‘Centro L
wnform tica

Pés-Graduacdo em Ciéncia da Computacao

Jodao Henrique Correia Pimentel

SYSTEMATIC DESIGN OF ADAPTIVE SYSTEMS —
CONTROL-BASED FRAMEWORK

Ph.D. Thesis

L=g
e~

4

B

Universidade Federal de Pernambuco

5

posgraduacao@cin.ufpe.br
www.cin.ufpe.br/~posgraduacao

RECIFE
2015

www.cin.ufpe.br/~posgraduacao

Jodao Henrique Correia Pimentel

SYSTEMATIC DESIGN OF ADAPTIVE SYSTEMS —
CONTROL-BASED FRAMEWORK

A Ph.D. Thesis presented to the Centro de Informdtica of
Universidade Federal de Pernambuco in partial fulfillment
of the requirements for the degree of Philosophy Doctor in

Ciéncia da Computagdo.

Advisor: Jaelson Freire Brelaz de Castro

RECIFE
2015

Catalogacéo na fonte
Bibliotecario Jefferson Luiz Alves Nazareno CRB4-1758

P644s Pimentel, Jo&do Henrique Correia.
Systematic design of adaptive systems: control-based framework. / Jodo
Henrique Correia Pimentel. — Recife: O Autor, 2015.
242 f.: fig., tab.

Orientador: Jaelson Freire Brelaz de Castro.

Tese (Doutorado) — Universidade Federal de Pernambuco. CIN,
Ciéncia da Computacao, 2015.

Inclui referéncias, glossério e apéndices.

1. Engenharia de software. 2. Sistemas de controle por realimentacgéo.
3. Desenvolvimento de software. |. Castro, Jaelson Freire Brelaz de.
(Orientador). II. Titulo.

005.1 CDD (22. ed.) UFPE-MEI 2015-123

Tese de doutorado apresentada por Joao Henrique Correia Pimentel ao programa de Pds-
Graduacao em Ciéncia da Computacdo do Centro de Informatica da Universidade Federal de
Pernambuco, sob o titulo Systematic Design of Adaptive Systems — Control-Based
Framework, orientada pelo Prof. Jaelson Freire Brelaz de Castro ¢ aprovada pela banca

examinadora formada pelos professores:

Prof. Ricardo Massa Ferreira Lima
Centro de Informatica/UFPE

Prof. Carla Taciana Lima Lourengo Silva Schuenemann
Centro de Informatica/UFPE

Prof. Fernanda Maria Ribeiro Alencar
Departamento de Eletronica e Sistemas/UFPE

Prof. Itana Maria de Souza Gimenes
Departamento de Informatica/UEM

Prof. Julio Cesar Sampaio do Prado Leite
Departamento de Informatica/PUC-Rio

Visto e permitida a impressao.
Recife, 27 de fevereiro de 2015.

Profa. Edna Natividade da Silva Barros

Coordenadora da Pés-Graduagdo em Ciéncia da Computagio do
Centro de Informatica da Universidade Federal de Pernambuco

To the generous people around the world.

Acknowledgements

Thanks to my family and friends.

Thanks to the new friends on the requirements engineering group, to the "people from

the room", to the chicos from Barcelona, and to the ragazzi from Trento.

Special thanks to those that directly helped with this thesis: Emanuel Santos, the proto-
typical research mate; Marc and Marc, the web services guys; Vitor Souza and Konstantinos, the
"hey, what about architecture?" team; Daniel, Hans, and Orivaldo, the robot guys; and Jéssyka,

the statecharts partner.

Thanks to Carla Silva, Fernanda Alencar, Itana Gimenez, Jodo Aratjo, Julio Leite, Nel-

son Rosa, and Ricardo Massa, members of the proposal and thesis defense committee.

Thanks to Jaelson Castro, Xavier Franch, and John Mylopoulos, for guiding and inspir-

ing me to become a better researcher; for going beyond the call of duty. And for the free food.

Many more people helped me throughout this PhD research, both known and unknown

to me, both knowingly and unknowingly. To you all, my thanks.

Resumo

Um grande nimero de abordagens foram propostas para elicitar, modelar e analisar requisitos
para sistemas adaptativos. No entanto, ainda existe uma grande distincia entre a especificacao
de requisitos e a implementacdo de um sistema adaptativo. Nesta tese foi investigada a inter-
relacdo entre requisitos e arquitetura para o desenvolvimento de sistemas adaptativos. Mais
especificamente, nds propomos o framework Adaptagao Multi-Nivel para Sistemas de Software
(MULAS, do inglés Multi-Level Adaptation for Software Systems). Este framework é focado
no refinamento iterativo e incremental de um modelo de objetivos, em direcdo a criacdo de
um Modelo de Objetivos de Design (DGM, do inglés Design Goal Model). Este modelo pode
entdo ser utilizado em tempo de execucdo para se gerenciar a adaptacdo em um sistema dev-
idamente instrumentado. Ademais, o framework inclui um processo para gerar diagramas de
estados a partir do Modelo de Objetivos de Design. Uma ferramenta desenvolvida especifica-
mente para apoiar este framework (GATO, do inglés, Goal TO Architecture) permite criar 0s
diferentes artefatos do processo, incluindo a gera¢do automadtica de diagrama de estados base.
A adequacdo desta abordagem ao desenvolvimento de sistemas adaptativos € ilustrada através
de estudos de caso. Resultados empiricos mostram que as técnicas desenvolvidas para criar
diagramas de estados a partir do modelo de objetivos com elementos de design apresentam
boa escalabilidade, i.e. possui bom desempenho mesmo no caso de modelos extensos. Adi-
cionalmente, um experimento com estudantes de engenharia de software indica que a ado¢@o

do framework por ndo-especialistas ndo € apenas possivel como também € benéfica.

Palavras-chave: Adaptacdo de Software. Engenharia de Requisitos. Projeto Arquitetural. En-
genharia Dirigida a Modelos. Sistemas Adaptativos. Transformagao de Modelos. Ferramenta

de modelagem.

Abstract

A number of approaches have been proposed for eliciting, modeling and analyzing require-
ments for adaptive systems. However, there is still a large gap between such requirements
specifications and the actual implementation of adaptive systems. In this thesis we investigate
the interplay between requirements and architecture for the development of adaptive systems.
Furthermore, we propose the Multi-Level Adaptation for Software Systems (MULAS) frame-
work. This framework is centered on the iterative and incremental refinement of a goal model,
towards the creation of a Design Goal Model. This model can then be used at runtime to drive
adaptation on a system that is properly instrumented. Moreover, the framework includes a tool-
supported process for generating statechart behavioral models from a Design Goal Model. The
GATO tool (Goal TO Architecture) allows the creation of the different artifacts of the process,
including the automatic generation of base statecharts. The suitability of this approach for de-
veloping adaptive systems is illustrated by means of case studies. Empirical results show that
the techniques developed to translate enriched goal models onto statecharts are scalable, i.e.
they present a good performance even with large models. Furthermore, an experiment with
software engineering students indicates that the adoption of this framework by non-experts is

feasible and beneficial.

Keywords: Software Adaptation. Requirements Engineering. Architectural Design. Model-
Driven Engineering. Adaptive Systems. Model Transformation. Modeling Tool.

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure

Figure

Figure
Figure

Figure

1.1

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

3.1
3.2
3.3

34

3.5

3.6

3.7
3.8

4.1
4.2
4.3

4.4
4.5
4.6

List of Figures

Overview of the architectural design process proposed in this thesis . . 24
Partial Requirements Model for a Meeting Scheduler system 33
Statechartexample 34
Partial statechart for the Meeting Scheduler system 36
Example of a goal model annotated with flow expressions 37
Block diagram of a simplified feedback loop, based on (HELLERSTEIN

etal.,2004) 38

Partial requirements model of a Meeting Scheduler system, including
adaptationelements Lo 41

Graph of the success rate of Collect Timetables as a function of FhM

(From how Many) i i i e 42
Adaptation cycle of the Zanshin framework 44
Partial Goal Model for Define schedule 49

Specification of the adaptation strategies for Define schedule with Zanshin 50
Examples of statecharts with different concerns: (a) shows the set of
operations required to connect with a stream server, while (b) shows the
possible states of buttons in a graphical user interface 52

An example of the direct mapping from tasks in goal models (a) to states

instatecharts (b)o 53
Different statecharts exemplifying different execution flows for the same

setof taskso 54
In the left-hand side, a timed transition with a static time interval; in the

right-hand side, a timed transition with a parameterized time interval . . 54
Excerpt of the Design Goal Model for a Meeting Scheduler System . . 58
Metamodel of the Design Goal Model 60
Requirements of the Meeting Scheduler system 66
Overview of the architectural design process 70

