] G is an ambiguous CFG}. Show that AMBIG is undecid-
able. (Hint: Use a reduction from PCP. Given an instance

P={[2) g )

of the PCP, construct a CFG G with the rules

S —T l B
T — t1Ta I ‘ te1ay |t1a1( ]tkak
BﬂblBall--ﬂkaak|b1a1|~--]bkak,

where a1, ... , a; are new terminal symbols. Prove that this reduction works.)

Define a two beaded finite automaton (2DFA) to be a deterministic finite automaton
that has two read-only, bidirectional heads that start at the left-hand end of the input
tape and can be independently controlled to move in either direction. The tape of
a 2DFA is finite and is just large enough to contain the input plus two additional
blank tape cells, one on the left-hand end and one on the right-hand end, that serve
as delimiters. A 2DFA accepts its input by entering a special halt state. For example,
a 2DFA can recognize the language {a”b"c"| n > 0}.

a. Let Aopra = {(M, )| M is a 2DFA and M accepts x}. Show that Aspea is
decidable.

b. Let Erpra = {(]\/f)l M is a 2DFA and L(M) = @} Show that F>pEa 1s not
decidable.

A two dimensional finite automaton (2DIM-DFA) is defined as follows. The input is
an m X n rectangle, for any m,n > 2. The squares along the boundary of the rect-
angle contain the symbol # and the internal squares contain symbols over the input
alphabet X. The transition function is a mapping Q@ x % — Q x {L,R,U,D} to
indicate the next state and the new head position (Left, Right, Up, Down). The ma-
chine accepts when it enters one of the designated accept states. It rejects if it tries
to move off the input rectangle or if it never halts. Two such machines are equiv-
alent if they accept the same rectangles. Consider the problem of testing whether
two of these machines are equivalent. Formulate this problem as a language, and
show that it is undecidable.

Rice’s Theorem. Let P be any problem about Turing machines that satisfies the
following two properties. As usual we express P as a language.

a. For any TMs M, and M, where L(M;) = L(M>), we have (M) € P iff
(Mz2) € P. In other words, the membership of a TM M in P depends only
on the language of M.

b. There exist TMs My and M>, where (M;) € P and (M) & P. In other
words, P is nontrivial—it holds for some, but not all, TMs.
Show that P is undecidable.

Show that both conditions in Problem 5.22 are necessary for proving that P is un-

decidable.
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In this chapter we delve into several deeper aspects of computability theory. The
four topics we discuss in this chapter are (1) the recursion theorem, (2) logical
theories, (3) Turing reducibility, and (4) descriptive complexity.

Each section is mainly independent of the others, except for an application of
the recursion theorem at the end of the section on logical theories. Part Three
of this book doesn’t depend on any material from this chapter.
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THE RECURSION THEOREM

The recursion theorem is a mathematical result that plays an important role in
advanced work in the theory of computability. It has connections to mathematical
logic, the theory of self-reproducing systems, and even computer viruses.

1o introduce the recursion theorem, we consider a paradox that arises in the
study of life. It concerns the possibility of making machines that can construct
replicas of themselves. The paradox can be summarized in the following manner.

197
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1. Living things are machines.
2. Living things can self-reproduce.
3. Machines cannot self-reproduce.

Statement 1 is a tenet of modern biology. We believe that organisms operate in
a mechanistic way. Statement 2 is obvious. The ability to self-reproduce is an
essential characteristic of every biological species.

For statement 3, we make the following argument that machines cannot self-
reproduce. Consider a machine that constructs other machines, such as an auto-
mated factory that produces cars. Raw materials go in at one end, the manufac-
turing robots follow a set of instructions, and then completed vehicl
the other end.

We claim that the factory must be more complex than the cars produced, in
the sense that designing the factory would be more difficult than designing a car.
This claim must be true because the factory itself has the car’s design within i,
in addition to the design of all the manufacturing robots. The same reasoning
applies to any machine A that constructs a machine B: A must be more complex
than B. But a machine cannot be more complex than itself. Consequently, no
machine can construct itself, and thus self-reproduction is impossible.

How can we resolve this paradox? The answer is simple: Step 3 is incorrect.
Making machines that reproduce themselves is possible. The recursion theorem
demonstrates how.

PR

o
=0 = =

Let’s begin by making a Turing machine that ignores its input and prints out a
copy of its own description. We call this machine SELF. To help describe SELF,
we need the following lemma.

LEMMA 6.1 ...................................................................................................................................

There is a computable function ¢: ¥*— X*, where, for any string w, g(w) is the
description of a Turing machine P, that prints out w and then halts.

PROOF  Once we understand the statement of this lemma, the proof is easy.
Obviously, we can take any string w and construct from it a Turing machine that
has w built into a table so that the machine can simply output w when started.
The following TM computes g(w).

@ = “On input string w.
1. Construct the following Turing machine P,
P, = “On any input:
1. Erase input.
2. Write w on the tape.
3. Hale”
2. Output (Py).”
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The Turing machine SELF is in two parts, called 4 and B. We think of A
and B as being two separate procedures that go together to make up SELF. We
want SELF to print out (SELF) = (AB).

Part A runs first and upon completion passes control to B. The job of Ais to
print out a description of B, and conversely the job of B is to print out a descrip-
ton of A. The result is the desired description of SELF. The jobs are similar,
but they are carried out differently. We show how to get part A first.

For A we use the machine Py, described by q((B)), which is the result of
applying the function q to (B). Thus part A is a Turing machine that prints out
(B). Our description of A depends on having a description of B. So we can’t
complete the description of A until we construct B.

Now for part B. We might be tempted to define B with q({A)), but that
doesn’t make sense! Doing so would define B in terms of A, which in wrn is
defined in terms of B. That would be a circular definition of an object in terms
of itself, a logical transgression. Instead, we define B so that it prints A by using
a different strategy: B computes A from the output that A produces.

We defined (A) to be ¢((B)). Now comes the tricky part: If B can obtain
(B), it can apply ¢ to that and obtain (A). But how does B obtain (B)? It was
left on the tape when A finished! So B only needs to look at the tape to obtain
(B). Then after computing ¢((B)) = (A), B adds that to the front of the tape.
Finally, the tape contains (AB) = (SELF). In summary, we have:

A= P
and

B = “On input (M), where M is a portion of a TM:
1. Compute q((M)).
2. Combine the result with (M) to make a complete TM descrip-
aon.
3. Print this description and halt.”

‘This completes the construction of SELF, for which a schematic diagram is
presented in the following figure.

A+ B
(=Pp)

control for SELF

FIGURE 6.1
Schematic of SELF, a TM that prints its own description
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If we now run SELF we observe the following behavior.

1. First A runs. It prints (B) on the tape.

2. Bstarts. It looks at the tape and finds its input, (53).

3. B calculates ¢((B)) = (A) and combines that with (B) into a
TM description, {SELF).

4. B prints this description and halts.”

We can easily implement this construction in any programming language to
obtain a program that outputs a copy of itself. We can even do so in plain English.
Suppose that we want to give an English sentence that commands the reader to
print a copy of the same sentence. One way to do so is to say:

Print out this sentence.

This sentence has the desired meaning because it directs the reader to print a
copy of the sentence itself. However, it doesn’t have an obvious translation into
a programming language because the self-referential word “this” in the sentence
usually has no counterpart. But no self-reference is needed to make such a sen-
tence. Consider the following alternative.

Print out two copies of the following, the second one in quotes:
“Print out two copies of the following, the second one in quotes:”

In this sentence, the self-reference is replaced with the same construction used
to make the TM SELF'. Part B of the construction is the clause:

Print out two copies of the following, the second one in quotes:

Part A is the same, with quotes around it. A provides a copy of B to B so B can
process that copy as the TM does.

The recursion theorem provides the ability to implement the self-referential
this into any programming language. With it, any program has the ability to re-
fer to its own description, which has certain applications, as you will see. Before
getting to that we give a statement of the recursion theorem itself. The recur-
sion theorem extends the technique we used in constructing SELF so thata pro-
gram can obtain its own description and then go on to compute with it, instead
of merely printing it out.

THEOREM 6.2 ............................................................................................................................

Recursion Theorem Let 7" be a Turing machine that computes a function
t: ¥* x ¥*—¥* There is a Turing machine R that computes a function

- i IV cohata £ acate g
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r(w) = t((R), w).

The statement of this theorem seems a bit technical, but it actually represents
something quite simple. To make a Turing machine that can obtain its own de-
scription and then compute with it, we need only make a machine, called T in the
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statement, that takes an extra input that receives the description of the machine.,
Then the recursion theorem produces a new machine R, which operates exactly
as T does but with R’s description filled in automatically.

PROOF  The proof is similar to the construction of SELF. We construct a TM
Rin three parts, A, B, and T, where T is given by the statement of the theorem.
Here, A is the Turing machine P g7 described by ¢ ((BT)). After A runs, the
tape contains { BT').
Again, B is a procedure that examines its tape and applies ¢ to its contents.
The result is (A). Then B combines A, B, and T into a single machine, writes
its description on the tape, and passes control to 7.

A+ BT

control for R

FIGURE 6.2
Schematic of R

........................................................................................................................................................................

TERMINOLOGY FOR THE RECURSION THEOREM
ha

The recursion theorem states that Turing machines have the capability to obtain
their own description and then go on to compute with it. At first glance this ca-
pability may seem to be useful only for frivolous tasks such as making a machine
that prints a copy of itself. But, as we demonstrate, the recursion theorem is a
handy tool for solving certain problems concerning the theory of algorithms.

You can use the recursion theorem in the following way when designing Tur-
ing machine algorithms. If you are designing a machine M, you can include the
phrase “obtain own description (M)” in the informal description of M’s algo-
rithm. Upon having obtained its own description M can then go on to use it as
it would use any other computed value. For example, M might simply print out
(M), then count the number of states in (M), or simulate (M).

To illustrate this method we use the recursion theorem to describe the ma-
chine SELF.

1. Obtain, via the recursion theorem, own description (SELF).
2. Print (SELF).”
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APPLICATIONS

A computer virus is a computer program that is designed to spread itself among
computers. Aptly named, it has much in common with a biological virus. Com-
puter viruses are inactive when standing alone as a piece of code, but when placed
appropriately in a host computer, thereby “infecting” it, they can become acti-
vated and transmit copies of themselves to other accessible machines. Various
media can transmit viruses, including the internet and transferable disks. In order
to carry out its primary task of self-replication, a virus may contain the construc-
tion described in the proof of the recursion theorem.

Let’s now consider three theorems whose proofs use the recursion theorem.
An additional application appears in the proof of Theorem 6.15 in Section 6.2.

First we return to the proof of the undecidability of Aru. Recall that we ear-
lier proved it in Theorem 4.9, using Cantor’s diagonal method. The recursion
theorem gives us a new and simpler proof.

THEOREM 6.3 ............................................................................................................................

Atm is undecidable.

PROOF We assume that Turing machine H decides Arwm, for the purposes of
obtaining a contradiction. We construct the following machine B.

B = “On input w:
1. Obtain, via the recursion theorem, own description (B).
2. Run H on input (B, w).
3. Do the opposite of what H says. That is, accept if H rejects and
reject if H accepts.”

Running B on input w does the opposite of what I declares it does. Therefore
H cannot be deciding Atm. Done!

The following is another application of the recursion theorem.

DEFINITION Gl ottt s s s s e

If M is a Turing machine, then we say that the /ength of the description (M) of
M is the number of symbols in the string describing M. Say that M is minimal
if there is no Turing machine equivalent to M that has a shorter description. Let

MINty = {{M)| M is a minimal TM}.

THEOREM .5 i b s s s s s st

MINwm is not Turing-recognizable.
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PROOF  Assume that some TM F enumerates MIN 1 and obtain a contradic-
tion. We construct the following T™M C.

C' = “On input w:
1. Obtain, via the recursion theorem, own description (C').
2. Run the enumerator £ until a machine D appears with a longer
description than that of C.
3. Simulate D on input w.”

Because MIN 1 is infinite, £’ list must contain a TMwith a longer description
than C% description. Therefore step 2 of C' eventually terminates with some TM
D that is longer than C. Then C simulates D and so is equivalent to it. Because
C is shorter than D and is equivalent to it, D cannot be minimal. But D appears
on the list that E produces. Thus we have a contradiction.

Our final application of the recursion theorem is a type of fixed-point theo-
rem. A fixed point of a function is a value thatisn’t changed by application of the
function. In this case we consider functions that are computable transformations
of Turing machine descriptions. We show that for any such transformation some
"Turing machine exists whose behavior is unchanged by the transformation. This
theorem is sometimes called the fixed-point version of the recursion theorem.

THEOREM 6.6 ............................................................................................................................

Let t: ¥*— 3* be a computable function. Then there is a Turing machine F
wherein t((F)) describes a Turing machine equivalent to F.

In this theorem ¢ plays the role of the transformation, and F is the fixed point.

PROOF Let F be the following Turing machine.

F = “On input w:
1. Obtain, via the recursion theorem, own description (F).
2. Compute t({F)} to obtain the description of a TM G.
3. Simulate G on w.”

Clearly, (F) and ¢((F)) = (Q) describe equivalent Turing machines because
F simulates G.
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DECIDABILITY OF LOGICAL THEORIES

Mathematical logic is the branch of mathematics that investigates mathematics
itself, Tt addresses questions such as: What is a theorem? What is a proof? What
is truth? Can an algorithm decide which statements are true? Are all true state-
ments provable? We'll touch on a few of these topics in our brief introduction to
this rich and fascinating subject.

We focus on the problem of determining whether mathematical statements
are true or false and investigate the decidability of this problem. The answer will
depend on the domain of mathematics from which the statements are drawn. We
examine two domains: one for which we can give an algorithm to decide truth and
another for which this problem is undecidable.

First we need to set up a precise language to formulate these problems. Our
intention is to be able to consider mathematical statements such as

1. Vg Ipva,y [p>q A (zy>1 — ay#p) |,
2. Va,b,e,n [(a,b,c>0 An>2) — a™+b"#£c" |, and

3. Vg IpVay [p>q A (z,y>1 — (ay#p A zy#p+2)) |-

Statement 1 says that infinitely many prime numbers exist, and has been known
to be true since the time of Euclid, about 2,300 years ago. Statement 2 is known
as Fermat’s Last Theorem and has been known to be true only since Andrew Wiles
proved it a few years ago. Finally, statement 3 says that infinitely many prime
pairs! exist. Known as the twin prime conjecture, it remains unsolved.

To consider whether we could automate the process of determining which of
these statements are true, we treat such statements merely as strings and define
a language consisting of those statements which are true. Then we ask whether
this language is decidable.

To make this a bit more precise, let’s describe the form of the alphabet of this

language:
{/\,V,_\, (,),V,.’L‘, H,Rl, Ce e ,Rk}.

The symbols A, V, and —, are called Boolean operations; “(” and “)” are the
parentheses; the symbols ¥V and 3 are called quantifiers; the symbol z is used to
denote variables;” and the symbols R1, ... , R are called relations.

A formaula is a well-formed string over this alphabet. For completeness, we'll
sketch the technical but obvious definition of a well-formed formula here, but
feel free to skip this part and go on to the next paragraph. A string of the form

LPrime pairs are primes that differ by 2.

21f we need to write several variables in a formula, we use the symbols w, y, z, or T1, T2,
xs, and so on. We don’t list all the infinitely many possible variables in the alphabet to
keep the alphabet finite. Instead, we list only the variable symbol x, and use strings of =’
to indicate other variables, as in zz for x2, zxz for a3, and so on.
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Ri(zy, ..., x;) is an atomic formula. The value j is the arity of the relation sym-
bol R;. All appearances of the same relation symbol in a well-formed formula
must have the same arity. Subject to this requirement a string ¢ is a formula if it

1. is an atomic formula,

2. has the form ¢; Ags or ¢1 Vs or —¢1, where ¢y and ¢ are smaller formulas,
or

3. has the form Jz; [ ¢y ] or Vz; [ @) ], where ¢ is a smaller formula.

A quantifier may appear anywhere in a mathematical statement. Its scope is
the fragment of the statement appearing within the matched pair of parentheses
or brackets following the quantified variable. We assume that all formulas are in
prenex normal form, where all quantifiers appear in the front of the formula. A
variable that isn’t bound within the scope of a quantifier is called a free variable.
A formula with no free variables is called a sentence or statement.

EXAMPLE 0.7 i e s st e e e e e e
Among the following examples of formulas, only the last one is a sentence.

1. Rl(ﬂ?l)/\RQ(Ilvx27x3)
2. Va1 [ Ry(z1) A Ra(@1, 30, 23) ]
3. Vxy dzo dxs [Rl(xl) A RZ(x1»x27x3)}'

Having established the syntax of formulas, let’s discuss their meanings. The
Boolean operations and the quantifiers have their usual meanings, but to deter-
mine the meaning of the variables and relation symbols we need to specify two
items. One is the universe over which the variables may take values. The other
1s an assignment of specific relations to the relation symbols. As we described in
Section 0.2 on page 8 a relation is a function from k-tuples over the universe to
{TRUE, FALSE}. The arity of a relation symbol must match that of its assigned
relation.

A universe together with an assignment of relations to relation symbols is
called a model.> Formally we say that a model M is a tuple (U, Py, ..., Py),
where U is the universe and P; through Py, are the relations assigned to symbols
R; through Rj. We sometimes refer to the language of @ model to be the col-
lection of formulas that use only the relation symbols the model assigns and that
use each relation symbol with the correct arity. If ¢ is a sentence in the language
of a model, ¢ is either true or false in that model. If ¢ is true in a model M, we
say that M is a model of ¢.

If you feel overwhelmed by these definitions, concentrate on our objective in
stating them. We want to set up a precise language of mathematical statements
so that we can ask whether an algorithm can determine which are true and which
are false. The following examples should be helpful.

3A model is also variously called an énterpretation or structure.
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EXAMPLE 6.8 ..............................................................................................................................

Let ¢ be the sentence Yz Vy [ R1(z,y) V Ri(y. 7) ]. Let model M; = (N, <) be
the model whose universe is the natural numbers and which assigns the “less than
or equal” relation to the symbol R;. Obviously, ¢ is true in model M because
either a < bor b < a for any two natural numbers a and b. However, if M;
assigned “less than” instead of “less than or equal” to %1, then ¢ would not be
true because it fails when « and y are equal.

If we know in advance which relation will be assigned to R;, we may use the
customary symbol for that relation in place of R; with infix notation rather than
prefix notation if customary for that symbol. Thus with model M, in mind, we
could write ¢ as Vz Vy [2<y V y<z |.

EXAMPLE 6.9 ..............................................................................................................................

As a second example, let My be the model whose universe is the real numbers R
and which assigns the relation PLUS to Ry, where PLUS (a,b,c) = TRUE when-
ever a + b = c. Then M is a model of 1 = Yy 3z [ Ry (z, z,y) |. However, if
were used for the universe instead of R in My, the sentence would be false.

As in the previous example, we may write ¢ as Vy 3z [z + 2 = y] in place
of Yy 3z | Ri(x,z, y) | when we know in advance that we will be assigning the
addition relation to R;.

As Example 6.9 illustrates, we can represent functions such as the addition
function by relations. Moreover, we can represent constants such as 0 and 1 by
relations similarly.

Now we make one final definition in preparation for the next section. If M
is a model, we let the theory of M, written Th(M), be the collection of true
sentences in the language of that model.

A DECIDABLE THEORY

Number theory is one of the oldest branches of mathematics and also one of
its most difficult. Many innocent looking statements about the natural numbers
and the plus and times operations have confounded mathematicians for centuries,
such as the twin prime conjecture mentioned earlier.

In one of the celebrated developments in mathematical logic, Alonzo Church,
building on the work of Kurt Godel, showed that no algorithm can decide in gen-
cral whether statements in number theory are true or false. Formally, we write
(N, +, %) to be the model whose universe is the natural numbers* with the usual
+ and x relations. Church showed that Th(N, +, x), the theory of this model,
is undecidable.

Before looking at this undecidable theory, let’s examine one that is decid-
able. Let (N, +) be the same model, except without the x relation. Its theory

4For convenience in this section, we change our usual definition of A" to be {0,1,2,... }.
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(AN 1LY Bare A

1S 1A JV, 7). 20T €Xam <
fore a member of Th(N/, +), but the formul
therefore not a member.

THEOREM 6"'0 ................. e e r e R RN EEEeeeEeesertenREsee e R Resen b srenerResenrinrTarns
Th(N, +) is decidable.

PROOF IDEA This proof is an interesting and nontrivial application of the
theory of finite automata that we presented in Chapter 1. One fact about finite
automata that we use appears in Problem 1.25 on page 88 where you were asked
to show that they are capable of doing addition if the input is presented in a special
form. The input describes three numbers in parallel by representing one bit of
each number in a single symbol from an eight-symbol alphabet. Here we use a
generalization of this method to present i-tuples of numbers in parallel using an
alphabet with 2° symbols.

We give an algorithm that can test whether its input, a sentence ¢ in the lan-
guage of (A, +), is true in that model. Let

¢ = Quzy Qs - Quay [ ],

where Qi, ..., Q; each represent either 3 or V and # is a formula without quan-
tifiers that has variables z1, ... . z;. For each i from 0 to {, define formula ¢; to
be

¢i = Qir1Zir1 Qipomiva - Quy [¢].
Thus ¢o = ¢ and ¢, = 9.

Formula ¢; has i free variables. Foray, ... ,a; € N write ¢;(ay, ... ,a;) tobe
the sentence obtained by substituting the constants a,, ... , a; for the variables
1y -0, T4 in ¢i'

For each i from 0 to !, the algorithm constructs a finite automaton A; that
recognizes the collection of strings representing i-tuples of numbers that make
&; true. The algorithm begins by constructing 4; directly, using a generalization
of the method in the solution to Problem 1.25. Then, for each i from ! down to 1,
it uses A; to construct A; ;. Finally, once the algorithm has Ag, it tests whether

Ao accepts the empty string. If it does, ¢ is true and the algorithm accepts.

PROOF For i > 0 define the alphabet

-1 1)

Hence ; contains all size ¢ columns of 0s and 1s. A string over X represents i
binary integers (reading across the rows). We also define %y = {[]}, where [] is
a symbol.

We now present an algorithm that decides Th(N, +). On input ¢ where ¢ is
a sentence, the algorithm operates as follows. Write ¢ and define ¢; for each ¢




208 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

from O to [, as in the proof idea. For each such i construct a finite automaton A;
from ¢; that accepts strings over X} corresponding to i-tuples ai, ... ,a; when-
ever ¢; (a1, ... ,a;) is true, as follows.

To construct the first machine A;, observe that ¢ = ¥ is a Boolean combi-
nation of atomic formulas. An atomic formula in the language of Th(N,+) isa
single addition. Finite automata can be constructed to compute any of these in-
dividual relations corresponding to a single addition and then combined to give
the automaton A;. Doing so involves the use of the regular language closure
constructions for union, intersection, and complementation to compute Boolean
combinations of the atomic formulas.

Next, we show how to construct A; from A 1. If ¢ = 32 ¢ig1, We construct
A; to operate as A;; operates, except that it nondeterministically guesses the
value of a, , instead of receiving it as part of the input.

More precisely, A; contains a state for each A, ; state, and a new start state.
Every time A; reads a symbol

by

b1
bz b

where every b; € {0,1} is a bit of the number a;, it nondeterministically guesses
2 € {0,1} and simulates A; 1 on the input symbol

by

b 1
b,
B

Initially, A; nondeterministically guesses the leading bits of z corresponding to
suppressed leading Os in by through b; by nondeterministically branching from
its new start state to all states that A, 1 could reach from its start state with input
strings of the symbols

0 0
]
0 0
0 1
in ¥;q. Clearly, A; acceptsits input (ag, - - ,a;) if some a; 1 exists where A; 1

accepts (a1, - .. @iy1)-

If ¢, = V; ¢ir1, it is equivalent to ~3z;- ¢iy1- Thus we can construct the
finite automaton that recognizes the complement of the language of A;,1 then
apply the preceding construction for the 3 quantifier, and finally apply comple-
mentation once again to obtain A,

Finite automaton Ag accepts any input iff ¢ 1s true. So the final step of the al-
gorithm tests whether Ag accepts . Ifit does, ¢ is true and the algorithm accepts;
otherwise, it rejects.

........................................................................................................................................................................
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AN UNDECIDABLE THEORY

As we mentioned earlier, Th(A/, +, x) is an undecidable theory. No algorithm
exists for deciding the truth or falsity of mathematical statements, even when re-
stricted to the language of (A, +, x). This theorem has great importance philo-
sophically because it demonstrates that mathematics cannot be mechanized. We
state this theorem, but give only a brief sketch of its proof.

THEOREM  G.1 1 ettt s st st ces s e oo
Th(N, +, x) is undecidable.

Though it contains many details, the proof of this theorem is not difficult con-
ceptually. It follows the pattern of the other proofs of undecidability presented
in Chapter 4. We show that Th(A, +, x} is undecidable by reducing Aty to i,
using the computation history method as described on page 176. The existence
of the reduction depends on the following lemma.

LEMMA 6.12 ................................................................................................................................

Let M be a Turing machine and w a string. We can construct from A and w a
formula ¢4, in the language of Th(N, +, x) that contains a single free variable
x, whereby the sentence 3z ¢ M,w 1s true iff AL accepts w.

........................................................................................................................................................................

PROOF IDEA Formula ¢y, “says” that z is a (suitably encoded) accepting
computation history of M onw. Of course, x actually is just a rather large integer,
butit represents a computation history in a form that can be checked by using the
+ and x operations.

The actual construction of ¢z ,, is too complicated to present here. It extracts
individual symbols in the computation history with the + and x operations to
check the start configuration for M on w, that each configuration legally follows
from the one preceding it, and finally that the last configuration is accepting.

PROOF OF THEOREM 6.11  We give a mapping reduction from Aty to
Th(N, 4, x). The reduction constructs the formula ¢ M,w from the input (M w)
using Lemma 6.12. Then, it outputs the sentence 3z ¢z .

........................................................................................................................................................................

Next, we sketch the proof of Kurt Gédel’s celebrated incompleteness theorem.
Informally, this theorem says that, in any reasonable system of formalizing the
notion of provability in number theory, some true statements are unprovable.

Loosely speaking, the formal proof m of a statement ¢ is a sequence of state-
ments, 51,5, ..., S, where S; = ¢. Each S, follows from the preceding state-
ments and certain basic axioms about numbers, using simple and precise rules of
implication. We don’t have space to define the concept of proof, but for our pur-
poses assuming the following two reasonable properties of proofs will be enough.
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1. The correctness of a proof of a statement can be checked by machine. For-
mally, {{g, 7}| 7 is a proof of ¢} is decidable.

2. The system of proofs is sound. That is, if a statement is provable (i.e., has a
proof), it is true.

If a system of provability satisfies these two conditions, the following three the-
orems hold.

THEOREM 6.13 .........................................................................................................................

The collection of provable statements in Th{A/, +, x) is Turing-recognizable.

PROOF The following algorithm P accepts its input ¢ if ¢ is provable. Al-
gorithm P tests each string as a candidate for a proof 7 of ¢, using the proof
checker assumed in provability property 1. If it finds that any of these candidates
is a proof, it accepts.

........................................................................................................................................................................

Now we can use the preceding theorem to prove our version of the incom-
pleteness theorem.

THEOREM 6.14 .........................................................................................................................

Some true statement in Th(A, +, x) is not provable.

PROOF We give a proof by contradiction. We assume to the contrary that all
true statements are provable. Using this assumption, we describe an algorithm
D that decides whether statements are true, contradicting Theorem 6.11.

On input ¢ algorithm D operates by running algorithm P given in the proof
of Theorem 6.13 in parallel on inputs ¢ and —¢. One of these two statements is
true and thus by our assumption is provable. Therefore P must halt on one of
the two inputs. By provability property 2, if ¢ is provable, then ¢ is true, and if
—¢ is provable, then ¢ is false. So algorithm D can decide the truth or falsity of ¢.

........................................................................................................................................................................

In the final theorem of this section we use the recursion theorem to give an
explicit sentence in the language of (A, +, x ) that is true but not provable. The-
orem 6.14 demonstrates the existence of such a sentence but doesn’t actually de-
scribe one, as we do now.

THEOREM .15 s e st sna s s siesns s

The sentence 1unprovable, as described in the proof of this theorem, is unprovable.

..................................................................................................................................

PROOF IDEA Construct a sentence that says: “This sentence is not provable,”
using the recursion theorem to obtain the self-reference.
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PROOF Let S be a TM that operates as follows.

S = “On any input:

1. Obtain own description (S) via the recursion theorem.

2. Construct the sentence 1) = =3¢ | ¢so |, using Lemma 6.12.
3. Run algorithm P from the proof of Theorem 6.13 on input ¢.
4.

If the preceding step accepts, accept. If it halts and rejects,
reject.”

Let tunprovable be the sentence ¢ described in stage 2 of algorithm S. That
sentence is true iff § doesn’t accept 0 (the string 0 was selected arbitrarily).

If S finds a proof of unprovable, S accepts 0, and the sentence would thus be
false. A false sentence cannot be provable, so this situation cannot occur. The
only remaining possibility is that S fails to find a proof of YPunprovable and so §
doesn’t accept 0. But then Yunprovable 15 true, as we claimed.

6.3

TURING REDUCIBILITY

We introduced the reducibility concept in Chapter § as a way of using a solution
to one problem to solve other problems. Thus, if 4 is reducible to B, and we
find a solution to B, we can obtain a solution to 4. Subsequently, we described
mapping reducibility, a specific form of reducibility. But does mapping reducibility
capture our intuitive concept of reducibility in the most general way? It doesn't.

For example, consider the two languages Aty and Aqy. Intuitively, they are
reducible to one another because a solution to either could be used to solve the
other by simply reversing the answer. However, we know that Aty is ot map-
ping reducible to Aty because Aty is Turing-recognizable but Aty isn’t. Here
we present a very general form of reducibility, called Turing reducibility, which
captures our intuitive concept of reducibility more closely.

An oracle for a language B is an external device that is capable of reporting
whether any string w is a member of B. An oracle Turing machine is a modi-
fied Turing machine that has the additional capability of querying an oracle. We
write M # to describe an oracle Turing machine that has an oracle for language B.

We aren’t concerned with the way the oracle determines its responses. We use
the term oracle to connote a magical ability and consider oracles for languages
that aren’t decidable by ordinary algorithms, as the following example shows.
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EXAMPLE 6.1 y e sttt

Consider an oracle for Atm. An oracle Turing machine with an oracle for Atm
can decide more languages than an ordinary Turing machine can. Such a ma-
chine can (obviously) decide Aty itself, by querying the oracle about the input.
It can also decide Ery, the emptiness testing problem for TMs with the following
procedure called TA™,

TA™ = “On input (M), where M is a TM:
1. Construct the following TM N:
N = “On any input:
1. Run M in parallel on all strings in £*.
2. If M accepts any of these strings, accept.”
2. Query the oracle to determine whether (N,0) € Atm.
3. If the oracle answers NO, accept; if YES, reject.”

If M’ language isn’t empty, N will halt on every input, and in particular on
input 0. Hence the oracle will answer YES, and 74™ will reject. Conversely,
if M’ language is empty, T4™ will accept. Thus TA™ decides Erm. We say
that Frw is decidable relative to Aty. That brings us to the definition of Turing
reducibility.

DEFINITION 6.18 ....................................................................................................................

Language A is Turing reducible to language B, written A <t B, if Ais decidable
relative to B.

THEOREM 6.1 ) e
If A <1 B and B is decidable, then A is decidable.
pPrRooF If B is decidable, then we may replace the oracle for B by an actual

procedure that decides B. Thus we may replace the oracle Turing machine that
decides A by an ordinary Turing machine that decides A.

Turing reducibility is a generalization of mapping reducibility. If A <., B
then A <t B, because the mapping reduction may be used to give an oracle Tur-
ing machine that decides A relative to B.

An oracle Turing machine with an oracle for Ay is very powerful. It can solve
many problems that are not solvable by ordinary Turing machines. Buteven such
a powerful machine cannot decide all languages (see Problems 6.21 and 6.22).
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A DEFINITION OF INFORMATION

‘The concepts algorithm and information are fundamental in computer science.
While the Church-Turing thesis gives a universally applicable definition of al-
gorithm, no equally comprehensive definition of information is known. Instead
of a single, universal definition of information, several definitions are used—
depending upon the application. In this section we present one way of defining
information using computability theory.

We start with an example. Consider the information content of the following
two binary sequences:

A =0101010101010101010101010101010101010101
B =1110010110100011101010000111010011010111

Intuitively, sequence A contains little information because it is merely a repe-
ttion of the pattern 01 twenty times. In contrast, sequence B appears to contain
more information.

We can use this simple example to illustrate the idea behind the definition of
information we will present. We define the quantity of jpformation contained
in an object to be the size of that object’s smallest representation or description.
By a description of an object we mean a precise and unambiguous characteriza-
tion of the object so that we may recreate it from the description alone. Thus
sequence A contains little information because it has a small description, whereas
sequence B apparently contains more information because it seems to have no
concise description.

Why do we consider only the shortest description when determining an object’s
quantity of information? We may always describe an object, such as a string, by
placing a copy of the object directly into the description. Thus we can obviously
describe the preceding string B with a table that is forty bits long containing a
copy of B. This type of description is never shorter than the object itself and
doesn’t tell us anything about its information quantity. However, a description
that is significantly shorter than the object implies that the information contained
within can be compressed into a small volume, and so the amount of informa-
tion can'’t be very large. Hence the size of the shortest description determines
the amount of information.

Now we formalize this intuitive idea. Doing so isn’t difficult, but we must do
some preliminary work. First, we restrict our attention to objects that are bi-
nary strings. Other objects can be represented as binary strings, so this restriction
doesn’t limit the scope of the theory. Second, we consider only descriptions that
are themselves binary strings. By imposing this requirement, we may easily com-
pare the length of the object with the length of its description. In the next section,
we consider the type of description that we allow.




214 CHAPTER 6 / ADVANCED TOPICS IN COMPUTABILITY THEORY

MINIMAL LENGTH DESCRIPTIONS

Many types of description language can be used in the definition of information.
Selecting which language to use affects the characteristics of the definition. Our
description language is based on algorithms.

One way to use algorithms to describe strings is to construct a Turing machine
that prints out the string when it is started on a blank tape and then represent that
Turing machine itself as a string. Thus the string representing the Turing ma-
chine is a description of the original string. A drawback to this approach is that a
Turing machine cannot represent a table of information concisely with its tran-
sition function. Representing a string of n bits might use n states and n rows in
the transition function table. That would resuit in a description that is excessively
long for our purpose. Instead, we use the following more concise description lan-
guage.

We describe a binary string = with a Turing machine M and a binary input
w to M. The length of the description is the combined length of representing
M and w. We write this description with our usual notation for encoding several
objects into a single binary string (M, w). But here we must pay additional atten-
tion to the encoding operation (-, -) because we need to produce a concise result.
We define the string (M, w) to be (M)w, where we simply concatenate the bi-
nary string w onto the end of the binary encoding of M. The encoding (M) of
M may be done in any standard way, except for the subtlety that we describe in
the next paragraph. (Don’t worry about this subtle point on your first reading of
this material. For now, skip past the next paragraph and Figure 6.3.)

Concatenating w onto the end of (A/) to yield a description of z might run into
trouble if the point at which (M) ends and w begins is not discernible from the
description itself. Otherwise, several ways of partitioning the description {AM)w
into a syntactically correct TM and an input may occur, and then the description
would be ambiguous and hence invalid. We avoid this problem by ensuring that
we can locate the separation between (M) and w in (M )w. One way to do so is
to write each bit of (M) twice, writing 0 as 00 and 1 as 11, and then follow it with
01 to mark the separation point. We illustrate this idea in the following figure,
depicting the description (M, w) of some string .

delimiter
=
(M, w) = 11001111001100 - -- 1100 01 01101011 - - - 010
(M) w

FIGURE 6.3
Example of the format of the description (M, w) of some string =

]\Tnur f]'\-:n' we have fived anr decorint tion lananaoce we are readu tn r‘pﬁnp onr
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measure of the quantity of information in a string.
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DEFINITION 6.20 ....................................................................................................................

Let z be a binary string. The minimal description of z, written d(z), is the short-
est string (M, w) where TM M on input w halts with z on its tape. If several such
strings exist, select the lexicographically first among them. The descriptive com-
plexitys of z, written K(z), is

K(z) = |d(z)].

Inother words, K(z) is the length of the minimal description of z. The defini-
tion of K(z) is intended to capture our intuition for the amount of information in
the string z. Next we establish some simple results about descriptive complexity.

THEOREM 6.21 .........................................................................................................................
Ve [K(z) < [z] +¢].

This theorem says that the descriptive complexity of a string is at most a fixed
constant more than its length. The constant is a universal one, not dependent on
the string.

PROOF ‘To prove an upper bound on K(z) as this theorem claims, we only
need to demonstrate some description of z which is no longer than the stated
bound. Then the minimal description of z may be shorter than the demonstrated
description, but not longer.

Consider the following description of the string z. Let M be a Turing machine
that halts as soon as it is started. This machine computes the identity function—
its output is the same as its input. A description of z is simply (M)z. Letting ¢

be the length of (M) completes the proof.

........................................................................................................................................................................

Theorem 6.21 illustrates how we use the input to the Turing machine to rep-
resent information that would require a significantly larger description if stored
instead using the machine’s transition function. It conforms with our intuition
that the amount of information contained by a string cannot be (substantially)
more than its length. Similarly, intuition says that the information contained by
the string x2 is not significantly more than the information contained by . The
following theorem verifies this fact.

THEOREM  §.22 sttt sesss s e seeesesesssss seeees e oo e s eee s oo seeon
Jevz [K(zz) < K(z) 4 ¢].

5Descriptive complexity is called Kolmogorov complexity or Kolmogorov-Chaitin com-
Plexity in some treatments.
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pROOF Consider the following Turing machine M, which expects an input of
the form (N, w), where N is a Turing machine and w is an input for it.

M = “On input (N, w) where N is a TMand w is a string:
1. Run N on w until it halts and produces an output string s.
2. Output the string s5.”

A description of zx is (M)d(z). Recall that d(z) is a minimal description of .
The length of this description is [(M)| + [d(z)], which is ¢ + K(z) where c s the
length of (M).

Next we examine how the descriptive complexity of the concatenation xy of
two strings @ and y is related to their individual complexities. Theorem 6.21
might lead us to believe that the complexity of the concatenation is at most the
sum of the individual complexities (plus a fixed constant), but the cost of com-
bining two descriptions leads to a greater bound, as described in the following
theorem.

PROOF We construct a TM M that breaks its input w into two separate de-
scriptions. The bits of the first description d(z) are all doubled and terminated
with string 01 before the second description d(y) appears, as described in the text
preceding Figure 6.3. Once both descriptions are obtained, they are run to ob-
tain the strings z and y and the output zy is produced.

The length if this description of zy is clearly twice the complexity of & plus
the complexity of y plus a fixed constant for describing M. "This sum is

2K(z) + K(y) + ¢,

and the proof is complete.

We may improve this theorem somewhat by using a more efficient method
of indicating the separation between the two descriptions. One way avoids dou-
bling the bits of d(x). Instead we prepend the length of K(z) as a binary integer
that has been doubled to differentiate it from d(z). The description still contains

enough information to decode it into the two descriptions of z and y, and it now
has length at most

2log(K(z)) + K(z) + K(y) + ¢

Further small improvements are possible. However, as Problem 6.18 asks you to
show, we cannot reach the bound K(z) + K(y) + c.
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OPTIMALITY OF THE DEFINITION

Now that we have established some of the elementary properties of descriptive
complexity and you have had a chance to develop some intuition, we discuss some
teatures of the definitions.

Our definition of K(z) has an optimality property among all possible ways of
defining descriptive complexity with algorithms. Suppose that we consider a gen-
eral description language to be any computable function p: ¥*—— %* and define
the minimal description of z with respect to p, written d,(z), to be the lexico-
graphically shortest string s where p(s) = z. Then we define Ky(z) = |d,(z)].

For example, consider a programming language such as LISP (encoded into
binary) as the description language. Then dyigp(xz) would be the minimal LISP
program that outputs z, and Ky1sp(z) would be the length of the minimal pro-
gram.

"The following theorem shows that any description language of this type is not
significantly more concise than the language of Turing machines and inputs that
we originally defined.

THEOREM  G.248 ittt v s s sesss s sestaeessssessssssessassss e e e e nes s e

For any description language p, a fixed constant ¢ exists that depends only on p,
where

PROOF IDEA  We illustrate the idea of this proof by using the LISP example.
Suppose that z has a short description in LISP. Let M be a TM that can interpret
LISP and use the LISP program for = as M’ input. Then (M, w)isa description
of z that is only a fixed amount larger than the LISP description of z. The extra
length is for the LISP interpreter M.

PROOF 'Take any description language p and consider the following Turing
machine M.

M = “On input w:
1. Output p(w).”
Then (M)d,(x) is a description of = whose length is at most a fixed constant
greater than K, (). The constant is the length of (Af).

INCOMPRESSIBLE STRINGS AND RANDOMNESS

Theorem 6.21 shows that a string’s minimal description is never much longer
than the string itself. Of course for some strings, the minimal description may be
much shorter if the information in the string appears sparsely or redundantly. Do
some strings lack short descriptions? In other words, is the minimal description
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of some strings actually as long as the string itself? We show that such strings
exist. These strings can’t be described any more concisely than simply writing
them out explicitly.

DEFINITION 6.25 ....................................................................................................................

Let = be a string. Say that x is c-compressible if
K(z) < |z| —c.

If  is not c-compressible, say that x is incompressible by c. If z is incompressible
by 1, say that x is incompressible.

In other words, if z has a description that is ¢ bits shorter than its length, z
is c-compressible. If not, z is incompressible by c. Finally, if z doesn’t have any
description shorter than itself, & is incompressible. We first show that incom-
pressible strings exist, and then we discuss their interesting properties. In partic-
ular, we show that incompressible strings look like strings that are obtained from
random coin tosses.

THEOREM 6.26 .........................................................................................................................

Incompressible strings of every length exist.

........................................................................................................................................................................

descriptions of length less than n. Each description describes at most one string.
Therefore some string of length 7 is not described by any description of length
less than n. That string is incompressible.

pROOF The number of binary strings of length n is 2. Each description is a
nonempty binary string, so the number of descriptions of length less than n is at
most the sum of the number of strings of each length up ton — 1, or

3 PRe142+4+8+---+271=2"-1
0<i<n—1

So, the number of short descriptions is less than the number of strings of length
n. Therefore at least one string of length n is incompressible.

........................................................................................................................................................................

COROLLARY 6.27 ...................................................................................................................

At least 2 — 2"—c+! 1 1 strings of length n are incompressible by c.

PROOF Asin Theorem 6.26, at most 2*~°*1 —1 strings of length n are c-com-
pressible, because at most that many descriptions of length at most n — ¢ exist.
The remaining 2" — (2"~¢*! — 1) are incompressible by .

........................................................................................................................................................................
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Incompressible strings have many properties that we would expect to find in
randomly chosen strings. For example, we can show that any incompressible
string of length n has roughly an equal number of 0s and 1s, and that the length
of its longest run of 0s is O(logn), as we would expect to find in a random string
of that length. Proving such statements would take us too far afield into com-
binatorics and probability, but we will prove a theorem that forms the basis for
these statements.

That theorem shows that any computable property that holds for “almost all”
strings also holds for all sufficiently long incompressible strings. As we men-
tioned in Section 0.2, a property of strings is simply a function f that maps strings
to { TRUE, FALSE}. We say that a property bolds for almost all strings if the frac-
tion of strings of length n on which it is FALSE approaches 0 as n grows large. A
randomly chosen long string is likely to satisfy a computable property that holds
for almost all strings. Therefore random strings and incompressible strings share
such properties.

THEOREM 6.28 .........................................................................................................................

Let f be a computable property that holds for almost all strings. Then, for any

b > 0, the property f is FALSE on only finitely many strings that are incompress-
ible by b.

PROOF Let M be the following algorithm.

M = “On input %, 2 binary integer:
1. Find the ith string s where f(s) = FALSE, considering the
strings ordered lexicographically.
2. OQutput string s.”