Meeting Scheduler Design Goal Model, with Design Tasks and Design

Constraints L 73
Example of assignment in the Meeting Scheduler system 76
Example of behavioral annotation (flow expression) onaDGM 77

Example of variation on structure on an excerpt of the Meeting Sched-
uler system. A) Design Goal Model; B) Statechart 79

Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure
Figure

4.7
4.8
4.9

4.10

4.11
4.12

4.13
4.14

5.1
5.2

5.3

54

5.5

5.6

5.7
5.8
59
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6

Possible flows for the Characterize meeting goal 80
Meeting Scheduler Design Goal Model annotated with Flow Expressions 81
Design Goal Model of a Meeting Scheduler system with additional adap-

tation elements (highlighted with dashed circles) 86
Visual representation of patterns for deriving statecharts from flow ex-

PIESSIONS e e e e 92
Base statechart for the Meeting Scheduler system 93
Statechart for the Meeting Scheduler system with the specified transi-

tions. Default transition events omitted for enhanced visualization. . . . 97
The Include adaptation elements sub-process 99

Complete statechart for the Meeting Scheduler system, including tran-

sitions and adaptation elements L 101

Requirements of the Goal to Archtool 104
Requirements view in the GATO tool. A) tab selection; B) main area;
O)toolbar e 106
Design view in the supporting tool. Compared with the requirements
view, this view also presents design tasks, design constraints, and design
aSSUMPLIONS . .« v v v v o e o e e e e e e e e e e e e e e e 107
Assignments view in the supporting tool. Compared with the design
view, this view also presents task assignments, as in the Contact Partic-
ipantsdesigntask L L L 108
Behavior Refinement view in the supporting tool. Compared with the
assignments view, this view also presents the ids of each element and
their behavior refinements (flow expressions) 109
Screenshot of the supporting tool showing the warnings panel below the
designgoalmodel 110
Screenshot of the supporting tool showing the adaptation specification . 111
Screenshot of the supporting tool showing the transitions specification . 112
Screenshot of output of the statechart derivation 117
Screenshot of the resulting statechart diagram 118
Mapping between the DGM metamodel (top) and Zanshin’s metamodel
(bottom) e 120

ATM Requirements Model 123
ATM Requirements Model with awareness requirements and parameters 126
Excerpts of the ATM Design Model, with Design Tasks and Assignments 128

Behavioral annotations for an excerpt of the ATM Design Model 129
ATM Design Goal Model with flow expressions 131
Base statechart for the ATM System 134

Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

6.7

6.8

6.9

6.10
6.11
6.12
6.13

6.14

6.15
6.16

6.17

6.18

7.1

7.2
7.3

7.4

7.5

Screenshot of the simulation tool, with different kinds of actions high-
lighted: A) parameter-related actions; B) statechart actions related to
adaptation action; C) initialization action; D) monitoring actions 141
Screenshot of the simulation tool, displaying the current states (left), the

list of events to trigger (top-right) and Zanshin’s execution log (bottom-

right) . . . 146
Requirements Model of the EM system 151
Design Goal Model of the EM system 153
Flow Expressions of the EM system 155
Base statechart of the EM system 157

Awareness requirements and parameters on the EHM system’s design
goalmodel 158
Picture of the robot equipment. A) Webcam; B) USB port; C) Micro-
controller board; D) Motor driver; E) Power supply; F) Right wheel; G)
Leftwheel 158
Picture of the robot positioned over a line to be followed 159
Image captured via a webcam mounted on the robot, when over a straight
line, after different processing steps. a) captured image, in grayscale; b)
image after thresholding; c) image after erosion and dilation; d) image
with rectangular contour and horizontal center 160
Image captured via a webcam mounted on the robot, when over a curve,
after different processing steps. a) captured image, in grayscale; b) im-
age after thresholding; c) image after erosion and dilation; d) image with
rectangular contour and horizontal center 160
Distance from the center of the camera to the center of the visible part

of the line being followed, overtime 161

Average Execution Time of the statechart derivation algorithm. The
solid line represents the actual average execution time, while the dashed
line represents its linear regression 166
Goal Model used in the empirical evaluation 172
Syntactical errors in the statecharts created during the execution of the
experiment. Different shades in the same bar indicate different kinds of
errors. A) MULAS group; B) Control group 173
Number of elements in the statecharts created during the execution of
the experiment. A) Average number of states; B) Average number of
transitionso 174

Answers of the post-experiment questionnaire — questions AtoH . . . 176

Figure 7.6

Figure 7.7

Ease of use for different constructs, according to the subjective ques-
tionnaire

Ease of use for different adaptation strategies patterns, according to the

subjective questionnaire

Table
Table
Table
Table

Table
Table

Table

Table

Table
Table

Table

Table

Table

Table

Table

3.1
3.2
33
34

4.1
4.2

4.3

4.4

4.5
4.6

6.1

7.1

7.2

7.3

8.1

List of Tables

Partial Use Case for Define Schedule
Possible refinements in the Design Goal Model
Elements that can be annotated with flow expressions and assignments
The different views of the Design Goal Model. Question marks indicate

that the visualization of the element is optional in that view

Symbols adopted in the flow expressions
Description of the awareness requirements for the Meeting Scheduler
System, both requirements- and architecture-related
Parameters of the Meeting Scheduler System, both requirements- and
architecture-related L Lo
Adaptation strategies for the Meeting Scheduler system
Transitions specification for the Meeting Scheduler system
Start and end points for monitoring the awareness requirements of the

Meeting Scheduler system L.
Description of the awareness requirements for the ATM System

Average time for deriving statecharts from flow expressions, with stan-
darddeviationo oL o
Number of errors related to flow expressions. Each row represents a
subject of the MULAS group
Number of errors related to adaptation strategy patterns. Each row repre-
sents a subject of the MULAS group

Comparison of related work L.

59

13

Listings

Listing 3.1 OCL constraints that define the possible refinements in the Design Goal Model 61
Listing 5.1 Grammar for flow expressions, 113
Listing 6.1 Output of the statechart derivation for the ATM system 133
Listing 6.2 ATM model as required by Zanshin’s component 137
Listing 6.3 Source code of the AtmZanshinWrapper class 140
Listing 6.4 Java method that receive instructions from Zanshin and modify attributes

from AtmZanshinWrapper accordingly L. oL 143
Listing 6.5 Log excerpt of the execution of the first adaptation scenario (ARI) 147
Listing 6.6 Log excerpt of the execution of the second adaptation scenario (AR2) 148
Listing 6.7 Log excerpt of the execution of the third adaptation scenario (AR4) 149
Listing 6.8 Output of the statechart derivation for the EM system 156
Listing 7.1 Randomly generated flow expression with 100 elements 165

List of Acronyms

ADL Architecture Description Language
ATM Automatic Teller Machine
BPMN Business Process Model and Notation

BREAD Browse, Read, Edit, Add, Delete

DGM Design Goal Model

EM Environment Monitoring

EMF Eclipse Modeling Framework

GATO Goal TO Architecture (tool)

GWT Google Web Toolkit

IDE Integrated Development Environment
JSF JavaServer Faces

JSP JavaServer Pages

MDE Model-Driven Engineering

MULAS Multi-Level Adaptation for software Systems

PIN Personal Identification Number
R&D Research and Development
RE Requirements Engineering
RUP Rational Unified Process

SVG Scalable Vector Graphics
XML eXtensible Markup Language

YST Yakindu Statechart Tools

Contents

1 Introduction

1.1 Contextand Motivationo
1.2 ResearchGoal
1.3 Methods e
1.4 Overview of the Proposed Solution
1.5 Publishedwork
1.6 ThesisOutline
2 Baseline
2.1 Requirements Engineeringo
22 GoalModels e
2.3 Statecharts e e
2.4 Flow EXpressions 0 i i e e e e e e e
2.5 Control Theory e
2.6 Goal Model with Adaptation Elements
2.7 Zanshin Framework o o
2.8 SUmMmMary e e e e e e e e e e e
3 Adaptation on Requirements and Architecture
3.1 Requirements e e e e e
3.2 Architectural design L
3.2.1 General adaptation Lo
3.2.2 Adaptation on Statecharts L oL
3.3 Multi-Level Adaptation - the Design Goal Model
34 Summary e e e e
4 From Requirements to Architectural Design
4.1 Requirements for the Meeting Scheduler system
4.2 Architectural Designo
4.2.1 Identify Design Tasks, Constraints and Assumptions
42.1.1 Example e
422 AssignTasks
4221 Example
423 DefineBasicFlows L.
423.1 Example
4.2.4 ldentify indicators, parameters and relations