We can use M to obtain short descriptions of strings that fail to have prop-
erty f as follows. Let = be such a string. Let i, be the index of z on a list of all
strings that fail to have property f, ordered by length and lexicographically within
each length. Then (M, i,) is a description of z. The length of this description is
.| + ¢, where ¢ is the length of (M).

Fix any number b > 0. Select n such that at most a 1/2°%¢ fraction of strings
of length n or less fail property f. All sufficiently large n satisfy this condition
because f holds for almost all strings. Then

n

iy < o = 2700,

2b—+—c
Therefore |iy| < n—b—c, so the length of (M, i,) is at most (n—b—c)+c = n—b,
which implies that

K(z) <n—b.

Thus every sufficiently long = that fails f is compressible by 5. Hence, only
finitely many strings that fail f are incompressible by b, and the theorem is
proved.

........................................................................................................................................................................
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At this point exhibiting some examples of incompressible strings would be
appropriate. However, as Problem 6.15 asks you to show, the K measure of
complexity is not computable. Furthermore, no algorithm can decide in general
whether strings are incompressible, by Problem 6.16. Indeed, by Problem 6.17,
no infinite subset of them is Turing-recognizable. So we have no way to obtain
long incompressible strings and would have no way to check that a string is in-
compressible even if we had one. The following theorem describes certain strings
that are nearly incompressible, although it doesn’t provide a way to exhibit them
explicitly.

THEOREM 6.29 .........................................................................................................................

For some constant b, for every string x, the minimal description d(z) of z is in-
compressible by b.

PROOF Consider the following TM M:

M = “On input (R, y), where R is a TMand y is a string:
1. Run R on y and reject if its output is not of the form (S, z}.
2. Run S on z and halt with its output on the tape.”

Let b be [(M})] + 1. We show that b satisfies the theorem. Suppose to the
contrary that d(x) is b-compressible for some string x. Then

d(d(z))] < ()| — b
But then (M)d(d(x)) is a description of z whose length is at most
(M) + ld(d())] < (b= 1) + (d(x)| — b) = |d(x)] — 1.

This description of z is shorter than d(z), contradicting the latter’s minimality.

........................................................................................................................................................................

EXERCISES

6.1 Give an example in the spirit of the recursion theorem of a program in a real pro-
gramming language (or a reasonable approximation thereof) that prints itself out.

6.2 Show that any infinite subset of MIN tw is not Turing-recognizable.
6.3 Showthatif A <t Band B <t Cthen A <t C.

6.4 Is the statement 3z Vy | z+y=y | a member of Th(N, +)? Why or why not? What
about the statement 3z vy [ z+y=z |?
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PROBLEMS

6.5

6.6

6.7

*6.8

6.9

*6.10

6.11

6.12

6.13

6.14

6.15
6.16
6.17

*6.18
*6.19

Describe two different Turing machines, M and N, where, when started on any
input, M outputs (N) and N outputs (M).

In the fixed-point version of the recursion theorem (Theorem 6.6) let the transfor-
mation ¢ be a function that interchanges the states Gaccept AN Grejece in Turing ma-
chine descriptions. Give an example of a fixed point for ¢.

Show that for any two languages A and B a language J exists where A < J and
B <t J.

Prove that there exist two languages A and B that are Turing-incomparable, that
is, where A £1 Band B £1 A.

Give a model of the sentence

Peq = VI [Rl(a:, :n)]
/\Va:,y[Rl (x,y) < Rl(y,a:)]
/\vwﬁyiz[ (R1(33, y) A Rl(y’ Z)) - Rl(CE, Z)]

Let ¢peq be defined as in Problem 6.9, Give a model of the sentence

¢1t — ¢eq
AVz [Rl(m,a:) — —Ry(r, )]
AVZy [=Ri(z,y) — (Ra(z,y) & Ra(y, 7)) |
AVz,y,z [(Rz(a:,y) A Ra(y, 2)) — Rz(m,z)]
AVz Jy [Rz(a:,y)].

Let (N, <) be the model with universe A" and the “less than” relation. Show that
Th(N, <) is decidable.

Foreachm > 1let Z,, = {0,1,2, ... ,m — 1} and let F,, = (Zm, +, x) be
the model whose universe is Z,,, and which has relations corresponding to the +

and x relations computed modulo m. Show that for each m the theory Th(F,,,) is
decidable.

Show how to compute the descriptive complexity of strings K (z) with an oracle for
Atm.

Use the result of Problem 6.13 to give a function f that is computable with an oracle
for Avwm, where for each n, f(n) is an incompressible string of length n.

Show that the function K(z) is not a computable function.
Show that the set of incompressible strings is undecidable.

Show that the set of incompressible strings contains no infinite Turing-recognizable
subset.

Show that for any ¢, some strings z and y exist, where K(zy) > K(z) + K(y) +c.

Let A and B be two disjoint languages. Say that language C separates A and B if
A C Cand B C C. Describe two disjoint Turing-recognizable languages that
aren’t separable by any decidable language.
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6.20 Recall the Post correspondence problem that we defined in Section 5.2 and its as-
sociated language PCP. Show that PCP is decidable relative to Am.

6.21 In Corollary 4.15 we showed that the set of all languages is uncountable. Use this
result to prove that languages exist that are not recognizable by an oracle Turing
machine with oracle for Atm.

6.22 Let
Z = {{M,w)| M is an oracle TM and M*™ accepts w}.

Use a proof by diagonalization to show that an oracle TM with an oracle for Atm
can’t decide Z.









TIME COMPLEXITY

Even when a problem is decidable and thus computationally solvable in principle,
it may not be solvable in practice if the solution requires an inordinate amount
of time or memory. In this final part of the book we introduce computational
complexity theory—an investigation of the time, memory, or other resources re-
quired for solving computational problems. We begin with time.

Our objective in this chapter is to present the basics of time complexity theory.
First we introduce a way of measuring the time used to solve a problem. Then we
show how to classify problems according to the amount of time required. After
that we discuss the possibility that certain decidable problems require enormous
amounts of time and how to determine when you are faced with such a problem.

/.1

MEASURING COMPLEXITY

Let’s begin with an example. Take the language A = {0*1*| & > 0}. Obviously
A is a decidable language. How much time does a single-tape Turing machine
need to decide A? We examine the following single-tape TM M, for A. We give
the Turing machine description at a low level, including the actual head motion
on the tape, so that we can count the number of steps that M| uses when it runs.

225
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M, = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
. Repeat the following if both 0s and 1s remain on the tape.
. Scan across the tape, crossing off a single 0 and a single 1.
. Ifos still remain after all the 1s have been crossed off, or if 1sstill
remain after all the 0s have been crossed off, reject. Otherwise,
if neither Os nor 1s remain on the tape, accept.”

o W N

We analyze the algorithm for Turing machine Ay deciding A to determine how
much time it uses.

The number of steps that an algorithm uses on a particular input may depend
on several parameters. For instance, if the input is a graph, the number of steps
may depend on the number of nodes, the number of edges, and the maximum
degree of the graph, or some combination of these and/or other factors. For sim-
plicity we compute the running time of an algorithm purely as a function of the
length of the string representing the input and don’t consider any other parame-
ters. In worst-case analysis, the form we consider here, we consider the longest
running time of all inputs of a particular length. In average-case analysis we con-
sider the average of all the running times of inputs of a particular length.

DEFINITION 7.] ........................................................................................................................

Let M be a deterministic Turing machine that halts on all inputs. 'The running
time or time complexity of M is the function f: N— N, where f(n) is the maxi-
mum number of steps that M uses on any input of length n. If f(n) is the running
time of M, we say that M runs in time f(n) and that M is an f(n) time Turing
machine.

BIG-O AND SMALL-O NOTATION

Because the exact running time of an algorithm often is a complex expression,
we usually just estimate it. In one convenient form of estimation, called asymp-
totic analysis, we seck to understand the running time of the algorithm when it
is run on large inputs. We do so by considering only the highest order term of
the expression for the running time of the algorithm, disregarding both the co-
efficient of that term and any lower order terms, because the highest order term
dominates the other terms on large inputs.

For example, the function f(n) = 6n® + 2n% + 20n + 45 has four terms,
and the highest order term is 6n3. Disregarding the coefficient 6, we say that
f is asymptotically at most n®. The asymptotic notation or big-O notation for
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describing this relationship is f(n) = O(n®). We formalize this notion in the
following definition. Let R* be the set of real numbers greater than 0

DEFINITION 7.2 ........................................................................................................................

Let f and g be two functions f, g: N'— R*. Say that f(n) = O(g(n)) if positive
integers ¢ and ng exist so that for every integer n > ng

f(n) < cg(n).

When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or more
precisely, that g(n) is an asymptotic upper bound for f(n), to emphasize that we
are suppressing constant factors.

Intuitively, f(n) = O(g(n)) means that f is less than or equal to g if we dis-
regard differences up to a constant factor. You may think of O as representing
a suppressed constant. In practice, most functions f that you are likely to en-
counter have an obvious highest order term h. In that case write f(n) = O(g(n)),
where g is h without its coefficient.

R A% R BV H B B

Let fi(n) be the function 5n3 4 2n? + 22n 4 6. Then, selecting the highest order
term 5n° and disregarding its coefficient 5 gives f1(n) = O(n?).

. .
Let’s verify that this result satisfies the formal definition. We do so by letting

¢ be 6 and ng be 10. Then, 513 + 2n? + 22n + 6 < 6n3 for every n > 10.

In addition, fi(n) = O(n?*) because n* is larger than n* and so is still an
asymptotic upper bound on fj.

However, fi(n) is not O(n?). Regardless of the values we assign to c and ny,
the definition remains unsatisfied in this case.

EXAMPLE 7.4 ..............................................................................................................................

The big-O interacts with logarithms in a particular way. Usually when we use
logarithms we must specify the base, as in & = log, n. The base 2 here indicates
that this equality is equivalent to the equality 2° = n. Changing the value of
the base b changes the value of log; n by a constant factor, owing to the identity
log, n = log, n/log, b. Thus, when we write f(n) = O(logn), specifying the
base is no longer necessary because we are suppressing constant factors anyway.

Let f2(n) be the function 3nlog, n + 5nlog, log, n + 2. In this case we have

f2(n) = O(nlogn) because log n dommates log log n.
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Big-O notation also appears in arithmetic expressions such as the expression
£(n) = O(n?)+O(n). In that case each occurrence of the O symbol represents a
different suppressed constant. Because the O(n?) term dominates the O(n) term,
that expression is equivalent to f(n) = O(n?). When the O symbol occurs in an
exponent as in the expression f (n) = 200", the same idea applies. This expres-
sion represents an upper bound of 2¢" for some constant c.

The expression f(n) = 90(logn) gecurs in some analyses. Using the identity
n = 219827 and thus that n® = 2°!°%2", we see that 20(logn) represents an upper
bound of n¢ for some c. The expression nO represents the same bound in a
different way, because the expression O(1) represents a value that is never more
than a fixed constant.

Frequently we derive bounds of the form n° for ¢ greater than 0. Such bounds
are called polynomial bounds. Bounds of the form 2(7°) are called exponential
bounds when & is a real number greater than 0.

Big-O notation has a companion called small-o notation. Big-O notation
gives a way to say that one function is asymptotically 7o more than another. To
say that one function is asymptotically Jess zhan another we use small-o notation.
The difference between the big-O and small-o notations is analogous to the dif-
ference between < and <.

DEFINITION A T
Let f and g be two functions f, g: N—R+. Say that f(n) = o(g(n)) if
. f(n)
lim —= = 0.
A, o)

In other words, f(n) = o{g(n)) means that, for any real number ¢ > 0, a number
ng exists, where f{n) < cg(n) for alln = no.

EXAMPLE 7.6 ..............................................................................................................................

The following are easy to check.

1. /n = o(n).

n = o(nloglogn).

. nloglogn = o(nlogn).
nlogn = o(n?).

. n? = o(n?).

UI:PUJN

However, f(n) is never o(f(n)).
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ANALYZING ALGORITHMS

Let’s analyze the algorithm we gave for the language A = {0°1%| k£ > 0}. We
repeat it here for convenience.

M, = “On input string w:
1. Scan across the tape and reject if a 0 is found to the rightof a 1.
2. Repeat the following if both 0s and 1s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If0s still remain after all the 1s have been crossed off, or if 1s still
remain after all the Os have been crossed off, reject. Otherwise,
if neither Os nor 1s remain on the tape, accept.”

To analyze M, we consider each of its three stages separately. In stage 1, the
machine scans across the tape to verify that the input is of the form 0*1*, Per-
forming this scan uses n steps. Repositioning the head at the left-hand end of
the tape uses another n steps. So the total used in this stage is 27 steps. In big-O
notation we say that this stage uses O(n) steps. Note that we didn’t mention the
repositioning of the tape head in the machine description. Using asymptotic no-
tation allows us to omit details of the machine description that affect the running
time by at most a constant factor.

In stages 2 and 3, the machine repeatedly scans the tape and crosses off a 0
and 1 on each scan. Each scan uses O(n) steps. Because each scan crosses off two
symbols, at most n/2 scans can occur. So the total time taken by stages 2 and 3
is (n/2)0(n) = O(n?) steps.

In stage 4 the machine makes a single scan to decide whether to accept or re-
ject. The time taken in this stage is at most O(n). .

Thus the total time of M; on an input of length n is O(n) + O(n?) + O(n),
or O(n?). In other words, its running time is O(n?), which completes the time
analysis of this machine.

Let’s set up some notation for classifying languages according to their time
requirements.

DEFINITION 7.7 ........................................................................................................................

Let t: N'— A be a function. Define the time complexity class, TIME(t(n)), to
be

TIME(t(n)) = {L|L is a language decided by an O(t(n)) time Turing machine}.

Recall the language A = {0*1*| k > 0}. The preceding analysis shows that
A € TIME(n?) because M, decides A in time O(n?) and TIME(n?) contains all
languages that can be decided in O(n?) time.

Is there a machine that decides A asymptotically more quickly? In other
words, is A in TIME(t(n)) for ¢(n) = o(n?)? We can improve the running time
by crossing off two Os and two 1s on every scan instead of just one because do-
ing so cuts the number of scans by half. But that improves the running time only
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by a factor of 2 and doesn’t affect the asymptotic running time. The following
machine, Mo, uses a different method to decide A asymptotically faster. It shows
that A € TIME(n logn).

Ms = “On input string w:
1. Scan across the tape and reject if a 0 is found to the right of a 1.
2. Repeat the following as long as some 0s and some 1s remain on
the tape.
3. Scanacross the tape, checking whether the total number of 0s
and 1s remaining is even or odd. If it is odd, reject.
4.  Scan again across the tape, crossing off every other 0 starting
with the first 0, and then crossing off every other 1 starting
with the first 1.
5. If no Os and no 1s remain on the tape, accept. Otherwise,
reject.”

Before analyzing M, let’s verify that it actually decides A. On every scan per-
formed in stage 4, the total number of Os remaining is cut in half and any remain-
der is discarded. Thus, if we started with 13 Os, after stage 4 is executed a single
time only 6 Os remain. After subsequent executions of this stage, 3, then 1, and
then 0 remain. This stage has the same effect on the number of 1s.

Now we examine the even/odd parity of the number of 0s and the number of
15 at each execution of stage 3. Consider again starting with 13 0s and 13 1s. The
first execution of stage 3 finds an odd number of 0s (because 13 is an odd number)
and an odd number of 1s. On subsequent executions an even number (6) occurs,
then an odd number (3), and an odd number (1). We do not execute this stage
on 0 0s or 0 1s because of the condition on the repeat loop specified in stage 2.
For the sequence of parities found (odd, even, odd, odd) if we replace the evens
with 0s and the odds with 1s and then reverse the sequence, we obtain 1101, the
binary representation of 13, or the number of 0s and 1s at the beginning. The
sequence of parities always gives the reverse of the binary representation.

When stage 3 checks to determine that the total number of Os and 1s remain-
ing is even, it actually is checking on the agreement of the parity of the Os with the
parity of the 1s. If all parities agree, the binary representations of the numbers of
0s and of 1s agree, and so the two numbers are equal.

To analyze the running time of My, we first observe that every stage takes O(n)
time. We then determine the number of times that each is executed. Stages 1
and 5 are executed once, taking a total of O(n) time. Stage 4 crosses off at least
half the 0s and 1s each time it is executed, so at most 1+log, n iterations occur be-
fore all get crossed off. Thus the total time of stages 2, 3, and 4is (1+log, n)O(n),
or O(nlogn). The running time of My is O(n) + O(nlogn) = O(nlog n).

Earlier we showed that A € TIME(n?), but now we have a better bound,
namely, A € TIME(nlogn). This result cannot be further improved on single-
tape Turing machines. In fact, any language that can be decided in o(n log ) time
on a single-tape Turing machine is regular, though we won’t prove this result.



7.1 MEASURING COMPLEXITY 231

We can decide the language A in O(n) time (also called linear time) if the
Taring machine has a second tape. The following two-tape TM Mj3 decides A in
linear time.

M3 = “On input string w:

1. Scan across the tape and reject if a O is found to the right of a 1.

2. Scan across the 0s on Tape 1 until the first 1. At the same time,
copy the Os onto Tape 2.

3. Scan across the 1s on Tape 1 until the end of the input. For each
1 read on Tape 1, cross off a 0 on Tape 2. If all Os are crossed off
before all the 1s are read, reject.

4. If all the 0s have now been crossed off, accept. If any Os remain,
reject.”

Machine M3 operates differently from the previous machines for A. It simply
copies the Os to its second tape and then matches them against the 1s.

This machine is simple to analyze. Each of the four stages obviously uses O(n)
steps, so the total running time is O(n) and thus linear. Note that this running
time is the best possible because n steps are necessary just to read the input.

Let’s summarize what we have shown about the time complexity of A. We
produced a single-tape TM M; that decides A in O(n?) time and a faster single
tape TM M, that decides A in O(nlogn) time. We claimed (without proof) that
no single-tape TM can do it more quickly. Then we exhibited a two-tape TM M3
that decides A in O(n) time. Hence the time complexity of A on a single-tape
TMis O(nlog n) and on a two-tape TM it is O(n). Note that the complexity of A
depends on the model of computadon selected.

This discussion highlights an important difference between complexity the-
ory and computability theory. In computability theory, the Church-Turing thesis
implies that all reasonable models of computation are equivalent, that is, they all
decide the same class of languages. In complexity theory, the choice of model
affects the time complexity of languages. Languages that are decidable in, say,
linear time on one model aren’t necessarily decidable in linear time on another.

In complexity theory, we want to classify computational problems according
to the amount of time required for solution. But with which model do we mea-
sure time? The same language may have different time requirements on different
models.

Fortunately, time requirements don't differ greatly for typical deterministic
models. So, if our classification system isn’t very sensitive to relatively small dif-
ferences in complexity, the deterministic model chosen isn’t crucial. We discuss
this idea further in the next several sections.

COMPLEXITY RELATIONSHIPS AMONG MODEL.S

Here we examine how the choice of computational model can affect the time
complexity of languages. We consider three models: the single-tape Turing ma-
chine; the multitape Turing machine; and the nondeterministic Turing machine.
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THEOREM 7.8 ............................................................................................................................

Let t(n) be a function, where t(n) > n. Then every ¢(n) time multitape Turing
machine has an equivalent O(t?(n)) time single-tape Turing machine.

........................................................................................................................................................................

PROOF IDEA The idea behind the proof of this theorem is quite simple. Re-
call that in Theorem 3.8 we showed how to convert any multitape TM into a
single-tape TM that simulates it. Now we analyze that simulation to determine
how much additional time it requires. We show that simulating each step of the
multitape machine uses at most O{t(n)) steps on the single-tape machine. Hence
the total time used is O(t*(n)) steps.

PROOF Let M be a k-tape TM that runs in ¢(n) time. We construct a single-
tape TM S that runs in O(t%(n)) time.

Machine S operates by simulating A, as described in Theorem 3.8. To review
that simulation, recall that S uses its single tape to represent the contents on all &
of M’ tapes. The tapes are stored consecutively, with the positions of M’s heads
marked on the appropriate squares.

Initially, S puts its tape into the format that represents all the tapes of M and
then simulates M’s steps. "To simulate one step, S scans all the information stored
on its tape to determine the symbols under Al’s tape heads. Then S makes an-
other pass over its tape to update the tape contents and head positions. If one
of M’s heads moves rightward onto the previously unread portion of its tape, S
must increase the amount of space allocated to this tape. It does so by shifting a
portion of its own tape one cell to the right.

Now we analyze this simulation. For each step of M, machine S makes two
passes over the active portion of its tape. The first obtains the information neces-
sary to determine the next move and the second carries it out. The length of the
active portion of S’s tape determines how long S takes to scan it, so we must de-
termine an upper bound on this length. To do so we take the sum of the lengths
of the active portions of AL’s k tapes. Fach of these active portions has length at
most {(n) because M uses t(n) tape cells in t(n) steps if the head moves right-
ward at every step and even fewer if a head ever moves leftward. Thus a scan of
the active portion of S’ tape uses O{t(n)) steps.

To simulate cach of M’s steps, S performs two scans and possibly up to k right-
ward shifts. Each uses O(¢(n)) time, so the total time for 5 to simulate one of M’s
steps is O(t(n}).

Now we bound the total time used by the simulation. The initial stage, where
S puts its tape into the proper format, uses O(n) steps. Afterward, S simulates
cach of the #(n) steps of M, using O(t(n)) steps, so this part of the simulation
uses £(n) x O(t(n)) = O(t*(n)) steps. Therefore the entire simulation of M uses
O(n) + O(t%(n)) steps.

We have assumed that ¢(n) > n (a reasonable assumption because M could
not even read the entire input in less time). Therefore the running time of S is
O(t2(n)) and the proof is complete.

........................................................................................................................................................................
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Next, we consider the analogous theorem for nondeterministic single-tape
Turing machines. We show that any language that is decidable on such a ma-
chine is decidable on a deterministic single-tape Turing machine that requires
significantly more time. Before doing so, we must define the running time of
a nondeterministic Turing machine. Recall that a nondeterministic Turing ma-
chine is a decider if all its computation branches halt on all inputs.

DEFINITION 7-9 ........................................................................................................................

Let N be a nondeterministic Turing machine that is a decider. The running time
of N is the functon f: N— N, where f(n) is the maximum number of steps
that V uses on any branch of its computation on any input of length n, as shown
in the following figure.

Deterministic Nondeterministic
fn) reject f(n)
\i
l _accept
l _-accept/reject }/ reject l

FIGURE 7.1
Measuring deterministic and nondeterministic time

The definition of the running time of a nondeterministic Turing machine is
not intended to correspond to any real-world computing device. Rather, it is a
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important class of computational problems, as we demonstrate shortly.

THEOREM Z. 10 o s s s e

Let ¢(n) be a function, where £(n) > n. Then every #(n) tdme nondeterministic
single-tape Turing machine has an equivalent 2°¢(")) time deterministic single-
tape Turing machine.
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PROOF Let N be a nondeterministic TM running in t(n) time. We construct a
deterministic TM D that simulates N as in the proof of Theorem 3.10 by searching
N's nondeterministic computation tree. Now we analyze that simulation.

On an input of length n, every branch of N’s nondeterministic computation
tree has a length of at most ¢(n). Every node in the tree can have at most b chil-
dren, where b is the maximum number of legal choices given by N's transition
function. Thus the total number of leaves in the tree is at most ),

The simulation proceeds by exploring this tree breadth first. In other words,
it visits all nodes at depth d before going on to any of the nodes at depth d + 1.
The algorithm given in the proof of Theorem 3.10 inefficiently starts at the root
and travels down to a node whenever it visits that node, but eliminating this in-
efficiency doesn’t alter the statement of the current theorem, so we leave it as
:s. The total number of nodes in the tree is less than twice the maximum num-
ber of leaves, so we bound it by O(@*™). The time for starting from the root
and traveling down to a node is O(t(n)). Therefore the running time of D is
O(t(n)bt(”)) — 90(t(n))

As described in Theorem 3.10, the TM D has three tapes. Converting to 2
single-tape TM at most squares the running time, by Theorem 7.8. Thus the run-
ning time of the single-tape simulator is (20(“*(“)))2 — 20(2t(n)) = 20((n) and
the theorem is proved.

7.2

THE CLASS P

Theorems 7.8 and 7.10 illustrate an important distinction. On the one hand, we
demonstrated at most a square or polynomial difference between the time com-
plexity of problems measured on deterministic single-tape and multitape Turing
machines. On the other hand, we showed at most an exponential difference be-
tween the time complexity of problems on deterministic and nondeterministic
Turing machines.

POLYNOMIAL TIME

For our purposes, polynomial differences in running time are considered to be
small, whereas exponential differences are considered to be large. Let’s look at
why we chose to make this separation between polynomials and exponentials
rather than between some other classes of functions.

First, note the dramatic difference between the growth rate of typically occur-
ring polynomials such as r* and typically occurring exponentals such as 2. For
example, let n be 1000, the size of a reasonable input to an algorithm. In that
case, n3 is 1 billion, a large, but manageable number, whereas 2" is a number
much larger than the number of atoms in the universe. Polynomial time algo-
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rithms are fast enough for many purposes, but exponential time algorithms rarely
are useful.

Exponential time algorithms typically arise when we solve problem
ing through a space of solut1ons called brute- ﬁ)rce search. For example one way
to factor a number into its constituent primes is to search through all potential
divisors. The size of the search space is exponential, so this search uses expo-
nential time. Sometimes, brute-force search may be avoided through a deeper
understanding of a problem, which may reveal a polynomial time algorithm of
greater utility.

All reasonable deterministic computational models are polynomially equiv-
alent. That is, any one of them can simulate another with only a polynomial
increase in running time. When we say that all reasonable deterministic models
are polynomially equivalent, we do not attempt to define reasonable. However,
we have in mind a notion broad enough to include models that closely approxi-
mate running times on actual computers. For example, Theorem 7.8 shows that
the deterministic single-tape and multitape Turing machine models are polyno-
mially equivalent.

From here on we focus on aspects of time complexity theory that are unaf-
fected by polynomial differences in running time. We consider such differences
to be insignificant and ignore them. Doing so allows us to develop the theory
in a way that doesn’t depend on the selection of a particular model of computa-
tion. Remember, our aim is to present the fundamental properties of computation,
rather than properties of Turing machines or any other special model.

You may feel that disregarding polynomial differences in running time is ab-
surd. Real programmers certainly care about such differences and work hard just
to make their programs run twice as quickly. However, we disregarded constant
factors a while back when we introduced asymptotic notation. Now we propose
to disregard the much greater polynomial differences, such as that between time
n and time n>.

Our decision to disregard polynomial differences doesn’t imply that we con-
sider such differences unimportant. On the contrary, we certainly do consider
the difference between time n and time n® to be an important one. But some
questions, such as the polynomiality or nonpolynomiality of the factoring prob-
lem, do not depend on polynomial differences and are important, too. We merely
choose to focus on this type of question here. Ignoring the trees to see the forest
doesn’t mean that one is more important than the other—it just gives a different
perspective.

Now we come to an important definition in complexity theory.

ms by search-

DEFINITION Z.T T sttt st s

P is the class of languages that are decidable in palynomial time on a deterministic
single-tape Turing machine. In other words,

P = [ JTIME(n*).
k



236 CHAPTER 7 / TIME COMPLEXITY

The class P plays a central role in our theory and is important because

1. P is invariant for all models of computation that are polynomially equiva-
lent to the deterministic single-tape Turing machine, and

on a computer.

Item 1 indicates that P is a mathematically robust class. Itisn’t affected by the
particulars of the model of computation that we are using.

Ttem 2 indicates that P is relevant from a practical standpoint. When a prob-
lem is in P, we have a method of solving it that runs in time n* for some con-
stant k. Whether this running time is practical depends on & and on the appli-
cation. Of course, a running time of n!% is unlikely to be of any practical use.
Nevertheless, calling polynomial time the threshold of practical solvability has
proven to be useful. Once a polynomial time algorithm has been found for a
problem that formerly appeared to require exponential time, some key insight
into it has been gained, and further reductions in its complemty usually follow,
often to the point of actual practical utility.

EXAMPLES OF PROBLEMS IN P

When we present a polynomial time algorithm we give a high-level description
of it without reference to features of a particular computational model. Doing
so avoids tedious details of tapes and head motions. We need to follow certain
conventions when describing an algorithm so that we can analyze it for polyno-
miality.

We describe algorithms with numbered stages. The notion of a stage of an
algorithm is analogous to a step of a Turing machine, though of course, uan
menting one stage of an algorithm on a Turing machine, in general, will require
many Turing machine steps.

When we analyze an algorithm to show that it runs in polynomial time, we
need to do two things. First, we have to give a polynomial upper bound (usually
in big-O notation) on the number of stages that the algorithm uses when it runs
on an input of length n. Then, we have to examine the individual stages in the
description of the algorithm to be sure that each can be implemented in polyno-
mial time on a reasonable deterministic model. We choose the stages when we
describe the algorithm to make this second part of the analysis easy to do. When
both tasks have been completed, we can conclude that the algorithm runs in poly-
nomial time because we have demonstrated that it runs for a polynomial number
of stages, each of which can be done in polynomial time, and the composition of
polynomials is a polynomlal

One pomt that requires attention is the encoding method used for problems.
We continue to use the bracket notation (-} to indicate a reasonable encoding
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of one or more objects into a string, without specifying any particular encoding
method. Now, a reasonable method is one that allows for polynomial time en-
coding and decoding of objects into natural internal representations or into other
reasonable encodings. Familiar encoding methods for graphs, automata, and the
like all are reasonable. But note that unary notation for encoding numbers (as in
the number 17 encoded by the unary string 11111111111111111) isn’t reason-
able because it is exponentially larger than truly reasonable encodings, such as
base k£ notation for any k > 2.

Many computational problems you encounter in this chapter contain encod-
ings of graphs. One reasonable encoding of a graph is a list of its nodes and edges.
Another is the adjacency matrix, where the (i, j)th entry is 1 if there is an edge
from node i to node j and 0 if not. When we analyze algorithms on graphs, the
running time may be computed in terms of the number of nodes instead of the
size of the graph representation. In reasonable graph representations, the size of
the representation is a polynomial in the number of nodes. Thus, if we analyze
an algorithm and show that its running time is polynomial (or exponential) in the
number of nodes, we know that it is polynomial (or exponential) in the size of the
input.
roblem concerns directed graphs. A directed graph G contains
nodes s and ¢, as shown in the following figure. The PATH problem is to de-
termine whether a directed path exists from s to ¢. Let

PATH = {(G, s,1)| G is a directed graph that has a directed path from s to t}.

FIGURE 7.2
The PATH problem: Ts there a path from s to t?

THEOREM  F el ittt v asssssssbs s s stssosesasa s s oo s assase ses s s ssenenen
PATH € P.
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brute-force algorithm for this problem isn’t fast enough.

A brute-force algorithm for PATH proceeds by examining all potential paths
in G and determining whether any is a directed path from s to t. A potential path
is a sequence of nodes in GG having a length of at most m, where m is the number
of nodes in G. (If any directed path exists from s to ¢, one having a length of at
most m exists because repeating a node never is necessary.) But the number of
such potential paths is m™, which is exponential in the number of nodes in G.
Therefore this brute-force algorithm uses exponential time.

To get a polynomial time algorithm for PATH we must do something that
avoids brute force. One way is to use a graph-searching method such as breadth-
first search. Here, we successively mark all nodes in G that are reachable from s
by directed paths of length 1, then 2, then 3, through m. Bounding the running
time of this strategy by a polynomial is easy.

PROOF A polynomial time algorithm M for PATH operates as follows.

M = “On input (G, s, t) where G is a directed graph with nodes s and t:
1. Place a mark on node s.
2. Repeat the following until no additional nodes are
3. Scan all the edges of G. If an edge (a, b) is found going from
a marked node @ to an unmarked node b, mark node b.

4. TIftis marked, accept. Otherwise, reject.”

FRC
11dar cd.

Now we analyze this algorithm to show that it runsin polynomial time. Obvi-
ously, stages 1 and 4 are executed only once. Stage 3 runs atmostm times because
each time except the last it marks an additional node in G. Thus the total number
of stages used is at most 1 + 1 + m, giving a polynomial in the size of G.

Stages 1 and 4 of M are easily implemented in polynomial time on any rea-
sonable deterministic model. Stage 3 involves a scan of the input and a test of
whether certain nodes are marked, which also is easily implemented in polyno-
mial time. Hence M is a polynomial time algorithm for PATH.

........................................................................................................................................................................

Let’s turn to another example of a polynomial time algorithm. Say that two
numbers are relatively prime if 1 is the largest integer that evenly divides them
both. For example, 10 and 21 are relatively prime, even though neither of them
is a prime number by itself, whereas 10 and 22 are not relatively prime because
both are divisible by 2. Let RELPRIME be the problem of testing whether two
numbers are relatively prime. Thus

RELPRIME = {(z,y)| = and y are relatively prime}.



7.2 THE CLASS P 239

THEOREM 7.13 .........................................................................................................................
RELPRIME € P.

........................................................................................................................................................................

PROOF IDEA One algorithm that solves this problem searches through all
possible divisors of both numbers and accepts if none are greater than 1. How-
ever, the magnitude of a number represented in binary, or in any other base &
notation for k£ > 2, is exponental in the length of its representation. Therefore
this brute-force algorithm searches through an exponential number of potential
divisors and has an exponential running time.

Instead, we solve this problem with an ancient numerical procedure, called the
Euclidean algorithm, for computing the greatest common divisor. The greatest
common divisor of two natural numbers x and y, written ged(z, y), is the largest
integer that evenly divides both z and y. For example, ged(18,24) = 6. Obvi-
ously, z and y are relatively prime iff ged(z, y) = 1. We describe the Euclidean
algorlthm as algorithm F in the proof. It uses the mod function, where x mod y

fter the integer division of z by y.

PROOF The Euclidean algorithm, E, is as follows.

— L VN Ty wrbinna s s are Fakee
E—- Ou 111PuL \.;b y/,WJlCLt:;Li:lluy'dlc ¢ ¢

Algorithm R solves RELPRIME, using F as a subroutine.

R = “On input (z, y}, where z and y are natural numbers in binary:
1. Run F on {(z,y).
2. Iftheresultis 1, accept. Otherwise, reject.”

Clearly, if £ runs correctly in polynomial time, so does R and hence we only need
to analyze E for time and correctness. The correctness of this algorithm is well
known so we won’t discuss it further here.

To analyze the time complexity of £, we first show that every execution of
stage 2 (except possibly the first), cuts the value of z by at least half. After stage 2 is
executed, r < y because of the nature of the mod function. After stage 3, z > y
because the two have been exchanged. Thus, when stage 2 is subsequently exe-
cuted, z > y. If /2 > y, then  mod y < y < /2 and z drops by at least half.
Ifz/2 < y, then  mod y =  — y < z/2 and x drops by at least half.

The values of z and y are exchanged every time stage 3 is executed, so each of
the original values of z and y are reduced by atleast half every other time through
the loop. Thus the maximum number of times that stages 2 and 3 are executed is
the lesser of log, # and log, y. These logarithms are proportional to the lengths
of the representations, giving the number of stages executed as O(n). Each stage
of E uses only polynomial time, so the total running time is polynomial.

........................................................................................................................................................................
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The final example of a polynomial time algorithm shows that every context-
free language is decidable in polynomial time.

THEOREM 7.14 .........................................................................................................................

Every context-free language is a member of P.

PROOF IDEA In Theorem 4.8 we proved that every CFL is decidable. To do
so we gave an algorithm for each CFL that decides it. If that algorithm runs in
polynomial time, the current theorem follows as a corollary. Let’s recall that al-
gorithm and find out whether it runs quickly enough.

Let L be a CFL generated by CFG G that is in Chomsky normal form. From
Problem 2.19, any derivation of a string w has 2n — 1 steps, where n is the length
of w because G is in Chomsky normal form. The decider for L works by trying
all possible derivations with 2n — 1 steps when its input is a string of length n. If
any of these is a derivation of w, the decider accepts; if not, it rejects.

A quick analysis of this algorithm shows thatit doesn’t run in polynomial time.
The number of derivations with k steps may be exponential in &, so this algorithm
may require exponential time.

To get a polynomial time algorithm we introduce a powerful technique called
dynamic programming. This technique uses the accumulation of information
about smaller subproblems to solve larger problems. We record the solution to
any subproblem so that we need to solve it only once. We do so by making a table
of all subproblems and entering their solutions systematically as we find them.

In this case, we consider the subproblems of determining whether each vari-
able in G generates each substring of w. The algorithm enters the solution to this
subproblem in an n x n table. For 4 < j the (i, j)th entry of the table contains
the collection of variables that generate the substring w;w; 1 - - - w;. Fori > j
the table entries are unused.

The algorithm fills in the table entries for each substring of w. First it fills in
the entries for the substrings of length 1, then those of length 2, and so on. It
uses the entries for the shorter lengths to assist in determining the entries for the
longer lengths.

For example, suppose that the algorithm has already determined which vari-
ables generate all substrings up to length k. To determine whether a variable A
generates a particular substring of length & + 1 the algorithm splits that substring
into two nonempty pieces in the k possible ways. For each split, the algorithm
examines each rule A — BC to determine whether B generates the first piece
and C' generates the second piece, using table entries previously computed. 1f
both B and C generate the respective pieces, A generates the substring and so
is added to the associated table entry. The algorithm starts the process with the
strings of length 1 by examining the table for the rules A — b.

L ) PR iy | L I P e - N
PRoOOF The following algorithm D implemen

o fhe ) |
CFG in Chomsky normal form generating the CFL L. Assume that S is the start
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variable. (Recall that the empty string is handled specially in a Chomsky nor-
mal form grammar. The algorithm handles the special case in which w = ¢ in
stage 1.) Comments appear inside double brackets.

D =“Oninputw = w; - - - wy:

1. Ifw=-¢eand S — eisarule, accept. [handle w = & case]
2. Fori=1ltomn, [ examine each substring of length 1]
3. For each variable A,
4. Test whether A — b is a rule, where b = w;.
5. If so, place A in table(i, ).
6. Forl=2ton, [/ is the length of the substring]
7. Fori=1ton—1+1, [iisthestart position of the substring]
8. Letj=¢+1-1, [ j is the end position of the substring ]
9, Fork=itoj —1, [ k is the split position |
10. For each rule A — BC,
11. If table(i, k) contains B and table{k + 1, j) contains C,

put A in table(i, 7).

12. If Sisin table(1, n), accept. Otherwise, reject.”

Now we analyze D. Each stage is easily implemented to run in polynomial
time. Stages 4 and 5 run at most nv times, where v is the number of variables in
G and is a fixed constant independent of n; hence these stages run O(n) times.
Stage 6 runs at most n times. Each time stage 6 runs, stage 7 runs at most n times.
Each time stage 7 runs, stages 8 and 9 run at most n times. Fach time stage 9
runs, stage 10 runs r times, where r is the number of rules of GG and is another
fixed constant. Thus stage 11, the inner loop of the algorithm, runs O(n?) times.
Summing the total shows that D executes O(n3) stages.

/.3

THE CLASS NP

As we observed in Section 7.2, we can avoid brute-force search in many problems
and obtain polynomial time solutions. However, attempts to avoid brute force in
certain other problems, including many interesting and useful ones, haven’t been
successful, and polynomial time algorithms that solve them aren’t known to exist.

Why have we been unsuccessful in finding polynomial time algorithms for
these problems? We don’t know the answer to this important question. Per-
haps these problems have, as yet undiscovered, polynomial time algorithms that
rest on unknown principles. Or possibly some of these problems simply cannot
be solved in polynomial time. They may be intrinsically difficult.
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2

One remarkable discovery concerning this question shows that the complexi-
ties of many problems are linked. The discovery of a polynomial time algorithm
for one such problem can be used to solve an entire class of problems. To under-
stand this phenomenon, let’s begin with an example. P

A Hamiltonian path in a directed graph G is a directed path that goes through
each node exactly once. We consider the problem of testing whether a directed
graph contains a Hamiltonian path connecting two specified nodes, as shown in
the following figure. Let

HAMPATH = {(G,s,t)| G is a directed graph
with a Hamiltonian path from s to ¢}.

FIGURE 7.3
A Hamiltonian path goes through every node exactly once

We can easily obtain an exponential time algorithm for the HAMPATH prob-
lem by modifying the brute-force algorithm for PATH given in Theorem 7.12.
We need only add a check to verify that the potential path is Hamiltonian. No
one knows whether HAMPATH is solvable in polynomial time.

The HAMPATH problem does have a feature called polynomial verifiability
that is important for understanding its complexity. Even though we don’tknow of
a fast (i.e., polynomial time) way to determine whether a graph contains a Hamil-
tonian path, if such a path were discovered somehow (perhaps using the expo-
nential time algorithm), we could easily convince someone else of its existence,
simply by presenting it. In other words, verifying the existence of a Hamiltonian
path may bc much easier than determining its existence.

Another polynomially verifiable problem is compositeness. Recall that a nat-
ural number is composite if it is the product of two integers greater than 1 (i.e., a
composite number is one that is not a prime number). Let

COMPOSITES = {z| = = pq, for integers p,q > 1}.

Although we don’t know of a polynomial time algorithm for deciding this prob-
lem, we can easily verify that a number is composite—all that is needed is a divisor
of that number.
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Some problems may not be polynomially verifiable. For example, take
HAMPATH, the complement of the HAMPATH problem. Even if we could de-
termine (somehow) that a graph did zor have 2 Hamiltonian path, we don’t know
of a way for someone else to verify its nonexistence without using the same expo-
nential time algorithm for making the determination in the first place. A formal
definition follows.

DEFINITION 7.15 ....................................................................................................................

A verifier for a language A is an algorithm V, where
A = {w| V accepts (w, ¢) for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polyno-
mial time verifier runs in polynomial time in the length of w. A language A is
polynomially verifiable if it has a polynomial time verifier.

A verifier uses additional information, represented by the symbol ¢ in Defini-
tion 7.15, to verify that a string w is a member of A. This information is called a
certificate, or proof, of membership in A. Observe that, for polynomial verifiers,
the certificate has polynomial length (in the length of w) because that is all the
verifier can access in its time bound. Let’s apply this definition to the languages
HAMPATH and COMPOSITES.

For the HAMPATH problem, a certificate for a string (G, s,t) € HAMPATH
simply is the Hamiltonian path from s to ¢. For the COMPOSITES problem, a

certificate for the composite number z simply is one of its divisors. In both cases

the verifier can check in polynomial time that the input is in the language when
it is given the certificate.

DEFINITICN 7.16 ....................................................................................................................

NP is the class of languages that have polynomial time verifiers.

The class NP is important because it contains many problems of practical in-
terest. From the preceding discussion, both HAMPATH and COMPOSITES are
members of NP. The term NP comes from nondeterministic polynomial time
and is derived from an alternative characterization by using nondeterministic
polynomial time Turing machines.

The following is a nondeterministic Turing machine (NTM) that decides the
HAMPATH problem in nondeterministic polynomial time. Recall that in Defi-

m 1 3n v ach ta ha tha fima 11end
nlthn 7 9 we deﬁned the thu.e Gfa nOﬂdetcruur‘uSuC Macnine to o tne ume usca

by the longest computation branch.
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N = “On input (G, s,t), where G is a directed graph with nodes s and ¢:
1. Write a list of m numbers, p1, ... ,pm, where m is the number
of nodes in G. Each number in the list is nondeterministically
selected to be between 1 and m.
2. Check for repetitions in the list. If any are found, reject.
Check whether s = p1 and t = py,,. If either fail, reject.
4. For each i between 1 and m — 1, check whether {(pi,Pit1) 15 an
edge of G. If any are not, reject. Otherwise, all tests have been
passed, so accept.”

(¥ ¥

To analyze this algorithm and verify that it runs in nondeterministic polyno-
mial time, we examine each of its stages. In stage 1, the nondeterministic selec-
tion clearly runs in polynomial time. In stages 2 and 3, each partis a simple check,
so together they run in polynomial time. Finally, stage 4 also clearly runs in poly-
nomial ime. Thus this algorithm runs in nondeterministic polynomial time.

THEOREM 7.17 .........................................................................................................................

A language is in NP iff it is decided by some nondeterministic polynomial time
Turing machine.