18
18
20
21
22
24
28

29
29
30
34
35
38
39
43
44

46
46
50
50
51
55
64

7

4241 Example

4.2.5 Specify adaptation strategies
4251 Example
4.2.6 Generate base statecharto oL L
426.1 Example
4277 Specify transitionso o e
4271 Example e
4.2.8 Include adaptation elements
4281 Example
4.3 Summary e e e e e e e e e e e e e e e
GATO - Goal to Architecture tool
5.1 Overview e
5.2 Statechart Derivation
5.3 Integration with Zanshin oL,
5S4 Summary ... e e
Concept Proof
6.1 The ATM system it
6.1.1 Evaluation using the ATM system
6.1.1.1 Step 1 - Following the Architectural Design process
6.1.1.2 Step 2 - Using a statecharttool
6.1.1.3 Step 3 - Integration with Zanshin
6.1.1.4 Step4-Simulation
6.2 The Environment Monitoringrobot
6.2.1 Requirementsand Design
6.2.2 Adaptation e e e
6.2.3 Experimentation
6.3 Summary L. e e
Experiments
7.1 Scalability Evaluation o
7.2 Process assesSment e e e e e
7.2.1 Experiment Definition and Planning
7.2.1.1 Hypotheses, Variables, and Measures
7.2.1.2 Subjects, Treatments, and Instrumentation.
7.2.2 Experiment Preparation and Execution
7.2.3 Resultsand Analysis o
7.2.4 DIsCUSSION i e e e e e e

7.3 Summaryo e e e e e e e e e e e e e e

103
103
113
119
121

122
122
127
127
135
135
142
150
150
154
156
161

17

8

Conclusion
8.1 Context e e
8.2 Contributions e e e e
83 RelatedWork
8.3.1 Software Adaptation
8.3.1.1 Requirements-centric
8.3.1.2 Architecture-centric
8.3.2 Architectural Design and Derivation
8.3.2.1 Derivation of component models
8.3.2.2 Derivation of behavioral models
8.3.3 Summary of relatedwork oL Lo
8.4 Considerations e e e e e
8.5 Limitations e e e e
8.6 Future Work

References

Appendix

A

B

Example of iterative and incremental design with MULAS

ATM Adaptation Scenarios - Complete Logs

B.1 Log of the first adaptation scenario
B.2 Log of the second adaptation scenario
B.3 Log of the third adaptation scenario

Experiment Instruments

C.1 Pre-experiment qUeStiONNAIre« v v v v vt e
C.2 Object-MULAS group o s e
C.3 Object-Control group o e e
C.4 Postexperiment questionnaireot e e

182
182
183
184
184
184
185
186
186
187
188
190
190
192

194

205

206

212
213
218
223

18

Introduction

In this chapter we present the context and motivation for this work, as well as its goals,

the methodology used to achieve these goals, and the contributions of the thesis.

1.1 Context and Motivation

Software adaptation, which enables the creation of more flexible, resilient, robust, re-
coverable and energy-efficient systems (CHENG et al., 2009), can be defined as the software
capability of accepting environmental changes. Software systems have been adaptive for some
decades now — from operating systems that identify when a new device has been plugged in, to
games where enemies learn the players’ behavior and change their strategies accordingly; from
traction control systems on vehicles, to websites that change their user interface to fit the screen
they are being displayed on.

The relevance of adaptive systems has been growing with the increase of software com-
plexity, of platform heterogeneity, of user bases, of reliance on software systems and of main-
tenance costs. Focusing on the latter, the Autonomic Computing vision was laid out in the
beginning of this millennium (HORN, 2001; KEPHART; CHESS, 2003), proposing four main

characteristics for systems that are able to manage themselves:

= Self-configuration - a system with this capability is able to automatically configure

its components and sub-systems according to high-level preferences.

» Self-optimization - a system with this capability continually monitor its perfor-
mance, with regard to different non-functional requirements (such as dependability,
response time and cost), and automatically tune its parameters towards optimal per-

formance levels.

» Self-healing - a system with this capability tries to prevent downtime, by identifying

failures as they happen, diagnosing their causes, and enacting corrective operations.

= Self-protection - a system with this capability aims to improve its security, by pre-

venting problems related with malicious attacks.

1.1. CONTEXT AND MOTIVATION 19

By presenting these characteristics, self-adaptive systems can bring benefits regarding

both their use and their maintenance:

= Performance - by automatically tuning its parameters, the system may reach opti-
mal levels of performance in its different dimensions, such as speed (response time,
latency), size (memory usage, disk usage), energy consumption, scalability, and so
on (FRANCH et al., 2011; CHENG; GARLAN; SCHMERL, 2009).

= Availability - the self-healing and self-protection characteristics can help to reduce

systems’ downtime, thus improving their availability (FILIERI et al., 2012).

= Security - by monitoring the system and its environment for malicious attack, the
system may prevent some kinds of security breaches (SAVOLA; HEINONEN, 2010).

= Maintainability - by automating several tasks that would otherwise be performed
by system administrators, self-adaptive systems can largely reduce the effort and
complexity of software maintenance (HEINIS; PAUTASSO, 2008).

As a result of the increasing interest for software adaptation, there is a need for ap-
proaches that allow to systematically define, analyze and develop adaptive capabilities. Thus,
the state-of-the-art evolved from ad-hoc, case-by-case development, to systematic approaches
and frameworks.

Different approaches to support the development of self-adaptive systems have been
proposed in the academic literature, encompassing the categories mentioned earlier. However,
those are often restricted to a single aspect of software development. For instance, the Zanshin
framework (SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2011) provides support for handling
adaptation at the requirements level, enacting a monitoring-diagnosis-compensation cycle. Ac-
cording to Zanshin, adaptation is specified in terms of stakeholders’ goals, tasks, quality con-
straints, and so on. On the other hand, Rainbow (GARLAN et al., 2004) provides similar capa-
bilities, but addressing architectural models. Thus, it is concerned with properties of systems’
components and connectors, €.g., response time, number of servers and load balancing.

Requirements engineering and architectural design, while addressing the system speci-
fication at different abstraction levels, comprise intertwined activities (CASTRO et al., 2012).
The former focuses on the problem at hand, whereas the latter provides solutions for that prob-
lem (NUSEIBEH, 2001). Approaches that only support requirements-based or architecture-
based adaptation thus lack relevant elements of the adaptation space. For instance, architecture-
based approaches might ignore stakeholders’ goals and preferences, while requirements-based
ones may not address concerns related to the system implementation, such as algorithms and
components. Hence, the investigation on how to support seamless adaptation mechanisms
across the different phases of software development is a promising venue to improve the de-
velopment of self-adaptive software systems, especially in the context of Model-Driven Engi-
neering (MDE).

1.2. RESEARCH GOAL 20

Model-Driven Engineering is a development approach that focuses on models and their
transformations, rather than on source-code (PASTOR; MOLINA, 2007). Starting from abstract
models, developers include additional information and generate more concrete models. These
concrete models can then be used to generate source-code that will be compiled and run on
different platforms. Thus, instead of writing and changing source-code directly, developers ma-
nipulate the different models of the system. A key element of MDE are model transformations,
defined as "the automatic generation of a target model from a source model, according to a
transformation definition" (KLEPPE; WARMER; BAST, 2003).

Among the benefits of MDE approaches that can be obtained with proper tool support
and training, we highlight (KLEPPE; WARMER; BAST, 2003):

= Productivity - the use of models to generate source-code enables developers to
work in a more abstract level, thus reducing the amount of details and boilerplate
to be handled. This is similar to the benefit that came with high-level programming
languages (in contrast with low-level ones), where programmers can abstract from

machine details and program with a more abstract language.

= Portability - the same models can be used to generate source-code for different
target platforms, which includes not only different programming languages but also

different devices.

= Maintenance - besides the general productivity and portability benefits that apply to
maintenance, there is the additional benefit that comes from proper documentation,
where with MDE the problem of low quality and obsolete documentation is absent

— since the code comes from the models, the models are always up-to-date.

In this work we follow the MDE approach, focusing on models as concrete represen-
tations of a system. Moreover, we make use of techniques such as metamodeling and model

transformation in order to provide an integrated framework.

1.2 Research Goal

Considering the intertwined nature of requirements and architectural design, and the

relevance of each for the development of self-adaptive systems, the objective of this thesis is

to support the development of requirements-based and design-based adaptation on
software-intensive systems, generating behavioral models (statecharts) from goal
models, by means of a modeling language, a design process, integration mecha-

nisms, and tool support.