PROOF IDEA  We show how to converta polynomial time verifier to an equiv-
alent polynomial time NTM and vice versa. The NTM simulates the verifier by
guessing the certificate. The verifier simulates the NTM by using the accepting
branch as the certificate.

PROOF For the forward direction of this theorem, let A € NP and show that
A is decided by a polynomial time NTM N. Let V be the polynomial time verifier
for A that exists by the definition of NP. Assume that V is a TM that runs in time
n¥ and construct N as follows.

N = “On input w of length n.
1. Nondeterministically select string c of length n*.

2. Run V oninput (w,c).
3. [fV accepts, accept; otherwise, reject.”

To prove the other direction of the theorem, assume that A is decided by a
polynomial time NTM N and construct a polynomial time verifier V' as follows.

V = “On input {w, c), where w and c are strings:
1. Simulate N oninput w, treating each symbol of casa description
of the nondeterministic choice to make at each step (as in the
proof of Theorem 3.10).

2. Tf this branch of N’ computation accepts, accept; otherwise,
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We define the nondeterministic time complexity class NTIME(#(n)) as anal-
ogous to the deterministic time complexity class TIME(¢(n)).

DEFINITION 7.18 ....................................................................................................................

NTIME(¢(n)) = {L| L is a language decided by a O(¢(n)) time
nondeterministic Turing machine}.

COROLLARY 7.19 ...................................................................................................................
NP = |J, NTIME(n).

The class NP is insensitive to the choice of reasonable nondeterministic com-
putational model because all such models are polynomially equivalent. When
describing and analyzing nondeterministic polynomial time algorithms, we fol-
low the preceding conventions for deterministic polynomial time algorithms.
Each stage of a nondeterministic polynomial time algorithm must have an obvi-
ous implementation in nondeterministic polynomial time on a reasonable nonde-
terministic computational model. We analyze the algorithm to show that every
branch uses at most polynomially many stages.

EXAMPLES OF PROBLEMS IN NP

A clique in an undirected graph is a subgraph, wherein every two nodes are con-
nected by an edge. A k-cligue is a clique that contains k nodes. The following
figure illustrates a graph having a 5-clique.

Q {2 @

T

O O @)

FIGURE 7.4
A graph with a §5-clique

The clique problem is to determine whether a graph contains a clique of a
specified size. Let

CLIQUE = {(G, k)| G is an undirected graph with a k-clique}.
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THEOREM 7.20 .........................................................................................................................
CLIQUE isin NP.

........................................................................................................................................................................

PROOF IDEA The clique is the certificate. /

PROOF The following is a verifier V for CLIQUE.

V = “On input ({G, k), c):
1. Test whether cis a set of k nodes in G
2. Test whether G contains all edges connecting nodes in c.
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF If you prefer to think of NP in terms of nondeter-
ministic polynomial time Turing machines, you may prove this theorem by giving
one that decides CLIQUE. Observe the similarity between the two proofs.

N = “On input (G, k), where G is a graph:
1. Nondeterministically select a subset ¢ of k nodes of G.
2. ‘Test whether G contains all edges connecting nodes in c.
3. If yes, accept; otherwise, reject.”

........................................................................................................................................................................

LTV NE YA A

Next we consider the SUBSET-SUM problem concerning integer arithmetic.
In this problem we have a collection of numbers, z1, ..., Tk and a target num-
ber {. We want to determine whether the collection contains a subcollection that
adds up to t. Thus

SUBSET-SUM = {(5,t)| § = {x1, ... ,z&} and for some
(s ) € Lo o ), we have S — )

For example, ({4,11,16,21,27}, 25) € SUBSET-SUM because 4 + 21 = 25.
Note that {z1, ... ,xx} and {y1, ...,y } are considered to be multisets and so
allow repetition of elements.

THEOREM 7.2" .........................................................................................................................
SUBSET-SUM is in NP.

PROOF IDEA The subset is the certificate.
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PROOF The following is a verifier V' for SUBSET-SUM.

V = “On input ((S, 1), c):
1. Test whether c is a collection of numbers that sum to ¢.
2. Test whether S contains all the numbers in .
3. If both pass, accept; otherwise, reject.”

ALTERNATIVE PROOF  We can also prove this theorem by giving a nonde-
terministic polynomial time Turing machine for SUBSET-SUM as follows.

N = “On input (S, t):
1. Nondeterministically select a subset ¢ of the numbers in S.
2. ’Test whether cis a collection of numbers that sum to ¢.
3. If the test passes, accept; otherwise, reject.”

........................................................................................................................................................................

Observe that the complements of these sets, CLIQUE and SUBSET-SUM, are
not obviously members of NP. Verifying that something is not present seems to
be more difficult than verifying that it is present. We make a separate complexity
class, called coNP, which contains the languages that are complements of lan-
guages in NP. We don’t know whether coNP is different from NP.

THE P VERSUS NP QUESTION

As we have been saying, NP is the class of languages that are solvable in polyno-
mial time on a nondeterministic Turing machine, or, equivalently, it is the class
of languages whereby membership in the language can be verified in polynomial
time. P is the class of languages where membership can be tested in polynomial
time. We summarize this information as follows, where we loosely refer to poly-
nomial time solvable as solvable “quickly.”

P = the class of languages where membership can be decided quickly.
NP = the class of languages where membership can be verified quickly.

We have presented examples of languages, such as HAMPATH and CLIQUE,
that are members of NP but that are not known to be in P. The power of polyno-
mial verifiability seems to be much greater than that of polynomial decidability.
But, hard as it may be to imagine, P and NP could be equal. We are unable to
prove the existence of a single language in NP that is not in P.

The question of whether P = NP is one of the greatest unsolved problems
in theoretical computer science and contemporary mathematics. If these classes
were equal, any polynomially verifiable problem would be polynomially decid-
able. Most researchers believe that the two classes are not equal because peo-
ple have invested enormous effort to find polynomial time algorithms for certain
problems in NP, without success. Researchers also have tried proving that the
classes are unequal, but that would entail showing that no fast algorithm exists to
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replace brute-force search. Doing so is presently beyond scientific reach. The
following figure shows the two possibilities.

e
— N

N ND
F—=INE
P

Nl g N

The best method known for solving languages in NP deterministically uses
exponential time. In other words, we can prove that

NP C EXPTIME = | | TIME(2"
k

7.4

NP-COMPLETENESS

One important advance on the P versus NP question came in the early 1970s with
the work of Stephen Cook and Leonid Levin. They discovered certain problems
in NP whose individual complexity is related to that of the entire class. Ifa poly-
nomial time algorithm exists for any of these problems, all problems in NP would
be polynomial time solvable. These problems are called NP-complete. The phe-
nomenon of NP-completeness is important for both theoretical and practical rea-
sons.

On the theoretical side, a researcher trying to show that P is unequal to NP
may focus on an NP-complete problem. If any problem in NP requires more than
polynomial time, an NP-complete one does. Furthermore, a researcher attempt-
ing to prove that P equals NP only needs to find a polynomial time algorithm for
an NP-complete problem to achieve this goal.
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On the practical side, the phenomenon of NP-completeness may prevent
wasting time searching for a nonexistent polynomial time algorithm to solve a
particular problem. Even though we may not have the necessary mathematics to
prove that the problem is unsolvable in polynomial time, we believe that P is un-
equal to NP, so proving that a problem is NP-complete is strong evidence of its
nonpolynomiality

The first NP-complete problem that we present is called the satisfiability
problem. Recall that variables that can take on the values TRUE and FALSE are
called Boolean variables (see Section 0.2). Usually, we represent TRUE by 1 and
FALSE by 0. The Boolean operations AND, OR, and NOT, represented by the
symbols A, V, and —, respectively, are described in the following list. We use the
overbar as a shorthand for the = symbol, so T means - .

ON0=0 0v0o=0
OAN1=0 dvli=1
1A0=0 1vi0=1
Inl=1 Ivli=1

A Boolean formula is an expression involving Boolean variables and opera-
tions. For example,

d=(TAy) V (zAZ)

is 2 Boolean formula. A Boolean formula is satisfiable if some assignment of 0Os
and 1s to the variables makes the formula evaluate to 1. The preceding formula is
satisfiable because the assignment z = 0, y = 1, and 2z = 0 makes ¢ evaluate to 1.
We say the assignment satisfies ¢. The satisfiability problem is to test whether a
Boolean formula is satisfiable. Let

SAT = {{¢)| ¢ is a satisfiable Boolean formula}.

Now we state the Cook-Levin theorem which links the complexity of the SAT
problem to the complexities of all problems in NP.

THEOREM 7.22 .........................................................................................................................
Cook-Levin theorem SAT < P iff P = NP.

Next, we develop the method that is central to the proof of the Cook-Levin
theorem.

POLYNOMIAL TIME REDUCIBILITY

In Chapter 5 we defined the concept of reducing one problem to another. When
problem A reduces to problem B, a solution to B can be used to solve A. Now
we define a version of reduc1b111ty that takes the efficiency of computation into
account. When problem A is efficiently reducible to problem B, an efficient so-
lution to B can be used to solve A efficiently.
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DEFINITION 7.23 ....................................................................................................................

A function f: £*— %* is a polynomial time computable function if some poly-

nomial time ‘Turing machine M exists that halts with just f(w) on its tape, when
started on any input w.

DEFINITION 7.24 ....................................................................................................................

Language A is polynomial time mapping reducible, or simply polynomial time
reducible, to language B, written A <p B, if a polynomial time computable func-
tion f: ¥*— &* exists, where for every w,

weE A< f(w) € B.

The function f is called the polynomial time reduction of A to B.

Polynomial time reducibility is the efficient analog to mapping reducibility as
defined in Section 5.3. Other forms of efficient reducibility are available, but
polynomial time reducibility is a simple form that is adequate for our purposes
so we won’t discuss the others here. The following figure illustrates polynomial

time reducibility.

FIGURE 7.6
Polynomial time function f reducing A to B

As with an ordinary mapping reduction, 2 polynomial time reduction of A to
B provides a way to convert membership testing in A to membership testing in
B, but now the conversion is done efficiently. To test whether w € A, we use the
reduction f to map w to f(w) and test whether f(w) € B.

If one language is polynomial time reducible to a language already known to
have a polynomial time solution, we obtain 2 polynomial time solution to the
original language, as in the following theorem.

11t is called polynomial time many-one reducibility in some other textbooks.
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THEOREM 7.25 .........................................................................................................................
If A<p Band B € P, then A € P.

PROOF Let M be the polynomial time algorithm deciding B and f be the
polynomial time reduction from A to B. We describe a polynomial time algo-
rithm N deciding A as follows.

N = “On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M outputs.”

If w € A, then f(w) € B because f is a reduction from A to B. Thus M accepts
f(w) whenever w € A. Moreover, N runs in polynomial time because each of its
two stages runs in polynomial time. Note that stage 2 runs in polynomial time
because the composition of two polynomials is a polynomial.

........................................................................................................................................................................

Before demonstrating a polynomial time reduction we introduce 3SAT, a spe-
cial case of the satisfiability problem whereby all formulas are in a special form. A
literal is 2 Boolean variable or a negated Boolean variable, as in z or Z. A clause is
several literals connected with Vs, asin (z; VT3 VT3V z4). A Boolean formula is
in conjunctive normal form, called a cnf-formula, if it comprises several clauses
connected with As, as in

(11 VI VI3V ag) A (@3 VT5Vae) A (73 VTs).
It is a 3cnf-formula if all the clauses have three literals, as in
(1 VIZ2VT3) A (23VT5Vag) A (23 VT Vay) A (24 VsV ag).

Let 3SAT = {{¢}| ¢ is a satisfiable 3cnf-formula}. In a satisfiable cnf-formula,
each clause must contain at least one literal that is assigned 1.

The following theorem presents 2 polynomial time reduction from the 3SAT
problem to the CLIQUE problem.

THEOREM F.208 i sss st st esesssgesstssessatssnsststssssssssssesss snsssssssans
3S8AT is polynomial time reducible to CLIQUE.

PROOF IDEA The polynomial time reduction f that we demonstrate from
3SAT to CLIQUE converts formulas to graphs. In the constructed graphs, cliques
of a specified size correspond to satisfying assignments of the formula. Structures
within the graph are designed to mimic the behavior of the variables and clauses.
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PROOF Let ¢ be a formula with k clauses such as
p=(a1VbiVer) AlagVbaVe) A - A ag Vb Vek).

The reduction f generates the string (G, k), where G is an undirected graph
defined as follows.

The nodes in G are organized into k groups of three nodes each called the
triples, t1, ... ,ty. Each triple corresponds to one of the clauses in ¢, and each
node in a triple corresponds to a literal in the associated clause. Label each node
of G with its corresponding literal in ¢.

The edges of G connect all but two types of pairs of nodes in . No edge
is present between nodes in the same triple and no edge is present between two
nodes with contradictory labels, as in 22 and T3. The following figure illustrates
this construction when ¢ = (21 V21 V) A (FT1VZzVT3) A (FTV a2V T2).

FIGURE 7.7
The graph that the reduction produces from
p=(r1VEiVa) N{FTIVTIVT2) A (FTT Ve V)

Now we demonstrate why this construction works. We show that ¢ is satisfi-
able iff G has a k-clique.

Suppose that ¢ has a satisfying assignment. In that satisfying assignment, at
least one literal is true in every clause. In each triple of G, we select one node
corresponding to a true literal in the satisfying assignment. If more than one lit-
eral is true in a particular clause, we choose one of the true literals arbitrarily. The
nodes just selected form a k-clique. The number of nodes selected is k, because
we chose one for each of the & triples. Each pair of selected nodes is joined by an
edge because no pair fits one of the exceptions described previously. They could
not be from the same triple because we selected only one node per triple. They
could not have contradictory labels because the associated literals were both true
in the satisfying assignment. Therefore G contains a k-clique.

Suppose that G has a k-clique. No two of the clique’s nodes occur in the same
triple because nodes in the same triple aren’t connected by edges. Therefore each
of the £ triples contains exactly one of the k clique nodes. We assign truth values
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to the variables of ¢ so that each literal labeling a clique node is made true. Doing
so is always possible because two nodes labeled in 2 contradictory way are not
connected by an edge and hence both can't be in the clique. This assignment to
the variables satisfies ¢ because each triple contains 2 clique node and hence each
clause contains a literal that is assigned TRUE. Therefore ¢ is satisfiable.

........................................................................................................................................................................

Theorems 7.25 and 7.26 tell us that, if CLIQUE is solvable in polynomial time,
s0 18 3SAT. At first glance, this connection between these two problems appears
quite remarkable because, superficially, they are rather different. But polynomial
time reducibility allows us to link their complexities. Now we turn to a definition
that will allow us to similarly link the complexities of an entire class of problems.

DEFINITION OF NP-COMPLETENESS

DEFINITION  F 27 it ittt seassssessssss s sen s sessemeesser s e st et st ees e s e

A language B is NP-complete if it satisfies two conditions:

1. Bisin NP, and
2. every A in NP is polynomial time reducible to B.

THEOREM 7'28 .........................................................................................................................
If B is NP-complete and B € P, then P = NP.

PROOF  'This theorem follows directly from the definition of polynomial time
reducibility.

THEOREM 720 it st e sts st st st ems et st esssmseses esseemes e et eeem s
If B is NP-complete and B <p C for C in NP, then C'is NP-complete.

PROOF  We already know that C'is in NP, so we must show that every A in NP
is polynomial time reducible to C. Because B is NP-complete, every language in
NP is polynomial time reducible to B, and B in turn is polynomial time reducible
to C. Polynomial time reductions compose; that is, if A is polynomial time re-
ducible to C and C is polynomial time reducible to B, then A4 is polynomial time
reducible to B. Hence every language in NP is polynomial time reducible to C.
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THE COOK-LEVIN THEOREM

Once we have one NP-complete problem, we may obtain others by polynomial
time reduction from it. However, establishing the first NP-complete problem is
more difficult. Now we do so by proving that SAT is NP-complete.

THEOREM 7.30 .........................................................................................................................
SAT is NP-complete.?

This theorem restates Theorem 7.22, the Cook-Levin theorem, in another form.

PROOF IDEA  Showing that SAT is in NP is easy, and we do so shortly. The
hard part of the proof is showing that any language in NP is polynomial time
reducible to SAT.

To do so we construct a polynomial time reduction for each language A in NP
to SAT. The reduction for A takes a string w and produces a Boolean formula
¢ that simulates the NP machine for A on input w. If the machine accepts, ¢
has a satisfying assignment that corresponds to the accepting computation. If the
machine doesn’t accept, no assignment satisfies ¢. Therefore, wisin A ifand only
if ¢ is satisfiable.

Actually constructing the reduction to work in this way is a conceptually sim-
ple task, though we must cope with many details. A Boolean formula may contain
the Boolean operations AND, OR, and NOT, and these operations form the basis
for the circuitry used in electronic computers. Hence, the fact that we can design
a Boolean formula to simulate a Turing machine isn’t surprising. The details are
in the implementation of this idea.

PROOF First, we show that SAT is in NP. A nondeterministic polynomial
time machine can guess an assignment to a given formula ¢ and accept if the as-
signment satisfies ¢.

Next, we take any language 4 in NP and show that A is polynomial time re-
ducible to SAT. Let N be a nondeterministic Turing machine that decides A in
n* time for some constant k. (For convenience we actually assume that N runs
in time n* — 3, but only those readers interested in details should worry about
this minor point.) The following notion helps to describe the reduction.

A tableau for N on w is an n* x n* table whose rows are the configurations of
a branch of the computation of N on input w, as shown in the following figure.
For convenience later we assume that each configuration starts and ends with a #
symbol, so the first and last columns of a tableau are all #s. The first row of the
tableau is the starting configuration of N on w, and each row follows the previous
one according to N’s transition function. A tableau is accepting if any row of the
tableau is an accepting configuration.

2An alternative proof of this theorem appears in Section 9.3 on page 321.
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# |gp|wy wQ‘ ca ,wn} U ‘ v | u | # | start configuration
# # | second configuration
# #
window
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J # # | nkth configuration

FIGURE 7.8

A tableau is an n*

x n* table of configurations

Every accepting tableau for N on w corresponds to a computation branch of
N on w. Thus the problem of determining whether N accepts w is equivalent to
the problem of determining whether an accepting tableau for N on w exists.

Now we get to the description of the polynomial time reduction f from A to
SAT. On input w, the reduction produces a formula ¢. We begin by describing
the variables of ¢. Say that (2 and I are the state set and tape alphabet of N. Let
C = QUT U {#}. For each 7 and j between 1 and n* and for each s in C we have
a variable, z; ; ;.

Each of the (n*)? entries of a tableau is called a cell. The cell in row i and
column j is called cell[i, j] and contains a symbol from C. We represent the con-
tents of the cells with the variables of ¢. If z, ; ; takes on the value 1, it means
that cell[i, j] contains an s.

Now we design ¢ so that a satisfying assignment to the variables does corre-
spond to an accepting tableau for N on w. The formula ¢ is the AND of four parts
Peell A Pstart A Pmove N Paceepr and we describe each one in turn.

As we mentioned previously, turning variable z; ; ; on corresponds to placing
symbol s in cell[i, j]. The first thing we must guarantee in order to obtain a cor-
respondence between an assignment and a tableau is that the assignment turns
on exactly one variable for each cell. Formula ¢ ensures this requirement by
expressing it in terms of Boolean operations:

G = [\ {(\/ ﬂﬁz‘,j,s) A ( A\ (m—svwi,m)]-
1<i,j<nk - seC .s,t::EC
SFL

The symbols A and V/ stand for iterated AND and OR. For example, the frag-
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ment of the preceding formula

\/ Lijs

se(’

is shorthand for
Tijsy VY Tigusa VooV Tigs

where C' = {s1, s2, ..., s }. Hence, ¢ is actually a large expression that con-
tains a fragment for each cell in the tableau because ¢ and j range from 1 to n*.
The first part of each fragment says that at least one variable is turned on in the
corresponding cell. The second part of each fragment says that no more than
one variable is turned on (literally, it says that in each pair of variables, at least
one is turned off} in the corresponding cell. These fragments are connected by
/A operations.

The first part of ¢ inside the square brackets stipulates that at least one vari-
able that is associated to each cell is on, whereas the second part stipulates that
no more than one variable is on for each cell. Any assignment to the variables
that satisfies ¢ and therefore ¢ must have exactly one variable on for every
cell. Thus any satisfying assignment specifies one symbol in each cell of the table.
Parts Guare, Pmoves Ad Paccepe ensure that the table is actually an accepting tableau
as follows.

Formula ¢, ensures that the first row of the table is the starting configura-
tion of N on w by explicitly stipulating that the corresponding variables are on:

Outare = T1.1.8 AN T1,2.90 N
L1300, A L1 4.0, ANAY ml.n-l—Z‘w,,, A

:C]..TJ-|—3.L_| /\ P /\ :rl_nk_lvu /\ l’l’nk.# .

Formula ¢ccepr guarantees that an accepting configuration occurs in the
tableau. It ensures that gaceepr, the symbol for the accept state, appears in one
of the cells of the tableau, by stipulating that one of the corresponding variables
1s on:

¢gccept - \/ Ls 4 gy .

t ;7 Qaccept
v P

Finally, formula ¢y guarantees that each row of the table corresponds to a
configuration that legally follows the preceding row’s configuration according to
N’ rules. It does so by ensuring that each 2 x 3 window of cells is legal. We say
that a 2 x 3 window is Jegal if that window does not violate the actions specified
by N’s transition function. In other words, a window is legal if it might appear
when one configuration correctly follows another.’

3We could give a precise definition of legal window here, in terms of the transition func-
tion. But doing so is quite tedious and would be distracting from the main thrust of the
proof argument. Anyone desiring more precision should refer to the related analysis in
the proof of Theorem 5.11, the undecidability of the Post Correspondence Problem.
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For example, say that a, b, and ¢ are members of the tape alphabet and q; and

gz are states of N. Assume that when in state ¢; with the head reading an a, N
writes a b, stays in state ¢ and moves right, and that when in state 4 with ¢

=y
LAV S 111 SLdl S22 PRIV RS 2A523h, Al diiab WALl il otale ] il Lldc

head readmg ab, N nondetermmlsmcally either

1. writes a c, enters ¢g» and moves to the left, or

2. writes an a, enters g» and moves to the right,

Expressed formally, 6(q1,2) = {(¢:,b,R)} and 6(q1,b) = {(ga,c,L), (g2,a.R)}.

Examples of legal windows for this machine are shown in the following figure.

a  qlb a, qib alal g
(a) (b) (©)
gz a | ¢ al| al g2 alal|b
(d # | bja © al| bl a n b b
e
) #| b| a a|b| g ( c|b|b

FIGURE 7.9
Examples of legal windows

In Figure 7.9, windows (a) and (b) are legal because the transition function
allows N to move in the indicated way. Window (c) is legal because, with ¢, ap-
pearing on the right side of the top row, we don’t know what symbol the head is
over. That symbol could be an a, and ¢, might change it to a b and move to the
right. That possibility would give rise to this window, so it doesn’t violate N’
rules. Window (d) is obviously legal because the top and bottom are identical,
which would occur if the head weren’t adjacent to the location of the window.
Note that # may appear on the left or right of both the top and bottom rows in a

legal window. Window (e) is legal because state ¢; reading a b might have been
1mmedmfelv to the richt of the ton row, and it would then have moved to the left

_______________ VOO DA R AR VY ¥vg daiile LV VY ASLalla LXIVAL IIA VY LIRSV OAL LU LRI AT DL

in state g to appear on the right- hand end of the bottom row. Finally, window (f)
is legal because state ¢; might have been immediately to the left of the top row
and it might have changed the b to a ¢ and moved to the left.

"The windows shown in the following figure aren’t legal for machine N.

(a) (b) (c)

FIGURE 7.10
Examples of illegal windows
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In window (a) the central symbol in the top row can’t change because a state
wasn’t adjacent to it. Window (b) isn’t legal because the transition function spec-
ifies that the b gets changed to a ¢ but not to an a. Window (c) isn't legal because
two states appear in the bottom row.

CLAIM 7z31 ..................................................................................................................................

f the top row of the table is the start configuration and every window in the table
is legal, each row of the table is a configuration that legally follows the preceding
one.

We prove this claim by considering any two adjacent configurations in the ta-
ble, called the upper configuration and the lower configuration. In the upper
configuration, every cell that isn’t adjacent to a state symbol and that doesn’t con-
tain the boundary symbol #, is the center top cell in a window whose top row
contains no states. Therefore that symbol must appear unchanged in the cen-
ter bottom of the window. Hence it appears in the same position in the bottom
configuration.

The window containing the state symbol in the center top cell guarantees that
the corresponding three positions are updated consistently with the transition
function. Therefore, if the upper configuration is a legal configuration, so is the
lower configuration, and the lower one follows the upper one according to N’s
rules. Note that this proof, though straightforward, depends crucially on our
choice of a2 2 x 3 window size, as Exercise 7.32 shows.

Now we return to the construction of ¢move. 1t stipulates that all the windows
in the tableau are legal. Fach window contains six cells, which may be setina fixed
number of ways to yield a legal window. Formula @move says that the settings of
those six cells must be one of these ways, or

bwove = [\ (the (i, ) window is legal)

1<i<nk, 1<j<nk

We replace the text “the (%, j) window is legal” in this formula with the following
formula. We write the contents of six cells of a window as a1, ... ,as.

\/ (xi,j—1,a1 A Zijas AN Tij+1,as N Tit1,j—1,a0 A Titljas N l‘i+1,j+1,a6)

i, --- 06
is a legal window

Next we analyze the complexity of the reduction to show that it operates in
polynomial time. To do so we examine the size of ¢. Recall that the tableau is an
n* x n* table, so it contains n?* cells. Each cell has [ variables associated with
it, where [ is the number of symbols in C. Because ! depends only on N and not
on n, the total number of variables is O(n?*).

Formula . contains a fixed-size fragment of the formula for each cell of the
tableau, so its size is O(n?*). Formula ¢ has a fragment for each cell in the
top row, so its size is O(n*). Formulas ¢move and @accept each contain a fixed-
size fragment of the formula for each cell of the tableau, so their size is O(n?*),
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Thus ¢’s total size is O(n?*). That result is good because the size of ¢ is poly-
nomial in n. If it were more than polynomial, the reduction wouldr’t have any
chance of generating it in polynomial time. (Actually our estimates are low by a
factor of O(log n) because each variable has indices that can range up to n* and so
may require O(log n) symbols to write into the formula, but this additional factor
doesn’t change the polynomiality of the result.)

To see that we can generate the formula in polynomial time, observe its highly
repetitive nature. Each component of the formula is composed of many nearly
identical fragments, which differ only at the indices in a simple way. Therefore
we may easily construct a reduction that produces ¢ in polynomial time from the
input w.

Thus we have concluded the proof of the Cook—Levin theorem, showing that
SAT is NP-complete. Showing the NP-completeness of other languages gener-
ally doesn’t require such a lengthy proof. Instead NP-completeness can be proved
with a polynomial time reduction from a language that is already known to be
NP-complete. We can use SAT for this purpose, but using 3SAT, the special case
of SAT that we defined on page 251, is usually easier. Recall that the formulas in
3SAT are in conjunctive normal form (cnf) with three literals per clause. First,
we must show that 3SAT itself is NP-complete. We prove this as a corollary to
Theorem 7.30.

COROLLARY 7.3'2 ...................................................................................................................
3SAT is NP-complete.

PROOF Obviously 3SA4T is in NP, so we only need to prove that all languages
in NP reduce to 3SAT in polynomial time. One way to do so is by showing that
SAT polynomial time reduces to 3SAT. Instead, we modify the proof of Theo-
rem 7.30 so that it directly produces a formula in conjunctive normal form with
three literals per clause.

Theorem 7.30 produces a formula that is already almost in conjunctive normal
form. Formula ¢ is a big AND of subformulas, each of which contains a big OR
and a big AND of ORs. Thus ¢ is an AND of clauses and so is already in cnf.
Formula ¢g. is a big AND of variables. Taking each of these variables to be a
clause of size 1 we see that ¢y is in cnf. Formula ¢accepe is 2 big OR of variables
and is thus a single clause. Formula ¢ove is the only one that isn’t already in cnf,
but we may easily convert it into a formula that is in cnf as follows.

Recall that ¢meye is a big AND of subformulas, each of which is an OR of ANDs

that (IPSPrihPQ al] anQiIﬂP ]Pgal ‘,Jvinrinvvs. The distributive laws. as described in

LIS A (Siolu) L0 S LUNY Lu) PRLULE, < 220 LEISUIAVILRLIVE 22Wo, ao LoD

Chapter 0, state that we can replace an OR of ANDs with an equivalent AND of
ORs. Doing so may significantly increase the size of each subformula, but can
only increase the total size of ¢move by a constant factor because the size of each
subformula depends only on N. The result is a formula which is in conjunctive
normal form.
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Now that we have written the formula in ¢nf, we convert it to one with three
literals per clause. In each clause that currently has one or two literals, we repli-
cate one of the literals until the total number is three. In each clause that has more
than three literals, we split it into several clauses and add additional variables to
preserve the satisfiability or nonsatisfiability of the original.

For example, we replace clause (a1VazVasVaq) wherein each a; isa literal with
the two clause expression (a1 Vaa V 2) A (2V az V ag) wherein z is a new variable.
If some setting of the a;’s satisfies the original clause, we can find some setting
of z so that the two new clauses are satisfied. In general, if the clause contains !
literals,

(ay Vagz V- Vay),

we can replace it with the [ — 2 clauses

(aqVagVz)A(EFIVazVz)A(Z2VagV YA A FTE Y a1V a)
We may easily verify that the new formula is satisfiable if and only if the original
formula was, so the proof is complete

........................................................................................................................................................................

7.5

ADDITIONAL NP-COMPLETE PROBLEMS

In this section we present additional theorems showing that various languages
are NP-complete, Our general strategy is to exhibit a polynomial time reduction
from 3SAT to the language in question, though we sometimes reduce from other
NP-complete languages when that is more convenient.

When constructing a polynomial time reduction from 3SA7 to a language, we
look for structures in that language that can simulate the variables and clauses in
Boolean formulas. Such structures are sometimes called gadgets. For example,
in the reduction from 3SAT to CLIQUE presented in Theorem 7.26, individual
nodes simulate variables and triples of nodes simulate clauses. An individual node
may or may not be a member of the clique, which corresponds to a variable that
may or may not be true in a satisfying assignment. Each clause must contain a lit-
eral that is assigned true and that corresponds to the way each triple must contain
a node in the clique if the target size is to be reached. The following corollary to
Theorem 7.26 states that CLIQUE is NP-complete.

COROLLARY Zo33 oot sttt s s s s s
CLIQUE is NP-complete.
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THE VERTEX COVER PROBLEM

If G is an undirected graph, a vertex cover of G is a subset of the nodes where
every edge of G touches one of those nodes. The vertex cover problem asks for
the size of the smallest vertex cover. Let

VERTEX-COVER = {(G, k)| G is an undirected graph that

has a k-node vertex cover}.

THEOREM 7.34 .........................................................................................................................
VERTEX-COVER is NP-complete.

PROOF We give a reduction from 3SAT to VERTEX-COVER that operates
in polynomial time. The reduction maps a Boolean formula ¢ to a graph G and
a value k. Each edge in G must touch at least one node in the vertex cover, so a
natural gadget for a variable is a single edge. Setting that variable to TRUE corre-
sponds to selecting the left node for the vertex cover, whereas FALSE corresponds
to the right node. We label the two nodes in the gadget for variable z by z and
z.

The gadgets for the clauses are a bit more complex. Each clause gadget is a
triple of three nodes that are labeled with the three literals of the clause. These
three nodes are connected to each other and to the nodes in the variables gadgets
that have the identical labels. Thus the total number of nodes that appear in G
is 2m + 3[, where ¢ has m variables and [ clauses. Let k be m + 21.

For example,if ¢ = (z1 V1 Vo) A (TIVTI2VT2) A (TTV 2 V x2), the
reduction produces (G, k) from ¢, where k = 8 and G takes the form shown in
the following figure.

FIGURE 7.11
The graph that the reduction produces from
¢= (.’L‘l V z \/xg) A (ff\/@\/x_g) A ('3_3'_1—\/56‘2 \/56‘2)
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To prove that this reduction works, we need to show that ¢ is satisfiable if and
only if G has a vertex cover with k& nodes. We start with a satisfying assignment.
We put the nodes of the variable gadgets that correspond to the true literals in
the assignment into the vertex cover. Then, we select one true literal in every
clause and put the remaining two nodes from every clause gadget into the vertex
cover. Now, we have a total of k£ nodes. They cover all edges because every vari-
able gadget edge is clearly covered, all three edges within every clause gadget are
covered, and all edges between variable and clause gadgets are covered. Hence
(' has a vertex cover with k nodes. _

Second, if G has a vertex cover with k nodes we show that ¢ is satisfiable by
constructing the sausfying assignment. The vertex cover must contain one node

in each variable gadget and two in every clause gadget in order to cover the edges

of the variable gadgets and the three edges within the clause gadgets. That ac-
counts for all the nodes, so none are left over. We take the nodes of the variable
gadgets that are in the vertex cover and assign the corresponding literals true.
That assignment satisfies ¢ because each of the three edges connecting the vari-
able gadgets with each clause gadget is covered and only two nodes of the clause
gadget are in the vertex cover. Therefore one of the edges must be covered by
a node from a variable gadget and so that assignment satisfies the corresponding
clause.

........................................................................................................................................................................

THE HAMILTONIAN PATH PROBLEM

Recall that the Hamiltonian path problem asks whether the input graph contains
a path from s to ¢ that goes through every node exactly once.

THEOREM 7.35 .........................................................................................................................
HAMPATH is NP-complete.

PROOF IDEA To show that HYMPATH is NP-complete we must demon-
strate two things: (1) that HAMPATH is in NP; and (2) that every language A in
NP is polynomial time reducible to HAMPATH. The first we did in Section 7.3.
To do the second we show that a known NP-complete problem, 3SAT, is poly-
nomial time reducible to HAMPATH. We give a way to convert 3cnf-formulas
into graphs in which Hamiltonian paths correspond to satisfying assignments of
the formula. The graphs contain gadgets that mimic variables and clauses. The
variable gadget is a diamond structure that can be traversed in either of two ways,
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corresponding to the two truth settings. The clause gadget is a node. Fnsuring
that the path goes through each clause gadget corresponds to ensuring that each
clause is satisfied in the satisfying assignment.

PROOF We have previously shown that HAMPATH is in NP, so all that re-
mains to be done is to show 3SAT <p HAMPATH. For each 3cnf-formula ¢
we show how to construct a directed graph G with two nodes, s and ¢, where a
Hamiltonian path exists between s and ¢ iff ¢ is satisfiable.

We start the construction with a 3¢nf-formula ¢ containing k clauses,

¢5:(CL1\/b1\/Cl)/\(a2\/bQ\/Cg)/\ /\(ak\/kack).

where each a, b, and c is a literal z; or T;. Let 21, ... , x; be the [ variables of o.
Now we show how to convert ¢ into a graph G. "The graph G that we construct
has various parts to represent the structures (variables and clauses) that appear
n ¢.
We represent each variable z; with a diamond-shaped structure that contains
a horizontal row of nodes, as shown in the following figure. Later we specify the
number of nodes that appear in the horizontal row.

FIGURE 7.12
Representing the variable z; as a diamond structure

We represent each clause of ¢ as a single node, as follows.

7N,
O -

FIGURE 7.13
Representing the clause ¢; as a node
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The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.

FIGURE 7.14
The high-level structure of G

Next we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal row
contains 3k + 1 nodes in addition to the two nodes on the ends belonging to the
diamond. These nodes are grouped into adjacent pairs, one for each clause, with
extra separator nodes next to the pairs, as shown in the following figure.
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FIGURE 7.15
The horizontal nodes in a diamond structure

If variable z; appears in clause ¢;, we add the following two edges from the jth
pair in the ith diamond to the jth clause node.

FIGURE 7.16
The additional edges when clause ¢; contains x;

If 7 appears in clause c;, we add the following two edges from the jth pair in
the ith diamond to the jth clause node.

FIGURE 7.17
The additional edges when clause ¢; contains 7;
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After we add all the edges corresponding to each occurrence of z; or T in each
clause, the construction of G is complete. To show that this construction works,
we argue that, if ¢ is satisfiable, a Hamiltonian path exists from s to t and, con-
versely, if such a path exists, ¢ is satisfiable.

Suppose that ¢ is satisfiable. "To demonstrate a Hamiltonian path from s to ¢,
we first ignore the clause nodes. The path begins at s, goes through each dia-
mond in turn, and ends up at t. To hit the horizontal nodes in a diamond, the
path either zig-zags from left to right or zag-zigs from right to left, the satisfying
assignment to ¢ determines which. If z; is assigned TRUE, zig-zag through the
corresponding diamond. If x; is assigned FALSE, zag-zig. We show both possi-
bilities in the following figure.

7ig-zag 7ag-7ig

FIGURE 7.18
Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far this path covers all the nodes in G except the clause nodes. We can easily
include them by adding detours at the horizontal nodes. In each clause, select one
of the literals assigned TRUE by the satisfying assignment.

Tf we selected z; in clause ¢;, we can detour at the jth pair in the ith diamond.
Doing so is possible because z; must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the ¢; node are
in the correct order to allow a detour and return.

Similarly, if we selected 77 in clause ¢;, we can detour at the jth pair in the ith
diamond. Doing so is possible because z; must be FALSE, so the path zag-zigs
from right to left through the corresponding diamond. Hence the edges to the
¢; node again are in the correct order to allow a detour and return. (Note that
each true literal in a clause provides an option of a detour to hit the clause node.
As a result, if several literals in a clause are true, only one detour is taken.) Thus
we have constructed the desired Hamiltonian path.
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For the reverse direction, if G has a Hamiltonian path from s to ¢, we demon-
strate a satisfying assignment for ¢. If the Hamiltonian path is normal, that is, it
goes through the diamonds in order from the top one to the bottom one, except
for the detours to the clause nodes, we can easily obtain the satisfying assignment.
If the path zig-zags through the diamond, we assign the corresponding variable
TRUE, and, if the path zag-zigs, we assign FALSE. Because each clause node ap-
pears on the path, by observing the diamond at which the detour to it is taken,
we may determine which of the literals in the corresponding clause is TRUE.

All that remains to be done is to show that a Hamiltonian path must be normal.
"The only way for normality to fail would be for the path to enter a clause from one
diamond but return to another, as in the following figure. The path goes from
node a; to ¢, but instead of returning to a; in the same diamond, it returns to b,
in a different diamond. In that occurs, either a, or a3 must be a separator node.
If a; were a separator node, the only edges entering a» would be from a; and
ag. If az were a separator node, a; and as would be in the same clause pair, and
hence the only edges entering as would be from a,, as, and c. In either case, the
path could not contain node ay. The path cannot enter ay from ¢ or a; because
the path goes elsewhere from these nodes. The path cannot enter a5 from as,
because as is the only available node that as points at, so the path must exit ay
via a3. Hence a Hamiltonian path must be normal. This reduction obviously
operates in polynomial time and the proof is complete.

FIGURE 7.19
"This situation cannot occur

..........
..............................................................................................................................................................

consider an undirected version of the Hamiltonian path problem,
called UHAMPATH. To show that UHAMPATH is N P-complete we give a poly-
nomial time reduction from the directed version of the problem.
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THEOREM y A T S
UHAMPATH is NP-complete.

PROOF The reduction takes a directed graph G with nodes s and ¢, and con-
structs an undirected graph G’ with nodes s’ and ¢'. Graph G has a Hamiltonian
path from s to t if and only if G’ has a Hamiltonian path from s’ to t'. We describe
G’ as follows.

Fach node w of G, except for s and t, is replaced by a triple of nodes u'™, u™id,
and u®" in . Nodes s and ¢ in G are replaced by nodes st and ¢ in . Edges
of two types appear in G'. First, edges connect u™? with ™ and u®*. Second,
an edge connects u®" with v™™ if an edge goes from u to v in G. That completes
the construction of G,

We can demonstrate that this construction works by showing that G has a
Hamiltonian path from s to ¢ if and only if G’ has a Hamiltonian path from ™
to t". To show one direction, we observe that a Hamiltonian path P in G,

S, U, U2, ... auk::ta

has a corresponding Hamiltonian path P in &,

out mid , out mid , out tin
, .

in in
S ,ul,ul , Uq JUQ,UQ yUg y - v

To show the other direction, we claim that any Hamiltonian path in G’ from
$°U to ¢ in G’ must go from a triple of nodes to a triple of nodes, except for the
start and finish, as does the path P’ we just described. That would complete the
proof because any such path has a corresponding Hamiltonian path in G. We
prove the claim by following the path starting at node s°*‘. Observe that the next
node in the path must be w" for some 7 because only those nodes are connected to
9%, The next node must u™, because no other way is available to include w"¢ in
the Hamiltonian path. After ™4 comes u® because that is the only other one
to which «™4 is connected. The next node must be u! for some j because no
other available node is connected to u¢"t. The argument then repeats until £ is

reached.

........................................................................................................................................................................

THE SUBSET SUM PROBLEM

Recall the SUBSET-SUM problem defined on page 246. In that problem, we are
given a collection of numbers, 1, ... , ) together with a target number £, and
want to determine whether the collection contains a subcollection that adds up
to t. We now show that this problem is NP-complete.

THEOREM 7.37 .........................................................................................................................
SUBSET-SUM is NP-complete.
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........................................................................................................................................................................

PROOF IDEA  We have already shown that SUBSET-SUM is in NP in The-
orem 7.21. We prove that all languages in NP are polynomial time reducible to
SUBSET-SUM by reducing the NP-complete language 3SAT toit. Given a 3enf-
formula ¢ we construct an instance of the SUBSET-SUM problem that contains
a subcollection summing to the target ¢ if and only if ¢ is satisfiable. Call this
subcollection T

To achieve this reduction we find structures of the SUBSET-SUM problem
that represent variables and clauses. The SUBSET-SUM problem instance that
we construct contains numbers of large magnitude presented in decimal notation.
We represent variables by pairs of numbers and clauses by certain positions in the
decimal representations of the numbers.

We represent variable z; by two numbers, y; and z;. We prove that either y;
or z; must be in T for each 4, which establishes the encoding for the truth value
of z; in the satisfying assignment.

Each clause position contains a certain value in the target ¢, which imposes a
requirement on the subset 7. We prove that this requirement is the same as the
one in the corresponding clause, namely, that one of the literals in that clause is
assigned TRUE.

PROOF  We already know that SUBSET-SUM € NP, so we now show that
3SAT <p SUBSET-SUM.

Let ¢ be a Boolean formula with variables z;, ... ,z; and clauses ¢y, ..., ¢;.
‘The reduction converts ¢ to an instance of the SUBSET-SUM problem (S, 1),
wherein the elements of S and the number ¢ are the rows in the following table
expressed in ordinary decimal notation. The rows above the double line are la-

beled

Y1, %1, Y2, 29, ..., Y1, % and 91,h1,92,h2,-.-,9k,hk

and comprise the elements of S. The row below the double line is #.

Thus S contains one pair of numbers, y;, z;, for each variable x; in ¢. The
decimal representation of these numbers is in two parts, as indicated in the ta-
ble. The left-hand part comprises a 1 followed by I — i 0s. The right-hand part
contains one digit for each clause, where the jth digit of y; is 1 if clause ¢; con-
tains literal z; and the jth digit of z; is 1 if clause ¢ ; contains literal 7;. Digits not
specified to be 1 are 0.

The table is partially filled in to illustrate sample clauses, c1, o, and ¢y

(T VT2 Vas) A (T2 VaEa V- )A - A(TZV V-

Additionally, S contains one pair of numbers, gj, h;, for each clause ¢;. These
two numbers are equal and consist of a 1 followed by k& — j Os.

Finally, the target number ¢, the bottom row of the table, consists of { 1s fol-
lowed by k& 3s.
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1 2 3 4 [l o Ch
w171 0 0 O 011 0O 0
z111 0 0 0 0;0 O 0
Yo 1 0 0 010 1 0
2 1 0 0 01 O 0
Y3 1 0 01 1 0
Z3 1 0 010 O 1
Ui 110 0 0
z 110 O 0
g1 1 0 0
hi1 1 0 0
g 1 0
ho 1 U
9k 1
hi, 1
¢ |/1 111 - 113 3 - 3

Now we show why this construction works. We demonstrate that ¢ is satisfi-
able if and only if some subset of S sums to ¢.

Suppose that ¢ is satisfiable. We construct a subset of S as follows. We se-
lect y; if z; is assigned TRUE in the satisfying assignment and z; if z; is assigned
FALSE. If we add up what we have selected so far, we obtain a 1 in each of the first
! digits because we have selected either y; or z; for each i. Furthermore, each of
the last k£ digits is a number between 1 and 3 because each clause is satisfied and
so contains between 1 and 3 true literals. Now we further select enough of the g
and A numbers to bring each of the last & digits up to 3, thus hitting the target.

Suppose that a subset of S sums to t. We construct a satisfying assignment
to ¢ after making several observations. First, all the digits in members of S are
either 0 or 1. Furthermore, each column in the table describing S contains at
most five 1s. Hence a “carry” into the next column never occurs when a subset
of Sis added. To get a 1 in each of the first ! columns the subset must have either
y; or z; for each 7, but not both.

Now we make the satisfying assignment. If the subset contains y;, we assign x;
TRUE, otherwise, we assign it FALSE. This assignment must satisfy ¢ because in
each of the final k columns the sum is always 3. In column ¢;, at most 2 can come
from g; and h;, so atleast 1 in this column must come from some y; or z; in the
subset. Ifitis y;, then x; appears in ¢; and is assigned TRUE, so ¢; is satisfied. Ifit
is z;, then T; appears in ¢; and z; is assigned FALSE, so ¢; is satisfied. Therefore
¢ is satisfied.
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Finally, we must be sure that the reduction can be carried out in polynomial
time. ‘The table has a size of roughly (k + )2, and each entry is easily calculated
for any . So the total time is O(n?) easy stages.

...........

.............................................................................................................................................................

EXERCISES

7.1

7.2

7.3

7.4

7.5

7.6
7.7

Answer each part TRUE or FALSE.
2n = O(n).

n? = 0O(n).

n® = O(nlog?n).

nlogn = O(n?).

37 = 200,

22" = 0(2*").

Answer each part TRUE or FALSE.

o Bp T

™

n = o(2n).
2n = o(n?).
2" = o(3").
1 =o(n).

n = o(logn).
f. 1=o0(1/n).

o B T

Which of the following pairs of numbers are relatively prime? Show the calculations
that led to your conclusions.

a. 1274 and 10505
b. 7289 and 8029

Fill out the table described in the polynomial time algorithm for context-free lan-
guage recognition from Theorem 7.14 for string w = baba and CFG G-

S — RT

R —TR|a

T — TR|b
Is the following formula satisfiable?

(zVy) A (zVTH A (EVY) ATV

Show that P is closed under union, concatenation, and complement.

Show that NP is closed under union and concatenation,
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7.8 Show that primality testing is solvable in polynomial time if we use a unary encoding
rather than a binary encoding for numbers. In other words, show that the language
UNARY-PRIMES = {1"| n is prime} is in P.

7.9 Let CONNECTED = {{(G)| G is a connected undirected graph}. Analyze the al-
gorithm given on page 145 to show that this language is in P.

7.10 A triangle in an undirected graph is a 3-clique. Show that TRIANGLE € P, where
TRIANGLE = {(G)| G contains a triangle}.

7.11 Call graphs G and H dsomorphic if the nodes of G may be reordered so that it is
identical to H. Let ISO = {(G, H)| G and H are isomorphic graphs}. Show that
ISO € NP.

PROBLEMS
7.12 Let

MODEXP = {{a,b,¢,p)| a,b, ¢, and p are binary integers
such that a” = ¢ (mod p)}.

Show that MODEXP € P. (Note that the most obvious algorithm doesn’t run in
polynomial time. Hint: Try it first where b is a power of 2.)

7.13 Show that P is closed under the star operation. (Hint: On inputy = y1 - - -y, for
y: € X, build a table indicating for each ¢ < 7 whether the substring y; - - - y; € A*
forany A € P.)

7.14 Show that NP is closed under the star operation.

7.15 Let UNARY-SSUM be the subset sum problem in which all numbers are repre-
sented in unary. Why does the NP-completeness proof for SUBSET-SUM fail to
show UNARY-SSUM is NP-complete? Show that UNARY-SSUM € P.

7.16 Let G represent an undirected graph and let

SPATH = {{G, a, b, k)| G contains a simple path of
length at most k from a to b}.

and

length at least & from a to b}.

a. Show that SPATH < P.

b. Show that LPATH is NP-complete. You may assume the NP-completeness
of UHAMPATH, the Hamiltonian path problem for undirected graphs.

7.17 Show that, if P = NP then every language A € Pexcept A = fand A = Z" is
NP-complete.

*7.18 Show that PRIMES = {n| n is a prime number in binary} € NP. (Hint: For p > 1
the multiplicative group Z, = {z| z is relatively prime to pand 1 < z < p} is both
cyclic and of order p — 1 iff p is prime. You may use this fact without proving it.)

7.19 Let DOUBLE-SAT = {(¢}| ¢ has at least two satisfying assignments}. Show that
DOUBLE-SAT is NP-complete.
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A permutation on the set {1, ... ,k} is a one-to-one, onto function on this set.
When p is a permutation, p* means the composition of p with itself ¢ times. Let

PERM-POWER = {{p,q,t)| p = q" where p and g are permutations
on {1, ... k}and ¢isa binary integer}.

Show that PERM-POWER € P. (Note that the most obvious algorithm doesn’t run
within polynomial time. Hint: First try it where ¢ is a power of 2).

Let
HALF-CLIQUE = {(G)| G is an undirected graph having a complete subgraph

with at least n/2 nodes, where n is the number of nodes in G}.

Show that HALF-CLIQUE is NP-complete.

Let ¢ be a 3cnf-formula. An #-assignment to the variables of ¢ is one where
each clause contains two literals with unequal truth values. In other words an
#-assignment satisfies ¢ without assigning three true literals in any clause.

a. Show that the negation of any #-assignment to & is also an F-assignment.

b. Let #SAT be the collection of 3cnf-formulas that have an F#-assignment.
Show that we obtain a polynomial time reduction from 3SAT to #SAT by
replacing each clause ¢;

(%1 Vyz Vys)
by the two clauses

(y1 V y2 V 2;) and (Z:Vys vb)

where z, is a new variable for each clause ¢; and b is a single additional new
variable.

c. Conclude that £SAT is NP-complete.

A cut inanundirected graph is a separation of the vertices V into two disjoint subsets
Sand T. 'The size of a cut is the number of edges that have one endpoint in S and
the other in 7. Let

MAX-CUT = {{G, k)| G has a cut of size k or more}.

Show that MAX-CUT is NP-complete. You may assuine the result of Problem 7.22.

(Hint: Show that #SAT <p MAX-CUT. The variable gadget for variable x is a
collection of 3k nodes labeled with  and another 3k nodes labeled with z, where k&
is the number of clauses. All nodes labeled z are connected with all nodes labeled 7.
The clause gadget is a triangle of three edges connecting three nodes labeled with
the literals appearing in the clique. Do not use the same node in more than one
clause gadget. Prove that this reduction works.)

Recall, in our discussion of the Church-Turing thesis, that we introduced the lan-
guage D = {{p)| pis a polynomial in several variables having an integral root}. We
stated, but didn’t prove, that D is undecidable. In this problem you are to prove a
different property of D, namely, that D is NP-hard. A problem is NP-bard if all
problems in NP are polynomial time reducible to it, even though it may not be in
NP itself. So, you must show that all problems in NP are polynomial time reducible
to D.



274

7.25

7.26

7.27

7.28

7.29

7.30

7.31
7.32

7.33
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Let U = {(M,z,1%)| M is an NTM that accepts input = within # steps}. Show that
U is NP-complete.

You are given a box and a collection of cards as indicated in the following figure.
Because of the pegs in the box and the notches in the cards, each card will fit in the
box in either of two ways. Fach card contains two columns of holes, some of which
may not be punched out. The puzzle is solved by placing all the cards in the box so
asto completely cover the bottom of the T’\ﬂx) (i_e‘, every hole pncjfjnp is blocked b

e bottom of the bo ole position is blocked by

at least one card that has no hole there.) Let

PUZZLE = {(c1, ... ,ck)| each c; represents a card

and this collection of cards has a solution}.

Show PUZZLE is NP-complete.

box card
one way other way

PP,

00000

Let SET-SPLITTING = {(S,C)| S is a finite setand C' = {C1, ... ,C}} is a col-
lection of subsets of S, for some k > 0, such that elements of S can be colored red

or blue so that no C; has all its elements colored with the same color.} Show that
SET-SPLITTING is NP-complete.

Show that, if P = NP, we can factor integers in polynomial time. (Note; NP is a
class of languages and the factoring problem is a function. Thus simply saying that,
“because factoring is in NP, you are done” isn’t enough.)

Show that, if P = NP, a polynomial time algorithm exists that, given a Boolean
formula ¢, actually produces a satisfying assignment for ¢ if it is satisfiable.

Let MAX-CLIQUE = {(G, k)| the largest clique of G has k vertices}. Whether
MAX-CLIQUE is in NP is unknown. Show that if P = NP, then MAX-CLIQUE
is in P, and a polynomial time algorithm exists that, for a graph G, finds one of its
largest cliques.

Show that ALLpry is in P.

In the proof of the Cook-Levin theorem, we defined a window to be a 2x 3 rectangle
of cells. Show why the proof would have failed if we had used 2 x 2 windows instead.

Describe the error in the following fallacious “proof” that P # NP. Consider an
algorithm for SAT: “On input ¢, try all possible assignments to the variables. Ac-
cept if any satisfy ¢.” This algorithm clearly requires exponential time. Thus SAT
has exponential time complexity. Therefore SAT is not in P. Because SAT is in
NP, it must be true that P is not equal to NP.
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7.34 A coloring of a graph is an assignment of colors to its nodes so that no two adjacent

nodes are assigned the same color. Let

3COLOR = {(G)| the nodes of G can be colored with three colors such that

no two nodes joined by an edge have the same color}.

Show that 3COLOR is NP-complete. (Hint: Use the following three subgraphs.)

-

- - N
- - ~
P - ~ : AN :
palette variable OR-gadget

~r
7Y
]

Consider the following algorithm MINIMIZE, which takes a DFA M as input and
outputs DFA M.

MINIMIZE = “On input (M), where M = (Q, %, b, qo, A) is a DFA:
1. Remove all states of M that are unreachable from the start state.
2. Construct the following undirected graph G whose nodes are the
states of M.
3. Place an edge in & connecting every accept state with every
nonaccept state. Add additional edges as follows.

4. Repeat until no new edges are added to G-
5. Forevery pair of distinct states ¢ and 7 of M and every a € X
6. Add the edge (¢, 7) to G if (8(g,a), §(r, a)) is an edge of GG.
7. For each state g, let [¢] be the collection of states:

[g) = {r € Q| no edge joins g and r in G, including r = ¢}.
8. Form a new DFA M’ = (Q',%, 8, qo, A’) where

Q@ = {ldlq e @}, (if[g] = [r], only one of them is in @),
§'([q], a) = [6(g,a)], for everyg€ Qanda € X,
g0’ = [qo), and
A" = {[g]| g € A}.
9. Output (M").”

a. Show that M and M’ are equivalent.

b. Show that M’ is minimal, that is, no DFA with fewer states recognizes the
same language. You may use the result of Problem 1.35 without proof.

c. Show that MINIMIZE operates in polynomial time.

"7.36 For a cnf-formula ¢ with m variables and ¢ clauses, show that you can construct
in polynomial time an NFA with O(cm) states that accepts all nonsatisfying assign-
ments, represented as Boolean strings of length m. Conclude that the problem of
minimizing NFAs cannot be done in polynomial time uniess P = NP.

"7.37 A 2cnf-formula is an AND of clauses, where each clause is an OR of at most two
literals. Let 2SAT = {(¢)| ¢ is a satisfiable 2cnf-formula}. Show that 2S4T € P.
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7.38 Modify the algorithm for context-free language recognition in the proof of Theo-
rem 7.14 to give a polynomial time that produces a parse tree for a string, given the
string and a CFG, if that grammar generates the string.

*7.39 The difference bierarchy D;P is defined recursively as follows.

a. D,P =NP.
b. D;P = {A| A= B\ Cfor Bin NP and Cin D;_,P}.
(Here B\C =BnC)

For example, a language in D P is the difference of two NP languages. Sometimes
D P is called DP (and may be written D). Let

7Z = {{G1, k1, G2, k2)| G1 has a ki-clique and G2 doesn’t have a ka-clique}.

Show that Z is complete for DP. In other words, show that every language in DP
is polynomial time reducible to Z.

“7.40 Let MAX-CLIQUE = {(G, k)| the largest clique in G is of size exactly k}. Use the
result of Problem 7.39 to show that MAX-CLIQUE is DP-complete.




SPACE COMPLEXITY

In this chapter we consider the complexity of computational problems in terms
of the amount of space (or memory) that they require, Time and space are two
of the most important considerations when we seek practical solutions to many
computational problems. Space complexity shares many of the features of time
complexity and serves as a further way of classifying problems according to their
computational difficulty.

As we did with time complexity, we need to select 2 model for measuring the
space used by an algorithm. We continue with the ‘Turing machine model for the
same reason that we used it to measure time. ‘Turing machines are mathematically
simple and close enough to real computers to give meaningful results.

DEFINITION 8,1 ot tscems s s s esssesss s ess s sse e e eee e s e s

Let M be a deterministic Turing machine that halts on all inputs. We define the
space complexity of M to be the function f: N—s N\ , where f(n) is the maxi-
mum number of tape cells that M scans on any input of length n. If the space
complexity of M is f(n), we also say that M runs in space f(n).

If M is a nondeterministic Turing machine wherein all branches halt on all
inputs, we define its space complexity f(n) to be the maximum number of tape
cells that M scans on any branch of its computation for any input of length n.

As with time complexity, we usually estimate the space complexity of Turing
machines using asymptotic notation.

277 BR—
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DEF‘INITION 8.2 ------------------------------------------------------------------------------------------------------------------------

Let f: N— A be a function. The space complexity classes, SPACE(f(n})) and
NSPACE(f(n)), are defined as follows.

SPACE(f(n)) = {L| L is a language decided by an O(f(n)) space
deterministic Turing machine}.
NSPACE(f(n)) = {L| L is a language decided by an O{ f(n)) space

nondeterministic Turing machine}.

EXAMPLE 8.3 ..............................................................................................................................

In Chapter 7 we introduced the NP-complete problem SAT. Here, we show that
SAT can be solved with a linear space algorithm. We believe that SAT cannot be
solved with a polynomial time algorithm, much less with a linear time algorithm,
because SAT is NP-complete. Space appears to be more powerful than time be-
cause space can be reused, whereas time cannot.

M; = “On input {¢), where ¢ is a Boolean formula:
1. For each truth assignment to the variables z1, ... , z,, of ¢:
2. Evaluate ¢ on that truth assignment.
3. If ¢ ever evaluated to 1, accept; if not, reject.”

Machine M, clearly runs in linear space because each iteration of the loop can
reuse the same portion of the tape. The machine only needs to store the current
truth assignment and that can be done with O(m) space. The number of variables
m is at most 7, the length of the input, so this machine runs in space O(n).

EXAMPLE 8.4 ..............................................................................................................................

Here, we illustrate the nondeterministic space complexity of a language. In the
next section we show how determining the nondeterministic space complex-
ity can be useful in determining its deterministic space complexity. Consider
the problem of testing whether a nondeterministic finite automaton accepts any
strings. Let

ALLNFA = {<A>| Ais a NFA and L(A) = Z*}

We give a nondeterministic linear space algorithm that decides the complement
of this language, ALLnra. The idea behind this algorithm is to use nondetermin-
ism to guess a string that is rejected by the NFA and to use linear space to keep
track of which states the NFA could be in at a particular time. Note that this lan-
guage is not known to be in NP or in coNP.
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N =“On input (M) where M is an NFA:
1. Place a marker on the start state of the NFA.
2. Repeat 29 times, where ¢ is the number of states of M:

3. Nondeterministically select an input symbol and change the
positions of the markers on M’s states to simulate reading that
symbol.

4. If a marker was ever placed on an accept state, reject; otherwise

accept.”

If M accepts any strings, it must accept one of length at most 27 because in any
longer string that is accepted the locations of the markers described in the pre-
ceding algorithm would repeat. The section of the string between the repetitions
can be removed to obtain a shorter accepted string. Hence N decides ALLNEA.

'The only space needed by this algorithm is for storing the location of the
markers, and doing so only requires linear space. Ience the algorithm runs in
nondeterministic space O(n). Next, we prove a theorem that provides informa-
tion about the deterministic space complexity of ALLyga. e

8.1

SAVITCH’S THEOREM

In this section we present one of the earliest results concerning space complexity,
called Savitch’s theorem. It shows that deterministic machines can simulate non-
deterministic machines by using a surprisingly small amount of space. For time
complexity, such a simulation seems to require an exponential increase in time.
For space complexity, Savitch’s theorem shows that any nondeterministic TM that
uses f(n) space can be converted to a deterministic TM that uses only f?(n) space.

THEOREM 8.5 et ee e sessesses e e s esm s see e e s s seeeeee s
Savitch’s theorem For any! function f: A/— A/, where f(n) > n,
NSPACE(f(n)) C SPACE(f*(n)).

PROOF IDEA  We need to simulate an f(n) space NTM deterministically. A
naive approach is to proceed by trying all the branches of the NTM’s computation,
one by one. The simulation needs to keep track of which branch it is currently
trying so that it is able to go on to the next one. Bur a branch that uses f(n)
space may run for 29(f(")) steps, and each step may be a nondeterministic choice,

10n page 296, we show that Savitch’s theorem also holds whenever f(n) = logn.
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Exploring the branches sequentially would require recording all of the choices
used on a particular branch in order to be able to find the next branch. Therefore
this approach may use 29(7{(") space, exceeding our goal of O(f?(n)) space.

Instead, we take a different approach by considering the following more gen-
eral problem. We are given two configurations of the NTM, ¢; and c¢;, together
with a number ¢, and we must test whether the NTM can get from ¢; to ¢z within
t steps. We call this problem the yieldability problem. By solving the yieldability
problem where ¢; is the start configuration, ¢, is the accept configuration, and ¢
is the maximum number of steps that the nondeterministic machine can use, we
can determine whether the machine accepts the input.

We give a deterministic, recursive algorithm that solves the yieldability prob-
lem. It operates by searching for an intermediate configuration ¢,,, and recur-
sively testing both whether ¢; can get to ¢, within ¢/2 steps and whether ¢,,, can
get to ¢y within t/2 steps. Reusing the space for each of the two recursive tests
allows a significant saving of space.

This algorithm needs space for storing the recursion stack. Each level of the
recursion uses O( f(n)) space to store a configuration. The depth of the recur-
sion is log ¢, where ¢ is the maximum time that the nondeterministic machine may
use on any branch. We have t = 200/(") 5o logt = O(f(n)). Hence the deter-
ministic simulation uses O(f2(n))} space.

PROOF Let N be an NTM deciding a language A in space f(n). We construct
a deterministic TM M deciding A. Machine M uses the procedure CANYIELD,
which tests whether one of N's configurations can yield another within a specified
number of steps. This procedure solves the yieldability problem described in the
proof idea.

Let w be a string considered as input to N. For configurations ¢; and ¢z of
N on w, and integer ¢, CANYIELD(cy, ¢2,t) outputs accept if, when started in
configuration ¢;, N has some sequence of nondeterministic choices that can cause
it to enter configuration ¢, within ¢ steps. If not, CANYIELD outputs reject.

CANYIELD = “Oninput ¢, ¢z, and ¢:
1. Ift =1, then test directly whether ¢; = ¢z or whether ¢; yields
¢z in one step according to the rules of N. Accept if either test

PR PO N ol SRR B i |
SULLCUUS, vefeCt 11 UULLL 1dll.

2. Ift > 1, then for each configuration ¢, of N on w using space

fn):
3. Run CANYIELD(cy, ¢y, [£]).2
4.  Run CANYIELD(Cpm, c2, [£]).

5.  Ifsteps 3 and 4 both accept, then accept.
6. If haven’t yet accepted, reject.”

Now we define M to simulate NV as follows. We first modify NV so that when it
accepts it clears its tape and moves the head to the leftmost cell, thereby entering a

2The notation [ 1 represents the “rounding up” of £ to the next larger integer.
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configuration called Caccept- L€t Corare be the start configuration of N on w. Select
a constant d so that N has no more than 2¢ (") configurations using f(n) tape,
where 7 is the length of w. We know that 24 () provides an upper bound on the
running time of any branch of N on w.

M = “On input w:
1. Output the result of CANYIELD(cy, Cacceprs 27 ()).?

Algorithm CANYIELD obviously solves the yieldability problem, and hence M
correctly simulates N. We need to analyze it to see that M works within O(f3(n))
space.

Whenever CANYIELD invokes itself recursively, it stores the values of ¢, ¢y,
and t on a stack so that these values may be restored upon return from the recur-
sive invocation. Each level of the recursion thus uses O(f(n)) additional space.
Furthermore, each level of the recursion divides the size of  in half. Initially ¢
starts out equal to 24 (™) 56 the depth of the recursion is O(log 24 ™)) or O(f(n)).
Therefore the total space used is O( f %(n)), as claimed.

One technical difficulty arises in this argument because algorithm M needs to
know the value of f(n) when it calls CANYIELD. We can handle this difficulty
by modifying M so that it tries f(n) = 1,2, 3,... Foreach value f(n) = i, the
modified algorithm uses CANYIELD to determine whether the accept configura-
tion is reachable and also to determine whether V uses at least space ¢ by testing
whether V can reach any of the configurations of length 7 from the start config-
uration. If the accept configuration is reachable, M accepts; if no configuration
of length i is reachable, M rejects; and otherwise M continues with f(n)=i+1.
(We could have handled this difficulty in another way by assuming that M can
compute f(n) within O(f(n)) space, but then we would need to add that assump-
tion to the statement of the theorem).

THE CLASS PSPACE
By analogy with the class P we define the class PSPACE for space complexity.

DEFINITION 8.6 ........................................................................................................................

PSPACE is the class of languages that are decidable in polynomial space on a

deterministic Turing machine. In other words,

PSPACE = | JSPACE(n*).
k

"The nondeterministic counterpart, NPSPACE, of the class PSPACE may be
defined analogously by using the NSPACE classes. However, Savitch’s theorem

J————
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implies that NPSPACE = PSPACE because the square of any polynomial is still
a polynomial.

In Examples 8.3 and 8.4 we showed that SAT is in SPACE(n) and that ALLyga
is in NSPACE(n) and hence, by Savitch’s theorem, in SPACE(n?). Therefore
both languages are in PSPACE.

Let’s examine the relationship of PSPACE with P and NP. It is easy to see
that P € PSPACE because a machine that runs quickly cannot use a great deal
of space. More precisely, for t(n) > n, any machine that operates in time ¢(n) can
use at most ¢(n) space because a machine can explore at most one new cell at each
step of its computation. Similarly, NP C NPSPACE, and so NP C PSPACE.

Conversely, we can bound the time complexity of a Turing machine in terms
of its space complexity. For f(n) > n, a TM thatuses f(n) space can have at most
f(n) 29U different configurations, by a simple generalization of the proof of
Lemma 5.7 on page 178. A Turing machine com}gutation that halts may not re-
peat a configuration. Therefore a Turing machine” that uses space f(n) must run
in time f(n) 2°U(), so PSPACE C EXPTIME = J, TIME(2"").

We summarize our knowledge of the relationships among the complexity
classes defined so far in the series of containments

P C NP C PSPACE = NPSPACE C EXPTIME.

We don’t know whether any of these containments is actually an equality.
Someone may yet discover a simulation like the one in Savitch’s theorem that
merges some of these classes into the same class. However, in Chapter 9 we prove
that P # EXPTIME. Therefore at least one of the preceding containments is
proper, but we are unable to say which! Indeed, most researchers believe that all
the containments are proper. The following diagram depicts the relationships
among these classes, assuming all are different.

EXPTIME

PSPACE

FIGURE 8.1
Conjectured relationships among P, NP, PSPACE, and EXPTIME

3The requirement here that f(n) > nis generalized later to f(n) > logn, when we
introduce Turing machines that use sublinear space on page 296.
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PSPACE-COMPLETENESS

In Section 7.4 we introduced the category of NP-complete languages as rep-
resenting the most difficult languages in NP. Proving that a language is
NP-complete is strong evidence that the language is not in P. If it were, P and
NP would be equal. In this section we introduce the analogous notion, PSPACE-
completeness, for the class PSPACE,

[T 20 Sl | ] o e R - T O
A language B is PSPACE-complete if it satisfies two conditions:

1. Bis in PSPACE, and
2. every A in PSPACE is polynomial time reducible to B.

If B merely satisfies condition 2, we say that it is PSPACE-hard.

In defining PSPACE-completeness, we use polynomial time reducibility as
given in Definition 7.24. Why don’t we define a notion of polynomial space re-
ducibility and use that instead of polynomial time reducibility? "To understand the
answer to this important question, consider our motivation for defining complete
problems in the first place.

Complete problems are important because they are examples of the most diffi-
cult problems in a complexity class. A complete problem is most difficult because
any other problem in the class is easily reduced into it, so if we find an easy way
to solve the complete problem, we can easily solve all other problems in the class.
The reduction must be easy, relative to the complexity of typical problems in the
class, for this reasoning to apply. If the reduction itself were difficult to compute,
an easy solution to the complete problem wouldn’t necessarily yield an easy so-
lution to the the problems reducing to it.

Therefore, the rule is: Whenever we define complete problems for a com-
plexity class, the reduction model must be more limited than the model used for
defining the class itself.

THE TQBF PROBLEM

Our first example of a PSPACE-complete problem involves a generalization of
the satisfiability problem. Recall that a Boolean Sformula is an expression that
contains Boolean variables, the constants 0 and 1, and the Boolean operations A,
V, and —. We now introduce a more general type of Boolean formula.

‘The quantifiers ¥ (for all) and 3 (there exists) make frequent appearances in
mathematical statements. Writing the statement vz ¢ means that, for every value
for the variable z, the statement ¢ is true. Similarly, writing the statement 3z ¢
means that, for sozze value for the variable z, the statement ¢ is true. Sometimes,
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V is referred to as the universal quantifier and 3 as the existential quantifier.
We say that the variable x immediately following the quantifier is bound to the
quantifier.

For example, if we consider the natural numbers, the statement Vz [z + 1 > 2]
means that the successor x + 1 of every natural number x is greater than
the number itself. Obviously, this statement is true. However, the statement
Jy [y + y = 3] obviously is false. When interpreting the meaning of statements
involving quantifiers, the #niverse from which the values are drawn must be con-
sidered. In the preceding cases the universe was the natural numbers, but if we
took the real numbers instead, the existentially quantified statement would be-
come true.

Statements may contain several quantifiers, as in Vx Jy [y > x]. For the uni-
verse of the natural numbers, this statement says that every natural number has
another natural number larger than it. The order of the quantifiers is important.
Reversing the order, as in the statement 3y Vx [y > z], gives an entirely different
meaning, namely, that some natural number is greater than all others. Obviously,
the first statement is true and the second is false.

A quantifier may appear anywhere in a mathematical statement. Tt applies to
the fragment of the statement appearing within the matched pair of parentheses
or brackets following the quantified variable. This fragment is called the scope
of the quantifier. Often, it is convenient to require that all quantifiers appear at
the beginning of the statement and that each quantifier’s scope is everything fol-
lowing it. Such statements are said to be in prenex normal form. Any statement
may be put into prenex normal form easily. We consider statements in this form
only, unless otherwise indicated.

Boolean formulas with quantifiers are called quantified Boolean formulas.

P S Ta) ~rmarilac tla rismioarcs o JT]
F\u auLh fuuuul'da, tine universe is 1Y, Ly

o=y [xVy) AEFVT)]

is a quantified Boolean formula. Here, ¢ is true, but it would be false if the quan-
tifiers Vx and Jy were reversed.

When each variable of a formula appears within the scope of some quantifier,
the formula is said to be fully quantified. A fully quantified Boolean formula is
sometimes called a sentence and is always either true or false. For example, the
preceding formula ¢ is fully quantified. However, if the initial part, Vi, of ¢ were
removed, the formula would no longer be fully quantified and would be neither
true nor false.

The TQBF problem is to determine whether a fully quantified Boolean for-
mula is true or false. We define the language

TQBF = {{¢)| ¢ is a true fully quantified Boolean formula}.

THEOREM 8.8 s s s s ssssnosssasanasnessssssar s s
TQBF is PSPACE-complete.
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PROOF IDEA ‘lo show that TQBF is in PSPACE we give a straightforward
algorithm that assigns values to the variables and recursively evaluates the truth of
the formula for those values. From thatinformation the algorithm can determine
the truth of the original quantified formula.

'To show that every language A in PSPACE reduces to TQBF in polynomial
time, we begin with a polynomial space bounded Turing machine for A. Then
we give a polynomial time reduction that maps a string to a quantified Boolean
formula ¢ that encodes a simulation of the machine on that input. The formula
is true if and only if the machine accepts.

Asa firstattempt at this construction, let’s try to imitate the proof of the Cook~
Levin theorem, Theorem 7.22. We can construct a formula ¢ that simulates M
on an input w by simulating the circuit representing the computation. A tableau
for M on w has width O(n*), the space used by M, but its height is exponen-
tial in n*, because M can run for exponential time. Thus, if we represent the
tableau with a formula directly, we would end up with a formula of exponential
size. However, a polynomial time reduction cannot produce an exponential size
result, so this attempt fails to show A <p TQBF.

Instead, use a technique related to the proof of Savitch’s theorem to construct
the formula. The formula divides the tableau into halves and employs the uni-
versal quantifier to represent each half with the same part of the formula. The
result is a much shorter formula.

PROOF  First, we give a polynomial space algorithm deciding TQBF.

T = “On input (¢), a fully quantified Boolean formula:

1. If ¢ contains no quantifiers, then it is an expression with only
constants, so evaluate ¢ and accept if it is true; otherwise reject.

2. If ¢ equals 3z ¢, recursively call T on v, first with 0 substituted
for x and then with 1 substituted for z. If either result is accept,
then accept; otherwise reject.

3. If ¢ equals Vz v, recursively call T on v, first with 0 substituted
for z and then with 1 substituted for z. If both results are accept,
then accept; otherwise reject.”

Algorithm T obviously decides TQBF. ‘To analyze its space complexity we ob-
serve that the depth of the recursion is at most the number of variables. At each
level we need only store the value of one variable, so the total space used is O(m),
where m is the number of variables that appear in ¢. Therefore T runs in linear
space.

Next, we show that TQBF is PSPACE-hard. Let A be a language decided by
a TM M in space n* for some constant k. We give a polynomial time reduction

from A to TQBF.

The reduction maps a string w to a quantified Boolean formula ¢ that is true
if and only if M accepts w. To show how to construct ¢ we solve a more general
problem. Using two collections of variables denoted ¢; and ¢, representing two
configurations and a number ¢ > 0, we construct a formula @, o, ;. If we assign
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¢1 and ¢; to actual configurations, the formula is true if and only if M can go from
€1 t0 ¢z in at most ¢ steps. Then we can let ¢ be the formula ¢c,,,,c,..cp.hs Where
h = 2%(") for a constant d, chosen so that M has no more than 2% (%) possible
configurations on an input of length n.

The formula encodes the contents of tape cells as in the proof of the Cook-
Levin theorem. Each cell has several variables associated with it, one for each
tape symbol and state, corresponding to the possible settings of that cell. Each
configuration has n* cells and so is encoded by O(n*) variables.

If t = 1, we can easily construct ¢, ., +. We design the formula to say that
either ¢; equals ¢, or ¢ follows from ¢; in a single step of M. We express the
equality by writing a Boolean expression saying that each of the variables repre-
senting ¢; contains the same Boolean value as the corresponding variable repre-
senting c3. We express the second possibility by using the technique presented
in the proof of the Cook-Levin theorem. That is, we can express that ¢; yields
¢z in a single step of M by writing Boolean expressions stating that the contents
of each triple of ¢;’s cells correctly yields the contents of the corresponding triple
of ¢’s cells.

It t > 1, we construct ¢, o, + recursively. As a warmup let’s try one idea that
doesn’t quite work and then fix it. Let

Bereat = IM [Se, my 141 A By ea 117]-

The symbol m, represents a configuration of M. Writing 3m; is shorthand for
3y, ...z, where | = O(nF) and z1, ..., x; are the variables that encode m;.
So this construction of ¢, ., + says that M/ can go from ¢; to ¢ in at most ¢ steps
if some intermediate configuration m exists, whereby M can go from ¢; to m; in
at most | £ | steps and then from m; to ¢ in at most [£] steps. Then we construct
the two formulas ¢, ., 17 and ¢,,,, ., r¢q recursively.

The formula ¢, ., has the correct vaiue; that is, it is TRUE whenever M can
go from c; to ¢ within ¢ steps. However, it is too big. Every level of the recur-
sion involved in the construction cuts ¢ in half but roughly doubles the size of the
formula. Hence we end up with a formula of size roughly ¢. Initially t = 24/("),
so this method gives an exponentially large formula.

To reduce the size of the formula we use the V quantifier in addition to the 3
quantifier. Let

Gey 0.t =AM V(c3,04) € {(c1,m1), (M1,02)} [%3,.:4,[%1}-

The introduction of the new variables representing the configurations cz and ¢4
allows us to “fold” the two recursive subformulas into a single subformula, while
preserving the original meaning. By writing V(c3,c4) € {(c1,m1), (m1,c2)}, we
indicate that the variables representing the configurations c3 and c4 may take the
values of the variables of ¢; and m; or of m; and ¢3, respectively, and that the
resulting formula ¢, . ,,[47 1s true in either case. We may replace the construct
Vz € {y,z} [...] by the equivalent construct vz [ (z=yVz=2) — ...] to obtain
a syntactically correct quantified Boolean formula. Recall that in Section 0.2 we
showed that Boolean implication (—) and Boolean equality (=) can be expressed
in terms of AND and OR.
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To calculate the size of the formula Do rccepr. s Where b = 2% (") e note
that recursion adds a portion of the formula that is linear in the size of the con-
figurations and thus of size O(f(n)). The number of levels of the recursion is
log(2¥ (), or O(f(n)). Hence the size of the resulting formula is O( f2(n)).

WINNING STRATEGIES FOR GAMES

For the purposes of this section, a ganze is loosely defined to be a competition
in which two opposing parties each attempt to achieve some goal according to
prespecified rules. Games appear in many forms, from board games such as chess
to economic and war games that model corporate or societal conflict.

Games are closely related to quantifiers. A quantified statement has a corre-
sponding game; conversely, a game often has a corresponding quantified state-
ment. These correspondences are helpful in several ways. For one, expressing a
mathematical statement that uses many quantifiers in terms of the correspond-
ing game may give insight into the statement’s meaning. For another, expressing
a game in terms of a quantified statement aids in understanding the complexity
of the game. To illustrate the correspondence between games and quantifiers, we
turn to an artificial game called the formula game.

Let ¢ = 3z, Vay 3z3 -+ Quy [1] be a quantified Boolean formula in prenex
normal form. Here Q represents either a ¥ or an 3 quantifier. We associate a
game with ¢ as follows. Two players, called Player A and Player E, take turns
selecting the values of the variables z1, ... , T. Player A selects values for the
variables that are bound to ¥ quantifiers and player E selects values for the vari-
ables that are bound to 3 quantifiers. The order of play is the same as that of the
quantifters at the beginning of the formula. At the end of play we use the values
that the players have selected for the variables and declare that Player E has won
the game if 1, the part of the formula with the quantifiers stripped off, is now
TRUE. Player A has won if  is now FALSE.

EXAMPLE 8.9 ..............................................................................................................................
Say that ¢ is the formula
dxq Vg 3z [(:cl Vxg) Azy Vag) A(T3V :1:_5)]

In the formula game for ¢, Player E picks the value of 21, then Player A picks
the value of z,, and finally Player E picks the value of z5.

We illustrate a sample play of this game. As usual, we represent the Boolean
value TRUE with 1 and FALSE with 0. Say Player E picks z; = 1, then Player A
picks x5 = 0, and finally Player E picks 73 = 1, With these values for 1, zs, and
x3, the subformula

(T1 V 22) A (20 V T3) A (Z2 V T3)

is 1, so Player E has won the game. In fact, Player E may always win this game by
selecting 1 = 1 and then selecting 3 to be the negation of whatever Player A se-
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lects for xo. We say that Player E has a winning strategy for this game. A player
has a winning strategy for a game if that player wins when both sides play opti-
mally.

Now let’s change the formula slightly to get a game in which Player A has a
winning strategy. Let ¢ be the formula

dz1 Voo Jxy {(:131 V zo) Af{ma Vas) A(zaV :13_3)]

Player A now has a winning strategy because, no matter what Player E selects
for 2y, Player A may select 25 = 0, thereby falsifying the part of the formula
appearing after the quantifiers, whatever Player E’s last move may be. :

We next consider the problem of determining which player has a winning
strategy in the formula game associated with a particular formula. Let

FORMULA-GAME = {{¢)| Player E has a winning strategy in

the formula game associated with ¢}.

THEOREM 8.10 i et s s
FORMULA-GAME is PSPACE-complete

........................................................................................................................................................................

PROOF IDEA FORMULA-GAME is PSPACE-complete for a simple reason,
namely, it is the same as TQBF. To see that FORMULA-GAME = TQBF, ob-
serve that a formula is TRUE exactly when Player E has a winning strategy in the
associated formula game because both possibilities have the same semantic con-
tent.

PROOF 'Theformula¢ = 2, Vo 3x3 -+ [¢]is TRUE when some setting for
xy exists such that, for any setting of x9, a setting of 23 exists such that, and so
on ..., where ¢ is TRUE under the settings of the variables. Similarly, Player E
has a winning strategy in the game associated with ¢ when Player E can make
some assignment to x; such that, for any setting of x5, Player E can make an
assignment to x3 such that, and so on . .., ¢ is TRUE under these settings of the
variables.

The same reasoning applies when the formula doesn’t alternate between ex-
istential and universal quantifiers. If ¢ has the form Vz,, 2o, 23 324, 25 Ve [ ¢ ],
Player A would make the first three moves in the formula game to assign values
to x1, 2, and z3; then Player E would make two moves to assign x4 and z5; and
finally Player A would assign a value z¢.

Hence, ¢ € TQBF exactly when ¢ € FORMULA-GAME, and the theorem
follows from Theorem 8.8.

........................................................................................................................................................................
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GENERALIZED GEOGRAPHY

Now that we know that the formula game is PSPACE-complete, we can estab-
lish the PSPACE-completeness or PSPACE-hardness of some other games more
easily. We’ll begin with a generalization of the game geography and later discuss
games such as chess, checkers, and GO.

Geography is a child’s game in which players take turns naming cities from
anywhere in the world. Each city chosen must begin with the same letter that
ended the previous city’s name. Repetition isn’t permitted. The game starts with
some designated starting city and ends when some player loses because he or she
is unable to continue. For example, if the game starts with Peoria, then Amherst
might legally follow (because Peoria ends with the letter a, and Amherst begins
with the letter 4), then Tucson, then Nashua, and so on until one player gets stuck
and thereby loses.

We can model this game with a directed graph whose nodes are the cities of
the world. We draw an arrow from one city to another if the first can lead to the
second according to the game rules. In other words, the graph contains an edge
from a city X to a city Y if city X ends with the same letter that begins city Y. We
illustrate a portion of the geography graph in the following figure.

Peoria

Tucson

Tokyo

e
FIGURE 8.2

Portion of the graph representing the geography game

Q@

When the rules of geography are interpreted for this graphic representation,
one player starts by selecting the designated start node and then the players take
turns alternately by picking nodes that form a simple path in the graph. The re-
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quirement that the path be simple (i.e., doesn’t use any node more than once)
corresponds to the requirement that a city may not be repeated. The first player
unable to extend the path loses the game.,

In generalized geography we take an arbitrary directed graph with a desig-
nated start node instead of the graph associated with the actual cities. For exam-
ple, the following graph is an example of a generalized geography game.

FIGURE 8.3
A sample generalized geography game

Say that Player I is the one who moves first and Player II second. In this ex-
ample, Player I has a winning strategy as follows. Player I starts at node 1, the
designated start node. Node 1 points only at nodes 2 and 3, so Player Is first
move must be one of these two choices. He chooses 3. Now Player I must move,
but node 3 points only to node 5, so she is forced to select node 5. Then Player I
selects 6, from choices 6, 7, and 8. Now Player II must play from node 6, but it
points only to node 3, and 3 was previously played. Player II is stuck, and thus
Player I wins.

If we change the example by reversing the direction of the edge between nodes
3 and 6, Player IT has a winning strategy. Can yousee it? If Player I starts out with
node 3 as before, Player II responds with 6 and wins immediately, so Player I's
only hope is to begin with 2. In that case, however, Player I responds with 4.
If Player T now takes 5, Player II wins with 6. If Player I takes 7, Player IT wins
with 9. No matter what Player I does, Player II can find a way to win, so Player IT
has a winning strategy.

The problem of determining which player has a winning strategy in a gener-
alized geography game is PSPACE-complete. Let

GG = {{G, b}| Player I has a winning strategy for the generalized
geography game played on graph G starting at node b}.

THEOREM 8. T T v s e e R s R eme e s
GG is PSPACE-complete.
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........................................................................................................................................................................

PROOF IDEA  Arecursive algorithm similar to the one used for TOBF in The-
orem 8.8 determines which player has a winning strategy. This algorithm runs
in polynomial space and so GG € PSPACE.

'Io prove that GG is PSPACE-hard, we give a polynomial time reduction from
FORMULA-GAME to GG. This reduction converts a formula game to a gen-
eralized geography graph so that play on the graph mimics play in the formula
game. In effect, the playersin the generalized geography game are really playing
an encoded form of the formula game.

PROOF  Thefollowing algorithm decides whether Player I has a winning strat-
egy in instances of generalized geography; in other words, it decides GG. We
show that it runs in polynomial space.

M = “On input (G, b), where G is a directed graph and b is a node of G:

1. If b has outdegree 0, reject, because Player I loses immediately.

2. Remove node band all arrows touching it to get a new graph G.

3. For each of the nodes by, b, .. ., by, that b originally pointed at,
recursively call M on (G4, b;).

4. Ifall of these accept, Player IT has a winning strategy in the orig-
inal game, so reject. Otherwise, Player II doesn’t have a winning
strategy, so Player I must; therefore accept.”

‘The only space required by this algorithm is for storing the recursion stack.
Each level of the recursion adds a single node to the stack, and at most m levels
occur, where m is the number of nodes in G. Hence the algorithm runs in linear
space.

To establish the PSPACE-hardness of GG, we show that FORMUILA-GAME
is polynomial time reducible to GG. The reduction maps the formula

o= dzy Vo drs - Qup W]

to an instance of the generalized geography (G, b). Here we assume for simplicity
that ¢’s quantifiers begin and end with 3 and that they strictly alternate between
3 and V. A formula that doesn’t conform to this assumption may be converted
to a slightly larger one that does by adding extra quantifiers binding otherwise
unused or “dummy” variables. We assume also that 1 is in conjunctive normal
form (see Problem 8.13).

‘The reduction constructs a geography game on a graph G where optimal play
mimics optimal play of the formula game on ¢. Player I in the geography game
takes the role of player E in the formula game, and Player IT takes the role of
Player A.

The structure of graph G is partially shown in Figure 8.4. Play starts at node b,
which appears at the top left-hand side of G. Underneath b, a sequence of dia-
mond structures appears, one for each of the variables of ¢. Before getting to the
right-hand side of G, let’s see how play proceeds on the left-hand side.
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L3

Ty

FIGURE 8.4
Partial structure of the geography game simulating the formula game

Play starts at b. Player I must select one of the two edges going from b. These
edges correspond to Player E’s possible choices at the beginning of the formula
game. The left-hand choice for Player I corresponds to TRUE for Player E in the
formula game and the right-hand choice to FALSE. After Player I has selected one
of these edges, say, the left-hand one, Player II moves. Only one outgoing edge
is present, so this move is forced. Similarly, Player I's next move is forced and
play continues from the top of the second diamond. Now two edges again are
present, but Player II gets the choice. This choice corresponds to Player A’ first
move in the formula game. As play continues in this way, Players I and II choose
a rightward or leftward path through each of the diamonds.