Based on this goal, the following research questions were identified.

1.3. METHODS 21

s RQ1 - Which requirements-related adaptations are supported by current ap-
proaches for software adaptation?

= RQ2 - Which architecture-related adaptations are supported by current ap-
proaches for software adaptation?

= RQ3 - How the adaptation in these different abstraction levels can be inte-
grated?

= RQ4 - How can we support software developers when moving from require-

ments to system behavior, for the case of adaptive systems?

In order to answer RQ1 and RQ2, we pursued the following specific goals: investigate
existing requirements-adaptation approaches; investigate existing architecture-adaptation ap-
proaches; investigate approaches that support adaptation at both levels (if any); and examine
adaptation scenarios and examples in the software engineering literature.

Regarding RQ3, we observed that the stated integration can be achieved in different
ways: (1) by adopting different approaches for the different levels, and integrating them; (i1) by
extending an existing approach in order to support the abstraction level that is not yet supported;
(iii) by developing a new approach from scratch. Considering that the use of a single approach
streamlines the development process, and the suitability of existing approaches, the second
option showed to be the more appropriate. Thus, the following specific goals were defined and
pursued: select an existing software adaptation approach to be used as baseline and propose an
integrated model that includes both requirements and architectural concerns.

Considering the specific goal of proposing an integrated model, we considered that a
good way to address RQ4 was to pursue the following specific goal: propose an architectural
design process to guide the design of adaptive system starting from its requirements. In order
to narrow the scope of this research effort, we have decided to focus on the behavioral aspects
of architectural design, instead of contemplating architectural design as a whole. Furthermore,
considering the effort required to manipulate the proposed integrated model, an additional spe-

cific goal was devised: provide tool support for the creation and edition of the proposed model.

1.3 Methods

This research started with an exploratory study, surveying and analyzing the software
engineering bibliography on the topic of adaptive systems. Through this analysis it was ob-
served that the existing proposals for tackling the development of adaptive systems focus on
particular disciplines, such as requirements engineering, architectural design, and testing. Con-
sidering the relationships and the intertwining nature of these different disciplines, the following
hypothesis was formulated: the development of adaptive systems would not benefit from the in-

tegration of adaptation at the system’s different abstraction levels.

1.4. OVERVIEW OF THE PROPOSED SOLUTION 22

The remainder of this research was carried on with the hypothetical deductive method.
By studying requirements-based and architecture-based approaches and their examples, we
identified different scenarios where a system may require both requirements-based adaptation,
related to the stakeholder needs and domains entities, as well as architecture-based adaptation,
related to the implemented system. Moreover, on some scenarios an adaptation triggered by a
requirements failure can be solved through an architectural adaptation, and vice-versa. Thus,
there is evidence that this hypothesis may be rejected.

Assuming that such integration may indeed be beneficial, we developed a framework
for supporting the integration of adaptation at the requirements and architectural levels. This
framework was developed incrementally: first, the incorporation of design concerns such as de-
sign tasks and design constraints; then, derivation of behavioral models (statecharts) from goal
models; lastly, the integration of adaptation with both requirements and architectural concerns.
Each of these partial solutions was evaluated with case studies and simulations, which were also
used to further refine the proposal.

Given that the manual derivation of architectural models showed to be time-consuming,
we developed a prototype tool to automate the model transformations. The performance and the
scalability of these automatic transformations were evaluated through a controlled experiment.
Furthermore, a qualitative experiment with a group of computer science students was performed
in order to gather early evidence regarding the suitability and the quality of the proposed archi-

tectural design process.

1.4 Overview of the Proposed Solution

This thesis proposes a framework, named Multi-Level Adaptation for Software Systems
(MULAS), to support the development of self-adaptive software systems. It comprises a mod-
eling language, an architectural design process, a supporting tool and mechanisms to integrate
with an existing adaptation framework.

The baseline for this work is a goal model extension (LAPOUCHNIAN, 2011; SOUZA
et al., 2013) that includes concepts essential for feedback loops (ASTR6M; MURRAY, 2012),
which in turn is essential for the development of adaptive systems (BRUN et al., 2009; CHENG
et al., 2009; WEYNS; Usman Iftikhar; SODERLUND, 2013). These goal models, besides in-
cluding traditional goal modeling elements, such as goals, tasks and quality constraints, also
contain information that is essential for system adaptation: awareness requirements and param-
eters. Awareness requirements define what needs to be monitored during system execution —
e.g., the desired success rate for the execution of a task, a limiting threshold for a quality con-
straint, and so on. On the other hand, parameters define what can be changed in the system,
from the point of view of high-level stakeholders (e.g., clients and users). Additionally, the
relations between awareness requirements and parameters are defined, expressing the impact of

parameter changes onto the satisfaction of awareness requirements. These three kinds of infor-

1.4. OVERVIEW OF THE PROPOSED SOLUTION 23

mation are used at runtime in a feedback loop that assess how well the system is performing,
identify whether some change is required, select which parameter(s) to change, and effect the
change(s). Currently, this goal model extension is part of the Zanshin framework (SOUZA,
2012; SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012a), which includes reasoning mech-
anisms that support the execution of the feedback loop.

We take the concepts of awareness requirements and parameters and apply them to
architectural concerns, such as design constraints and execution flows, proposing a new kind of
model called Design Goal Model (DGM).

The Design Goal Model is based on a requirements goal model, extended with architec-

tural design elements, as follows:

= Design Tasks, Design Constraints, and Design Assumptions — These elements
are similar to their requirements counterpart, but differ in that they are results of
design decisions (thus in the solution space), rather than mandated requirements

(from the problem domain).
= Assignments — These elements define responsibilities for the execution of tasks .

= Behavioral annotations — Define possible execution flows for the different ele-

ments of the model.

The DGM has two roles. The first role is as an adaptation artifact — by using an ex-
tended goal model, we are able to reuse the reasoning mechanisms from the Zanshin framework
(SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012a). As a result, the users of the framework
do not need to implement or handle additional adaptation components, other than those already
provided by Zanshin. The second role is as an input for model transformations — rather than
creating the different requirements and behavioral models, and then creating the Design Goal
Model, we propose a set of transformation rules where behavioral models can be automatically
derived from design goal models. Different models can be adopted to represent the behav-
1oral view of a system architecture, such as sequence diagrams, use-case maps, and statecharts
(BACHMANN et al., 2002) — due to the reasons described in Section 2.3, we adopted the
statecharts notation

Aiming to provide methodological guidance for software architects, we have proposed
an architectural design process. Along with automatic transformation rules and a prototype
tool, it can reduce the effort required to go from a requirements goal model to a complete, im-
plemented solution, by supporting the creation of the following artifacts: design goal model,
statechart, and adaptation specification (Fig. 1.1). The adaptation specification contains in-
formation about which adaptations must be performed by the system, about the possible values
assumed by parameters, as well as the relation between awareness requirements and parameters.

The transformation rules defined in this research project enable the automatic generation

of statecharts from design goal models. Thus, the proposed architectural design process fits into

1.5. PUBLISHED WORK 24

Figure 1.1: Overview of the architectural design process proposed in this thesis

=

7T
O/ —

Co D
o

(=i i)
=L Arcgét;ct:ral ________________________________
2L 9
——
Requirements Statechart
Goal Model
Adaptation

Specification

the overall software development process, handling the creation of the specification of the sys-
tem behavior (statecharts). Moreover, the statechart by itself can be used to execute simulations
that provide early validation of the system-to-be (EGYED; WILE, 2001a; LIAN; HU; SHATZ,
2008), as well as to generate source-code (NIAZ; TANAKA, 2003; TIELLA; VILLAFIORITA;
TOMASI, 2007) and to perform architectural analysis (DIAS; VIEIRA, 2000).

A prototype tool (GATO - Goal to Arch) provides a friendly interface to create DGM
diagrams and to execute the model transformations. Furthermore, by implementing different
views for the different facets of the DGM, such as requirements and design, it prevents the
complexity that would arise if handling all these facets at the same time, in a single view.

In the following section we present the research methods that guided this research

project.

1.5 Published work

In this section we list papers related to this thesis that were published in international

peer-reviewed venues.

= Pimentel, J., Castro, J., and Franch, X. (2011). Specification of Failure-Handling
Requirements as Policy Rules on Self-Adaptive Systems. In 14th Workshop on
Requirements Engineering — This work describes a policy language that allows
to specify failure tolerance rules in terms of goal models, similar to awareness re-

quirements.