After play passes through all the diamonds, the head of the path is at the bot-
tom node in the last diamond, and it is Player I's turn because we assumed that
the last quantifier is 3. Player I's next move is forced. Then they are at node c in
Figure 8.4 and Player IT makes the next move.

This point in the geography game corresponds to the end of play in the for-
mula game. The chosen path through the diamonds corresponds to an assign-
ment to ¢s variables. Under that assignment, if ¢/ is TRUE, Player E wins the
formula game, and if ¢ is FALSE, Player A wins. The structure on the right-hand
side of Figure 8.5 guarantees that Player T can win if Player E has won and that
Player II can win if Player A has won, as follows. At node ¢, Player IT may choose
a node corresponding to one of ¥’s clauses. Then Player I may choose a node
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corresponding to a literal in that clause. The nodes corresponding to unn
literals are connected to the left-hand (TRUE) sides of the diamond for associ-
ated variables, and similarly for negated literals and right-hand (FALSE) sides as

shown in the following figure.

FIGURE 8.5
Full structure of the geography game simulating the formula game, where
¢=3z1Vay - Quy (11 VIV az) A (ZTaVT3V-)A - A )]

If ¢ is FALSE, Player IT may win by selecting the unsatisfied clause. Any literal
that Player I may then pick is FALSE and is connected to the side of the diamond
that hasn’t yet been played. Thus Player II may play the node in the diamond, but
then Player I is unable to move and loses. If ¢ is TRUE, any clause that Player II
picks contains a TRUE literal. Player I selects that literal after Player IT's move.
Because the literal is TRUE, it is connected to the side of the diamond that has
already been played, so Player II is unable to move and loses.

Theorem 8.11 shows that no polynomial time algorithm exists for optimal play
in generalized geography unless P = PSPACE. We’d like to prove a similar the-
orem regarding the difficulty of computing optimal play in board games such as
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chess, but an obstacle arises. Only a finite number of different game positions
may occur using the standard 8 x 8 chess board. In principle, all these positions
may be placed in a table, along with the best move in each position. The table
would be too large to fit inside our galaxy but, being finite, could be stored in
the control of a Turing machine (or even that of a finite automaton!). Thus the
machine would be able to play optimally in linear time using table lookup. Per-
haps at some time in the future, methods that can quantify the complexity of finite
problems will be developed, but current methods are asymptotic and hence apply
only to the rate of growth of the complexity as the problem size increases—not
to any fixed size. Nevertheless, we can give some evidence for the difficulty of
computing optimal play for many board games by generalizing them to an n x n
board. Such generalizations of chess, checkers, and GO have been shown to be
PSPACE-hard or hard for even larger complexity classes, depending on the de-
tails of the generalizadon.

8.4

THE CLASSES L AND NL

Until now, we have considered only time and space complexity bounds that are
at least linear, that is, bounds where f(n} is at least n. Now we examine smaller,

sublinear space bounds. In time complexity, sublinear bounds are insufficient for

reading the entire input, so we don’t consider them here. In sublinear space com-
plexity the machine may read the entire input but it doesn’t have enough space
to store the input. To consider this situation meaningfully, we must modify our
computational model.

We introduce a Turing machine with two tapes: a read-only input tape and a
read/write work tape. On the read-only tape the input head can detect symbols
but not change them. This head must remain on the portion of the tape contain-
ing the input. We provide a way for the machine to detect when the head is at
the left-hand and right-hand ends of the input. The work tape may be read and
written in the usual way. Only the cells scanned on the work tape contribute to
the space complexity of this type of Turing machine.

Think of a read-only input tape as a CD-ROM, a device used for input on
many personal computers. Often, the CD-ROM contains more data than the
computer can store in its main memory. Sublinear space algorithms allow the
computer to manipulate the data without storing all of it in main memory.

For space bounds that are at least linear, the two-tape TM model is equivalent
to the standard one-tape model (see Exercise 8.1). For sublinear space bounds,
we use only the two-tape model.
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DEFINITION 8.12 ....................................................................................................................

L is the class of languages that are decidable in logarithmic space on a determin-
istic Turing machine. In other words,

L = SPACE(logn).

NL is the class of languages that are decidable in logarithmic space on a nonde-
termunistic Turing machine. In other words,

NL = NSPACE(logn).

We focus on log n space instead of, say, v/n or log? n space, for several reasons
that are similar to those for our selection of polynomial time and space bounds.
Logarithmic space is just large enough to solve a number of interesting computa-
tional problems, and it has attractive mathematical properties such as robustness
even when machine model and input encoding method change. Pointers into the
input may be represented in logarithmic space, so one way to think about the
power of log space algorithms is to consider the power of a fixed number of in-
put pointers.

EXAMPLE 8.13 ..........................................................................................................................

The language A = {0*1%|k > 0} isa member of L. In section 7.1 on page 225 we
described a Turing machine that decides A by zigzagging back and forth across
the input, crossing off the Os and 1s as they are matched. That algorithm uses lin-
ear space to record which positions have been crossed off, but it can be modified
to use only log space.

The log space TM for A cannot cross off the 0Os and 1s that have been matched
on the input tape because that tape is read-only. Instead, the machine counts
the number of Os and, separately, the number of 1s in binary on the work tape.
The only space required is that used to record the two counters. In binary, each
counter uses only logarithmic space, and hence the algorithm runs in O(log n)
space. Therefore A ¢ L. :

EXAMPLE S.T4 it enstsniasissessesssstasesss et smtsesessermeen s eemeesensaressssesassa esren
Recall the language
PATH = {(G, 3,t)| G is a directed graph that has a directed path from s to t}

defined in Section 7.2. Theorem 7.12 shows that PATH is in P but that the a‘l-
gorithm given uses linear space. We don’t know whether PATI can be solved in

logarithmic space deterministically, but we do know a nondeterministic log space
algorithm for PATH.
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The nondeterministic log space Turing machine deciding PATH operates by
starting at node s and nondeterministically guessing the steps of a path from s
to t. The machine records only the position of the current node at each step on
the work tape, not the entire path (which would exceed the logarithmic space
requirement). The machine nondeterministically selects the next node from
among those pointed at by the current node. Then it repeats this action until it
reaches node t and accepts, or until it has gone on for in steps and rejects, where
m is the number of nodes in the graph. Thus PATH is in NL.

Our earlier claim that any f(n) space bounded Turing machine also runs in
time 29 (")) is no longer true for very small space bounds. For example, a Turing
machine that uses O(1) (i.e., constant) space may run for n steps. To obtain a
bound on the running time that applies for every space bound f(n) we give the
following definition.

DEFINITION 8.]5 ....................................................................................................................

If M is a Turing machine that has a separate read-only input tape and w is an
input, a configuration of M on w is a setting of the state, the work tape, and the
positions of the two tape heads. The input w is not a part of the configuration of
M on w.

If M runs in f(n) space and w is an input of length 7, the number of configu-
rations of M on w is n2°/ ("), To explain this result, let’s say that A has c states
and g tape symbols. The number of strings that can appear on the work tape is
g7, The input head can be in one of n positions and the work tape head can
be in one of f(n) positions. Therefore the total number of configurations of A
on w, which is an upper bound on the running time of M on w, is enf(n)g/ ™,
or n20UF(),

We focus almost exclusively on space bounds f(n) that are at least log . Our
earlier claim that the time complexity of a machine is at most exponential in
its space complexity remains true for such bounds because 720/ (") jg 20(f(n))
when f(n} > logn.

Recall that Savitch’s theorem shows that we can convert nondeterministic TMs
to deterministic TMs and increase the space complexity f(n) by only a squaring,
provided that f(n) > n. We can extend Savitch’s theorem to hold for sublinear
space bounds down to f(n) > logn. The proofisidentical to the original we gave
on page 279, except that we use Turing machines with a read-only input tape and
instead of referring to configurations of N we refer to configurations of N on w.
Storing a configuration of N on w uses log(n2°/ ")) = log n+O( f(n)) space. It
f(n) > logn, the storage used is O( f(n)) and the remainder of the proof remains
the same.



8.5 NL-COMPLETENESS 297

S

Dl =
L-COMPLE

zZ QO

d

As we mentioned in Example 8.14, the PATH problem is known to be in NL but
isn’t known to be in L. We believe that PATH doesn’t belong to L but we don’t
know how to prove this conjecture. In fact, we don’t know of any problem in NL
that can be proven to be outside L. Analogous to the question of whether P = NP
we have the question of whether L = NL.

As a step toward resolving the L versus NL question, we can exhibit certain
languages that are NL-complete. As with complete languages for other complex-
ity classes, the NL-complete languages are examples of languages that are, in a
certain sense, the most difficult languages in NL. If L and NL are different, all
NL-complete languages don’t belong to L.

As with our previous definitions of completeness, we define an NL-complete
language to be one which is in NL and to which any other language in NL is re-
ducible. However, we don’t use polynomial time reducibility here because, as
you will see, all problems in NL are solvable in polynomial time. Therefore ev-
ery two problems in NL except ) and £* are polynomial time reducible to one
another (see the discussion of polynomial time reducibility in the definition of
PSPACE-completeness on page 283 and Problem 7.17). Hence polynomial time
reducibility is too strong to differentiate problems in NL from one another. In-

stead we use a new type of reducibility called log s

ace reducib

DEFINITION 8.]6 ....................................................................................................................

A log space transducer is a Turing machine with a read-only input tape, a write-

only output tape, and a read/write work tape. The work tape may contain

O(log n) symbols. A log space transducer M computes a function f: ¥*— 5*,

where f(w) is the string remaining on the output tape after M halts when it is

started with w on its input tape. We call f a log space computable function. Lan-

guage A is log space reducible to language B, written A <;, B, if A is mapping
1 -

1 1 PR T T
reducible to B using a log space computable function f,

Now we are ready to define NL-completeness.

DEFINITION 8.0 7 i sstensss s s etsstesesee sttt e 1men s s ettt e e
A language B is NL-complete if

1. B € NL, and
2. every A in NL is log space reducible to B.

If one language is log space reducible to another language already known to
be in L, the original language is also in L, as the following theorem demonstrates.
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THEOREM 8.18 .........................................................................................................................
IfA<;, Band Bel,then A L.

PROOF A tempting approach to the proof of this theorem follows the model
set by Theorem 7.25, the analogous result for polynomial time reducibility. In
thatapproach, a log space algorithm for 4 first maps its input w to f(w), using the
log space reduction f, and then applies the log space algorithm for B, However,
the storage required for f(w) may be too large to fit within the log space bound,
so we need to modify this approach.

Instead, A’s machine M 4 computes individual symbols of f(w) as requested by
B’ machine M. In the simulation, M, keeps track of where Mp’s input head
would be on f(w). Every time B moves, M4 restarts the computation of f on w
from the beginning and ignores all of the output except for the desired location
of f(w). Doing so may require occasional recomputation of parts of f(w) and so
is inefficient in its time complexity. The advantage of this method is that only a
single symbol of f(w) need be stored at any point, in effect trading time for space.

COROLLARY 8.19 ...................................................................................................................

If any NL-complete language is in L, then L. = NL.

SEARCHING IN GRAPHS

TH EOREM 8.20 .........................................................................................................................
PATH 1s NL-complete.

........................................................................................................................................................................

PROOF IDEA  Example 8.14 shows that PATH is in NL, so we only need to
show that PATH is NL-hard. In other words, we must show that every language
A in NL is log space reducible to PATH.

The idea behind the log space reduction from A to PATH is to construct a
graph that represents the computation of the nondeterministic log space Turing
machine for A. The reduction maps a string w to a graph whose nodes corre-
spond to the configurations of the NTM on input w. One node points to a second
node if the corresponding first configuration can yield the second configuration
in a single step of the NTM. Hence the machine accepts w whenever some path
from the node corresponding to the start configuration leads to the node corre-
sponding to the accepting configuration.

PROOF We show how to give a log space reduction from any language A in
NL to PATH. Say that NTM machine M decides A in O(logn) space. Given an
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input w, we construct (G, s, ) in log space, where G is a directed graph that con-
tains a path from s to ¢ if and only if M accepts w.

The nodes of G are the configurations of A on w. For configurations ¢; and ¢,
of M onw, the pair (¢;, ;) is an edge of G if 5 is one of the possible next configu-
rations of M starting from ¢;. More precisely, if M’s transition function indicates
that ¢; % state together with the tape symbols under its input and work tape heads
canyield the next state and head actions to make ¢; into c2, then (¢1, ¢z) isan edge
of G. The node s is the start configuration of M on w. Machine M is modified
to have a unique accepting configuration, and we designate this configuration to
be node ¢.

This mapping reduces A to PATH because, whenever M accepts its input,
some branch of its computation accepts, which corresponds to a path from the
start configuration s to the accepting configuration ¢ in G. Conversely, if some
path exists from s to ¢ in G, some computation branch accepts when M runs on
input w, and M accepts w.

To show that the reduction operates in log space, we give a log space trans-
ducer which, on input w, outputs a description of G. This description comprises
two lists: G’s nodes and G’ edges. Listing the nodes is easy because each node is
a configuration of M on w and can be represented in clogn space for some con-
stant ¢. The transducer sequentially goes through all possible strings of length
clogn, tests whether each is a legal configuration of M on w, and outputs those
that pass the test. The transducer lists the edges similarly. Log space is suffi-
cient for verifying that a configuration ¢; of M on w can yield configuration ¢y
because the transducer only needs to examine the actual tape contents under the
head locations given in ¢; to determine that M’ transition function would give
configuration ¢y as a result. The transducer tries all pairs (¢1, ¢2) in turn to find
which qualify as edges of . Those that do are added to the output tape.

One immediate spinoff of Theorem 8.20 is the following corollary which
states that NL is a subset of P.

COROLLARY 8.21 ...................................................................................................................
NL C P.

PROOF  Theorem 8.20 shows that any language in NL is log space reducible to
FATH. Recall thata Turing machine that uses space f (n) runs in time r 20(f (™)
so a reducer that runs in log space also runs in polynomial time. Therefore any
language in NL is polynomial time reducible to PATH, which in turn is in P, by
Theorem 7.12. We know that every language that is polynomial time reducible
to a language in P is also in P, so the proof is complete.

........................................................................................................................................................................
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L]

NL EQUALS CONL

This section contains one of the most surprising results known concerning the
relationships among complexity classes. The classes NP and coNP are generally
believed to be different. At first glance, the same appears to hold for the classes
NL and coNL. The fact that NL equals coNL, as we are about to prove, shows
that our intuition about computation still has many gaps in it.

THEOREM 8.22 .........................................................................................................................
NL = coNL.

........................................................................................................................................................................

PROOF IDEA To show that every problem in coNL is also in NI, we show
that PATH is in NL because PATH is NL-complete. The NL algorithm M that
we present for PATH must have an accepting computation whenever the input
graph G does not contain a path from s to ¢.

First, lets tackle an easier problem. Let ¢ be the number of nodes in G that are
reachable from s. We assume that ¢ is provided as an input to M and show how
to use ¢ to solve PATH. Later we show how to compute c.

Given G, s, t, and ¢, the machine M operates as follows. One by one, M goes
through all the nodes of G and nondeterministically guesses whether each one is
reachable from s. Whenever a node u is guessed to be reachable, M verifies this
fact by guessing a path from s to u. If a computation branch fails to verify the
guess within m steps, it rejects. In addition, if a branch guesses that ¢ is reach-
able, it rejects. Machine M counts the number of nodes that have been verified
to be reachable. When a branch has gone through all of G’ nodes, it checks that
the number of nodes that it verified to be reachable from s equals ¢, the number
of nodes that actually are reachable, and rejects if not. Otherwise, this branch
accepts.

In other words, if M nondeterministically selects exactly ¢ nodes reachable
from s, not including ¢, and proves that each is reachable from s by guessing the
path, M knows that the remaining nodes, including ¢, are not reachable, so it can
accept.

Next, we show how to calculate ¢, the number of nodes reachable from s. We
describe a nondeterministic log space procedure whereby at least one computa-
tion branch has the correct value for ¢ and all other branches reject. Say that G
has m nodes.

For each i from 0 to m, define 4; to be the collection of nodes of G of distance
at most i from s (i.e., having a path of length at most i from s). So Ap = {s}, each
A; € Asy1, and A, contains all nodes that are reachable from s. Let ¢; be the
number of nodes in A;. We next describe a procedure that calculates ¢; 1 from
¢;. Repeated application of this procedure obtains the desired value of ¢ = ¢,
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We calculate ¢; 11 from ¢;, using an idea similar to the one presented earlier
in this proof sketch. The algorithm goes through all the nodes of G, determines
whether each is a member of 4,1, and counts the members.

To determine whether a node v isin 4,1, we use an inner loop to go through
all the nodes of ¢ and guess whether each node is in A;. Each positive guess is
verified by guessing the path of length at most i from s. For each node u verified
to be in A;, the algorithm tests whether (u, v) is an edge of G. If it is an edge, v
is in A; 1. Additionally, the number of nodes verified to be in A, is counted. At
the completion of the inner loop, if the total number of nodes verified to be in A,
is not ¢;, all of A; has not been found, so this computation branch rejects. If the
count does equal ¢; and v has not yet been shown to be in A; |, we can conclude
thatitisn’tin A; ). Then we go on to the next v in the outer loop.

PROOF [IHere is an algorithm for PATH.

M = “On input (G, s, t):
1. Letcy = 1.
2, Fori=0tom —1:
3. Lete;.q = 0.

4 Letd = 0.

5 For each node v in G-

6. For each node u in G:

7 Nondeterministically either perform or skip these steps:
8 Nondeterministically follow a path of length i from s

and if none of the nodes encountered are u, reject.

9. Increment d.
10. If (u, v) is an edge of G, increment ¢, 1. Go to Stage 6
with the next node for v.
11. If d # c;, then reject.
12. For each node u in G-
13.  Nondeterministically either perform or skip these steps:
14, Nondeterministically follow a path of length ¢ from s and
if none of the nodes encountered are u, reject.
15. If u = t, then reject.
16. Increment d.

17. It d +# ¢, then reject; otherwise, accept.”

This algorithm only needs to store ¢;, d, i, 5, and a pointer to the head of a
path, at any given time. Hence it runs in log space.

........................................................................................................................................................................

We summarize our present knowledge of the relationships among several
complexity classes as follows:

L € NL = coNL C P € PSPACE.
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We don’t know whether any of these containments are proper, although we prove
NL C PSPACE? in Corollary 9.6 of Chapter 9. Consequently, either coNL C P
or P € PSPACE must hold, but we don’t know which one does! Most re-
searchers conjecture that all of these containments are proper.

EXERCISES

8.1 Show that for any function f : N'— N, where f(n) > n, the space complexity class
SPACE(f(n)) is the same whether you define the class by using the single-tape TM
model or the two tape read-only input TM model.

8.2 Consider the following position in the standard tic-tac-toe game.

X

O
O X

Say that it is the X -player’s turn to move next. Describe the winning strategy for
this player. (Recall that a winning strategy isn’t merely the best move to make in
the current position. It also includes all the responses that this player must make in
order to win, however the opponent moves.)

8.3 Consider the following generalized geography game wherein the start node is the
one with the arrow pointing in from nowhere. Does Player I have a winning strat-
egy? Does Player II? Give reasons for your answers.

-~ (2) (3)

8.4 Show that PSPACE is closed under the operations union, complementation, and
star.

8.5 Show that NL is closed under the operations union, intersection, and star.
8.6 Show that any PSPACE-hard language is also NP-hard.

8.7 Show that Apra € L.

8.8 Show that Anga is NL-complete.

We write A C B to mean that A is a proper (i.e., not equal) subset of B.
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PROBLEMS

8.9
8.10

8.11

*8.12

8.13

8.14

*8.15

8.16

*8.17

Show that, if every NP-hard language is also PSPACE-hard, then PSPACE = NP,

"The Japanese game go-moku is played by two players, “X” and “O,” on a 19 x 19
grid. Players take turns placing markers, and the first player to achieve 5 of his
markers consecutively in a row, column, or diagonal, is the winner. Consider this
game generalized to an n x n board. Let

GM = {(P)| P is a position in generalized go-moku,
where player “X” has a winning strategy}.

By a position we mean a board with markers placed on it, such as may occur in the
middle of a play of the game. Show that GM € PSPACE.

Let A be the language of properly nested parentheses. For example, (()) and
(OO O arein A, but )  is not. Show that 4 is in L.

Let B be the language of properly nested parentheses and brackets. For example,
(LOOTON) isin B but (D] is not. Show that B isin L.

Show that TQBF restricted to formulas where the part following the quantifiers is
in conjunctive normal form is still PSPACE-complete.

Consider the following two-person version of the language PUZZLE that was de-
scribed in Problem 7.26. Each player starts with an ordered stack of puzzle cards.
They take turns placing them in order in the box and may chose which side faces up.
Player I wins if, in the final stack, all hole positions are blocked, and Player II wins
if some hole position remains unblocked. Show that the problem of determining
which player has a winning strategy for a given starting configuration of the cards
is PSPACE-complete.

The cat-and-mouse game is played by two players, “Cat” and “Mouse,” on an arbi-
trary undirected graph. At a given point each player occupies a node of the graph.
The players take turns moving to a node adjacent to the one that they currently oc-
cupy. A special node of the graph is called “Hole.” Cat wins if the two players ever
occupy the same node. Mouse wins if it reaches the Hole before the preceding hap-
pens. ‘The game is a draw if the two players ever simultaneously reach positions that
they previously occupied. Let

HAPPY-CAT = {{(G, c,m, h)| G,¢,m, h, are respectively a graph, and
positions of the Cat, Mouse, and Hole, such that
Cat has a winning strategy, if Cat moves first}.

Show that HAPPY-CAT is in P.

Let EQgex = {(R,S)| Rand S are equivalent regular expressions}. Show that
EQgex € PSPACE.

Give an example of an NL-complete context-free language.
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8.18 A chain is a sequence of strings si, sz, ... , S, wherein every string differs from the
preceding one in exactly one character. For example the following is a chain of En-
glish words:

head, hear, near, fear, bear, beer, deer, deed, feed, feet, fret, free

Let

DFACHAIN = {{M, s,t})| M is a DFA where L(M) contains a
chain of strings, starting with s, and ending with ¢}.

Show that DEACHAIN is in PSPACE.

8.19 Recall that a directed graph is strongly connected if every two nodes are connected
by a directed path in each direction. Let

STRONGLY-CONNECTED = {{(G)| G is a strongly connected graph}.

Show that STRONGLY-CONNECTED is NL-complete.
8.20 An undirected graph is bipartite if its nodes may divided into two sets so that all

edges go from a node in one set to a node in the other set. Show that a graph is
bipartite if and only if it doesn’t contain a cycle that has an odd number of nodes.
Let

BIPARTITE = {{G)| G is a bipartite graph}.
Show that BIPARTITE € NL.

*8.21 The game of nim is played with a collection of piles of sticks. In one move a player
may remove any nonzero number of sticks from a single pile. The players alter-
nately take turns making moves. The player who removes the very last stick loses.
Say that we have a game position in NIM with k piles containing s1, ... , sy sticks.
Call the position balanced if, when each of the numbers s; is written in binary and
the binary numbers are written as rows of a matrix aligned at the low order bits, each
column of bits contains an even number of 1s. Prove the following two facts.

a. Starting in an unbalanced position, a single move exists that changes the po-
sition into a balanced one.

b. Starting in a balanced position, every single move changes the position into
an unbalanced one.

Let

NIM = {(s1, ... ,sk)| each s; is a binary number and Player I has a winning
strategy in the NIM game starting at this position}.

Use the preceding facts about balanced positions to show that NIM € L.



INTRACTABILITY

Certain computational problems are solvable in principle, but the solutions re-
quire so much time or space that they can’t be used in practice. Such problems
are called intractable. Intractability can take many forms, depending on the com-
putational resources available and the type of solution desired. For example, a
problem that is easy to solve most of the time, yet occasionally difficult, would
be intractable only in the worst case. Or a problem may be easily solvable on
a supercomputer but may require an inordinate amount of time on a personal
computer. We focus on problems whose worst case complexity is so enormous
that any computer that we could conceivably build would need more time than
is thought to remain in the lifetime of the universe.

In Chapters 7 and 8, we introduced several problems thought to be intractable
but none that are provably intractable. For example, most people believe the SAT
problem and all other NP-complete problems are intractable, although we don’t
know how to prove that they are. In this chapter we give examples of problems
that we can prove to be intractable.

In order to present these examples, we develop several theorems that relate the
power of Turing machines to the amount of time or space available for computa-
tion. We conclude the chapter with a discussion of the possibility of proving that
problems in NP are intractable and thereby solving the P versus NP question.
First, we introduce the relativization technique and use it to argue that certain
methods won’t allow us to achieve this goal. Then, we discuss circuit complexity
theory, an approach taken by researchers that has shown some promise.

305
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Q.1

HIERARCHY THEOREMS

Common sense suggests that giving a Turing machine more time or more space
should increase the class of problems that it can solve. In other words, Turing
machines should be able to decide more languages in time n® than they can in
time n?. This intuition is correct, subject to certain conditions. The hierarchy
theorems formalize and prove this intuition. We use the term bierarchy theorem
because each of these theorems proves that the time and space complexity classes
aren’t all the same—they form a hierarchy whereby the classes with larger bounds
contain more languages than do the classes with smaller bounds.

We first present the hierarchy theorem for space complexity because it is
slightly simpler than the one for time complexity. Before getting to the actual
statement of the theorem, we need to make the following technical definition.

DEFINITION .1 o e

A function f: N— N, where f(n) > logn, is called space constructible if the
function that maps 1" to the binary representation of f(n}is computable in space

O(f(n)). !

In other words, f is space constructible if some TM M exists that runs in
O{f(n)) space and always halts with the binary representation of f(n) on its
tape when started on input 1”. Fractional functions such as nlogn and /n are
rounded down to the next lower integer for the purposes of time and space con-
structibility.

EXAMPLE 9.2 ..............................................................................................................................

All commonly occurring functions that are at least log n are space constructible,
including the functions logn, nlogn, and n?.

For example, n? is space constructible because a machine may take its input
1", obtain n in binary by counting the number of 1s, and output n? by using any
standard method for multiplying n by itself. The total space used is O(n) which
is certainly O(n?).

When showing that functions f(n) that are o(n) to be space constructible, we
use a separate read only input tape, as we did when we defined sublinear space
complexity in Section 8.4. For example, such a machine can compute the func-
tion which maps 1™ to the binary representation of log n as follows. It first counts
the number of 1s in its input in binary using its work tape as it moves its head
along the input tape. Then, with n in binary on its work tape, it can compute
log n by counting the number of bits in the binary representation of n.

IRecall that 1™ means a string of n 1s.
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"The role of space constructibility in the space hierarchy theorem may be un-
derstood from the following situation. If f(n) and g(n) are two space bounds,
where f(n) is asymptotically larger than g(n), we would expect a machine to be
able to compute more languages in f(n) space than in g(n) space. However, sup-
pose that f(n) exceeds g(n) by only a very small and hard to compute amount.
Then, the machine may not be able to use the extra space profitably because even
computing the amount of extra space may require more space than is available.
In this case, a machine may not be able to compute more languages in f(n) space
than it can in g(n) space. Stipulating that f(n) is space constructible avoids this
situation and allows us to prove that a machine can compute more than it would
be able to in any asymptotically smaller bound, as the tollowing theorem shows.

THEOREM 9.3 ............................................................................................................................

Space Hierarchy Theorem TFor any space constructible function f: N'— A’ )
there exists a language A that is decidable in space O(f (n)) but not in space

ol ().

........................................................................................................................................................................

PROOF IDEA  We must demonstrate a language A that has two properties.
‘The first says that A is decidable in O(f(n)) space. The second says that A isn’t
decidable in o{ f(n)) space.

We describe A by giving an algorithm B that decides it. Algorithm B will
run in O{f(n)) space, thereby ensuring the first property. Furthermore, B will
guarantee that A is different from any language that is decidable in o( £ (n)) space,
thereby ensuring the second property.

Do not expect to get as simple and clear a mental picture of the language A
as you may have for the other languages appearing so far in this book. These
other languages have been described as collections of strings satisfying specified
properties. From this semantic description, we have often gone on to give an
algorithm to test membership in the language. Language A is different in that it
is described only by an algorithm and lacks a simpler, nonalgorithmic definition.

In order to ensure that A not be decidable in o(f(n)) space, we design B to
implement the diagonalization method that we used to prove the unsolvability of
the halting problem Aty in Theorem 4.9 on page 165. If M is a machine that de-
cides a language in o( f(n)) space, B guarantees that A differs from M’s language
in at least one place. Which place? The place corresponding to a description of
M itself.

Let’s look at the way B operates. Roughly speaking, B takes its input to be
the description of a TM M. (If the input isn’t the description of any TM, then B
action is inconsequential on this input, so we arbitrarily make B reject.) Then B
runs M on the same input, namely, (M), within the space bound f(n). If M halts
within that much space, B accepts iff M rejects. If M doesn’t halt, B just rejects.
So if M runs within space f(n), B has enough space to ensure that its language
is different from M. If not, B doesn’t have enough space to figure out what M
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does, but fortunately B has no requirement to act differently from machines that
don’t run in o( f(n)) space, so B’ action on this input is inconsequential.

This description captures the essence of the proof but omits several impor-
tant details. If M runs in o(f(n)) space, B must guarantee that its language is
different from M’s language. But even when M runs in o( f(n)) space, it may use
more than f(n) space for small n, when the asymptotic behavior hasn’t “kicked
in” yet. Possibly, B might not have enough space to run M to completion on in-
put (M), and hence B will miss its one opportunity to avoid M’s language. So,
if we aren’t careful, B might end up deciding the same language that M decides,
and the theorem wouldn’t be proved.

We can fix this problem by modifying B to give it additional opportunities to
avoid M’s language. Instead of running M only when B receives input (M}, it
runs M whenever it receives an input of the form (A)10*, that is, an input of the
form (M) followed by a 1 and some number of 0s. Then, if M really is running in
o(f(n)) space, B will have enough space to run it to completion on input (A )10*
for some large value of k because the asymptotic behavior must eventually kick
in.

One last technical point arises. When B runs M on some string, M may get
into an infinite loop while using only a finite amount of space. But B is supposed
to be a decider so we must ensure that B doesn’t loop while simulating M. Any
machine that runs in space o( f(n)) uses only 2°(/(*)) time. We modify B so that
it counts the number of steps used in simulating M. If this count ever exceeds
21" then B rejects.

PROOF The following O(f(n)) space algorithm B decides a language A that
is not decidable in o(f(n)) space.

B = “On input w:

1. Letn be the length of w.

2. Compute f(n) using space constructibility, and mark off this
much tape. If later stages ever attempt to use more, reject.

3. TIfw is not of the form {AM)10* for some TM M, reject.

4. Simulate M on w while counting the number of steps used in
the simulation. If the count ever exceeds 27("), reject.

5. If M accepts, reject. If M rejects, accept.”

In stage 4, we need to give additional details of the simulation in order to de-
termine the amount of space used. The simulated machine M has an arbitrary
tape alphabet and B has a fixed tape alphabet, so we represent each cell of M
tape with several cells on B’s tape. Therefore the simulation introduces a con-
stant factor overhead in the space used. In other words, if M runs in g(n) space
then B uses d g(n) space to simulate M, for some constant d that depends on M.

Machine B is a decider because each of its stages can run for a limited time.
Let A be the language that B decides. Clearly, A is decidable in space O(f(n))
because B does so. Next, we show that A is not decidable in o( f(n)) space.
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Assume to the contrary that some Turing machine M decides A in space g(n),
where g(n) is o( f(n)). As mentioned carlier, B can simulate M using space d g(n)
for some constant d. Because 9(n) is o(f(n)), some constant ng exists, where
dg(n) < f(n)forall n > ng. Therefore B’ simulation of M will run to com-
pletion as long as the input has length rg or more. Consider what happens when
B is run on input (AM)10. This input is longer than nyg, so the simulation in
stage 4 will complete. Therefore B will do the opposite of M on the same input.
Hence M doesn’t decide A, which contradicts our assumption. Therefore 4 is
not decidable in o( f(n)) space.

COROLLARY 9.4 ......................................................................................................................

For any two functions fi, fo: N— N, where f;(n) is o(f2(n)) and f5 is space
constructible, SPACE(f(n)) C SPACE( f(n)).2

This corollary allows us to separate various space complexity classes from one
another. For example, we can casily show that the function n° is space con-
structible, for any natural number ¢. Hence for any two natural numbers ¢; < ¢,
we can prove that SPACE(n®) ¢ SPACE(n®). With a bit more work we can
show that n° is space constructible for any rational number ¢ > 0 and thereby
extend the preceding containment to hold for any rational numbers 0 < ¢; < ¢o.
Observing that two rational numbers ¢, and ¢z always exist between any two real
numbers €; < €5 such that ¢; < €1 < €2 < €2 we obtain the following additional
corollary demonstrating a fine hierarchy within the class PSPACE,

COROLLARY 9'5 e et E et e s e ae e s e sae e b b e v ernmt e e oataem s snnaeeeenereiennne sannen
For any two real numbers 0 < ¢; < €2,
SPACE(n“') ¢ SPACE(n*?).

We can also use the space hierarchy theorem to separate two space complexity
classes we previously encountered.

COROLLARY 9.6 ......................................................................................................................
NL C PSPACE.

PROOF  Savitch’s theorem shows that NI, C SPACE(log? n), and the space hi-
erarchy theorem shows that SPACE(log? n) & SPACE(n). Hence the corollary
follows.

2The expression A G B means that A is a proper (i.e., not equal) subset of B.
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Now we establish the main objective of this chapter: proving the existence
of problems that are decidable in principle but not in practice, that is, problems
that are decidable but intractable. Fach of the classes SPACE(r*) is contained
within the class SPACE(n!°8 ™), which in turn is strictly contained within the class
SPACE(2"). Therefore we obtain the following additional corollary separating
PSPACE from EXPSPACE = |, SPACE(2"").

COROLLARY 9.7 ----------------------------------------------------------------------------------------------------------------------
PSPACE ¢ EXPSPACE.

This corollary establishes the existence of decidable problems that are in-
tractable, in the sense that their decision procedures must use more than polyno-
mial space. The languages themselves are somewhat artificial—interesting only
for the purpose of separating complexity classes. We use these languages to prove
the intractability of other, more natural, languages after we discuss the time hi-
erarchy theorem.

DEF‘INITION 9.8 ........................................................................................................................

A function ¢t: N— N, where t(n) > nlogn, is called time constructible if the
function that maps 1" to the binary representation of ¢(n) is computable in time

O(t(n)).

In other words, ¢ is time constructible if some TM M exists that runs in O(t(n))
time and always halts with the binary representation of #(n) on its tape when
started on input 1”.

EXAMPLE 0.0 ettt e s e et sa b e b et e

All commonly occurring functions that are at least n log n are time constructible,
including the functions n log n, ny/n, n?, and 2".

For example, to show that n\/n is time constructible, we first design a TM to
count the number of 1s in binary. To do so the TM moves a binary counter along
the tape, incrementing it by 1 for every input position, until it reaches the end of
the input. This partuses O(n log n) steps because O(log n) steps are used for each
of the n input positions. Then, we compute |n\/n| in binary from the binary
representation of n. Any reasonable method of doing so will work in O(n logn)
time because the length of the numbers involved is O(log n).

The time hierarchy theorem is an analog for time complexity to Theorem 9.3.
For technical reasons that will appear in its proof the time hierarchy theorem
is slightly weaker than the one we proved for space. Whereas any space con-
structible asymptotic increase in the space bound enlarges the class of languages
so decidable, for time we must further increase the time bound by a logarithmic
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factor in order to guarantee that we can obtain additional languages. Conceiy-
ably, a tighter time hierarchy theorem is true, but at present we don’t know how
to prove it. This aspect of the time hierarchy theorem arises because we measure
time complexity using single-tape Turing machines. We can prove tighter time
hierarchy theorems for other models of computation.

THEOREM 9.10 .......................................................................................................... emrsenrrer..

‘Time Hierarchy Theorem For any time constructible functon : N—WN,
there exists a language A that is decidable in time O(t(n)) but not in time

o(t(n)/log t(n)).

PROOF IDEA The proof of this theorem is similar to the proof of Theo-
rem 9.3. We construct a machine B that decides a language A in time O(t(n))
whereby A cannot be decided in o(t(n)/logt(n)) time. Here, B takes an input
w of the form (M) 10* and simulates M on input w, making sure not to use more
than ¢(n) time. If M halts within that much time, B gives the opposite output.
The important difference in the proof concerns the cost of simulating A/
while, at the same time, counting the number of steps that the simulation is us-
ing. Machine B must perform this timed simulation efficiently so that B runs
in O(t(n)) time while accomplishing the goal of avoiding all languages decid-
able in o((n)/ log t(n)) time. For space complexity, the simulation introduced a
constant factor overhead, as we observed in the proof of Theorem 9.3. For time
complexity, the simulation introduces a logarithmic factor overhead. The larger
overhead for time is the reason for the appearance of the 1/log ¢(n) factor in the
statement of this theorem. If we had a way of simulating a single-tape Turing ma-
chine by another single-tape Turing machine for a prespecified number of steps,
using only a constant factor overhead in time, we would be able to strengthen this

theorem by changing o(t(n)/ log t(n)) to o(t(n}). No such efficient simulation is
known.

PROOF  The following O(¢(n)) time algorithm B decides a language A thatis
not decidable in o(t(n)/log t(n)) time.

B = “On input w:

1. Let 7 be the length of w.

2. Compute t(n) using time constructibility, and store the value
[#(r)/log t(n)] ina binary counter. Decrement this counter be-
fore each step used to carry out stages 3, 4, and 5. If the counter
ever hits 0, reject.

If w is not of the form (M)10* for some TM M, reject.
Simulate M on w.
If M accepts, then reject. If M rejects, then accept.”

Nk w
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We examine each of the stages of this algorithm to determine the running
time., Obviously, stages 1, 2 and 3 can be performed within O(t(n)) time.

In stage 4, every time B simulates one step of M, it takes M’s current state
together with the tape symbol under M’ tape head and looks up M’s next action
in its transition function so that it can update M’s tape appropriately. All three of
these objects (state, tape symbol, and transition function) are stored on B’ tape
somewhere. If they are stored far from each other, B will need many steps to
gather this information each time it simulates one of Ms steps. Instead, B always
keeps this information close together.

‘Kfp can 'rl'nnJr nF Rc c1-r1n-|p tane as ore
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track o ge
tracks is by storing one track in the odd positons and the other in the even po-
sitions. Alternatively, the two-track effect may be obtained by enlarging B’s tape
alphabet to include each pair of symbols, one from the top track and the second
from the bottom track. We can get the effect of additional tracks similarly. Note
that multiple tracks introduce only a constant factor overhead in time, provided
that only a fixed number of tracks are used. Here, B has three tracks.

One of the tracks contains the information on s tape, and a second contains
its current state and a copy of M’ transition function. During the simulation,
B keeps the information on the second track near the current position of M'’s
head on the first track. Every time M’s head position moves, B shifts all the in-
formation on the second track to keep it near the head. Because the size of the
information on the second track depends only on M and not on the length of
the input to M, the shifting adds only a constant factor to the simulation time.
Furthermore, because the required information is kept close together, the cost of
looking up M’s next action in its transition function and updating its tape is only
a constant. Hence if M runs in g(n) time, B can simulate it in O(g(n)) time.

oz ofan 1N ag 2 and A B muct derraiean

At every step 1n stages > and 4, O must decrement the Step counter or 15111:{ Y
setinstage 2. Here, B can do so withoutadding excessively to the simulation time
by keeping the counter in binary on a third track and moving it to keep it near the
present head position. This counter has a magnitude of about t(n) / log t(n), so its
length is log(t(n)/ log t(n)), which is O(log t(n)). Hence the cost of updating and
moving it at each step adds a log ¢(n) factor to the simulation time, thus bringing
the total running time to O(¢(n)). Therefore A is decidable in time O(t(n)).

To show that A is not decidable in o(t(n)/logt(n)) time we use an argument
similar to one used in the proof of Theorem 9.3. Assume to the contrary that TM
M decides A in time g(n), where g(n) is o(t(n) /logt(n)). Here, B can simulate

M using time d g(n) for some constant d. If the total simulation time (not count-
ing the time to update the step counter) is at most ¢(n)/ log t(n), the simulation
will run to completion. Because g(n) is o(t(n}/logt(n)), some constant ng ex-
ists where d g(n) < t(n)/logt(n) for all n > ngy. Therefore B’s simulation of M
will run to completion as long as the input has length ng or more. Consider what
happens when we run B on input (M)10"°. This input is longer than ng so the
simulation in stage 4 will complete Therefore B will do the opposite of M on

nnnnnnnnnn ~ . P IR PRI L, Aﬂn“___..‘_ o
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Therefore A is not decidable in o(t(n)/log t(n)) time.

........................................................................................................................................................................
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Now we can establish analogs to Corollaries 9.4, 9.5, and 9.7 for time com-
plexity.
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COROLLARY 9.12 ...................................................................................................................

For any two real numbers 1 < ¢; < e,

COROLLARY 9.13 ...................................................................................................................
P C EXPTIME.

EXPONENTIAL SPACE COMPLETENESS

We can use the preceding results to demonstrate that a specific language is ac-
tually intractable. We do so in two steps. First, the hierarchy theorems tell us
that a Turing machine can decide more languages in EXPSPACE than it can
in PSPACE. Then, we show that a particular language concerning generalized
regular expressions is complete for EXPSPACE and hence can’t be decided in
polynomial time or even in polynomial space.

Before getting to their generalization, let’s briefly review the way we intro-
duced regular expressions in Definition 1.26. They are built up from the atomic
expressions {), e, and members of the alphabet, by using the regular operations
union, concatenation, and star, denoted U, o, and *, respectively. From Prob-
lem 8.16 we know that we can test the equivalence of two regular expressions in
polynomial space.

We show that, by allowing regular expressions with more operations than the
usual regular operations, the complexity of analyzing the expressions may grow
dramatically. Let 1 be the exponentiation operation. If R is a regular expression
and k is a nonnegative integer, writing R 7 k is equivalent to the concatenation
of R with itself k times. We also write R as shorthand for R T k. In other words,

k

RF=R1k=RoRo---oR.

Generalized regular expressions allow the exponentiation operation in addition
to the usual regular operations. Obviously, these generalized regular expressions
still generate the same class of regular languages as do the standard regular ex-
pressions. The reason is that we can eliminate the exponentiation operation by
repeating the expression to which it applied.
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Let

EQgrex; = {{Q, R)| Q and R are equivalent regular

expressions with exponentiation}

To show that FQgey; is intractable we show that it is complete for the class
EXPSPACE. Any EXPSPACE-complete problem cannot be in PSPACE, much
less in P. Otherwise EXPSPACE would equal PSPACE, contradicting Corol-
lary 9.7.

DEFINITION 9.14 ....................................................................................................................
A language B is EXPSPACE-complete if

THEOREM 9. D e e et aerersssnarare senareoas
EQgex; is EXPSPACE-complete.

PROOF IDEA In measuring the complexity of deciding EQgex; we assume
that all exponents are written as binary integers. The length of an expression is
the total number of symbols that it contains.

We sketch an EXPSPACE algorithm for EQgex;. To test whether two ex-
pressions with exponentiation are equivalent, we first use repetition to eliminate
exponentiation, then convert the resulting expressions to NFAs. Finally we use an
NFA equivalence testing procedure similar to the one used for deciding ALLyga
in Example 8.4.

To show that a language A in EXPSPACE is polynomial time reducible to
EQgrex;», we utilize the technique of reductions via computation histories that we
introduced in Section 5.1. The construction is similar to the construction given
in the proof of Theorem 5.10.