1.5. PUBLISHED WORK 25

= Pimentel, J., Castro, J., Perrelli, H., Santos, E., and Franch, X. (2011). Towards
anticipating requirements changes through studies of the future. In 5th Inter-
national Conference on Research Challenges in Information Science — In this
paper we investigate the elicitation of adaptation, considering future events that may

impact the requirements of a software system (selected as one of the best papers).

= Pimentel, J., Santos, E., Castro, J., and Franch, X. (2012). Anticipating Re-
quirements Changes-Using Futurology in Requirements Elicitation. Interna-
tional Journal of Information System Modeling and Design — Expanding on
the previous work, this paper proposes a process for adapting goal models based on

future events.

= Pimentel, J. , Franch, X., and Castro, J. (2011). Measuring Architectural
Adaptability in i * Models. In XIV Ibero-American Conference on Software
Engineering — While in previous work we focused on requirements, in this paper
we investigate software adaptation related to architectural goal models (selected as
one of the 3 best papers).

s Franch, X., Grunbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., Lopez, L.,
Marco, J., and Pimentel, J. (2011). Goal-Driven Adaptation of Service-Based
Systems from Runtime Monitoring Data. In 35th Annual International Com-
puter Software and Applications Conference Workshops — This work presents

a framework for service-based adaptation, based on requirements goal models.

= Pimentel, J., Lucena, M., Castro, J., Silva, C., Santos, E., and Alencar, F. (2012).
Deriving software architectural models from requirements models for adaptive
systems: the STREAM-A approach. In Requirements Engineering Journal —
This is an initial version of the architectural design process described in this thesis,

adopting different baselines.

a Castro, J., Pimentel, J., Lucena, M., Santos, E., and Dermeval, D. (2011). F-
STREAM: A Flexible Process for Deriving Architectures from Requirements
Models. In Advanced Information Systems Engineering Workshops — Building
on the previous work, this paper proposes a generic architectural design process that
can be instantiated not only for handling adaptation but also for other non-functional

requirements.

= Pimentel, J., Santos, E., Dermeval, D., Castro, J., and Finkelstein, A. (2012).
Towards Architectural Evolution through Model Transformations. In 24th In-
ternational Conference on Software Engineering and Knowledge Engineering
— The subject of this paper is the use of model transformations for the automatic

adaptation of architectural models.

1.5. PUBLISHED WORK 26

» Pimentel, J., Castro, J., Santos, E., and Finkelstein, A. (2012). Towards Re-
quirements and Architecture Co-evolution. In Advanced Information Systems
Engineering Workshops — In this paper we investigate the problem of maintain-
ing two different models in sync during a software’s life cycle: requirements models

and architectural models.

= Angelopoulos, K., Souza, V. E. S., and Pimentel, J. (2013). Requirements and
Architectural Approaches to Adaptive Software Systems: A Comparative Study.
In 8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems — This paper analyzes requirements-based and architectural-

based adaptation approaches, arguing in favor of an integrated approach.

= Pimentel, J., Angelopoulos, K., Souza, V. E. S., Mylopoulos, J., Castro, J. (2013).
From Requirements to Architectures for Better Adaptive Software Systems. In
6th International i* Workshop 2013 — This paper presents an overview of the
MULAS framework.

= Horkoff, J., Li, T., Li, F.-1., Pimentel, J., Salnitri, M., Cardoso, E., Giorgini, P.,
and Mylopoulos, J. (2014). Taking Goal Models Downstream: A Systematic
Roadmap. In 8th International Conference on Research Challenges in Infor-
mation Science — A systematic mapping on the topic of deriving different models

based on goal models is presented in this paper (best paper award).

= Pimentel, J., Castro, J., Mylopoulos, J., Angelopoulos, K., and Souza, V. E.
S. (2014). From Requirements to Statecharts via Design Refinement. In 29th
Annual ACM Symposium on Applied Computing — This work describes the

derivation of statecharts from goal models.

» Vilela, J., Castro, J., Pimentel, J., Soares, M., and Cavalcanti, P. (2015). De-
riving the behavior of context-sensitive systems from contextual goal models.
In 30th Annual ACM Symposium on Applied Computing — In this work the

inclusion of contextual elements in the statechart derivation is discussed.

» Vilela, J., Castro, J., Pimentel, J., and Lima, P. (2015). On the behaviour of
context-sensitive systems. In 18th Ibero-American Conference on Software En-
gineering — This work describes a process to derive statecharts from contextual

goal models.

Additionally, eleven other papers were authored and co-authored during this Ph.D. They
were published in peer-reviewed international venues but are not strongly related to the concep-
tion of the MULAS framework:

1.5. PUBLISHED WORK 27

= Xavier, L., Alencar, F., Castro, J., Pimentel, J. (2010). Integracio de Requisitos
Nao-Funcionais a Processos de Negocio: Integrando BPMN e NFR. In 13th

Workshop on Requirements Engineering.

= Santos, E., Pimentel, J., Castro, J., Sanchez, J., Pastor, O. (2010). Configur-
ing the Variability of Business Process Models Using Non-Functional Require-
ments. In Enterprise, Business-Process and Information Systems Modeling,
Lecture Notes in Business Information Processing (LNBIP).

= Pimentel, J., Santos, E., Santos, B., Borba, C., Paes, J., Lima, C., Bezerra, A.,
Castro, J., Alencar, F., Silva, C., Ramos, R. A., Lucena, M. (2010). Using i*
and Tropos in a Software Engineering Contest: Lessons Learnt and Some Key

Challenges. In 4th International i* Workshop.

s Dermeval, D., Soares, M., Alencar, F., Santos, E., Pimentel, J., Castro, J., Lu-
cena, M, Silva, C., Souza, C. (2011). Towards an i*-based Architecture Deriva-
tion Approach. In Sth International i* Workshop.

= Santos, E., Pimentel, J., Dermeval, D., Castro, J., Pastor, O. (2011). Using NFR
and Context to Deal with Adaptability in Business Process Models. In 2nd
International Workshop on Requirements@Run.Time.

a Castro, J., Lucena, M., Silva, C., Alencar, F., Santos, E., Pimentel, J. (2011).
Changing Attitudes Towards the Generation of Architectural Models. In Jour-
nal of Systems and Software.

= Santos, E., Pimentel, J., Castro, J., Pastor, O. (2012). On the Dynamic Configu-
ration of Business Process Models. In Enterprise, Business-Process and Infor-

mation Systems Modeling, Lecture Notes in Business Information Processing
(LNBIP).

s Dermeval, D., Pimentel, J., Silva, C., Castro, J., Santos, E., Guedes, G., Lucena,
M, Filkenstein, A. (2012). STREAM-ADD - Supporting the Documentation of
Architectural Design Decisions in an Architecture Derivation Process. In 36th

Annual International Computer Software and Applications Conference.

= Soares, M., Pimentel, J., Castro, J., Silva, C., Talitha, C., Guedes, G., Dermeval,
D. (2012). Automatic Generation of Architectural Models From Goals Models.
In 24th International Conference on Software Engineering and Knowledge En-

gineering.

s Dermeval, D. Castro, J., Silva, C., Pimentel, J., Bittencourt, 1., Brito, P., Elias,
E., Tenério, T., Pedro, A. (2013). On the Use of Metamodeling for Relating

1.6. THESIS OUTLINE 28

Requirements and Architectural Design Decisions. In 28th Annual ACM Sym-
posium on Applied Computing.

a Oliveira, K., Pimentel, J., Santos, E., Dermeval, D., Guedes, G., Souza, C.,
Soares, M., Castro, J., Alencar, F., Silva, C. (2013). 25 years of Requirements
Engineering in Brazil: a systematic mapping. In 16th Requirements Engineer-

ing Workshop.

1.6 Thesis Outline

The remainder of this thesis is organized as follows.

= Chapter 2 - Introduces the modeling languages and main concepts used throughout

this work;

= Chapter 3 - This chapter characterizes the adaptation concerns supported by this
approach, both at requirements and the architectural level, and then describes the
Design Goal Model (DGM);

» Chapter 4 - The MULAS Architectural Design process to move from requirements

to architecture, supporting multi level adaptation, is presented in this chapter;

= Chapter 5 - This chapter presents the prototype tool developed to support the use
of this approach, as well as algorithms for automatic derivation of statecharts;

= Chapter 6 - Two case studies described in this chapter not only illustrate the use
of the MULAS framework on different domains (banking and robotics), but also

provides early validation of its feasibility and suitability;

» Chapter 7 - The evaluation of this approach through experiments is described in

this chapter;

= Chapter 8 - Presents final remarks and the next steps of this research.

29

Baseline

In this chapter we provide an overview of the baseline of this work, focusing on the
modeling languages used throughout this thesis: Goal Models with Zanshin, which is a goal
modeling language that includes adaptation elements; and Statechart, a language often used to
document the behavioral view of systems. Furthermore, the main concepts of requirements en-

gineering, goal modeling, flow expressions and control theory are also presented in this chapter.

2.1 Requirements Engineering

Different methodologies available in the requirements engineering literature can be used
to assist the creation of requirements models for software systems: for instance, PRiM provides
a series of steps to create an i* model (GRAU; FRANCH; MAIDEN, 2008) based on existing
business processes. The approach presented in (NETO; GOMES; CASTRO, 2005) proposes a
set of guidelines for the creation of i* models using concepts from Activity Theory. In fact,
through a systematic mapping on goal models derivation, we identified 24 works that map
different kinds of models onto goal models (HORKOFF et al., 2014).

Additionally, more traditional requirements engineering processes could be observed
for the creation and the refinement of requirements goal models. For instance, the process
from (SOMMERVILLE, 2004) contains 4 activities, besides requirements management: re-
quirements elicitation, requirements analysis and negotiation, requirements documentation, and
requirements validation. A different, albeit similar set of activities, is proposed in (NUSEIBEH;
EASTERBROOK, 2000): requirements elicitation, requirements modeling and analysis, re-
quirements communication, requirements agreement and requirements evolution.

Requirements elicitation is an information gathering activity, where requirements en-
gineers try to understand what the stakeholders expect from the system to be. This kind of
information is subjective and often hard to obtain, possibly requiring the use of a mix of elic-
itation techniques, such as the different modalities of interviews, group workshops, observa-
tion, protocol analysis, scenario-based and prototype-based analysis (SUTCLIFFE; SAWYER,
2013).

2.2. GOAL MODELS 30

It is then necessary to analyze the requirements identified through requirements elici-
tation in order to prevent problems related to conflicts, consistency, completeness, and others.
Some questions that can guide the execution of this activity are: "Is this requirement really
needed?", "Is there any conflict between different requirements?", "Is there anything miss-
ing?", "Is this requirement feasible for this project?", "Are these requirements actually the same
thing?", and so on. Negotiation may then follow to solve the doubts and issues raised throughout
the requirements analysis.

Sometimes it is important to document the system requirements in some form of re-
quirements artifact, specially in the case of projects that span for a long time period, as well as
systems developed by a large team. Requirements are usually documented using natural lan-
guage, diagrams, formal languages or a mix thereof. When creating this document, it is relevant
to consider its different users: clients may use it to check whether it represents what they expect
from the system to be; architects may use it to guide the architectural design; developers may
use it to understand how a functionality is supposed to behave; testers may use it to define how
to test the developed system against those requirements; and so on.

Requirements validation is concerned with deciding if the documented requirements
correctly represented the actual requirements, checking the document with respect to validity,
consistency, completeness, feasibility, conflicts, technical errors, compliance to standards, am-
biguity and verifiability. Some techniques that can be used to this end are requirements reviews,
prototyping, test-case generation and model paraphrasing (KOTONYA; SOMMERVILLE, 1998).

These activities can be used both for the creation of a requirements document from
scratch and for the modification of an existing document, and also apply to the creation of goal
models.

In this thesis we are assuming that requirements are those concerns explicitly expressed
by stakeholders of the system (such as costumers and users), which they expect to be addressed
by a system. As discussed in (JURETA; MYLOPOULOS; FAULKNER, 2008):

"Utterances that stakeholders make in communicating with the engineer are ac-
tions intended to advance stakeholders’ personal desires, intentions, beliefs, and
attitudes, in the aim of ensuring that the engineer can produce a specification that

then leads to the system responsive to the communicated concerns."

In the following subsection we describe a specific kind of requirements notation, which

captures the concerns expressed by stakeholders: goal models

2.2 Goal Models

Different approaches can be used for requirements documentation, such as natural lan-
guage text (ROBERTSON; ROBERTSON, 2012), use cases (JACOBSON; SPENCE; BIT-
TNER, 2011), goal models (LAMSWEERDE, 2001) and formal methods (GREENSPAN; MY-

2.2. GOAL MODELS 31

LOPOULOS; BORGIDA, 1994). Most of these approaches focuses on what and how needs
to be done (YU; MYLOPOULOS, 1994). Goal modeling goes a step further and include
the why dimension, explicitly representing the space of alternatives for fulfilling stakehold-
ers’ needs. As stated in (YU; MYLOPOULOS, 1998), “Goals lead to the exploration and
consideration of alternatives, decision spaces, tradeoffs, and decisions. Very importantly, it al-
lows the expression of freedom within such spaces.” These characteristics are beneficial for the
design of adaptive systems (LAPOUCHNIAN et al., 2006). In fact, different goal-based adap-
tation approaches have been proposed in the software engineering community (MORANDINI;
PENSERINI; PERINI, 2008; DALPIAZ; GIORGINI; MYLOPOULOS, 2009; QURESHI et al.,
2010; SOUZA et al., 2013).

In goal models, requirements are represented as goals, tasks, domain assumptions (DAs),
and quality constraints (QCs). These elements are supported by many requirements modeling
approaches (LAMSWEERDE, 2001). Goals represent the needs and desires of stakeholders
— often, customers and users. The space of alternatives for goal satisfaction is represented by
Boolean AND/OR refinements. If elements e}, e, are AND-refinements of a goal g, then both e
and e; are required. If, instead, e, e are OR-refinements of a goal g, then the implementation
of either e; or e; is sufficient.

Tasks, on the other hand, are directly mapped to functionality in the running system and
are satisfied if executed successfully. Notwithstanding, quality constraints (QCs) can define
additional restrictions for the satisfaction of goals as well as for the execution of tasks. Another
important goal modeling concept is that of softgoals, which express goals for which there is
no clear-cut achievement criteria. However, we are assuming here that the softgoals that arise
in early requirements were already refined onto goals or QCs. Finally, Domain Assumptions
(DAs) are satisfied if they hold (i.e., if they are true) while the system is pursuing their parent
goal.

Formally, a goal model GM can be defined as a tuple (E,R), where E is a set of ele-
ments (goals, tasks, domain assumptions and quality constraints) and R is a set of relationships
between these elements. Given relationships (eg,e), ..., (es,€) in R, the elements e;...e, are
called children, descendants, or even sub-elements of e, whereas e is called the parent of ey...e,.

The definitions for these goal modeling concepts can be found in the requirements engi-
neering ontology presented in JURETA; MYLOPOULOS; FAULKNER (2008), and are sum-

marized next:

= Domain Assumption — Believed content communicated by way of assertive, declar-

ative, or representative declarative speech acts.

» Quality Constraint — Desired content communicated by way of a directive speech
act is a quality constraint if and only if the content describes qualities and constrains
quality values. Described qualities must have quality space with a well-defined and

shared structure.

2.2. GOAL MODELS 32

s Goal — Desired content communicated by way of a directive speech act is a goal

if and only if the content neither describes qualities nor constrains quality values.

s Task — [Intended content communicated by way of a commissive speech act is a
task".

Fig. 2.1 shows a goal model with partial requirements for the running example that
will be used throughout this thesis: a Meeting Scheduler system (PIMENTEL et al., 2014).
This kind of system has been well documented by the Requirements Engineering community
(LAMSWEERDE; DARIMONT; MASSONET, 1995; FEATHER et al., 1997; YU, 1997; SAN-
TANDER; CASTRO, 2002), with some works particularly focusing on analyzing adaptation
scenarios based on its requirements (FEATHER et al., 1998; SOUZA; LAPOUCHNIAN; MY-
LOPOULOS, 2011).

The main goal of this Meeting Scheduler system, as illustrated in Fig. 2.1, is to Sched-
ule Meeting. To be successful, the system is supposed to satisfy the Characterize Meeting,
Collect Timetables, Define Schedule and Manage Meeting sub-goals, while also satisfying the
Portability constraint of being accessible through PC and smartphones (AND-refinement). With
Characterize Meeting, a user can provide basic information about the meeting to be scheduled,
through the following tasks: Define Topics to be discussed, Define Date Range, and Define
Farticipants. Furthermore, this characterization must be doable within a time limit of 5 min-
utes, due to usability concerns. The gathering of timetables from meeting participants can be
achieved by three alternative means: Collect by Phone, Collect by Email, and Collect Automati-
cally — the latter assumes that the calendars of the meeting participants are updated. The actual
scheduling can be achieved manually (Schedule Manually), by some user of the system, or au-
tomatically (Schedule Automatically) by the system itself. Both options must be supported by
the system, thus the AND-refinement. Lastly, Manage Meeting concerns both Cancel Meeting
and Confirm Occurrence.