Given a TM M for A we design a polynomial time reduction mapping an in-
put w to a pair of expressions, () and R, that are equivalent exactly when M ac-
cepts w. The expressions €) and R simulate the computation of M on w. Expres-
sion ) simply generates all strings over the alphabet consisting of symbols that
may appear in computation histories. Expression R generates all strings that are
not rejecting computation histories. So, if the TM accepts its input, no rejecting
computation histories exist, and expressions () and R generate the same language.
Recall that a rejecting computation history is the sequence of configurations that
the machine enters in a rejecting computation on the input. See page 176 in Sec-
tion 5.1 for a review of computation histories.

The difficulty in this proof is that the size of the expressions constructed must
be polynomial in 7 (so that the reduction can run in polynomial time), whereas
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the simulated computation may have exponential length. The exponentiation
operation is useful here to represent the long computation with a relatively short
expression.

PROOF  Firstwe present a nondeterministic algorithm for testing whether two
NFAs are inequivalent.

N = “On input (N7, Ny}, where Ny and N, are NFAs:

1. Place a marker on each of the start states of Njand Nos.

2. Repeat 29'%% times, where ¢; and ¢ are the numbers of states

in Ny and Ns.

3. Nondeterministically select an input symbol and change the
positions of the markers on the states of N and N to simulate
reading that symbol.

If at any point, a marker was placed on an accept state of one of
the finite automata and not on any accept state of the other finite
automaton, accept. Otherwise, reject.”

fﬁ

If automata N; and N are equivalent, N clearly rejects because it only accepts
when it determines that one machine accepts a string that the other does not ac-
cept. If the automata are not equivalent, some string is accepted by one and not
by the other. Some such string must be of length at most 291 ¢z, Otherwise, con-
sider using the shortest such string as the sequence of nondeterministic choices.
Only 271+ different ways exist to place markers on the states of N; and Ny, so
in a longer string the positions of the markers would repeat. By removing the
portion of the string between the repetitions a shorter such string would be ob-
tained. Hence algorithm N would guess this string among its nondeterministic
choices and would accept. Thus N operates correctly.

Algorithm NV runs in nondeterministic linear space and thus, by applying Sav-
itch’s theorem, we obtain a deterministic O(n?) space algorithm for this problem.
Next we use the deterministic form of this algorithm to design the following al-
gorithm I that decides EQpex;.

E = “On input (Rq, Rs) where R, and R» are regular expressions with

exponentiation:

1. Convert Ry and R to equivalent regular expressions Q, and Q2
that use repetition instead of exponentiation.

2. Convert Q; and Q2 to equivalent NFAs Ny and N, using the
conversion procedure given in the proof of Lemma 1.29.

3. Use the deterministic version of algorithm N to determine
whether Ny and N, are equivalent.”

Algorithm E obviously is correct. To analyze its space complexity observe that
using repetition to replace exponentiation may increase the length of an expres-
sion by a factor of 2!, where ! is the sum of the lengths of the exponents. Thus
expressions ()1 and Q2 have a length of at most n2", where n is the input length.
The conversion procedure of Lemma 1.29 increases the size linearly and hence




316 CHAPTER 9/ INTRACTABILITY

NFAs N and N, have at most O(n2") states. Thus with input size O(n2"), the
deterministic version of algorithm N uses space O((n2")?) = O(n?22"). Hence
EQgex; is decidable in exponential space.

Next, we show that FQgex. is EXPSPACE-hard. Let A be a language that

is decided by TM M running in space 2("") for some constant k. The reduction
maps an input w to a pair of regular expressions, @ and R. Expression @Q is A*
where, if T and ) are M’s tape alphabet and states, A = T'UQU{#} is the alphabet
consisting of all symbols that may appear in a computation history. We construct
expression R to generate all strings that aren’t rejecting computation histories
of M on w. Of course, M accepts w iff M on w has no rejecting computation
histories. Therefore the two expressions are equivalent iff M accepts w. The
construction is as follows.

A rejecting computation history for M on w is a sequence of configurations
separated by # symbols. We use our standard encoding of configurations whereby
a symbol corresponding to the current state is placed to the left of the cur-
rent head position. We assume that all configurations have length 2(*") and are
padded on the right by blank symbols if they otherwise would be too short. The
first configuration in a rejecting computation history is the start configuration of
M on w. The last configuration is a rejecting configuration. Each configuration
must follow from the preceding one according to the rules specified in the tran-

sition function.

A string may fail to be a rejecting computation in several ways. Either it fails
to start properly, fails to end properly, or is incorrect somewhere in the middle.
EXPYCSSiOH R equals Rhad-start Y Rbad-window URbad-rejecta where each R; COI’I'GSpOIldS
to one of the three ways a string may fail.

We construct expression Ry,g.seare to generate all strings that fail to start with
the start configuration C, of M on w, as follows. Configuration C; looks like
Qowiwy * -~ wypuw- - u#, Wewrite Rpag.geare as the union of several subexpressions
to handle each part of Cy:

Rbad-start - SO U Sl U U Sn U Sb J S#.

Expression Sy generates all strings that don’t start with g;. We let Sy be the
expression A_ g, A*. The notation A_ 4, is shorthand for writing the union of all
symbols in A except qq.

Expression S generates all strings that don’t contain w, in the second po-
sition. We let S; be A A_,,, A*. In general, for 1 < i < n expression S; is
A*A_,, A*. Thus S; generates all strings that contain any symbols in the first 4
positions, any symbol except w; in position ¢ + 1 and any string of symbols fol-
lowing position i + 1. Note that we have used the exponentiation operation here.
Actually, at this point, exponentiation is more of a convenience than a necessity
because we could have instead repeated the symbol A i times without excessively
increasing the length of the expression. But, in the next subexpression, exponen-
tiation is crucial to keeping the size polynomial.

Expression S, generates all strings that fail to contain a blank symbol in some
position n + 2 through 2(n*} We could introduce subexpressions S,, 1o through
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Synry for this purpose, but then expression R,y e would have exponentia]
length. Instead we let

Sp= A" (AU T2 A AT,

‘Thus S, generates strings that contain any symbols in the first n + 1 positions,
any symbols in the next ¢ positions, where ¢ can range from 0 to 2("*) — 5 — 2,
and any symbol except blank in the next position.

Finally S, generates all strings that don’t have a # symbol in position 2(*") 4 1,
Let S; be A" VA, A%,

Now that we have completed the construction of Ry,g_gr, We turn to the next
piece, Ryad.rejece. 1t generates all strings that don’t end properly, that is, strings
that fail to contain a rejecting configuration. Any rejecting configuration con-
tains the state grejecr, 50 we let

*
—Greject

Rbad—reject =A

Thus Ry, reject generates all strings that don’t contain Greject-

Finally, we construct Ri,g.window, the expression that generates all strings
whereby one configuration does not properly lead to the next configuration. Re-
call that in the proof of the Cook-Levin theorem, we determined that one con-
figuration legally yields another whenever every three consecutive symbolsin the
first configuration correctly yield the corresponding three symbols in the second
configuration according to the transition function. Hence, if one configuration
fails to yield another, the error will be apparent by examining the appropriate six
symbols. We use this idea to construct Ry, window:

ni
Rbad—window = U A* abe A(z( '-2) def A” s
bad(abc,de f)

where bad(abe, de f) means that abe doesn’t yield de f according to the transition
function. The union is only taken over such symbols a, b, ¢, d, e, and f in A.
The following figure illustrates the placement of these symbols in a computation
history.

% Cin
§|#l lalb‘cl ’#I ’dle]f] |#’§

Li 2(n’c)_ 9 A_,T

FIGURE 9.1
Corresponding places in adjacent configurations

To calculate the length of R, we need to determine the length of the exponents
that appear in it. Several exponents of magnitude roughly 2(%") appear, and their
total length in binary is O(n*). Therefore the length of R is polynomial in n.
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9.2

RELATIVIZATION

'The proof that EQgey; is intractable rests on the diagonalization method. Why
don’t we show that SAT is intractable in the same way? Possibly we could use
diagonalization to show that a nondeterministic polynomial time TM can decide
a language that is provably not in P. In this section we introduce the method
of relativization to give strong evidence against the possibility of solving the P
versus NP question by using a proof by diagonalization.

In the relativization method, we modify our model of computation by giv-
ing the Turing machine certain information essentially for “free.” Depending on
which information is actually provided, the Turing machine may be able to solve
some problems more easily than before.

For example, suppose that we grant the Turing machine the ability to solve
the satisfiability problem in a single step, for any size Boolean formula. Never
mind how this feat is accomplished—imagine an attached “black box” that gives
the machine this capability. We call the black box an eracle to emphasize that
it doesn’t necessarily correspond to any physical device. Obviously, the machine
could use the oracle to solve any NP problem in polynomial time, regardless of
whether P equals NP, because every NP problem is polynomial time reducible to
the satisfiability problem. Such a Turing machine is said to be computing relative
to the satisfiability problem; hence the term relativization.

In general, an oracle can correspond to any particular language, not just the
satisfiability problem. The oracle allows the Turing machine to test membership
in the language without actually having to compute the answer itself. We formal-
ize this notion shortly. You may recall that we encountered oracles once before,
in Section 6.3. There, we defined them for the purpose of classifying problems
according to the degree of unsolvability. Here, we use oracles to better under-
stand the power of the diagonalization method.

DEFINITION 9"'6 ....................................................................................................................

An oracle is a language A. An oracle Turing machine M* is an ordinary Turing
machine with an extra tape called the oracle tape. Whenever M writes a string
on the oracle tape it is informed whether that string is a member of 4, in a single
computation step.

Let P4 be the class of languages decidable with a polynomial time oracle Tur-
ing machine that uses oracle A. Define NP similarly.

EXAMPLE .17 oo s rmnissass st ssssssssss st sss ses s tesssmsensens senssssessemenssneseneesesesentes

As we mentioned earlier, polynomial time computation relative to the satisfia-
bility problem contains all of NP. In other words, NP C PS4l Furthermore,
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coNP C P because P57, being a deterministic complexity class, is closed un-
der complementation.

B

EXAMPLE 9.18 ..........................................................................................................................

psAaT PSAT

Just as contains languages that we believe are notin P, N contains lan-
guages that we believe are not in NP. For example, say that two Boolean formulas
¢ and ¢ over the variables x1, ... , z; are equivalent if the formulas have the same
value on any assignment to the variables. Say that a formula is minimal if no
smaller formula is equivalent to it. Let

NONMIN-FORMULA = {{¢}| ¢ is not a minimal Boolean formula}.

NONMIN-FORMULA doesn’t seem to be in NP (though whether it actually
belongs to NP is not known). However, NONMIN-FORMULA is in NP>/ be-

cause a nondeterministic polynomial time oracle Turine machine with a2 S4A7T or-
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acle can test whether ¢ is a member, as follows. First, the inequivalence problem
for two Boolean formulas is solvable in NP, and hence the equivalence prob-
lem is in coNP, because a nondeterministic machine can guess the assignment on
which the two formulas have different values. Then, the nondeterministic ora-
cle machine for NONMIN-FORMUI.A nondeterministically guesses the smaller
equwalent formula, tests whether it actually is equivalent using the SAT oracle,
&L ep(b .lI l[ lb B

Q.\

LIiMITS OF THE DIAGONALIZATION METHOD

The next theorem demonstrates oracles A and B for which P4 and NP* are
provably different and P? and NP? are provably equal. These two oracles are
important because their existence indicates that we are unlikely to resolve the P
versus NP question by using the diagonalization method.

At its core, the diagonalization method is a simulation of one Turing machine
bv another. The

by another.
mine the behavior of the other machine and then behave differently. Suppose
that both of these Turing machines were given identical oracles. Then, whenever
the simulated machines queries the oracle, so can the simulator, and therefore the
simulation can proceed as before. Consequently, any theorem proved about Tur-
ing machines by using only the diagonalization method would still hold if both
machines were given the same oracle.

In particular, if we could prove that P and NP were different by diagonaliz-
ing, we could conclude that they are different relative to any oracle as well. But
P5 and NP# are equal, so that conclusion is false. Hence diagonalization isn’t
sufficient to separate these two classes. Similarly, no proof that relies on a simple
simulation could show that the two classes are the same because that would show
that they are the same relative to any oracle, but in fact P4 and NP are different.

+ . . . . .
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THEOREM 9.19 -------------------------------------------------------------------------------------------------------------------------

1. An oracle A exists whereby P4 # NP,
2. An oracle B exists whereby PB = NP”,

........................................................................................................................................................................

PROOF IDEA Exhibiting oracle B is easy. Simply let B be any PSPACE-
complete problem such as TQBF.

We exhibit oracle A by construction. We design A so that a certain language
L, in NP? provably requires brute force search and so L4 cannot be in PA.
Hence we can conclude that P4 # NP, The construction considers every poly-
nomial time oracle machine in turn, and ensures that each one fails to decide the
language L 4.

PROOF Let B be TQBF. We have the following series of containments:

1 2 3
NPT « NPSPACE C PSPACE C PTOF,

Containment 1 holds because we can convert the nondeterministic polynomial
time oracle machine to a nondeterministic polynomial space machine that com-
putes the answers to queries regarding TQBF instead of using the oracle. Con-
tainment 2 follows from Savitch’s theorem. Containment 3 holds because TQBF
is PSPACE-complete. Hence we conclude that PTE = NpTUEF,

Next, we show how to construct oracle A. For any oracle A, let L4 be the
collection of all strings for which a string of equal length appears in A. Thus

La={w|3zeAl|z|=|w/]}.

Obviously, for any A, the language L 4 is in NPA.

To show L 4 is not in P4, we design A as follows. Let My, M, ... be a list
of all polynomial time oracle TMs. We may assume for simplicity that Af; runs in
time n’. The construction proceeds in stages, where stage i constructs a part of
A, which ensures that M/* doesn’t decide 1. 4. We construct A by declaring that
certain strings are in A and others aren’t in A. Each stage determines the status
of only a finite number of strings. Initially, we have no information about A. We
begin with stage 1.

Stage i. So far, a finite number of strings have been declared to be in or out
of A. We choose n greater than the length of any such string and large enough
so that 2" is greater than n’, the running time of M;. We now show how to extend
our information about A so that M* accepts 1" whenever that string isnotin L 4.

We run M; on input 1" and respond to its oracle queries as follows. If M;
queries about a string y whose status has already been determined, we respond
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consistently. If 4’s status is undetermined, we respond NO to the query and de-
clare y to be out of A. We continue the simulation of M; until it halts.

Now consider the situation from M;%s perspectve. If it finds a string of
length nin A, it should accept because it knows that 1" isin L 4. If M; determines
that all strings of length n aren’tin A, it should reject because it knows that 17 is
notin L 4. However, it doesn’t have enough time to ask aboutall strings of length
n, and we have answered NO to each of the queries it has made. Hence when A,
halts and must decide whether to accept or reject, it doesn’t have enough infor-
mation to be sure that its decision is correct.

Our goal is to make sure that its decision is not correct. We do so by observ-
ing its decision and then extending A so that the reverse is true. Thus, if M;
accepts 1", we declare all the remaining strings of length n to be out of A and
so determine that 1" is notin L 4. If M, rejects 1", we find a string of length n
that M; hasn’t queried and declare that string to be in A to guarantee that 1" is
in L 4. Such a string must exist because M, runs for n' steps, which is fewer than
2", the total number of strings of length n. We have achieved the goal of stage 1,
so it is completed. We proceed with stage 7 + 1.

After finishing all stages, we complete the construction of A by arbitrarily
declaring that any string whose status remains undetermined by all stages is out
of A. No polynomial time oracle machine decides L 4 with oracle A, and so the
theorem is proved.

In summary, the relativization method tells us that to solve the P versus NP
question we must analyze computations, not just simulate them. In Section 9.3,
we introduce one approach that may lead to such an analysis.

9.3

CIRCUIT COMPLEXITY

Computers are built from electronic devices wired together in a design called a
digital circuit. We can also simulate theoretical models, such as Turing machines,
with the theoretical counterpart to digital circuits, called Boolean circuits. 'Two
purposes are served by establishing the connection between Turing machines
and Boolean circuits. First, researchers believe that circuits provide a convenient
computational model for attacking the P versus NP and related questions. Sec-
ond, circuits provide an alternative proof of the Cook-Levin theorem that SAT
is NP-complete. We cover both topics in this section.
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DEFINITION 9.20 ....................................................................................................................

A Boolean circuit is a collection of gates and inputs connected by wires. Cycles
aren’t permitted. Gates take three forms: AND gates, OR gates, and NOT gates,
as shown schematically in the following figure.

inputs
outputs
AND OR NOT
FIGURE 9.2

An AND gate, an OR gate, and a NOT gate

'The wires in a Boolean circuit carry the Boolean values 0 and 1. The gates are
simple processors that compute the Boolean functions AND, OR, and NOT. The
AND function outputs 1 if both of its inputs are 1 and outputs 0 otherwise. The
OR function outputs 0 if both of its inputs are 0 and outputs 1 otherwise. The
NOT function outputs the opposite of its input; in other words, it outputs a 1 if
its input is 0 and a 0 if its input is 1. The inputs are labeled 21, ... ,z,. One of

the gates is designated the outpur gate. The following figure depicts a Boolean
circuit.

mP_Ut x; i) I3
variables

output gate

FIGURE 9.3
An example of a Boolean circuit

A Boolean circuit computes an output value from a setting of the inputs by
propagating values along the wires and computing the function associated with
the respective gates until the output gate is assigned a value. The following figure
shows a Boolean circuit computing a value from a setting of its inputs.
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inputs

1 output

FIGURE 9.4
An example of a Boolean circuit computing

We use functions to describe the input/output behavior of Boolean cir-
cuits. To a Boolean circuit C' with n input variables, we associate a function
fc: {0,1}"—{0,1}, where if C' outputs b when its inputs z1, ... ,x, are set to
ar, ..., an, we write fo(an, ... ,a,) = b. We say that C' computes the function
fc. We sometimes consider Boolean circuits that have multiple output gates. A
function with k output bits computes a function whose range is {0,1}*.

EXAMPLE .21 o s s ssstssssssstassssssssmsssssssansossss tasons sesessss sess s srsassntass

‘The n-input parity function parity, : {0,1}"—— {0,1} outputs 1 if an odd num-
ber of 1s appear in the input variables. The following circuit computes parity,,
the parity function on 4 variables.

A Boolean circuit that computes the parity function on four variables
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We plan to use circuits to test membership in languages, suitably encoded into
{0,1}. One problem that occurs is that any particular circuit can handle only in-
puts of some fixed length, whereas a language may contain strings of different
lengths. So, instead of using a single circuit to test language membership, we use
an entire family of circuits, one for each input length, to perform this task. We
formalize this notion in the following definition.

DEFINITION .22 ottt sas et ot ssaess et ans setssseasan st oms s st amsts emsensassnsnas

A circuit family C is an infinite list of circuits, (Cy, Cy, Cs, . .. ) where C), has n
input variables. We say that C decides a language A over {0,1} if, for every string

W,
weA iff C,(w)=1,
where n is the length of w.

The size of a circuit is the number of gates that it contains. Two circuits are
equivalent if they have the same input variables and output the same value on ev-
ery input assignment. A circuitis (size) minimal if no smaller circuit is equivalent
to it. The problem of minimizing circuits has obvious engineering application
but is very difficult to solve in general. Even testing whether a particular circuit
is minimal does not appear to be solvable in P or in NP. A circuit family for a lan-
guage is minimal if every C; on the list is a minimal circuit. The size complexity
of a circuit family (Cy, C, Cy, ... ) is the function f: N— N, where f(n) is the
size of Cp,.

The depth of a circuit is the length (number of wires) of the longest path from
an input variable to the output gate. We define depth minimal circuits and circuit
families, and the depth complexity of circuit families as we did with circuit size.
Circuit depth complexity will be of particular interest in Section 10.5 on parallel
computation,

DEFINITION .23 sttt s iss et st st see s asm s sonenssnsssnmsen

"The circuit (size) complexity of a language is the size complexity of a minimal
circuit family for that language. The circuit depth complexity of a language is
defined similarly using depth instead of size.

EXAMPLE 9.24 ............................................................

We can easily generalize Example 9.21 to give circuits that compute the parity
function on n variables with O(n) gates. One way to do so is to build a binary tree
of gates that compute the XOR function, where the XOR function is the same as
the 2-parity function, and then implement each XOR gate with 2 NOTS, 2 ANDs,
and 1 OR, as we did in that earlier example.

Let A be the language of strings that contain an odd number of 1s. Then A
has circuit complexity O(n). i
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The circuit complexity of a language is related to its time complexity. Any
language with small time complexity also has small circuit complexity, as the fol-
lowing theorem shows.

THEOREM 9.25 .........................................................................................................................

Let £: N— M\ be a function, where t(n) > n. If A € TIME(¢(n)), then A has
circuit complexity O(t%(n)).

This theorem gives an approach to proving that P # NP whereby we attempt
to show that some language in NP has more than polynomial circuit complexity.

PROOF IDEA  Let M be a TM that decides A in time ¢(n). (For simplicity, we
ignore the constant factor in O(t(n)), the actual running time of M.) For each n
we construct a circuit Cy, that simulates M on inputs of length n. The gates of
C, are organized in rows, one for each of the #(n) steps in M’s computation on
an input of length n. Each row of gates represents the configuration (state, head
position, and tape contents) of M at the corresponding step. Each row is wired
into the previous row so that it can calculate its configuration from the previ-
ous row’s configuration. We modify M so that the input is encoded into {0,1}.
Moreover, when M is about to accept, it moves its head onto the leftmost tape
cell and writes the u symbol on that cell prior to entering the accept state. That
way we can designate a gate in the final row of the circuit to be the output gate.

PROOF Let M = (Q,%,T, 6, go, Gaccept; Greject) decide A in time t(n) and let w
be an input of length n to M. Define a tableau for M on w to be a t(n) x #(n)
table whose rows are configurations of M. The top row of the tableau contains
the start configuration of M on w. The ith row contains the configuration at the
ith step of the computation.

For convenience, we modify the representation format for configurations in
this proof. Instead of the old format, described on page 128, where the state ap-
pears to the left of the symbol that the head is reading, we represent both the
state and the tape symbol under the tape head by a single composite character.
For example, if M is in state g and its tape contains the string 1011 with the head
reading the second symbol from the left, the old format would be 1¢011 and the

new format would be 1[g0J1 1, where the composite character [g0] represents both
q TI’IP ctate. and O tha covmhbhal 11ndar tha lhaad

9 AL SLAlLy Qlild Ve LIIU oyl.l.l.UUl. (SYUAVIWI DR WLy e -LU N

Each entry of the tableau can contain a tape symbol (member of ') or a com-~
bination of a state and a tape symbol (member of @ x T'). Call the entry at the
ith row and jth column of the tableau cell[i,j]. The top row of the tableau is
cell[1,1], ..., cell[1,¢(n)] and contains the starting configuration.

We make two assumptions about M in defining the notion of a tableau. First,
as we mentioned in the proofidea, M accepts only when its head is on the leftmost
tape cell and that cell contains the u symbol. Second, once M does halt it stays
in the same configuration for all future time steps. So, by looking at the leftmost
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cell in the final row of the tableau, cell[t(n), 1], we can determine whether M has
accepted. The following figure shows part of a tableau for M on the input 0010,

1 2 3 t(n)

1 R start configuration
celllt,1]—" (LA T O ufululy - Suration
second configuration

cellt(n),1]
(accept 1
position)

FIGURE 9.6
A tableau for M on input 0010

t(n)th configuradon

‘The content of each cell is determined by certain cells in the preceding row.
If we know the values at cellfi — 1,5 — 1], cell[i — 1,7], and cell[i — 1, j + 1], we
can obtain the value at cell[i, j] with M’ transition function. For example, the
following figure magnifies a portion of the tableau in Figure 9.6. The three top

symbols, 0, 0, and 1, are tape symbols without states, so the middle symbol must
remain a O in the next row, as shown.

Now we can begin to construct the circuit C,,. It has several gates for each

cell in the tableau. These gates compute the value at a cell from the values of the
three cells that affect it.



9.3 CIRCUIT COMPLEXITY 3927

'To make the construction easier to describe, we add lights that show the output
of some of the gates in the circuit. The lights are for illustrative purposes only
and don’t affect the operation of the circuit.

Let k& be the number of elements in T U (I' x Q). We create k lights for each
cell in the tableau, one light for each member of T and one light for each mem-
ber of (T' x Q) —a total of kt?(n) lights. We call these lights light][i, 5, s], where
1 <4,7 <t(n)ands € TU(T x Q). The condition of the lights in a cell indicates
the contents of that cell. If light[i, j, s] is on, cell[i, j] contains the symbol s. Of
course, if the circuit is constructed properly, only one light would be on per cell.

Let’s pick one of the lights, say, light[i. j, s] in cell[i, j]. This light should be
on if that cell contains the symbol s. We consider the three cells that can affect
cellli, j] and determine which of their settings cause cell[i, 7] to contain s. This
determination can be made by examining the transition function 8.

Suppose that, if the cells—cell[i — 1, j — 1], cell[i — 1, 5], and cell[i — 1, 5+ 1]—
contain a, b, and c, respectively, cell[i, j] contains s, according to 6. We wire the
circuit so that, if light[i — 1,7 — 1, a], light[i — 1,7,b], and light[i — 1, + 1, c]
are on, then so is light[i, 7, s]. We do so by connecting the three lights at the ¢ — 1
level to an AND gate whose output is connected to light[i, , s.

In general, several different settings (a1, b1, ¢1), (ag, b, 2), ..., {a, by, ¢;) of
cellli — 1,5 — 1], cell[i — 1, 5], and cell[i — 1, j + 1] may cause cell[i, j] to contain
5. In this case we wire the circuit so that for each setting a;, b;, ¢; the respective
lights are connected with an AND gate, and all the AND gates are connected with
an OR gate. This circuitry is illustrated in the following figure.

FIGURE 9.7
Circuitry for one light

The circuitry just described is repeated for each light, with a few exceptions at
the boundaries. Each cell at the left boundary of the tableau, that s, cell[, 1] for
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1 < ¢ < t(n), has only two preceding cells that affect its contents. The cells at
the right boundary are similar. In these cases, we modify the circuitry to simulate
the behavior of A/ in this situation.

The cells in the first row have no predecessors and are handled in a special
way. These cells contain the start configuration, and their lights are wired to
the input variables. Thus light[1, 1,]go1]] is connected to input wy because the
start configuration begins with the start state symbol ¢, and the head starts over
wy. Similarly, light[1, 1,]go0]] is connected through a NOT gate to input w;. Fur-
thermore, light(1,2,1], ..., light{l,n, 1] are connected to inputs wy, ..., wy,,
and light[1,2,0], ..., light[1,n,0] are connected through NOT gates to inputs
wy, ... ,w, because the input string w determines these values. Additionally,
light[1,n + 1,0, ..., light[1, ¢(n)},u] are on, because the remaining cells in the
first row correspond to positions on the tape that initially are blank (u). Finally,
all other lights in the first row are off.

So far, we have constructed a circuit that simulates M through its #(n)th step.
All that remains to be done is to assign one of the gates to be the output gate of
the circuit. We know that M accepts w if it is in an accept state Qaccepe at the left-
hand end of the tape at step ¢(n). So we designate the output gate to be the one
attached to light[t(n), 1, gaccepe]. This completes the proof of the theorem.

........................................................................................................................................................................

Besides linking circuit complexity and time complexity, Theorem 9.25 yields
an alternative proof of Theorem 7.22, the Cook-Levin theorem, as follows. We
say that a Boolean circuit is satisfiable if some setting of the inputs causes the
circuit to output 1. The circuit-satisfiability problem tests whether a circuit is
satisfiable. Let

CIRCUIT-SAT = {(C)] C is a satisfiable Boolean circuit}.

The preceding theorem shows that Boolean circuits are capable of simulat-
ing Turing machines. We use that result to show that CIRCUIT-SAT is NP-

complete.

TH EOREM 9.26 .........................................................................................................................
CIRCUIT-SAT is NP-complete.

PROOF lo prove this theorem, we must show that CIRCUIT-SAT isin NP and
that any language A in NP is reducible to CIRCUIT-SAT. The first is obvious.
To do the second we must give a polynomial time reduction f that maps strings
to circuits, where

implies that

we A <= Boolean circuit ( is satisfiable.
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Because A is in NP, it has a polynomial time verifier V whose input has the
form (z, ¢}, where ¢ may be the certificate showing that z is in 4. To construct
[, we obtain the circuit simulating V' using the method in Theorem 9.25. Fill in
the inputs to the circuit that correspond to = with the symbols of w. The only
remaining inputs to the circuit correspond to the certificate ¢. Call this circuit
and output it.

If C is satisfiable, a certificate exists, so w is in A. Conversely, if w isin A, a
certificate exists, so  is satisfiable.

To show that this reduction runs in polynomial time, we must examine the
proof of Theorem 9.25 and observe that the construction of the circuit can be
done in time that is polynomial in n. The running time of the verifier is n* for
some k, so the size of the circuit constructed is O(n?*). The structure of the cir-
cuit is quite simple (actually it is highly repetitious), so the running time of the
reduction is O(n?2k).

........................................................................................................................................................................

Now we show that 3SAT is NP-complete, completing the alternative proof of
the Cook-Levin theorem.

PROOF IDEA 3SAT is obviously in NP. We show I languages in NP
reduce to 3SAT in polynomial time. We do so by reducing CIRCUIT-SAT to
35AT in polynomial time. The reduction converts a circuit C to a formula @,
whereby C is satisfiable iff ¢ is satisfiable. The formula contains one variable for
each variable and each gate in the circuit.

Conceptually, the formula simulates the circuit. A satisfying assignment for
¢ contains a satisfying assignment to C. It also contains the values at each of
C’s gates in the computation on the satisfying assignment. The formula is con-
structed so that its satisfying assignment has this property, by ANDing conditions
for each gate to specify that the gate output correctly corresponds to the gate in-
puts. Finally, ¢ contains one clause stipulating that C’s output is 1.

"~

&
S W tna

PROOF  We give a polynomial time reduction f from CIRCUIT-SAT to 3SAT.
Let C be a circuit containing inputs z1, ... , z;, and gates g1, ... ,gm. Lhere-
duction builds from C a formula ¢ with variables z1, ... ,z;, g1, ..., gm- Each
of ¢s variables corresponds to a wire in . The z; variables correspond to the
input wires and the g; variables correspond to the wires at the gate outputs. We
relabel ¢'s variables as w1, ... , wiym.
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Now we describe ¢s clauses. Each NOT gate in C' with input wire w; and out-
put wire w; becomes the two clauses

(w; Vwy) A (w; V).

Observe that both clauses are satisfied when an assignment is made to the vari-
ables w; and w; corresponding to the correct functioning of the NOT gate.

Each AND gate in C' with inputs w; and w; and output w,. becomes the four
clauses

(w; Vw; VW) A (w Vo VIoE) A (W0 Vw; VITE) A (w5 VW5 V wy),

and each OR gate in C' with inputs w; and w; and output wy, becomes the four
clauses

(wi Vw; Vg) A (wg Vo Vwg) A (W Vw; Vwg) A (W0 Vg Vo).

In each case all four clauses are satisfied when an assignment is made to the vari-
ables w;, w;, and wy, corresponding to the correct functioning of the gate.

Additionally, add the clause (w,,) to ¢, where wy, is C’s cutput gate.

Some of the clauses described contain fewer than three literals. We can easily
expand them to the desired size by repeating literals. Thus the preceding clause
(wm) is expanded to the equivalent clause (wy, V w., V wy,). That completes the
construction.

We briefly argue that the construction works. If a satisfying assignment for C
exists, we obtain a satisfying assignment for ¢ by assigning the g, variables accord-
ing to C’s computation on this assignment. Conversely, if a satisfying assignment
for ¢ exists, it gives an assignment for C' because it describes C’s entire computa-
tion where the output value is 1. The reduction can be done in polynomial time
because it is simple to compute and the output size is polynomial (actually linear)
in the size of the input.

........................................................................................................................................................................

EXERCISES

9.1 Prove that TIME(2") = TIME(2™+!),
9.2 Prove that TIME(2") ¢ TIME(2%"),
9.3 Prove that NTIME(n) C PSPACE.

9.4 Show how the circuit depicted in Figure 9.5 computes on input 0110 by showing
the values computed by all of the gates, as we did in Figure 9.4.

9.5 Give a circuit that computes the parity function on three input variables and show
how it computes on input 011,

9.6 Prove thatif A € P then P4 = P.
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Give regular expressions with exponentiation that generate the following languages
over the alphabet {0,1}.

All strings of length 500.

All strings of length 500 or less.

All strings of length 500 or more.

All strings of length different than 500.

All strings that contain exactly 500 1s.

All strings that contain at least 500 1s.

All strings that contain at most 500 1is,

FoE -0 o &

All strings of length 500 or more that contain a ¢ in the 500th position.
i. All strings that contain two Os that have at least 500 symbols between them.

If R is a regular expression, let R{™"} represent the expression
R™UR™ U ... UR".

Show how to implement the R{™"} operator using the ordinary exponentiation
operator, but without “-.”

9.9 Show that if NP = P*7 then NP = coNP.
PROBLEMS
9.10 Show the error in the following fallacious “proof” that P # NP. Proof by con-

© 0
-

[
[\ I

.:
j—
w

9.14

9.15

tradiction. Assume that P = NP. Then SAT & P. So, for some k, SAT ¢
TIME(n*). Because every language in NP is poiynornial time reducible to SAT,

NP € TIME(n*). Therefore P C TIME(n"). But, by the time hierarchy theo-
rem TTT\/[W(M’C+1\ cantaing a lancnace which jan’ in TTMT kY hinh camntradiors

Lliiay & LLVLJ_.J i wuiavaliio a 10115 uas\, Wlll\_.ll 1011 L l LV .I_J\lb } Wlllbll LUllLlLlulLLD

PC TIME(n ). Therefore P £ NP.
Show that the language MAX-CLIQUE from problem 7.30 is in NP7,
- C

=
o]
=
o
@]

rove tnat a
In computability theory, we made an important distinction between languages that

are decidable and those that are recognizable. This problem asks you to show why
these two terms are generally interchangeable in complexity theory.

When we say that a TM M decides a language A in time t(n), we require that M
halt on all inputs of length n within ¢(n) steps. Say that a TM recognizes A in time
t(n) if t(n) is the maximum number of steps that M uses when it accepts an input of
length n, disregarding inputs which are rejected. Show that, for time constructible
functions t(n), the notions of decidable and recognizable are equivalent. In other
words, prove that A is decided by some TMin time O(t(n)) if and only if A is rec-
ognized by some TMin time O(t(n)), assuming that ¢(n) is time constructible.

Define the function parity  as in Example 9.21. Show that parity,, can be com-
puted with O(n) size circuits.

Recall that we may consider circuits that output strings over {0,1} by designating
several output gates. Let add,: {0,1}*"—{0,1}""" take the sum of two n bit
binary integers and produce the n + 1 bit result. Show that we can compute the
addr function with O(n) size circuits.
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*9.17

9.18

9.19

9.20
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Define the function majority,,: {0,1}"— {0,1} as
0 rs < 2
majority, (T1, ... ,Tn) = 2w <n/ .
1 E T4 2 n/2

Thus the majority, function returns the majority vote of the inputs. Show that
magjority,, can be computed with
a. O(n?) size circuits.

b. O(nlogn) size circuits. (Hint: Recursively divide the number of inputs in
half and use the result of Problem 9.15.)

Define the problem majority,, as in Problem 9.16. Show that it may be computed
with O(n) size circuits.

Consider the function pad: £* x N—X*#" that is defined as follows. Let
pad(s,l) = s#’ where j = max(0,! — n) and n is the length of s. Thus, pad(s,{)
simply adds enough copies of the new symbol # to the end of s so that the length
of the result is at least . For any language A and function f: N — N define the

language pad(A, f(n)) as
pad(A, f(n)) = {pad(s, f(n))| where n is the length of s}.

Prove that if A € TIME(n?) then pad(A, n*) € TIME(n).

Prove that if NEXPTIME # EXPTIME then P # NP. You may find the function
pad, defined in Problem 9.18, to be helpful.

Define pad as in Problem 9.18. Prove that, for any language A and any natural
number k, A € P if and only if pad(A, n*) € P.

Use the result of Problem 9.20 to show that P # SPACE(n).



ADVANCED TOPICS IN
COMPLEXITY THEORY

In this chapter we briefly sample a few additional topics in complexity theory. If
you are interested in further information you should examine The Handbook of
Theoretical Computer Science [71] which presents an extensive survey.

This chapter contains sections on approximation algorithms, probabilistic al-
gorithms, interactive proof systems, parallel computation, and cryptography.
These sections are independent except that probabilistic algorithms are used in
the sections on interactive proof systems and cryptography.

10.1

APPROXIMATION ALGORITHMS

In certain problems called optimization problems we seek to find the best solu-
tion among a collection of possible solutions. For example, we may want to find
a largest clique in a graph, a smallest vertex cover, or a shortest path connect-
ing two nodes. When an optimization problem is NP-hard, as is the case with
the first two of these types of problems, no polynomial time algorithm exists that
finds the best solution unless P = NP.

In practice, we may not need the absolute best or optimal solution to a prob-
lem. A solution that is nearly optimal may be good enough and may be much

333
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easier to find. As its name implies, an approximation algorithm is designed to
find such approximately optimal solutions.

For example, take the vertex cover problem that we introduced in Section 7.5.
There we presented the problem as the language VERTEX-COVER representing
a decision problem—one that has a yes/no answer. In the optimization version of
this problem, called MIN-VERTEX-COVER, we aim to produce one of the small-
est vertex covers among all possible vertex covers in the input graph. The follow-
ing polynomial time algorithm approximately solves this optimization problem.
It produces a vertex cover that is never more than twice the size of one of the
smallest vertex covers.

A = “On input {G), where G is an undirected graph:
1. Repeat the following until all edges in G touch a marked edge.
2.  Find an edge in G untouched by any marked edge.
3. Mark that edge.
4. Output all nodes that are endpoints of marked edges.”

THEOREM 'Io.'l .........................................................................................................................

L o PSR P P _ = o Fing L1 P o - _
Ais a polynomial time algorithm that produces a vertex cover of G thatis no more

than twice as large as a smallest vertex cover.

PROOF A obviously runs in polynomial time. Let X be the set of nodes that
it outputs. Let H be the set of edges that it marks. We know that X is a vertex
cover because H contains or touches every edge in G, and hence X touches all
edges in G.

To prove that X is at most twice as large as a smallest vertex cover Y we estab-
lish two facts: X is twice as large as H; and H is not larger than Y. First, every
edge in H contributes two nodes to X, so X is twice as large as H. Second, Y is
a vertex cover, so every edge in H is touched by some node in Y. No such node
touches two edges in H because the edges in H do not touch each other. There-
fore vertex cover Y is at least as large as H because Y contains a different node
that touches every edge in . Hence X is no more than twice as large as Y.

........................................................................................................................................................................

MIN-VERTEX-COVER is an example of a minimization problem because we
aim to find the smallest among the collection of possible solutions. In a maxi-
mization problem we scek the largest solution. An approximation algorithm for
a minimization problem is k-optimal if it always finds a solution that is not more
than £ times optimal. The preceding algorithm is 2-optimal for the vertex cover
problem. For a maximization problem a k-optimal approximation algorithm al-
ways finds a solution that is at least 1 times the size of the optimal.

The following is an approximation algorithm for a maximization problem
called MAX-CUT. A cut in an undirected graph is a separation of the vertices V
into two disjoint subsets S and T". A cut edge is an edge that goes between a node
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in 5'and a node in 7. An uncut edge is an edge that is not a cut edge. The size of 3
cut is the number of cut edges. The MAX-CUT problem asks for a largest cut in
the input graph G. As we showed in Problem 7.23, this problem is NP-complete.
"The following algorithm approximates MAX-CUT within a factor of 2.

B = “On input (G) where G is an undirected graph with nodes V':
1. LetS=0andT = V.
2. If moving a single node, either from S to 7' or from T to S, in-
creases the size of the cut, make that move and repeat this stage.
3. Ifno such node exists, output the current cut and halt.”

This algorithm starts with a (presumably) bad cut and makes local improve-
ments until no further local improvement is possible. Although this procedure
won’t give an optimal cut in general, we show that it does give one that is at least
half the size of the optimal one.

THEOREM 10.2 .........................................................................................................................

B s a polynomial time approximation algorithm that is 2-optimal for MAX-CUT.

PROOF B runs in polynomial time because every execution of stage 2 in-
creases the size of the cut to a maximum of the total number of edges in G.

Now we show that B’ cut is at least half optimal. Actually, we show some-
thing stronger: B’s cut contains at least half of all edges in G. Observe that, at
every node of G, the number of cut edges is at least as large as the number of un-
cut edges, or B would have shifted that node to the other side. We add up the
numbers of cut edges at every node. That sum is twice the total number of cut
edges because every cut edge is counted once for each of its two endpoints. By
the preceding observation, that sum must be at least the corresponding sum of
the numbers of uncut edges at every node. Thus G has at least as many cut edges
as uncut edges, and therefore the cut contains at least half of all edges.

........................................................................................................................................................................

10.2

PROBABILISTIC ALGORITHMS

A probabilistic algorithm is an algorithm designed to use the outcome of a ran-
dom process. Typically, such an algorithm would contain an instruction to “flip a
coin” and the result of that coin flip would influence the algorithm’ subsequent
execution and output, Certain types of problems seem to be more easily solvable
by probabilistic algorithms than by deterministic algorithms.
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How can making a decision by flipping a coin ever be better than actually cal-
culating, or even estimating, the best choice in a particular situation? Sometimes,
calculating the best choice may require excessive time and estimating it may in-
troduce a bias that invalidates the result. For example, statisticians use random
sampling to determine information about the individuals in a large population,
such as their tastes or political preferences. Querying all the individuals might
take too long, and querying a nonrandomly selected subset might tend to give
erroneous results.

THE CLASS BPP

We begin our formal discussion of probabilistic computation by defining a model
of a probabilistic Turing machine. Then we give a complexity class associated

TR I

with efficient probabilistic computation and a few examples.

DEFINITION 10.3 ....................................................................................................................

A probabilistic Turing machine M is a type of nondeterministic Turing machine
where each nondeterministic step is called a coin-flip step and has two legal next
moves. We assign a probability to each branch b of M’s computation on input w
as follows. Define the probability of branch b to be

Prib] =27F,

where k be the number of coin-flip steps that occur on branch b. Define the prob-
ability that M accepts w to be

Pr[M accepts w| = Z Pr[b].

bisan
accepting branch

In other words, the probability that M accepts w is the probability that you
would reach an accepting configuration if you simulated A on w by flipping a
coin to determine which move to follow at each coin-flip step. We let

Pr[M rejects w] = 1 — Pr[M accepts w].

When a probabilistic Turing machine recognizes a language, it must accept all
strings in the language and reject all strings out of the language as usual, except
that now we allow the machine a small probability of error. For 0 < ¢ < 1 we

2
say that M recognizes language A with error probability € if

1. w € Aimplies Pr[M accepts w] > 1 — ¢, and
2. w ¢ Aimplies Pr[M rejects w| > 1 — .

—

example, error probability ¢ = 2" indicates an exponentially small probability

of error.
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We are interested in probabilistic algorithms that run efficiently in time and/or
space. We measure the time and space complexity of a probabilistic Turing ma-
chine in the same way as for a nondeterministic Turing machine, by using the
worst case computation branch on each input.

DEFINITION 10.4 ....................................................................................................................

BPP is the class of languages that are recognized by probabilistic polynomial time
‘Turing machines with an error probability of 1.

We defined this class with an error probability of 3, but any constant error
probability would yield an equivalent definition as long it is strictly between 0 and
5 by virtue of the following amplification lemma. 1t gives a simple way of making
the error probability exponential small. Note that a probabilistic algorithm with
an error probability of 27 1% s far more likely to give an erroneous result because
the computer on which it runs has a hardware failure than because of an unlucky
toss of its coins.

LEMMA 10.5 --------------------------------------------------------------------------------------------------------------------------------

Let € be a fixed constant strictly between 0 and 3. Then for any polynomial
poly(n) a probabilistic polynomial time Turing machine M, that operates with
error probability € has an equivalent probabilistic polynomial time ‘Turing ma-
chine M that operates with an error probability of 2-pely(n),

........................................................................................................................................................................

PROOF IDEA M, simulates M, by running it a polynomial number of times
and taking the majority vote of the outcomes. The probability of error decreases
exponentially with the number of runs of A/; made.

Consider the case where € = 1. This situation corresponds to a box that con-
Al

tains many red and blue balls. We know that 2 of the balls are of one color and
that the remaining 3 are of the other color, but we don’t know which color is
predominant. We can test for that color by sampling several (say, 100) balls at
random to determine which color comes up most frequently. Almost certainly,
the predominant color in the box will be the most frequent one in the sample.
"The balls correspond to branches of M;’s computation: red to accepting and
blue to rejecting. M, samples the color by running M. A calculation shows that
Mj errs with exponentially small probability if it runs M; a polynomial number

of times and outputs the result that comes up most often.

PROOF  Given TM M) recognizing a language with an error probability of
e < 3 and a polynomial poly(n), we construct the following TM M, that recog-
nizes the same language with an error probability of 2-P°("). We describe an
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. - . 1 11 .
algorithm that implements the proof idea and a detailed' computation to prove
that it improves the error probability as claimed. First we assign variable names
to the following values. All logarithms are base 2. Fix n and let

| = only(n)7

o =1/(4e(1 - ),
b= max(1,1/loga)},
¢ = 2log(bt), and
k= [bc].

M5 = “On input w
1. Calculate the value k, and repeat the following 2k times:
2. Simulate M; on input w.
3. If most runs of M, accept, then accept; otherwise rejeci.”

We verify that M runs in polynomial time by observing that a and b depend
ron e, so ¢ and k are O(logt) and thus polynomial in n.

We show that M, is equivalent to M, but with an error probability of 2-Pely ()
by using the following calculation. Assume that ¢ > 9 without any loss of gen-
erality. Select an input w. M, errs on w with some probability § < ¢ < 7. We
show that M) errs on w with a probability of at most 2Pl (n),

It M, errs on w, it obtains at least k erroneous results from its 2k runs of M. 1

in w. The probability of that occurring is

Z Pr[ Ms errs exactly i times on 2k runs |
k<i<2k

2kN -
— Z ( ' )61(1 _ 6)2}0—1.
k<icokr N\

No term of the sum is diminished if we let i = k because §/(1 — &) < 1 when
8 < 3, so we can place an upper bound on the sum by

< (k+1) (2:)6’“(1—6)’“ < (k+1) 2P (1 - &) < (k+1) (4801 — 8))F.

In the preceding step we bounded (%), the number of subsets of size k out of 2k
elements, by 2°%, the number of all subsets. Next we have §(1 — §) < €(1 — ¢)
because § < ¢ < 3, so we can bound the preceding expression by

< (k+1) (4e(1 — e))*.

I'The analysis of the error probability follows immediately from a standard result in prob-
ability theory called the Chernoff bound. Here we give an alternative and self-contained,
albeit technical, calculation that avoids any dependence on that result.
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We must show that the previous expression is at most 27P°¥(") We do so by
showing that (k 4 1)(1/a)* < 1/¢, which is equivalent to showing that

a® > (k+1)t.

We use a series of (in)equalities:

ak _ al-bc-| > abc é 2¢ — 2210g(bt) — (bt)Q

Inequality 1 derives from two cases. If 1/loga > 1, then b = 1/loga and a° =
all/se)e = 2¢ 1f1/loga < 1, thenb=1and @ > 2 and a*° = ¢¢ > 2°.

We have b > 1 and assumed that t > 9, so bt > 9. Therefore bt > 2+2 log(bt)
and thus

(0t)? > bt(2 + 2log(bt)) = t(2b + 2blog(bt)).

Hence, because b > 1,

PRIMALITY

A prime number is an integer greater than 1 that is not divisible by positive in-
tegers other than 1 and itself. A nonprime number greater than 1 is called com-
posite. In this section we describe a probabilistic polynomial time algorithm for
testing whether a number is prime or composite.

One way to determine whether a number is prime is to try all possible integers
less than that number and see whether any are divisors, also called factors. That
algorithm has exponential time complexity because the magnitude of a number
is exponential in its length. The probabilistic primality testing algorithm that we
describe operates in a different manner entirely. It doesn’t search for factors. In-
deed, no probabilistic polynomial time algorithm for finding factors is known to
exist.

Before discussing the algorithm, we need to mention some notation and facts
from number theory. All numbers in this section are integers. For any number
p greater than 1, let Z be the set {1, ... ,p — 1} and Z, be the same with the
addition of 0. We think of these sets as numbers modulo p, and we may refer
to their elements by other numbers that are equivalent modulo p such as —1 for
p— 1. (Iwo numbers are equivalent modulo p if they differ by a multiple of p.) If
numbers  and y are equivalent modulo p, we write z = i (mod p). Let z mod p
be the smallest nonnegative y where z = y (mod p).

Two numbers are relatively prime if they have no common divisor other
than 1. The Chinese remainder theorem says that a one-to-one correspondence
exists between Z,,, and Z, x Z, if p and q are relatively prime. Each number
T € Zpg corresponds to a pair (a,b), where a € Z, and b € Z, such that

r=a (mod p), and
r=b (mod gq).
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The main idea behind the algorithm stems from the following result, called
Fermar’s little theorem.

THEOREM  TOu 8  rerermmmrommsssinsssssssssss i smsssss oo sasssssessssssassssssasssesssssessse st

If pis prime and a € Z} then a?~! =1 (mod p).

For example, if p = 7 and a = 2, the theorem says that 2(7=1) mod 7 should be 1
because 7 is prime. The simple calculation

20710 =95 =64 and 64mod 7 =1
confirms this result. Suppose that we try p = 6 instead. Then
20-0'=92° =32 and 32 mod 6 =2

gives a different result than 1, implying by the theorem that 6 is not prime. Of
course, we already knew that. However, this method demonstrates that 6 is com-
posite without finding its factors. Problem 10.15 asks for a proof of this theorem.

Think of the preceding theorem as providing a type of “test” for primality
called a Fermat test. When we say that p passes the Fermat test at a, we mean
that a?~! =1 (mod p). The theorem states that primes pass all Fermat tests for
a € Z}. We observed that 6 fails some Fermat test, so 6 isn’t prime.

Can we use these tests to give an algorithm for determining primality? Almost.
Call a number pseudoprime if it passes all Fermat tests. With the exception of
the relatively few Carmichael numbers, the pseudoprime numbers are identical
to the prime numbers. We give a probabilistic polynomial time pseudoprimality
testing algorithm and afterward one for testing primality.

A pseudoprimality algorithm that goes through all Fermat tests would require
exponential time. The key to the probabilistic polynomial time algorithm is that,
if a number fails at any one test, it fails at least half of all tests. (Just accept this
assertion for now. Problem 10.16 asks for a proof.) The algorithm works by try-
ing several tests chosen at random. If any fail, the number must be composite. If
all pass, the number is likely to be pseudoprime. The algorithm contains a pa-
rameter k that determines the error probability.

PSEUDOPRIME = “On input p:

) o2t
1. Selectas, ... ,a; randomlyin Z

e
2. Compute a?~* mod p for each i.
3. Ifall computed values are 1, accept; otherwise reject.”

If p is pseudoprime, it passes all tests and the algorithm accepts with certainty.
If p isn’t pseudoprime, it passes at most half of all tests. In that case it passes
each randomly selected test with probability at most 1. The probability that it
passes all k randomly selected tests is thus at most 2-*. Hence this probabilis-
tic algorithm recognizes the language of all pseudoprime numbers with an error
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probability of 27, It operates in polynomial time because modular exponentia-
tion is computable in polynomial time (see Problem 7.12).

To convert this pseudoprimality algorithm to a primality algorithm we give
a more sophisticated test that avoids the problem with the Carmichael num-
bers. The underlying principle is that the number 1 has exactly two square roots,
namely 1 and —1, modulo any prime p. For many composite numbers, including
all the Carmichael numbers, 1 has four or more square roots. For example, +1
and £8 are the four square roots of 1, modulo 21. If 2 number passes the Fermat
test at a, the algorithm finds one of its square roots of 1 at random and deter-
mines whether that square root is 1 or —1. If it isn’t, we know that the number
isn’t prime.

We can obtain square roots of 1 if p passes the Fermat test at a because
a?~!' mod p = 1 and so aP~ /2 meq pis asquare root of 1. If that value is still 1
we may repeatedly divide the exponent by two, so long as the resulting exponent
remains an integer, and see whether the first number that is different from 1 js
—1 or some other number. We give a formal proof of the correctness of the al-
gorithm immediately following its description. Select & > 1 as a parameter that
determines the maximum error probability to be 2~

PRIME = “On input p:
1. If pis even, accept if p = 2; otherwise reject.
2. Selectay, ..., a; randomly in Zr.
3. Foreachifrom1 to k:
4 Compute o' mod p and reject if different from 1.
5. Letp—1=stwheresisoddandt=2"isa power of 2.
6 Compute the sequence af 2’ a2’ 052", .. a£2" modulo p.
7 It some element of this sequence is not 1, find the last element
that is not 1 and reject if that element is not —1.
8. All tests have passed at this point, so accept.”

The following two lemmas show that algorithm PRIME works correctly. Obvi-
ously the algorithm is correct when p is even, so we only consider the case when
pis odd. Say that a; is a (compositeness) witness if the algorithm rejects at either
stage 4 or 7, using a;.

LEMMA 10.7 ................................................................................................................................

If p is an odd prime number, Pr| PRIME accepts pl=1.

PROOF Wk first show that if p is prime, no witness exists and so no branch of
the algorithm rejects. If g were a stage 4 witness, (a?~! mod p) # 1 and Fermat’s
little theorem implies that p is composite. If a were a stage 7 witness, some b exists
in ZF, where b # +1 (mod p) and b2 = 1 (mod p).
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Therefore b* — 1 = 0 (mod p). Factoring b* — 1 yields
(b-1)(b+1)=0 (mod p)
which implies that
(b-1)(b+1) =cp

for some positive integer ¢. Because b # £1 (mod p), bothb — 1 and b + 1 are
strictly between 0 and p. Therefore p is composite because a multiple of a prime
number cannot be expressed as a product of numbers that are smaller than it is.

LEMMA T0.8 ittt st s s sn s
If p is an odd composite number, Pr[ PRIME accepts p| < 27,

PROOF  We show that, if pis an odd composite number and « is selected ran-
domlyin Z,

Pr[a isa witness] >

b=

by demonstrating that at least as many witnesses as nonwitnesses existin Z,”. We
do so by finding a unique witness for each nonwitness.

In every nonwitness, the sequence computed in stage 6 is either all 1s or con-
tains —1 at some position, followed by 1s. For example, 1 itself is a nonwitness
of the first kind, and —1 is a nonwitness of the second kind because s is odd and
(—1)3'20 = —1and (-1)*?" = 1.-Among all nonwitnesses of the second kind,
find a nonwitness for which the —1 appears in the largest position in the sequence.
Let h be that nonwitness and let j be the position of —1 in its sequence, where
the sequence positions are numbered starting at 0. Hence h*? = —1 (mod p).

Because p is composite, we can write p as the product of g and r, two num-
bers that are relatively prime. The Chinese remainder theorem implies that some
number ¢ exists in Z, whereby

t=h (modg) and
t=1 (modr).

Therefore

Y =1 (mod ¢) and
2 =1 (mod r).

Hence ¢ is a witness because t52” # +1 (mod p) but 2" =1 (mod p).

Next we prove that dt mod pis a unique witness for each nonwitess d by mak-
ing two observations. First, d*% = +1 (mod p) and ¥ =1 (mod p) owing
to the way j was chosen. Therefore dt mod p is a witness because (dt)*?’ # +1
and (dt)*2""" =1 (mod p).
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Second, if d; anc} ds are distinct nonwitnesses,ldlt mod p # dot mod p. The
reason is that ¢52 modp = 1. Hence t - %'~ mod p = 1. Therefore, if
tdy mod p = tdy; mod p, then

dy =t 577 -1y, mod p = ¢-#5%" 1y, mod p = ds.

‘Thus the number of witnesses must be as large as the number of nonwitnesses,
and the proof is complete.

........................................................................................................................................................................

The preceding algorithm and its analysis establishes the following theorem.
Let PRIMES = {n|n is a prime number in binary}.

THEOREM 10.9 .........................................................................................................................
PRIMES € BPP

Note that the probabilistic primality algorithm has one-sided error. When
the algorithm outputs reject, we know that the input must be composite. When
the output is accept, we know only that the input probably is prime. Thus an
incorrect answer can only occur when the input is a composite number. The one-
sided error feature is common to many probabilistic algorithms, so the special
complexity class RP is designated for it.

DEFINITION TO.T0 sttt esscsnsneessnsmsssts omsssssssesseeseeseasessessssseasens

RP is the class of languages that are recognized by probabilistic polynomial time
‘Turing machines where inputs in the language are accepted with a probability of
at least § and inputs not in the language are rejected with 2 probability of 1.

We can make the error probability exponentially small and maintain a poly-
nomial running time by using a probability amplification technique similar to
(actually simpler than) the one we used in Lemma 10.5. Our earlier algorithm
shows that COMPOSITES < RP.

READ-ONCE BRANCHING PROGRAMS

A branching program is a model of computation used in complexity theory and
in certain practical areas such as computer-aided design. This model represents
a decision process that queries the values of input variables and bases decisions
about the way to proceed on the answers to those queries. We represent this deci-
sion process as a graph whose nodes correspond to the particular variable queried
at that point in the process.

In this section we investigate the complexity of testing whether two branching
programs are equivalent. In general, that problem is coNP-complete. If we place
a certain natural restriction on the class of branching programs, we can give a
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probabilistic polynomial time algorithm for testing equivalence. This algorithm
is especially interesting for two reasons. First, no polynomial time algorithm is
known for this problem, so we have another example of probabilism apparently
expanding the class of languages whereby membership can be tested efficiently.
Second, this algorithm introduces the technique of assigning non-Boolean values
to normally Boolean variables in order to analyze the behavior of some Boolean
function of those variables. That technique is used to great effect in interactive
proof systems, as we show in Section 10.4.

pefFINITION 10.11

A branching program is a directed acyclic? graph where all nodes are labeled by
variables, except for two eutput nodes labeled 0 or 1. The nodes that are labeled
by variables are called query nodes. Every query node has two outgoing edges,
one labeled 0 and the other labeled 1. Both output nodes have no outgoing edges.
One of the nodes in a branching program is designated the start node.

A branching program determines a Boolean function as follows. Take any as-
signment to the variables appearing on its query nodes and, beginning at the start
node, follow the path determined by taking the outgoing edge from each query
node according to the value assigned to the indicated variable until one of the out-
put nodes is reached. The output is the label of that output node. The following
diagram gives two examples of branching programs.

(a)

FIGURE 10.1
"Tivo read-once branching programs

?A directed graph is acyelic if it has no directed cycles.
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Branching programs are related to the class L in a way that is analogous to
the relationship between Boolean circuits and the class P. Problem 10.17 asks
you to show that a branching program with polynomially many nodes can test
membership in any language over {0,1} thatis in L.

‘Two branching programs are equivalent if they determine equal functions.
Problem 10.19 asks you to show that the problem of testing whether two branch-
ing programs are equivalent is coNP-complete. Here we consider a restricted
form of branching programs. A read-once branching program is one that can
query each variable at most one time on every directed path from the start node
to an output node. Both branching programs in Figure 10.1 have the read-once
feature. Let

EQrogp = {(B1, B2)| By and By are equivalent read-once branching programs}.

THEOREM 10.12 .....................................................................................................................
EQrogp 1s in BPP.

PROOF IDEA First lets try assigning random values to the variables z,
through z, that appear in By and B,, and evaluate these branching programs
on that setting. We accept if B, and B, agree on the assignment and reject oth-
erwise. However, this strategy doesn’t work because two inequivalent read-once
branching programs may disagree only on a single assignment out of the 2™ pos-
sible Boolean assignments to the variables. The probability that we would select
that assignment is exponentially small. Hence we would accept with high prob-
ability even when B, and B, are not equivalent, and that is unsatisfactory.

Instead, we modify this strategy by randomly selecting a non-Boolean assign-
ment to the variables and evaluate B; and B, in a suitably defined manner. We
can then show that, if B; and B, are not equivalent, the random evaluations will
likely be unequal.

PROOF  We assign polynomials over z1, ..., z,, to the nodes and to the edges
of a read-once branching program B as follows. The constant function 1 is as-
signed to the start node. If a node labeled z has been assigned polynomial p, as-
sign the polynomial 2p to its outgoing 1-edge, and assign the polynomial (1 —z)p
to its outgoing O-edge. If the edges incoming to some node have been assigned
polynomials, assign the sum of those polynomials to that node. Finally, the poly-
nomial that has been assigned to the output node labeled 1 is also assigned to the
branching program itself. Now we are ready to present the probabilistic polyno-
mial time algorithm for EQgogp. Let F be a field with at least 3m elements.

D = *On input (By, B,), two read-once branching programs:
1. Select elements a,; through a,, at random from F.
2. Evaluate the assigned polynomials p; and p; at a; through a,,.
3. Iftpi(ay, ... am) = pa(ay, ... ,am), accept; otherwise reject.”
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This algorithm runs in polynomial time because we can evaluate the polyno-
mial corresponding to a branching program without actually constructing the
polynomial. We show that the algorithm decides EQgogp with an error prob-
ability of at most 3.

Let’s examine the relationship between a read-once branching program B and
its assigned polynomial p. Observe that for any Boolean assignment to B’s vari-
ables, all polynomials assigned to its nodes evaluate to either 0 or 1. The polyno-
mials that evaluate to 1 are those on the computation path for that assignment,
Hence B and p agree when the variables take on Boolean values. Similarly, be-
cause B is read-once, we may write p as a sum of product terms y1 s - - - y,,, where
each y; is z;, (1 — x;), or 1, and where each product term corresponds to a path
in B from the start node to the output node labeled 1. The case of y; = 1 occurs
when a path doesn’t contain variable z;.

Take each such product term of p containing a y; that is 1 and split it into the
sum of two product terms, one where y; = x; and the other where y; = (1 — ;).
Doing so yields an equivalent polynomial because 1 = z; + (1 — z;). Continue
splitting product terms until each y; is either z; or (1 — z;). The end result is
an equivalent polynomial ¢ that contains a product term for each assignment on
which B evaluates to 1. Now we are ready to analyze the behavior of the algo-
rithm D.

First, we show that, if B, and B, are equivalent, D always accepts. If the
branching programs are equivalent, they evaluate to 1 on exactly the same assign-
ments. Consequently, the polynomials ¢; and g, are equal because they contain
identical product terms. Therefore p; and ps are equal on every assignment.

Second we show that, if B, and B; aren’t equivalent, D rejects with a proba-
bility of at least 2. This conclusion follows immediately from Lemma 10.14.

........................................................................................................................................................................

The preceding proof relies on the following lemmas concerning the proba-
bility of randomly finding a root of a polynomial as a function of the number of
variables it has, the degrees of its variables, and the size of the underlying field.

LEMMA 10.13 .............................................................................................................................

For every d > 0, a degree-d polynomial p on a single variable x either has at most
d roots, or is everywhere equal to 0.

PROOF We use induction on d.

Basis: Prove for d = 0. A polynomial of degree 0 is constant. If that constant is
not 0, the polynomial clearly has no roots.

Induction step: Assume true for d — 1 and prove true for d. If p is a nonzero
polynomial of degree d with a root at a, the polynomial z — a divides p evenly.
Then p/(z — a) is a nonzero polynomial of degree d — 1, and it has at most d — 1
roots by virtue of the induction hypothesis.

........................................................................................................................................................................
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LEMMA 10.14 .............................................................................................................................

Let F be a finite field with f elements and let p be a nonzero polynomial on the
variables =1 through x,,, where each variable has degree at most d. If a, through
am, are selected randomly in F, then Prp(a;, ... ,ap) = 0] <md/f.

PROOF We use induction on m.

Basis: Prove for m = 1. By Lemma 10.13, p has at most d roots, so the proba-
bility that a; is one of them is at most d/ f.

Induction step: Assume true for m — 1 and prove true for m. Let z; be one of
p’s variables. For each i < d let p; be the polynomial comprising the terms of p

containing ﬂ"i but where T} has been factored out. Then

P=po+Tip1 +Tips + -+ 20py.

Ifplai, ... ;a.,) = 0, one of two cases arises. Either all p; evaluate to 0 or some
pi doesn’t evaluate to 0 and a, is a root of the single variable polynomial obtained
by evaluating py through p, on a; through a,.

'To bound the probability that the first case occurs observe that one of the D;
must be nonzero because p is nonzero. Then the probability that all p; evaluate
to 0 is at most the probability that p; evaluates to 0. By the induction hypothesis,
that is at most (m — 1)d/ f because p; has at most m — 1 variables.

To bound the probability that the second case occurs observe that if some p;
doesn’t evaluate to 0, then on the assignment of ay through a,,, p reduces to a
nonzero polynomial in the single variable z;. The basis already shows that a, is
a root of such a polynomial with a probability of at most d/ f.

Therefore the probability that a; through a,, is a root of the polynomial is at
most (m — 1)d/f +d/f = md/f.

........................................................................................................................................................................

We conclude this section with one important point concerning the use of ran-
domness in algorithms. Our analyses of probabilistic algorithms are based on the
assumption that a source of true randomness is available for their computation.
"True randomness may be difficult (or impossible) to obtain, so it is usually simu-
lated with psendorandom generators, which are deterministic algorithms whose
output appears random. Although the output of any deterministic procedure can
never be truly random, some of these procedures generate results that have cer-
tain characteristics of randomly generated results. Algorithms that are designed
to use randomness may work equally well with these pseudorandom generators,
but proving that they do is generally more difficult. Indeed, sometimes prob-
abilistic algorithms may not work well with certain pseudorandom generators.
Sophisticated pseudorandom generators have been devised that produce results
indistinguishable from truly random results by any test that operates in polyno-
mial time, under the assumption that a one-way function exists. (See Section 10.6
for a discussion of one-way functions.)
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ALTERNATION

Alternation is a generalization of nondeterminism that has proven to be useful
in elucidating relationships among complexity classes and in classifying specific
problems according to their complexity. Using alternation, we may simplify var-
ious proofs in complexity theory and exhibit a surprising connection between the
time and space complexity measures.

An alternating algorithm may contain instructions to branch a process into
multiple child processes, just as in a nondeterministic algorithm. The difference
between the two lies in the mode of determining acceptance. A nondeterministic
computation accepts if any one of the initiated processes accepts. When an alter-
nating computation divides into multiple processes, two possibilities arise. The
algorithm can designate that the current process accepts if any of the children
accept, or it can designate that the current process accepts if @/ of the children
accept.

Picture the difference between alternating and nondeterministic computation
with trees that represent the branching structure of the spawned processes. Each
node represents a configuration in a process. In a nondeterministic computation,
each node computes the OR operation of its children. That corresponds to the
usual nondeterministic acceptance mode whereby a process is accepting if any of
its children are accepting. In an alternating computation, the nodes may compute
the AND or OR operations as determined by the algorithm. That corresponds to
the alternating acceptance mode whereby a process is accepting if all or any of its
children accept.

Figure 10.2 shows nondeterministic and alternating computation trees. We
label the nodes of the alternating computation tree with A or V to indicate which
function of their children they compute.

DEFINITION ]0.15 .................................................................................................................

An alternating Turing machine is a nondeterministic Turing machine with an
additional feature. Its states, except for Gaccept AN Grejece, are divided into uni-
versal states and existential states. When we run an alternating Turing machine
on an input string, we label each node of its nondeterministic computation tree
with A or V, depending on whether the corresponding configuration contains a
universal or existential state. We determine acceptance by designating a node to
be accepting if it is labeled with A and all of its children are accepting or if it is
labeled with Vv and any of its children are accepting.
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FIGURE 10.2
Nondeterministic and alternating computation trees

We define the time and space complexity of these machines as for nondetermin-
istic Turing machines by taking the maximum time or space used by any compu-
tation branch. The alternating time and space complexity classes are defined as
follows.

ATIME(t(n)) = {L| L is a language decided by an O(¢(n)) time
alternating Turing machine}.
ASPACE(f(n)) = {L] L is a language decided by an O(f(n)) space

alternating Turing machine}.

We define AP, APSPACE, and AL to be the classes of languages that are de-
cided by alternating polynomial time, alternating polynomial space, and alternat-
ing logarithmic space "Turing machines, respectively.
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EXAMPLE 10.16 .......................................................................................................................

A tautology is a Boolean formula that evaluates to 1 on every assignment to its
variables. Let TAUT = {(¢)! ¢ is a tautology}. The following alternating algo-
rithm shows that TZAUT is in AP.
“On input {¢):
1. Universally select all assignments to the variables of ¢.
2. For a particular assignment, evaluate ¢.
3. If ¢ evaluates to 1, accept; otherwise reject.”

Stage 1 of this algorithm nondeterministically selects every assignment to ¢’
variables with universal branching. That requires all branches to accept in or-
der for the entire computation to accept. Stages 2 and 3 deterministically check
whether the assignment that was selected on a particular computation branch sat-
isfies the formula. Hence this algorithm accepts its input if it determines that all
assighments are satisfying.

Observe that Z4UT is a member of coNP. In fact, any problem in coNP can
easily be shown to be in AP by using an algorithm similar to the preceding one.

EXAMPLE 10.17 .......................................................................................................................

This example features a language in AP that isn’t known to be in NP or in coNP.
Let ¢ and ¢ be two Boolean formulas. Say that ¢ and ¢ are equivalent if they eval-
uate to the same value on all assignments to their variables. A minimal formula
is one that has no shorter equivalent. (The length of a formula is the number of
symbols that it contains.) Let

MIN-FORMULA = {{(¢$}| ¢ is a minimal Boolean formula}.
The following algorithm shows that MIN-FORMUI.A is in AP.

“On input ¢:
1. Universally select all formulas ¢/ that are shorter than ¢.
2. Existentially select an assignment to the variables of ¢.
3. Evaluate both ¢ and ¢ on this assignment.
4. Accept if the formulas evaluate to different values. Reject if they
evaluate to the same value.”

This algorithm starts with universal branching to select all shorter formulas
in stage 1 and then switches to existential branching to select an assignment in
stage 2. 'The term alternation stems from the ability to alternate, or switch, be-
tween universal and existential branching. a&

Alternation allows us to make a remarkable connection between the time and
space measures of complexity. Roughly speaking, the following theorem demon-
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strates an equivalence between alternating time and deterministic space for poly-
nomially related bounds, and another equivalence between alternating space and

deterministic time when the time bound is exponentially more than the space
bound.

THEOREM "o.'ls .....................................................................................................................

For f(n) > n we have ATIME(f(n)) C SPACE(f(n)) C ATIME(f?(n)).
For f(n) > logn we have ASPACE(f(n)) = TIME(2°U (),

Consequently, AL = P, AP = PSPACE, and APSPACE = EXPTIME. We
break the proof of this theorem into the following four lemmas.

LEMMA T 0.0 it st e e sees s e s et st vass s ssn st
For f(n) > n we have ATIME(f(n)) C SPACE(f(n)).

PROOF We convert an alternating time O(f(n)) machine M to a determinis-
tic space O( f(n}) machine S that simulates M as follows. On input w, the simu-
lator S performs a depth first search of M’s computation tree to determine which
nodes in the tree are accepting. Then § accepts if it determines that the root of
the tree, corresponding to AM’s starting configuration, is accepting.

Machine S requires space for storing the recursion stack that is used in the
depth-first search. Each level of the recursion stores one configuration. The re-
cursion depth is M’s time complexity. Each configuration uses O(f(n)) space and
M’s time complexity is O(f(n)). Hence S uses O(f?(n)) space.

We can improve the space complexity by observing that § does not need to
store the entire configuration at each level of the recursion. Instead it records
only the nondeterministic choice that M made to reach that configuration from
its parent. Then S can recover this configuration by replaying the computation
from the start and following the recorded “signposts.” Making this change re-
duces the space usage to a constant at each level of the recursion. The total used
now is thus O(f(n)).

LEMMA TO.20 it i s s smsctssas s s sncens ey ss s s s sass s st st
For f(n) > n we have SPACE(f(n)) C ATIME(f?(n)).

PROOF We start with a deterministic space O(f(n)) machine M and con-
struct an alternating machine S that uses time O(f2(n)) to simulate it. The ap-
proach is similar to that used in the proof of Savitch’s theorem (Theorem 8.5)
where we constructed a general procedure for the yieldability problem.

In the yieldability problem, we are given configurations ¢; and ¢ of M and
a number t. We must test whether M can get from ¢; to ¢y within ¢ steps. An
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alternating procedure for this problem first branches existentially to guess a con-
figuration ¢,,, midway between ¢; and ¢,. Then it branches universally into two
processes, one that recursively tests whether ¢; can get to ¢, within t/2 steps and
the other whether ¢, can get to ¢, within ¢ /2 steps.

Machine S uses this recursive alternating procedure to test whether the start
configuration can reach an accepting configuration within 24/() steps. Here, d is
selected so that M has no more than 24 (") configurations within its space bound.

The maximum time used on any branch of this alternating procedure is
O(f(n)) to write a configuration at each level of the recursion, times the depth
of the recursion, which is log 2% = O(f(n)). Hence this algorithm runs in
alternating time O(f%(n)).

LEMMA 10.21 .............................................................................................................................
For f(n) > logn we have ASPACE( f(n)) C TIME(20(/(n))).

PROOF  We construct a deterministic time 2°/(*)) machine $ to simulate an
alternating space O(f(n)) machine M. On input w, the simulator § constructs
the following graph of the computation M on w. The nodes are the configura-
tions of M on w that use at most df (n) space, where d is the appropriate con-
stant factor for M. Edges go from a configuration to those configurations it can
yield in a single move of M. After constructing the graph, S repeatedly scans it
and marks certain configurations as accepting. Initially, only the actual accepting
configurations of M are marked this way. A configuration that performs uni-
versal branching is marked accepting if all of its children are so marked, and an
existential configuration is marked if any of its children are marked. Machine S
continues scanning and marking until no additional nodes are marked on a scan.
Finally, S accepts if the start configuration of M on w is marked.

The number of configurations of M on w is 2°U/(*)) because f(n) > logn.
Therefore the size of the configuration graph is 2°/") and constructing it may
be done in 29U/(*)) time. Scanning the graph once takes roughly the same time.
"The total number of scans is at most the number of nodes in the graph, because
each scan except for the final one marks at least one additional node. Hence the
total time used is 200/ (7)),

(Y 1Y, - K ¢ T 57 o SR
For f(n) > logn we have ASPACE(f(n)) 2 TIME(20(/()),

PROOF  We show how to simulate a deterministic time 2°(/(")) machine M
by an alternating Turing machine § that uses space O( f(n)). This simulation is
tricky because the space available to S is so much less than the size of M’ com-
putation. In this case S has only enough space to store pointers into a tableau for
M on w, as depicted in the following figure.
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- 20U

20(f(n))

FiIcURe 10.3
A tableau for M on w

We use the representation for configurations as given in the proof of Theo-
rem 9.25 whereby a single symbol may represent both the state of the machine
and the contents of the tape cell under the head. The contents of cell d in Fig-
ure 10.3 is then determined by the contents of its parents a, b, and ¢. (A cell on
the left or right boundary has only two parents.)

Simulator S operates recursively to guess and then verify the contents of the
individual cells of the tableau. To verify the contents of a cell d outside the first
row, simulator S existentially guesses the contents of the parents, checks whether
their contents would yield d’s contents according to M’s transition function, and
then universally branches to verify these guesses recursively. If d were in the first
row, S verifies the answer directly because it knows M’s starting configuration.
We assume that M moves its head to the left-hand end of the tape on acceptance,
so 5 can determine whether M accepts w by checking the contents of the lower
leftmost cell of the tableau. Hence S never needs to store more than a single

THE POLYNOMIAL TIME HIERARCHY

Alternating machines provide a way to define a natural hierarchy of problems
within the class PSPACE.

DEFINITION 10.23

Let i be an integer greater than 0. A =;-alternating Turing machine is an al-
ternating "Turing machine that contains at most i runs of universal or existential
steps, starting with existential steps. A I1;-alternating Turing machine is similar
except that it starts with universal steps.




Let X; TIME(f(n)) be the class of languages that a T, alternating Turing ma-

Ima A Paererit e s ) PRETSN MIAATY, £/

C}"uuc Can recognize in u(f(n)) {fime. Silﬁliariy deﬁne the CISSS HZ illVJ.J:JU'(TL))
for TI;-alternating Turing machines, and the classes Y;SPACE(f(n)) and
IL;SPACE( f(n)) for space bounded alternating Turing machines. We define the
polynomial time bierarchy to be the collection of classes

%P = O/ TIME(R*)  and
k

ILP = | JILTIME(n").
k

Define PH = |J, %P = (J, IL,P.
Clearly, NP = %P and coNP = II;P. Additionally, MIN-FORMUILA ¢
IL,P.

INTERACTIVE PROOF SYSTEMS

Interactive proof systems provide a way to define a probabilistic analog of the
class NP, much as probabilistic polynomial time algorithms provide a probabilis-
tic analog to P. The development of interactive proof systems has profoundly
affected complexity theory and has led to important advances in the fields of cryp-
tography and approximation algorithms. To get a feel for this new concept, let’s
revisit our intuition about NP.

The languages in NP are those whose members all have short certificates of
membership that can be easily checked. If you need to, go back to page 247 to
review this formulation of NP. Let’s rephrase this formulation by creating two
entities: a Prover that finds the proofs of membership and a Verifier that checks
them. Think of the Prover as if it were convincing the Verifier of w's membership
in A. We require the Verifier to be a polynomial time bounded machine; oth-
erwise it could figure out the answer itself. We don’t impose any computational
bound on the Prover because finding the proof may be time-consuming.

'Take the SAT problem for example. A Prover can convince a polynomial time
Verifier that a formula ¢ is satisfiable by supplying the satisfying assignment. Can
a Prover similarly convince a computationally limited Verifier that a formula is zoz
satisfiable? The complement of SAT is not known to be in NP so we can’t rely
on the certificate idea. Nonetheless the answer, surprisingly, is yes, provided we
give the Prover and Verifier two additional features. First, they are permitted to
engage in a rwo-way dialog. Second, the Verifier may be a probabilistic polynomial
time machine that reaches the correct answer with a high degree of, but not abso-
lute, certainty. Such a Prover and Verifier constitute an interactive proof system.
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GRAPH NONISOMORPHISM

We illustrate the interactive proof concept through the elegant example of the
graph isomorphism problem. Call graphs G and H isomorphic if the nodes of
may be reordered so that it is identical to H. Let

ISO = {{G, H)| G and H are isomorphic graphs}.

Although ISO is obviously in NP, extensive research has so far failed to demon-
strate either a polynomial time algorithm for this problem or a proof that it is
NP-complete. It is one of a relatively small number of naturally occurring lan-
guages in NP that haven’t been placed in either category.

Here, we consider the language that is complementary to ISO, namely, the
language NONISO = {{G, H)| G and H are not isomorphic graphs}. NONISO
is not known to be in NP because we don’t know how to provide short certificates
that graphs aren’t isomorphic. Nonetheless, when two graphs aren’t isomorphic,
a Prover can convince a Verifier of this fact, as we will show.

Suppose that we have two graphs G and Gs. If they are isomorphic, the
Prover can convince the Verifier of this fact by presenting the isomorphism or
reordering. But if they aren’t isomorphic, how can the Prover convince the Veri-
fier of that fact? Don’t forget: the Verifier doesn’t necessarily trust the Prover, so
it isn’t enough for the Prover to declare that they aren’t isomorphic. The Prover
must convince the Verifier. Consider the following short protocol.

The Verifier randomly selects either 71 or G and then randomly reorders its
nodes to obtain a graph, H. The Verifier sends H to the Prover. The Prover must
respond by declaring whether Gy or G was the source of H. That concludes the
protocol.

If G, and G5 were indeed nonisomorphic, the Prover could always carry out
the protocol because the Prover could identify whether / came from G or Gs.
However, if the graphs were isomorphic, H might have come from either G, or
(72, so even with unlimited computational powetr, the Prover would have no bet-
ter than a 50-50 chance of getting the correct answer. Thus if the Prover is able to
answer correctly consistently (say in 100 repetitions of the protocol) the Verifier
has convincing evidence that the graphs are actually nonisomorphic.

DEFINITION OF THE MODEL

'To define the interactive proof system model formally, we describe the Verifier,
Prover, and their interaction. You’ll find it helpful to keep the graph nonisomor-
phism example in mind. We define the Verifier to be a function V' that computes
its next transmission to the Prover from the message history sent so far. The func-
tion V has three inputs:
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1. Input string. The objective is to determine whether this string is a member
of some language. In the NONISO example, the input string encoded the
two graphs.

2. Random input. For convenience in making the definition, we provide the
Verifier with a randomly chosen input string instead of the equivalent ca-
pability to make probabilistic moves during its computation.

3. Partial message history. A function has no memory of the dialog that has
been sent so far, so we provide the memory externally via a string represent-
ing the exchange of messages up to the present point. We use the notation
my#mo# - - - #m; to represent the exchange of messages m; through m;.

The Verifier’s output is either the next message m;_ 1 in the sequence or accept or
reject, designating the conclusion of the interaction. Thus V' has the functional
form V: T* x ©* x *— 3* U {accept, reject }.

V{(w,r.mi#---#m;) = m;,, means that the input string is w, the random
input is r, the current message history is m; through m;, and the Verifier’s next
message to the Prover is m; 1.

The Prover is a party with unlimited computational ability. We define it to be
a function P with two inputs:

1. Input string.
2. Partial message history.

The Prover’s output is the next message to the Verifier. Formally, P has the form
P:¥* x ¥*—3*.

P{w, mi#---#m;) = m,; | means that the Prover sends m, to the Verifier
after having exchanged messages m, through m; so far.

Next we define the interaction between the Prover and the Verifier. For par-
ticular strings w and r, we write (V< P)(w,r) = accept if a message sequence
my through my, exists for some k whereby

I. for 0 < i < k, where 7 is an even number, V(w, r, mi# - --#m;) = m;,1;
2. for 0 < i < k, where 7 is an odd number, P(w, m1#---#m;) = m;,1; and

3. the final message m; in the message history is accept.

To simplify the definition of the class IP we assume that the lengths of the
Verifier’s random input and each of the messages exchanged between the Verifier
and the Prover are p(n) for some polynomial p that depends only on the Verifier.
Furthermore we assume that the total number of messages exchanged is at most
p(n). The following definition gives the probability that an interactive proof sys-
tem accepts an input string w. For any string w of length n, we define

Pr[ V<P accepts w| = Pr[ (VP (w
L ] L\ FAN

r) = nnne'nt]
? ¥ il o J 3

where r is a randomly selected string of length p(n).
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DEFINITION TO.24 s ssr st s s sassasarasanens

icin TP if Ivmomial Hme fincetion V A
Say that language A is in IP if some polynomial time function V and
2

function P exist, where for every function P and string w

1. w € Aimplies Pr[ VP accepts w] >

2. w ¢ Aimplies Pr| VP accepts w] <

, and

Wl wlny

We may amplify the success probability of an interactive proof system through
repetition as in Lemma 10.5 to make the error probability exponentially small.
Obviously, IP contains both the classes NP and BPP. We have also shown that it
contains the language NONISO, which is not known to be in either NP or BPP.
As we will next show, IP is a surprisingly large class, equal to the class PSPACE.

IP = PSPACE

In this section we will prove one of the more remarkable theorems in complexity
theory: the equality of the classes IP and PSPACE. Thus for any language in
PSPACE, a Prover can convince a probabilistic polynomial time Verifier about
the membership of a string in the language, even though a conventional proof of
membership might be exponentially long.

THEOREM 10.25 .....................................................................................................................
1P = PSPACE.

We break this theorem into lemmas that establish containment in each direc-
tion. The first lemma shows IP C PSPACE. Though a bit technical, the proof
of this lemma is a standard simulation of an interactive proof system by a poly-
nomial space machine.

LEMMA 10.26 .............................................................................................................................
1P C PSPACE.

PROOF Let A be a language in IP. Assume that A’s Verifier V exchanges ex-
actly p = p(n) messages when the input w has length n. We constructa PSPACE
machine M that simulates V. First, for any string w we define

Pr[V accepts w | = max Pr[V e P accepts w .

This valueis at least 2 if w isin A and is at most £ if not. We show how to calculate
this value in polynomial space. Let M; denote a message history m# - - - #m;.
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We generalize the definition of the interaction of V and P to start with an arbi-
trary message stream M;. We write (V- P)(w,r, M;) = accept if we can extend
M; with messages m;4 1 through m,, so that

1. for j < i < p, where ¢ is an even number, V(w, r, M;) = m;,1;
2. for j <i < p, where ¢ is an odd number, P(w, M;) = m;, 1; and
3. the final message m,, in the message history is accept.

Further generalizing our earlier definitions we define
Pr[ VP accepts w starting at M; | = Pr[(VeP)(w,r, M;) = accept ]
for a random string r of length p. We then define

Pr[V accepts w starting at M; | = max Pr | V> P accepts w starting at M, |.

For every 0 < j < p and every message stream M; let N », be defined induc-
tively as follows. The base case is j = p for every M;.

0 J = pand m, = reject
N 1 Jj = pand m, = accept
M, = .
? MaXm, ,; Nas,., oddj7 < p

wt-avg,,  Np,., evenj<p

Here, wt-avg,,  Nu,,, means - (Pr,[V(w,r,M;) = mj11] - Nug,,),
where Pr, denotes a probability taken over a random r of length p. The expres-
sion is the average of Ny ., ,, weighted by the probability that the Verifier sent
message m;q.

Let Mg be the empty message stream. We make two claims about value Ny, .
First, an algorithm can calculate Ny, in polynomial space. That algorithm re-
cursively calculates the values Ny, for every j and M;. The depth of the recur-
sion is p, and therefore only polynomial space is needed. Second, Ny, equals
Pr[V accepts w |, the value needed in order to determine whether w is in A. We
prove this second claim by induction as follows.

caim 1 0.27 ...............................................................................................................................
For every 0 < j < pand every M,,

Ny, = Pr{V accepts w starting at M; |
We prove this claim by induction on j, where the basis occurs at j = p and the
induction proceeds from p down to 0.

Basis: Prove for j = p. We know that my, is either accept or reject. If m, is
accept, N, is defined to be 1, and Pr{ V accepts w starting at M; | = 1 because
the message stream already indicates acceptance, so the claim is true. The case
for my, is reject is similar.
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Induction step: Assume that the claim is true for some j+1 < pand any message
stream M, 1. Prove that it is true for j and any message stream M. If j is even,
mM;j41 is a message from V to P. We then have the series of equalities:
1
NMj = Z (PI‘,«[V(’(U,T, M]) = mj_,_l} . NMH-l)

Ti+1

Pr. | V(w,r, M;) = mji1 | - Pr[V accepts w starting at M,
J j j

Mi+1

2

2 Pr[V accepts w starting at M; |.

Equality 1 is the definition of Ny, . Equality 2 is based on the induction hypoth-
esis. Equality 3 follows from the definition of Pr[ V accepts w starting at M. i .

Thus the claim holds if j is even. If j is odd, m ;. | is a message from P to V. We
then have the series of equalities:

Ny,

, max Ny,

mji1 J+1°
2 :
= max Pr|V accepts w starting at M;; |
mji+1

2 Pr[V accepts w starting at M; |

Equality 1 is the definition of Nj,. Equality 2 uses the induction hypothesis. We
break equality 3 into two inequalities. We have < because the Prover that maxi-
mizes the lower line could send the message m; ;1 that maximizes the upper line.
We have > because that same Prover cannot do any better than send that same
message. Sending anything other than a message that maximizes the upper line
would lower the resulting value. That proves the claim for odd j and completes
the proof of the theorem.

Now we prove the other direction of Theorem 10.25. The proof of this lemma
introduces a novel algebraic method of analyzing computation.

LEMMA 10.28 .............................................................................................................................
PSPACE C IP.

Before getting to the proof of this lemma, we prove a weaker result that il-
lustrates the technique. Define the counting problem for satisfiability to be the

language
#5AT = {(, k)| ¢ is a enf-formula with exactly  satisfying assignments}.
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PROOF IDEA  This proof presents a protocol whereby the Prover persuades
the Verifier that & is the actual number of satisfying assignments of a given cnf-
formula ¢. Before getting to the protocol itself let’s consider another protocol
that has some of the flavor of the correct one but is unsatisfactory because it re-
quires an exponential time Verifier. Say that ¢ has variables z; through z,,.