A key characteristic of this kind of goal model is that it captures a space of alternatives,
by means of OR refinements. Thus, instead of documenting a single way of achieving a goal,
the modeler can include different alternatives identified during requirements elicitation. The
most suitable(s) alternative(s) can be later selected according to, for instance, how well they
perform with respect to quality constraints.

Albeit rich, goal models are not able to express relevant information such as pre-conditions,
triggers, and order of execution. This information is better represented through behavioral mod-

els, as described in the following section.

I'The original ontology refers to plans instead of tasks. We adopt the name of task, as other approaches, to
differentiate from the concept of plans used in Artificial Intelligence.

33

2.2. GOAL MODELS

puaba

uondwnssy jJuleljsuo)
juswisulyaryQ Juswaulya-aNY ulewoq fyjenp yseL |eo9

< < _ | | @ C >

lledijewony

a|npayoss

ajeq o3 dn
siepuaje)d

Ajjenuepy ajnpayoss

Irew3 Aq 39309

auoyd £q 309|109

JIesnewoINy
399]109

Bunas|y |9ouen

92U81IN290 WIUOD

ss|qejaw] 3991109
abuey ajeq auyaq

a|npayag auyaqg

Bunas|y abeuep

Sejnuiw G Jepun ul
suoq uonezuayoeieyd

sjuedioned auyeq

soido] auyaq

suoyduews pue od

IA 3]q1SS890Y Wajshk

Aingesn

buljasiy
azu)orIRYD

Aqeyod

Bunes\ a|npayss

WIQISAS IO[NPAYDS SUIAIIA © 10J [OPOJA sjuawraIinboy [ented -z 9anSLy

2.3. STATECHARTS 34

Figure 2.2: Statechart example

7

o — O
State Default State Transition D
AND state

XOR state
Legend

2.3 Statecharts

Statecharts (HAREL, 1987) is a visual formalism that can be used to specify system be-
havior in the context of architectural design (BACHMANN et al., 2002). The main elements of
this modeling language are states that our system-to-be can be in, and transitions that represent
possible state changes. A transition has an associated event that triggers the transition, and a
condition that must be true for the transition to occur. Thus, by specifying a graph of states
connected by transitions it is possible to specify how the system-to-be reacts to different events,
depending on its current state.

Unlike their finite state machine cousins (FERRENTINO; MILLS, 1977), statecharts
allow to structure states in a hierarchy of super- and sub-states. In an XOR state, if the state is
active, so is one and only one of its sub-states; in an AND state, if a state is active so are all
of its sub-states. The AND state (concurrent) is represented with a dashed line separating its
sub-states.

Fig. 2.2 shows a statechart where the system starts in both states A and F, concurrently.
If an event x occurs, the system transitions from F to G. Additionally, if condition ¢ holds,
there will also be a transition from A to B. If the event x happens when the system is in B, it
will transition to C. Similarly, event y triggers a transition from B to D, while event w triggers
a transition from G to B. Lastly, if the system is in C or D and event z occurs, the system
transitions to E.

An excerpt of the statechart for the Meeting Scheduler system is presented in Fig. 2.3.
In this excerpt, the system starts in an Idle state. If the user request to Collect by Phone, the

system will transition to the Input Participants Availability state, on which the user will be able

2.4. FLOW EXPRESSIONS 35

to input the information that was obtained through phone calls. Once this input is completed,
the system will return to the Idle state. Alternatively, if the user requests to Collect by Email,
the system will transition to the Request Timetables by Email state. Once completed, the system
returns to Idle. Lastly, if the user requests to Collect Automatically, the system will Collect from
Google Calendar and Check Calendar Update Date, before returning to Idle.

Idle states are very common in statechart models. They represent intermediate states,
points where the system is just waiting for some input. E.g., waiting for a selection by the user,
or waiting for some message to be received. These idle states appear on systems of different
application domains, such as : cruise control (Pettit Iv; GOMAA, 2001), gas station (LIAN;
HU; SHATZ, 2008), Automatic Teller Machine — ATM (BALSER et al., 2004), mobile phones
(BACHMANN et al., 2002), streaming server (EGYED; WILE, 2001b), communication proto-
col (MAHONEY; ELRAD, 2005).

Statecharts can be formalized as triples (S, T,R), where S is a set of states, T is a set of
transitions between states (7 C S x §), and R is a set of state refinements that defines the XOR
and AND states (R C § x S5).

The modularization mechanisms provided by statecharts make it a suitable notation for
iterative design, allowing the representation of system behavior at different granularities. Dif-
ferent formalization techniques can be used to perform automatic reasoning with its models
(LEVI, 1997), and tool support provide simulation and model-driven capabilities. Lastly, Stat-
echarts are well known within the software engineering community, specially since after its
adoption as part of UML. Given these characteristics, we decided to adopt Statecharts for the
representation of system behavior in the MULAS framework.

In the next section we present a textual notation that can also be used to express system

behavior, which is adopted in MULAS to annotate goal models with behavioral information.

2.4 Flow Expressions

When investigating how to design system behavior having goal models as the starting
point we have tried different approaches, such as complementary tables and a modified visual
syntax. The option we identified as being the best, with respect to expressiveness and usability,
is the use of a notation akin to regular expressions included in the goal model. After surveying
the software and systems engineering literature, we identified the proposal of flow expressions
(SHAW, 1978), which we adopted in the MULAS framework.

Flow expressions (SHAW, 1978; DALPIAZ et al., 2013) describe the flow of system
behavior in terms of extended regular expressions. In our use of such expressions we adopted
different symbols in order to facilitate their writing (e.g., | in place of U for expressing alterna-
tive behaviors). Each atomic symbol represents an element of the flow, which in our case is an
element from a goal model. For example, if g1 is a goal, the atomic expression g1 represents

the state where the goal g1 has been fulfilled. Flow expressions can be composed in terms of

2.4. FLOW EXPRESSIONS

36

Figure 2.3: Partial statechart for the Meeting Scheduler system

COWect by Phone
requeste

(Collect Timetables

(Collect by Phone

Input Participants
Availability

L

(Collect by Email

Request Timetables
by Email

L

(:
Collect Automatically

Collect from Google
Calendar

Collect

mpleted

Check Calendar
Update Date

) Che

J

State Default State

o —

Transition

) (-
)

XOR state

AND state

Legend

2.4. FLOW EXPRESSIONS 37

regular expression operators, such as concatenation (g1 g2), meaning “first satisfy g1 then g2
(sequential flow), or g1*, meaning that g1 is to be satisfied zero or more times.

Flow expressions separated with a vertical bar | symbol represent alternative flows. The
question mark ? is used to represent the optionality of the flow to its left, i.e., that flow may be
executed zero or one times. The star symbol * indicates that the flow to its left may be executed
zero, one or more times, while the plus symbol + indicates that that flow may be executed one
or more times. The shuffle operator (here expressed as the hyphen symbol —) indicates that
two flows are to be carried out concurrently, in the sense that their states can be interleaved.

Considering the letters from A to H as atomic flows, the flow expression
(AB (C|D)EFx G) - (Hx)

indicates that state A is followed by state B. After B, the possible states are C or (exclusively)
D, followed by E. After E, F may be reached any number of times, including zero. State G
occurs after E or after . Concurrently to all that, the state H may occur any number of times.

Fig. 2.4 illustrates the use of flow expressions in conjunction with goal models, using an
excerpt of the Meeting Schedule system. Starting from the annotation on its root goal (Schedule
Meeting), the system execution begins in an idle state, and then move to g2, which is Collect
Timetables. Moreover, this flow may be repeated, as denoted by the star symbol (*). The
execution of Collect Timetables is a selection between Collect by Phone (g3), Collect by Email
(g4), or Collect Automatically (g5). The execution of Collect by Phone simply consists on the
execution of Input Participants Availability (t6). Similarly, the execution of Collect by Email
consists on the execution of Request Timetables by Email (t7). Lastly, the execution of Collect
Automatically consists on executing Collect from Google Calendar (t8), and only then executing
Check Calendar Update Date (19). This execution flow corresponds to the behavior expressed
on the statechart at Fig. 2.3

In this and in the previous sections we summarized some notations that are broadly used

in system engineering and adopted in the MULAS framework: goal models, statecharts, and

Figure 2.4: Example of a goal model annotated with flow expressions
(idle g2)*

Check Calendar
@ Update Date
Input Participants

Availability Collect from
e oogle Calendar
Request Timetable:
e by Email

2.5. CONTROL THEORY 38

Figure 2.5: Block diagram of a simplified feedback loop, based on (HELLERSTEIN
et al., 2004)

Controller System

flow expressions. However, the development of adaptive systems presents some peculiarities
which lead to the adoption of control theory, in general, and Zanshin, in particular. These topics

are discussed in the following sections.