Let f; be the function where for0 < i < manday, ... ,q; € {0,1} we set
fia1, ... ,;a;) equal to the number of satisfying assignments of ¢ such that each
z; = a; for j < i. The constant function fy() is the number of satisfying assign-
ments of ¢. The function f,, (a1, ... ,an) is 1 if those a;% satisfy ¢; otherwise it
1s 0. An easy identity holds for every i < mand aq, ... ,a;:

K

fl-(al, e ,G,i) = fi+1(a1, - ,ai,O) + fi+1(a1, cel, Gy, 1).
'The protocol for #SAT begins with phase 0 and ends with phase m + 1. The

T
1 fl‘\q natr (A L\
L

lnput 15 e pair (@, 7j.

Phase 0. P sends f5() to V.
V checks that & = f5() and rejects if not.

Phase 1. P sends f1(0) and f;(1) to V.
V checks that fo() = f1(0) + f1(1) and rejects if not.

Phase 2. P sends f2(0,0), f2(0,1), f2(1,0), and f2(1,1) to V.
V checks that f1(0) = f2(0,0)+ f2(0,1) and f1(1) = £2(1,0) + f2(1,1) and rejects

if not.

Phase m. P sends f(ay, ... ,a,,) for each assignment to the a;%s.
V checks the 2~ equations linking f,,,_; with f,, and rejects if any fail.

Phase m+-1.  V checks that the values f(a1, ... ,ay,) for each assighment to
the a;’s are correct by evaluating ¢ on that assignment. If all assignments are
correct it accepts; otherwise it rejects. That complete the description of the pro-
tocol.

This protocol doesn’t provide a proof that #SA4T is in IP because the Verifier
must spend exponential time just to read the exponentially long messages that
the Prover sends. Let’s examine it for correctness, anyway, because that helps us
understand the next, more efficient protocol.

Intuitively, a protocol recognizes a language A if a Prover can convince the
Verifier of the membership of strings in A. In other words, if a string is a member
of A, some Prover can cause the Verifier to accept with high probability. If the
string isn’t a member of 4, no Prover—not even a crooked or devious one—can
cause the Verifier to accept with more than low probability. We use the symbol
P to designate the Prover who correctly follows the protocol and who thereby
makes V" accept with high probability when the input is in A. We use the symbol
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Pto designatg any Prover that interacts with the Verifier when the inputisn’t in
A. "Think of P as an adversary—as though P were attempting to make V' accept
when V' should reject. The notation P is suggestive of a “crooked” Prover,

In the #S4T protocol we just described, the Verifier ignores its random input
and operates deterministically once the Prover has been selected. Hence we don't
need probabilities to show that the protocol operates correctly. We need to show
that, if k were the correct number of satisfying assignments ¢ in the input (¢, k),
some Prover P would cause V to accept. This case is obviously true. If k weren’t
correct, every Prover P would cause V to reject. We argue that case as follows.

If k were not correct and P follows the protocol as described for P,V rejects
outright in phase 0 because fy() is the number of ¢’ satisfying assignments and
therefore fo() # k. To prevent V from rejecting in phase 0, P must deviate from
the protocol by sending an incorrect value for fo(), denoted fo(). Intuitively, f5()
is a /ie about the value of f5(). As in real life, lies beget lies, and P will be forced
to continue lying about other values of f; in order to avoid being caught during
later phases. Eventually these lies will catch up with P in phase m + 1 where V
checks the values of f,,, diregtly

More precisely, because fo() # fo(), at least one of the values J1(0) and f,(1)
that P sends in phase 1 must be incorrect; otherwise V rejects when it checks
whether fy() = f1(0)+ f1(1). Let’s say that f;(0) was incorrect and call the value
that was sent instead f;(0). Continuing in this way we see that at every phase
P must end up sending some incorrect value f;(ay, ... ,a;), or V would have
rejected by that point. But when V' checks the incorrect value (a1, ... am)
in phase m 4 1 it will reject anyway. Thus we have shown that if k is incorrect,
V' rejects no matter what P does. Therefore the protocol is correct.

The problem with this protocol is that the number of messages doubles with
every phase. This doubling occurs because the Verifier requires the two values
fizx1(...,0)and fi;1(... , 1) to confirm the one value fi(...). If we could find
a way for the Verifier to confirm a value of f; with only a single value of f; 1,
the number of messages wouldn’t grow at all. We can do so by extending the
functions f; to non-Boolean inputs and confirming the single value f; (..., 2)
for some z selected at random from a finite field.

PROOF  Let ¢ be a cnf-formula with variables 2, through z,,,. In a technique
called arithmetization, we associate with ¢ a polynomial p(z1, ... ,z,,) where p
mimics ¢ by simulating the Boolean A, V, and — operations with the arithmetic
operations + and x as follows. If a and 3 are subformulas we replace expressions

aAB by ap,
e by 1-a, and
avVi3 by axf=1-(1-a)l-7).
One observation regarding p that will be important to us later is that the de-
gree of any of its variables is not large. The operations &3 and a* 3 each produce
a polynomial whose degrees are at most the sum of the degrees of the polynomials

for v and 3. Thus the degree of any variable is at most n, the length of ¢.
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If p’s variables are assigned Boolean values, it agrees with ¢ on that assignment.
Evaluating p when the variables are assigned non-Boolean values has no obvious
interpretation in ¢. However, the proof uses such assignments anyway to analyze
¢, much as the proof of Theorem 10.12 uses non-Boolean assighments to analyze
read-once branching programs. The variables range over a finite field F with ¢
elements where q is at least 2".

We use p to redefine the functions f; that we defined in the proofidea section.
ForO0<i<mandfora, ... q; € Flet

fi(al, ,ai) = Z p(al, ,Cbm).

Ay g1y aamE{Oal}

Observe that this redefinition extends the original definition because the two
agree when the a;’ take on Boolean values. Thus f;() is still the number of sat-
isfying assignments of ¢. Each of the functions f;(z1, ... ,z;) can be expressed
as a polynomial in x; through z;. The degrees of each of these polynomials is at
most that of p.

Next we present the protocol for #S4T. Initially V receives input (¢, k) and
arithmetizes ¢ to obtain polynomial p. A comment in double brackets appears at
the start of the description of each phase.

[ P sends fo().]

P—V: Psendsaprime g thatis larger than 2" and a short proof of its primality,
and P sends fy() to V. All further arithmetic is in the field F with g elements.
V checks the proof that g is prime and that & = fo(). V rejects if either fail.

Phase 1. [ P persuades V that fo() is correct if f1(r1) is correct. |

P—V: P sends the coefficients of f1(z) as a polynomial in 2.

V uses these coefficients to evaluate f;(0) and f;(1). It then checks that the de-
gree of the polynomial is at most n and that fo() = f1(0) + f1(1). V rejects if
either fail. (Remember that all calculations are done over F.)

V—P: V selects ry at random from F and sends it to P.

Phase 2. [ P persuades V' that fi(r1) is correct if fa(r1,72) is correct. |

P—V: P sends the coefficients of fy(r1, 2) as a polynomial in z.

V uses these coefficients to evaluate f5(rq,0) and fo(rq,1). It then checks that
the degree of the polynomial is at most n and that f1(r) = fa(r1,0) + fa(ry, 1).
V rejects if either fail.

V—P: V selects rp at random from F and sends it to P.

Phasei. [ PpersuadesV that f; 1(r1,...,ri—1)iscorrectif fi(ry, ..., r;)is correct. |
P—V: P sends the coefficients of f;(ry, ... ,r;—1, 2) as a polynomial in z.
V uses these coefficients to evaluate f;(ry, ... ,r;-1,0) and fi(ry, ... ,7iz1, 1)

3Here we use the fact that PRIMES € NP. The proof we give shortly of the stronger
result IP = PSPACE doesn’t depend on this fact, but here it simplifies the argument.
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It then checks that the degree of the polynomial is at most n and also that
fi—l(’rly ,Ti—l) = fi(Tl, ey T, 0) + f,'(T‘], e, T, 1) V TGjECtS if ei-
ther fail.

V—P: V selects r; at random from F and sends it to P.

Phase m+1. [V checks directly that f., (r1, ... ,Tm) is correct. |

V evaluates p(ry, ... .r,,) to compare with the value V has for f,,(rq, ... s Tm)-
If they are equal, V' accepts; otherwise V' rejects. That completes the description
of the protocol.

Now we show that this protocol accepts #SAT". First, if ¢ has k satisfying as-
signments, V' obviously accepts with certainty if Prover P follows the protocol.
Second, we show that if ¢ doesn’t have & assignments, no Prover can make it ac-
cept with more than a low probability. Let P be any Prover.

To prevent V from rejecting outright, P must send an incorrect value £, () for
fo() in phase 0. Therefore in phase 1 one of the values that V calculates for f;(0)
and f1(1) must be incorrect, and thus the coefficients that P sent for fi(z) as a
polynomial in 2 must be wrong. Let f,(z) be the function that these coefficients
represent instead. Next comes a key step of the proof.

When V picks a random 7 in F, we claim that f,(r;) is unlikely to equal
f1(r1). For n > 10 we show that

Pr[ﬁ(Tl) :fl(rl):l n=2.

"That bound on the probability follows from Lemma 10.13: A polynomial in a
single variable of degree at most d can have no more than d roots, unless it always
evaluates to 0. Therefore any two polynomials in a single variable of degree at
most d can agree in at most d places, unless they agree everywhere.

Recall that the degree of the polynomial for f; is at most n and that V rejects
if the degree of the polynomial P sends for f; is greater than n. We have already
determined that these functions don’t agree everywhere, so Lemma 10.13 implies
they can agree in at most n places. The size of F is greater than 2". The chance
that ; happens to be one of n places where the functions agree is at most n/2",
which is less than n=2 for n > 10. N _

To recap what we’ve shown so far, if fy() is wrong, f1’s polynomial must be
wrong, and then fj(r;) would likely be wrong by virtue of the preceding claim.
In the unlikely event that f1 (r1) agrees with fi(ry), P was “lucky” at this phase
and it will be able to make V' accept (even though V should reject) by following
the instructions for P in the rest of the protocol.

Continuing further with the argument, if f; (rl) were wrong, at least one of
the values V' computes for f2(r1,0) and fo(ry, 1) in phase 2 must be wrong, so
the coefficients that P sent for fa(ry, 2) as a polynomial in z must be wrong. Let
fa(r1, z) be the function these coefficients represent instead. The polynomials
for f5(r1,2) and fa(ry, z) have degree at most n, so as before the probability that
they agree at a random r, in JF is at most n 2 Thus when V picks 3 at random,
fa(r1,r2) is likely to be wrong.
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The general case follows in the same way to show that for each 1 < i < m if

Jic1(ry, oo ric1) # fica(r, oo mis1),

then for n > 10 and for r; is chosen at random in F
Pr[ﬁ(ﬁ, s i) = filry, L ,7"'5)} <n 2

Thus, by giving an incorrect value for fo(), P is probably forced to give incor-
rect values for fi(ry), f2(r1,72), and so on to fm(r1, .. ;7m). The probability
that P gets lucky because V selects an r;, where fi(ry, ... ,r:) = fi(r1, ... ,75)
even though f; and f; are different in some phase, is the number of phases m
times n~2 or at most 1/n. If P never gets lucky, it eventually sends an incorrect
value for fy,,(r1, ... ,rm). But V checks that value of f,,, directly in phase m + 1
and will catch any error at that point. So if k is not the number of satisfying as-
signments of ¢, no Prover can make the Verifier accept with probability greater
than 1/n.

To complete the proof of the theorem, we need only show that the Verifier

operates in probabilistic polynomial time, which is obvious from its description.

........................................................................................................................................................................

Next, we return to the proof of Lemma 10.28, that PSPACE C IP. The proof
similar to that of Theorem 10.29 except for an additional idea used here to lower
the degrees of polynomials that occur in the protocol.

........................................................................................................................................................................

PROOF IDEA  Let first try the idea we used in the preceding proof and de-
termine where the difficulty occurs. To show that every language in PSPACE is

in IP, we need only show that the PSPACE-complete language TQBF is in IP.
Let ¢ be a quantified Boolean formula of the form

=

W = O1£L’1 Qn,’)’.‘n e O,_’T‘,,, [¢}

a9 § L™ a MITLY I

~

?

where ¢ is a cnf-formula and each Q; is 3 or V. We define functions fi as be-
fore, except that now we take the quantifiers into account. For 0 < ¢ < m and

a1y .-,y € {0,1} let
1 if Qq;_f_l(L'-i_'_l s QmiCWL [Qﬁ(al, . ,Cl,i)] 18 true,
fi((ll, ,ai): s
0 otherwise.
where ¢(ay, ..., a;) is ¢ with a; through a; substituted for z; through z;. Thus
fo() is the truth value of 1). We then have the arithmetic identities
. i 4 SR |
Q%Z\'\?I fi(a‘l,...,ai):fi+1((’j1,... ,ai,G)-fi_i_l(ul,...,ai,l) ana

Qi=3: filar, ... ) = fiya(ar, ... ,a:,0) % fiyq(ag, ..., a3 1)

Recall that we defined z x y to be 1 — (1 — z)(1 — y).

A natural variation of the protocol for #SAT suggests itself where we extend
the f;’s to a finite field and use the identities for quantifiers instead of the identi-
ties for summation. The problem with this idea is that, when arithmetized, every
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quantifier may double the degree of the resulting polynomial. The degrees of the
polynomials might then grow exponentially large, which would require the Ver-
ifier to run for exponential time to process the exponentially many coefficients
that the Prover would need to send to describe the polynomials.

To keep the degrees of the polynomials small, we introduce a reduction oper-
ation R that reduces the degrees of polynomials without changing their behavior
on Boolean inputs.

PROOF  Lety = Qxy -+ Q[ ¢] be a quantified Boolean formula, where ¢
is a enf-formula. To arithmetize ¢ we introduce the expression

¢' = Qe Rry Qe RryRry Qs Rz RrgRas - - - Qo Ry - Rty [¢).

Don’t worry about the meaning of Ra; for now. It is useful only for defining the
functions f;. We rewrite v’ as

¥' = S1y1 Say2 -+ - Sk [ ],

where eachS; € {V,3,R}and y; € {1, ... .z, ).

define the function f;. We define fi (1, ... , ) to be the
polynomial p(z1, ..., z,,) obtained by arithmetizing ¢. For i < k we define f;
in terms of f;;:

SZ:V fz():fz-f-l(,o)fz—f—l(:l)
S; = 3: fi("'):fi+1("'sO)*fz‘+1(---71)
S;:=R: fz( ,G,) = (]_-Cl,)f,;+1(. .. ,0) +afi+1(. .. ,1).

IfSis ¥ or 3, f; has one fewer input variable than fix1 does. If Sis R, the two
functions have the same number of input variables. Thus, function f; will not, in
general, depend on i variables. To avoid cumbersome subscripts we use “...” in
place of a; through a; for the appropriate values of 5. Furthermore, we reorder
the inputs to the functions so that input variable y;. ; is the last argument.

Note that the Rz operation on polynomials doesn’t change their values on
Boolean inputs. Therefore f;() is still the truth value of 1. However, note that
the Rz operation produces a result that is linear in z. We added Rz, - - - Rx; after
Qiz; in ¢/ in order to reduce the degree of each variable to 1 prior to the squaring
due to arithmetizing Q;.

Now we are ready to describe the protocol. All arithmetic operations in this
protocol are over a field F of size at least n?, where n is the length of 4. V can
find a prime of this size on its own, so P doesn’t need to provide one.

Foreach: < kwe

Phase 0. [ P sends fo()-]
P—V: Psends fy() to V.
V checks that fo() = 1 and rejects if not.
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Phase i. [ P persuades V that f;_1(r1 ---) is correct if f;(r1--- ,7) is correct. |
P—V: P sends the coefficients of f;(ry---,z) as a polynomial in z. (Here
71 --- denotes a setting of the variables to the previously selected random val-
ues vy, 72, ... )

V uses these coefficients to evaluate f;(r;---,0) and fi(r1---,1). Then it
checks that the polynomial degree is at most n and that the identities hold,
namely,

i

() = {fi(n---,oyfi(ﬁ...,l)

S=V
fi(Tl"',O)*fi(Tl'-',l) S EI

or

fi—l(rl"‘ ,T)Z(l-?“)‘fi(f‘l‘-' ,0)—|—T‘f7;(7"1--- ,1) S=R.

If either fails, V' rejects.

V—P: V picks arandom r in F and sends it to P. (When S = R this r replaces
the previous r.)

Go to Phase i + 1, where P must persuade V that f;(r;--- ,7) is correct.

Phase k+1. [V checks directly that fx(r1, ... ,7m) is correct. |

V evaluates p(r1, ... ,7m) to compare with the value V has for f,,,(r1, ... ,rm).
If they are equal, V' accepts; otherwise V' rejects. That completes the description
of the protocol.

Proving the correctness of this protocol is similar to proving the correctness
of the #SAT protocol. Clearly, if 1 is true, P can follow the protocol and V' will
accept. It 4 is false P must lie at phase 0 by sending an incorrect value for f(). At
phase 7, if V has an incorrect value for f;_ (1 - - - ), one of the values f;(r; - - - ,0)
and f;(r1---,1) must be incorrect and the polynorLlial for f; must be incorrect.
Consequently, for a random r the probability that P gets lucky at this phase be-
cause f;(r1---,r)is correctis at most the polynomial degree divided by the field
size or n/n*. The protocol proceeds for O(n?) phases, so the probability that
P gets lucky at some phase is at most 1/n. If P is never lucky, V will reject at
phase k + 1.

........................................................................................................................................................................

PARALLEL COMPUTATION

A parallel computer is one that can perform multiple operations simultaneously.
Parallel computers may solve certain problems much faster than sequential com-
puters, which can only do a single operation at a time. In practice, the distinction
between the two is slightly blurred because most real computers (including “se-
quential” ones) are designed to use some parallelism as they execute individual
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instructions. We focus here on massive parallelism whereby a huge number (think
of millions or more) of processing elements are actively participating in a single
computation.

In this section we briefly introduce the theory of parallel computation. We
describe one model of a parallel computer and use it to give examples of certain
problems that lend themselves well to parallelization. We also explore the possi-
bility that parallelism may not be suitable for certain other problems.

UNIFORM BOOLEAN CIRCUITS

One of the most popular models in theoretical work on parallel algorithms is
called the Parallel Random Access Machine or PRAM. Tn the PRAM model,
idealized processors with a simple instruction set patterned on actual comput-
ers interact via a shared memory. In this short section we can’t describe PRAMs
in detail. Instead we use an alternative model of parallel computer that we intro-
duced for another purpose in Chapter 9: Boolean circuits.

Boolean circuits have certain advantages and disadvantages as a parallel com-
putation model. On the positive side, the model is simple to describe, which make
proofs easier. Circuits also bear an obvious resemblance to actual hardware de-
signs and in that sense the model is realistic. On the negative side, circuits are
awkward to “program” because the individual processors are so weak. Further-
more, we disallow cycles in our definition of Boolean circuits, in contrast to cir-
cuits that we can actually build.

In the Boolean circuit model of a parallel computer, we take each gate to be an
individual processor, so we define the processor complexity of a Boolean circuit
to be its size. We consider each processor to compute its function in a single time
step, so we define the parallel time complexity of a Boolean circuit to be its depth,
or the longest distance from an input variable to the output gate.

Any particular circuit has a fixed number of input variables, so we use circuit
families as defined in Definition 9.22 for recognizing languages. We need to im-
pose a technical requirement on circuit families so that they correspond to par-
allel computation models such as PRAMs where a single machine is capable of
handling all input lengths. That requirement states that we can easily obtain all
members in a circuit family. This uniformity requirement is reasonable because
knowing that a small circuit exists for recognizing certain elements of a language
isn’t very useful if the circuit itself is hard to find. That leads us to the following
definition.

DEFINITION TO.30 et st s sas s sass

A family of circuits (Cy, Cs, ... ) is uniform if some log space transducer T' out-
puts {C%) when T’ input is 17,

Recall that Definition 9.23 defined the size and depth complexity of languages
in terms of families of circuits of minimal size and depth. Here, we consider the
simultaneous size and depth of a single circuit family in order to identify how many
processors we need in order to achieve a particular parallel time complexity or

——
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vice versa. Say that a language has simultaneous size—depth circuit complexity
at most (f(n), g(n)) if a uniform circuit family exists for that language with size
complexity f(n) and depth complexity g(n).

EXAMPLE 10.31 -----------------------------------------------------------------------------------------------------------------------

Let A be the language over {0,1} consisting of all strings with an odd number
of 1s. We can test membership in A by computing the parity function. We can
implement the two input parity gate = @ y with the standard AND, OR, and NOT
operations as (x A —y) V (=& A y). Let the inputs to the circuit be zq, ... , z,.
One way to get a circuit for the parity function is to construct gates g; whereby
g1 = x1and g; = ; © g;.1 for i < n. This construction uses O(n) size and
depth.

Example 9.24 describes another circuit for the parity function with O(n) size
and O(logn) depth by constructing a binary tree of & gates. This construc-
tion is a significant improvement because it uses exponentially less parallel time
than does the preceding construction. Thus the size-depth complexity of 4 is
(O(n), O(log n)).

EXAMPLE 0.3 ettt nmas s v e e e r s e e b e s

Recall that we may use circuits to compute functions that output strings. Con-
sider the Boolean matrix multiplication function. The input has 2m? = n vari-
ables representing two m x m matrices A = {az} and B = {b; }. The output
is m? values representing the m x m matrix C' = {€ir }, where

GINES \/(GLU‘ A bjk‘ )
J
The circuit for this function has gates g;;;, that compute a;; A b for each i, j,
and k. Additionally, for each 7 and £ the circuit contains a binary tree of v gates
to compute V/; g;ji. Each such tree contains m —1 OR gates and has log m depth.

Consequently these circuits for Boolean matrix multiplication have size O(m?) =
O(n*/?) and depth O(log n).

EXAMPLE 10,33 ittt e s b et
If A= {a;;} is an m x m matrix we let the transitive closure of A be the matrix
AvAPv...vA™

where A* is the matrix product of A with itself i times and V is the bitwise OR
of the matrix elements. The transitive closure operation is closely related to the
PATH problem and hence to the class NL. If 4 is the adjacency matrix of a di-
rected graph G, A* is the adjacency matrix of the graph with the same nodes in
which an edge indicates the presence of a path of length 4 in G. The transitive
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closure of A is the adjacency matrix of the graph in which an edge indicates the
presence of a path of any length in G.

We can represent the computation of A* with a binary tree of size i and depth
logz wherein a node computes the product of the two matrices below it. Fach
node is computed by a circuit of O(n®/?) size and logarithmic depth. Hence
the circuit computing A™ has size O(n?) and depth O(log? n). We make cir-
cuits for each A’ which adds another factor of n to the size and an additional
layer of O(log n) depth. Hence the size-depth complexity of transitive closure
is (O(n®/2), O(log® n)).

THE CLASS NC

Many interesting problems have size—depth complexity (O(n¥), O(logkn)) for
some constant k. Such problems may be considered to be highly parallelizable

with a moderate number of processors. That prompts the definition of the class
NC. 4

DEFINITION 10.34 .................................................................................................................

For i > 1let NC' be the class of languages that can be recognized by a uniform?’
family of circuits with polynomial size and O(log’ n) depth. Let NC be the class
of languages that are in NC' for some i. Functions that are computed by such
circuit families are called NC? computable or NC computable.

We explore the relationship of these complexity classes with other classes of
languages we have encountered. First we make a connection between Turing ma-
chine space and circuit depth. Problems that are solvable in logarithmic depth
are also solvable in logarithmic space. Conversely, problems that are solvable in
logarithmic space, even nondeterministically, are solvable in logarithmic squared

depth.

THEOREM 10.35 .....................................................................................................................
NC!' C L.

PROOF W sketch a log space algorithm to recognize a language A in NC'.
On input w of length 7, the algorithm can construct the description as needed
of the nth circuit in the uniform circuit family for A. Then the algorithm can

4Steven Cook coined the name NC for “Nick’s class” because Nick Pippenger was the first
person to recognize its importance.

*Defining uniformity in terms of log space transducers is standard for NC* when i > 2 but
gives a non-standard result for NC! (which contains the standard class NC! as a subset).
We give this definition anyway, because it is simpler and adequate for our purposes.
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evaluate the circuit by using a depth-first search from the output gate. The only
memory that is necessary to keep track of the progress of the search is to record
the path to the current gate that is being explored and to record any partial results
that have been obtained along that path. The circuit has logarithmic depth, hence
only logarithmic space is required by the simulation.

........................................................................................................................................................................

THECREM 10.36 .....................................................................................................................
NL C NC2.

........................................................................................................................................................................

PROOF IDEA Compute the transitive closure of the graph of configurations
of an NL-machine. Output the position corresponding to the presence of a path
from the start configuration to the accept configuration.

PROOF Let A be a language that is accepted by an NL machine M, where 4
has been has been encoded into {0,1}. We construct a uniform circuit family
Co, Cy, ... for A. 'To get C; we construct a graph G that is similar to the com-
putation graph for M on an input w of length n. We do not know the input w
when we construct the circuit—only its length n. The inputs to the circuit are
variables w; through w,, each corresponding to a position in the input.

Recall that a configuration of M on w describes the state, the contents of the
work tape, and the positions of both the input and the work tape heads, but does
not include w itself. Hence the collection of configurations of M on w does not
actually depend on w—only on w’s length n. These polynomially many config-
urations form the nodes of G.

The edges of G are labeled with the input variables w;. If ¢; and ¢ are two
nodes of G and ¢; indicates input head position ¢, we put edge (cy, ¢2) in G with
label w; (or w;) if ¢; can vield ¢, in a single step when the input head is reading a
1 (or 0), according to M’s transition function. If ¢; can yield ¢; in a single step,
whatever the input head is reading, we put that edge in G unlabeled.

If we set the edges of G according to a string w of length n, a path exists from
the start configuration to the accepting configuration if and only if M accepts w.
Hence a circuit that computes the transitive closure of G and outputs the position
indicating the presence of such a path accepts all strings in A of length n. That
circuit has polynomial size and O(log? n) depth.

A log space transducer is capable of constructing G and therefore C,, on in-
put 1", See Theorem 8.20 for a more detailed description of a similar log space
transducer.

........................................................................................................................................................................

The class of problems solvable in polynomial time includes all the problems
solvable in NC, as the following theorem shows.
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THECOREM 10.37 .....................................................................................................................
NC CP.

PROOF A polynomial time algorithm can run the log space transducer to gen-
erate circuit C', and simulate it on an input of length n.

........................................................................................................................................................................

P-COMPLETENESS

Now we consider the possibility that all problems in P are also in NC, Equality
between these classes would be surprising because it would imply that all poly-
nomial time solvable problems are highly parallelizable. We introduce the phe-
nomenon of P-completeness to give theoretical evidence that some problems in
P are inherently sequential.

DEFINITION 10‘38 .................................................................................................................
A language B is P-complete if

1. BeP,and
2. every Ain P is log space reducible to B.

‘The next theorem follows in the spirit of Theorem 8.18 and has a similar proof
because NL and NC machines can compute log space reductions. We leave its
proof as Exercise 10.3.

THEOREM 10.39 .....................................................................................................................
If A <y, Band Bisin NC then A is in NC.

We show that the problem of circuit evaluation is P-complete. For a circuit
C and input setting z we write C'(z) to be the value of C on z. Let

CIRCUIT-VALUE = {(C, z)| C is a Boolean circuit and C(z) = 1}.

THEOREM 1 0.40 .....................................................................................................................
CIRCUIT-VALUE is P-complete.

PROOF The construction given in Theorem 9.25 shows how to reduce any
language A in P to CIRCUIT-VALUE. On input w the reduction produces a cir-
cuit that simulates the polynomial time Turing machine for A. The input to the
circuit is w itself. The reduction can be carried out in log space because the cir-
cuit it produces has a simple and repetitive structure.

.....................................................................................................................................................................
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CRYPTOGRAPHY

The practice of encryption, using secret codes for private communication, dates
back thousands of years. During Roman times, Julius Caesar encoded messages
to his generals to protect against the possibility of interception. More recently,
Alan Turing, the inventor of the Turing machine, led a group of British math-
ematicians who broke the German code used in World War II for sending in-
structions to U-boats patrolling the Atlantic Ocean. Governments still depend
on secret codes and invest a great deal of effort in devising codes that are hard to
break and in finding weaknesses in codes that others use. These days, corpora-
tions and individuals use encryption to increase the security of their information.
Soon, nearly all electronic communication will be cryptographically protected.

In recent years computational complexity theory has led to a revolution in the
design of secret codes. The field of cryptography, as this areas is known, now ex-
tends well beyond secret codes for private communication and addresses a broad
range of issues concerning the security of information. For example, we now
have the technology to digitally “sign” messages to authenticate the identity of
the sender; to allow electronic elections whereby participants can vote over a net-
work and the results can be publicly tallied without revealing any individual’s vote
and preventing multiple voting and other violations; and to construct new kinds
of secret codes that do not require the communicators to agree in advance on the
encryption and decryption algorithms.

Cryptography is an important practical application of complexity theory.
Digital cellular telephones, direct satellite television broadcast, and electronic
commerce over the internet, all depend on cryptographic measures to protect
information. Such systems will soon play a role in most people’s lives. Indeed,
cryptography has stimulated much research in complexity theory and in other
mathematical fields.

SECRET KEYS

Traditionally, when a sender wants to encrypt a message so that only a certain
recipient could decrypt it, the sender and receiver share a secret key. The secret
key is a piece of information that is used by the encrypting and decrypting algo-
rithms. Maintaining the secrecy of the key is crucial to the security of the code
because any person with access to the key can encrypt and decrypt messages.

A key that is too short may be discovered through a brute-force search of the
entire space of possible keys. Even a somewhat longer key may be vulnerable
to certain kinds of attack—we say more about that shortly. The only way to get
perfect cryptographic security is with keys that are as long as the combined length
of all messages sent.

A key that s as long as the combined message length is called a one-time pad.
Essentially, every bit of a one-time pad key is used just once to encrypt a bit of
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the message, and then that bit of the key is discarded. The main problem with
one-time pads is that they may be rather large if a significant amount of commu-
nication is anticipated. For most purposes, one-time pads are too cumbersome
to be considered practical.

A cryptographic code that allows an unlimited amount of secure communica-
tion with keys of only moderate length is preferable. Interestingly, such codes
can’t exist in principle but paradoxically are used in practice. This type of code
can’t exist in principle because a key that is significantly shorter than the com-
bined message length can be found by a brute-force search through the space of
possible keys. Therefore a code that is based on such keys is breakable in princi-
ple. But therein lies the solution to the paradox. A code could provide adequate
security in practice anyway because brute-force search is extremely slow when the

key is moderately long, say in the range of 100 bits. Of course, if the code could

be broken in some other, fast way, it is insecure and shouldn’t be used. The dif-
ficulty lies in being sure that the code can’t be broken quickly.

Unfortunately, we currently have no way of ensuring that a code with mod-
erate length keys is actually secure. To guarantee that a code can’t be broken
quickly, we’d need a mathematical proof that, at the very least, finding the key can’t
be done quickly. However, such proofs seem beyond the capabilities of contem-
porary mathematics! The reason is that, once a key is discovered, verifying its
correctness is easily done by inspecting the messages that have been decrypted
with it. Therefore the key verification problem can be formulated so as to be
in P. If we could prove that keys can’t be found in polynomial time, we would
achieve a major mathematical advance by proving that P is different from NP.

Because we are unable to prove mathematically that codes are unbreakable, we
rely instead on circumstantial evidence. In the past, evidence for a code’s quality
was obtained by hiring experts who tried to break it. If they were unable to do
so, confidence in its security increased. That approach has obvious deficiencies.
If someone has better experts than ours, or if we can’t trust our own experts, the
integrity of our code may be compromised. Nonetheless, this approach was the
only one available until recently and was used to support the reliability of widely
used codes such as the Data Encryption Standard (DES) that was sanctioned by
the U.S. National Bureau of Standards.

Complexity theory provides another way to gain evidence for a code’s security.
We may show that the complexity of breaking the code is linked to the com-
plexity of some other problem for which compelling evidence of intractability
is already available. Recall that we have used NP-completeness to provide evi-
dence that certain problems are intractable. Reducing an NP-complete problem
to the code breaking problem would show that the code breaking problem was
itself NP-complete. However, that doesn’t provide sufficient evidence of secu-
rity because NP-completeness concerns worst-case complexity. A problem may
be NP-complete, yet easy to solve most of the time. Codes must almost always
be difficult to break, so we need to measure average-case complexity rather than
worst-case complexity.

One problem that is generally believed to be difficult for the average case is
the problem of integer factorization. Top mathematicians have been interested
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in factorization for centuries, but no one has yet discovered a fast procedure for
doing so. Certain modern codes have been built around the factoring problem
so that breaking the code corresponds to factoring a number. That constitutes
convincing evidence for the security of these codes, because an efficient way of
breaking such a code would lead to a fast factoring algorithm, which would be a
remarkable development in computational number theory.

PUBLIC-KEY CRYPTOSYSTEMS

Even when cryptographic keys are moderately short, their management still
PIEsSEnts an obstacle to their WIUCpr ead use in conventional Cry‘ptogi apn‘y‘ One
problem is that every pair of parties that desires private communication needs to
establish a joint secret key for this purpose. Another problem is that each indi-
vidual needs to keep a secret database of all keys that have been so established.

The recent development of public-key cryptography provides an elegant solu-
tion to both problems. In a conventional, or private-key cryptosystem, the same
key is used for both encryption and decryption. Compare that with the novel
public-key cryptosystem for which the decryption key is different from, and not
easily computed from, the encryption key.

Although it is a deceptively simple idea, separating the two keys has profound
consequences. Now each individual only needs to establish a single pair of keys:
an encryption key, E and a decryption key, D. The individual keeps D secret but
publicizes E. If another individual wants to send him a message, she looks up E
in the public directory, encrypts the message with it, and sends it to him. The first
individual is the only one who knows D, so only he can decrypt that message.

Certain public-key cryptosystems can also be used for digital signatures. If an
individual applies his secret decryption algorithm to a message before sending it,
anyone cai check that it actually came from him by applying the public encryp-
tion algorithm. He has thus effectively “signed” that message. This application
assumes that the encryption and decryption functions may be applied in either
order, as is the case with the RSA cryptosystem.

ONE-WAY FUNCTIONS

Now we briefly investigate some of the theoretical underpinnings of the modern
theory of cryptography, called one-way functions and trapdoor functions. One
of the advantages of using complexity theory as a foundation for cryptography is
that it helps to clarify the assumptions being made when we argue about security.
By assuming the existence of a one-way function we may construct secure private-
key cryptosystems. Assuming the existence of trapdoor functions allows us to
construct public-key cryptosystems. Both assumptions have additional theoret-
ical and practical consequences. We define these types of functions after some
preliminaries.
A functlon f:E—2*is length-preservmg if the lengths of w and f(w)a

equ:u for every w. A 1c1lgu1—pl eser—v‘mg function is dpéfinhtﬁilaii if it never map

two strings to the same place, that is, if f(z) # f(y) whenever z # y.

73]
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Recall the definition of probabilistic Turing machine given in Section 10.2.
Say that a probabilistic Turing machine M computes a probabilistic function
M : 3" — 32" where, if w Is an input and z is an output, we assign

Pr[M(w) =z

to be the probability that M halts in an accept state with  on its tape when it is
started on input w. Note that A may sometimes fail to accept on input w, so

Y Pr[M(w)=z] <L

TeL*

Next we get to the definition of a one-way function. Roughly speaking, a func-
tion is one-way if it is easy to compute but nearly always hard to invert. In the
following definition, f denotes the easily computed one-way function and M de-
notes the probabilistic polynomial time algorithm that we may think of as trying
to invert f. We define one-way permutations first because that case is somewhat
simpler.

DEFINITION 10.41 .................................................................................................................

A one-way permutation is a length-preserving permutation [ with the following
two properties.

1. It is computable in polynomial time.

2. For every probabilistic polynomial time Turing machine M, every k, and
sufficiently large n, if we pick a random w of length n and run M on input
w

Pry,o| M(f(w))=w] < n*.

Here, Pr,; ., means that the probability is taken over the random choices
made by M and the random selection of w.

A one-way function is a length-preserving function f with the following two
properties.

1. It is computable in polynomial time.

2, For every probabilistic polynomial time Turing machine M, every k, and
sufficiently large n, if we pick a random w of length n and run M on input
w

’

Pr[ M(f(w)) = y where f(y) = f(w)] <n~*.

For one-way permutations, any probabilistic polynomial time algorithm has
only a small probability of inverting f; that is, it is unlikely to compute w from
f(w). For one-way functions, any probabilistic polynomial time algorithm is un-
likely to be able to find any y that maps to f(w).
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EXAMPLE 10.42 -----------------------------------------------------------------------------------------------------------------------

The multiplication function mulf is a candidate for a one-way function. We let
¥ = {0,1} and for any w € X let mult(w) be the string representing the product
of the first and second halves of w. Formally,

mult(w) = wy - ws,

where w = wjws such that |wy| = |wz|, or Jw1| = |wz| + 1if |w| is odd. The
strings w and ws are treated as binary numbers. We pad mult(w) with leading 0s
so that it has the same length as w. Despite a great deal of research into the inte-
ger factorization problem, no probabilistic polynomial time algorithm is known
that can invert mult, even on a polynomial fraction of inputs.

If we assume the existence of a one-way function, we may construct a private-
key cryptosystem that is provably secure. That construction is too complicated to
present here. Instead, we illustrate how to implement a different cryptographic
application using a one-way function.

One simple application of a one-way function is a provably secure password
system. In a typical password system, a user must enter a password to gain ac-
cess to some resource. The system keeps a database of users’ passwords in an
encrypted form. The passwords are encrypted to protect them if the database
is left unprotected either by accident or design. Password databases are often
left unprotected so that various application programs can read them and check
passwords. When a user enters a password, the system checks it for validity by
encrypting it to determine whether it matches the version stored in the database.
Obviously, an encryption scheme that is difficult to invert is desirable because it
makes the unencrypted password difficult to obtain from the encrypted form. A
one-way function is a natural choice for a password encryption function.

TRAPDOOR FUNCTIONS

We don’t know whether the existence of a one-way function alone is enough to al-
low the construction of a public-key cryptosystem. To get such a construction we
use a related object called a trapdoor function, which can be efficiently inverted
in the presence of special information.

First, we need to discuss the notion of a function that indexes a family of func-
tions. If we have a family of functions {f;} for i in ¥*, we can represent them
by the single function f: ¥* x ©*— %, where f(i,w) = fi(w) for any 7 and
w. We call f an indexing function. Say that f is length-preserving if each of the
indexed functions f; is length preserving.

DEFINITION TO.43 s s s s

A trapdoor function is a length-preserving indexing function f: ¥* x ¥*— X~
with an auxiliary probabilistic polynomial time TM G and an auxiliary function
h: ¥* x £*—¥*, The trio f, G, and h satisfy the following three conditions.
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1. Functions f and h are computable in polynomial time.

2. For every probabilistic polynomial time TM £ and every k and sufficiently
large n, if we take a random output (i, ¢) of G on 1" and a random w € ¥»
then

Pr[E(, fi(w)) =y, where f;(y) = fi(w)] <n7F.

3. For every n, every w of length n, and every output (i,t) of G that occurs
with nonzero probability for some input to G

h(t, fi(w)) =y, where fi(y) = fi(w).

The probabilistic TM G generates an index 4 of a function in the index family
while simultaneously generating a value ¢ that allows f; to be inverted quickly.
Condition 2 says that f; is hard to invert in the absence of t. Condition 3 says
that f; is easy to invert when ¢ is known. Function h is the inverting function.

EXAMPLE 1 0.44 .......................................................................................................................

Here, we describe the trapdoor function that underlies the well-known RSA
cryptosystem. We give its associated trio f, G, and h. The generator machine
G operates as follows. It selects two numbers of roughly equal size at random
and tests them for primality by using a probabilistic polynomial time primality
testing algorithm. If they aren’t prime, it repeats the selection until it succeeds
or until it reaches a prespecified timeout limit and reports failure. After finding
p and g, it computes N = pq and the value (N} = (p — 1)(g — 1). It selects
a random number e between | and N. It checks whether that number is rela-
tively prime to ¢(N). If not, the algorithm selects another number and repeats
the check. Finally, the algorithm computes the multiplicative inverse d of e mod-
ulo ¢(N). Doing so is possible because the set of numbersin {1, ..., ¢{/N)} that
are relatively prime to ¢(N) form a group under the operation of multiplication
modulo ¢(N). Finally G outputs ({ N, e),d). The index to the function f consists
of the two numbers N and e. Let

fne(w) =w® mod N.
The inverting function A is
h(d,z) = 2% mod N.

Function / properly inverts because h(d, fy .(w)) = w*? mod N = w.

We can use a trapdoor function such as the RSA trapdoor function, to con-
struct a public-key cryptosystem as follows. The public key is the index i gener-
ated by the probabilistic machine G. The secret key is the corresponding value t.
The encryption algorithm breaks the message m into blocks of size at mostlog V.
For each block w the sender computes f;. The resulting sequence of strings is the
encrypted message. The receiver uses the function A to obtain the original mes-
sage from its encryption.
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EXERCISES

10.1

Show that a circuit family with depth O(log n) is also a polynomial size circuit fam-
ily.

10.2 Show that 12 is not pseudoprime because it fails some Fermat test.

10.3 Prove thatif 4 <;, B and B isin NC then A is in NC.

10.4 Show that the parity function with n inputs can be computed by a branching pro-
gram that has O(n) nodes.

10.5 Show that the majority function with n inputs can be computed by a branching pro-
gram that has O(n?) nodes.

10.6 Show thatany function with n inputs can be computed by a branching program that
has O(2") nodes.

10.7 Show that BPP C PSPACE.

PROBLEMS

10.8 Let A be a regular language over {0,1}. Show that 4 has size-depth complexity
(O(n), O(log n)).

"10.9 A Boolean formula is 2 Boolean circuit wherein every gate has only one output wire.
‘The same input variable may appear in multiple places of a Boolean formula. Prove
that a language has a polynomial size family of formulas iff it is in NC?. Ignore
uniformity considerations.

"10.10 A k-bead pushdown automaton (k-PDA) is a deterministic pushdown automaton
with & read-only, two-way input heads and a read/write stack. Define the class
PDAy = {A| Ais recognized by a k-PDA}. Show that P = (J, PDAy. (Hint: Re-
call that P equals alternating log space.)

10.11 Let M be a probabilistic polynomial time Turing machine and let C be a language
where, for some fixed 0 < ¢1 < €2 < 1,

a. w & C implies Pr[M accepts w] < €}, and
b. w € C implies Pr[M accepts w] > €.
Show that C € BPP. (Hint: Use the result of Lemma 10.5 )

10.12 Show that, if P = NP, then P = PH.

10.13  Show that, if PII = PSPACE, then the polynomial time hierarchy has only finitely
many distinct levels.

10.14 Recall that NPT is the class of languages that are recognized by nondeterminis-
tic polynomial time Turing machines with an oracle for the satisfiability problem.
Show that NP¥! = v, p.

10.15 Prove Fermat little theorem, which is given in Theorem 10.6. (Hint: Consider

the sequence a', a?, ... . What must happen, and how?)



10.16

10.17

10.18

10.19

PROBLEMS 379

Prove that, for any integer p > 1, if p fails the Fermat test for some number in Z,,
then p fails for at least half of all numbers in Z,,.

Prove that, if A is a language in L, a family of branching programs Bi, Bz, . .. exists
wherein each B, accepts exactly the strings in A of length n and is bounded in size
by a polynomial in n.

Prove that, if A is a regular language, a family of branching programs Bi, Bs, . ..
exists wherein each B,, accepts exactly the strings in A of length n and is bounded
in size by a constant times n.

Show that the problem of testing whether two branching programs compute the
same function is solvable in polynomial time if and only if P = NP.
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