2.5 Control Theory

Control theory is a field of engineering and mathematics concerned with adjusting sys-
tems so that their output can be maintained as close as possible to the desired output, with
applications ranging from robotics to economics. An example of a controlled system is that
of a simple thermostat-controlled fridge: when the temperature inside the fridge rises above
a given reference temperature, its compressor is turned on; when the temperature gets below
the reference value, its compressor is switched off. This kind of mechanism is called an on-off
control (ASTR6M; MURRAY, 2012). Despite being a simplistic mechanism, it illustrates the
feedback loop, which is a central concept in control theory, comprised of sensing, computation
and actuation. In the fridge example, temperature is monitored by means of a sensor, some
computation is performed to check if the actual temperature meets the desired one (reference
value) and, if necessary, actuators enact the required changes (turn the compressor on or off).

Fig. 2.5 shows a simplified data flow of the feedback loop. The reference value r, which
represents the desired output of the System, is an input for the Controller. Based on that input
and on the actual output y of the System that is fed back to the Controller, a command u (also
called control input) is sent to the System.

In order to define what command to provide to the System, the Controller needs a model
of the system, which is created in the activity of system identification. These models define what
are the system’s parameters and how they affect the system’s output. By defining the relation be-
tween parameters and output, a controller could identify which parameters need to be changed
in order to produce a desired output. The relation between parameters and outputs are usually
defined through first-order differential equations or as difference equations (ASTR6M; MUR-
RAY, 2012). The former is used for continuous domains and the latter for discrete domains. In
both cases, the equation gives us the rate of change of the system according to the control input.

The use of feedback loops for managing adaptive systems has been advocated by a

2.6. GOAL MODEL WITH ADAPTATION ELEMENTS 39

number of authors, both in the academy (KEPHART; CHESS, 2003; ABDELWAHED; KAN-
DASAMY, 2007; HEINIS; PAUTASSO, 2008; BRUN et al., 2009; WEYNS; Usman Iftikhar;
SODERLUND, 2013) and in the industry (HE et al., 2012; ZHANG et al., 2012; GHANBARI
et al., 2012). In the following subsection we are going to present an approach for enacting

feedback loops based on software system’s requirements.

2.6 Goal Model with Adaptation Elements

LAPOUCHNIAN (2011) proposed the application of control theoretic principles for
managing adaptive software systems based on goal-oriented requirements engineering.

In recent years, this goal model extension has evolved into an adaptation framework that
comprises not only the modeling language, but also patterns for specifying adaptation strategies
(SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012b), reasoning mechanisms that diagnose
failures in the target system (SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012a), as well as
a prototype implementation that supports the execution of the feedback loop (TALLABACI;
SOUZA, 2013). That framework, named Zanshin (SOUZA, 2012), is explained in the next
section, while in this sections we focus on the goal model extension.

The choice of this goal model extension, as well as the choice of Zanshin, was based on
technical, social, and pragmatic factors, such as: it considers the goal model structure (AND-
OR- refinements) when performing the adaptation cycle; it supports control-theoretic concepts;
it performs qualitative reasoning on incomplete and imprecise knowledge, which is relevant
in the context of a highly abstract and subjective domain (requirements and architecture); it is
well accepted within the software engineering community; it is an ongoing work, still evolving;
it is well documented; it has a prototype implementation of its reasoning algorithms, which
facilitates the enactment of the feedback loop.

In order to better support the development of adaptive systems, LAPOUCHNIAN (2011)
proposes two additional concepts for goal models: awareness requirements and parameters.
The former are requirements about the state of other requirements — such as their success
or failure — at runtime. Therefore, awareness requirements express the reference value of a
feedback loop. In other words, awareness requirements define indicators for requirements con-
vergence at runtime. As a side effect they also indicate how critical each requirement is, by
specifying the degree of failure that can be tolerated.

Awareness requirements may refer to any element of the goal model: goals, quality
constraints, tasks, and domain assumptions. In our example, three awareness requirements
were defined (Fig. 2.6), represented as small circles. For instance, the awareness requirement
with the identifier AR/ defines that the quality constraint Characterization Done in Under 5
Minutes (to which it is attached) must have a success rate of at least 90% (SuccessRate(90%)).
The second awareness requirement, AR2, defines that the Collect Timetables goal must present a

stable or positive trend at seven days’ intervals, with a tolerance of two occurrences (NotTrend-

2.6. GOAL MODEL WITH ADAPTATION ELEMENTS 40

Decrease(7d,2)). Lastly, AR3 defines that the Define Schedule goal cannot ever fail (NeverFail).
Parameters are variables that affect the fulfillment of awareness requirements. That is,
it represents the control input related to that awareness requirement. For example, consider the
parameter that specifies the percentage of meeting participants that we need to collect timetables
from before generating a schedule (FhAM — From how Many, from Fig. 2.6). It affects the
fulfillment of the root Schedule meeting requirement: if we need to collect from all meeting
participants (FhM = 100%) chances of failure are high, as some participants may be unavailable.
Chances of success for the root goal improve, however, as the value of FhM is lowered.

Fig. 2.6 shows two additional parameters of the Meeting Scheduler system: VPA — View
Private Appointments, related to the Collect Automatically task; and MCA — Maximum number
of Conflicts Allowed when scheduling a meeting, related to the Schedule Automatically task.
The former defines whether the system will be able to obtain information about private appoint-
ments on users’ calendars, or only public ones. The latter, MCA, defines how many scheduling
conflicts are allowed for a given meeting, where the number of conflicts is the number of people
that cannot attend that meeting at a certain time.

When awareness requirements fail at runtime, a possible adaptation strategy is to re-
configure the system — i.e., to change one or more parameter values in order to improve the
chances of success. This change is driven by qualitative differential expressions relating param-
eters and awareness requirements (SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2011). For
instance, the success rate of Collect Timetables is a function of FhM - From how Many:

success rate of Collect Timetables = f (FhM)

From how Many may vary from O to 1 (100%). Likewise, the success rate of Collect
Timetables may vary from O to 1 (100%). Thus, this function’s domain and co-domain present

the same interval,

£:10,1] = [0,1]

where [0, 1] is a subset of R.

Fig. 2.7 shows a graph with estimated values for this function. If the value of FhM is
zero, then the success rate is of 1 (100%), since collecting the timetables of zero participants is
trivial. The higher the value of FhM, the lower the value of the success rate, on a range of zero

to one.

41

2.6. GOAL MODEL WITH ADAPTATION ELEMENTS

Pamo||y SIOIu0Y Jo Jaquinu WnwixXep — Yo puaba
syuawjuloddy ajeAld MaIA —YdA
Aue moy woud - Wy4 juswalinbay uondwnssy julesjsuo)
ssaualemy Jajeweled juswiduyaYO JudWBUYAFANY ulewoq Ayenp ysel |eoo
si9jswelied

|eanewoiny ajeq o} dn
a|npayos siepuajed
——

VON & Allenuepy a|npayos

90UB1IN220 WULUOD

Buneay abeuepy

m_._o:atmEm_o_._mon_
IA 9]q1SS999Y W)SA!

Bunas|y |9oue)

o e <G «— [OO @E&aCH

jrew3 Aq 393109

suoyd Aq 309109

399]10Q

(z‘pL)eseaioagpuailioN 24V O

a|npayag auyaqg

11e419A8N €4V O

sa|qejawl] 399]109

(%06)918YSS229NS LYV O abuey ajeq suyeq

Ssejnuiw G Japun ul sjuedionied suyeq

buoq uonezivyoeIEY)

soido) suyaq

Agesn

Aqeyog

JFEET

azuejoeleyd

Bunea|y ainpayss

syuswa[e uoneidepe
Surpnjour ‘weIsAs JMPaYdS SUNAIA B JO [opOoW sjuauwraimbal fenied :9°g 3IngLf

2.6. GOAL MODEL WITH ADAPTATION ELEMENTS 42

Figure 2.7: Graph of the success rate of Collect Timetables as a function of FhM (From
how Many)

Success Rate

-

The derivative measures the change rate of the value of a function according to changes
of the variable. As such, it provides information about the behavior of a function. If the deriva-
tive is positive, then the value of that function is increasing when the variable is increasing, and
decreasing when the variable is decreasing. If, otherwise, the derivative is negative, then the
value of that function is decreasing when the variable is increasing, and increasing when the

variable is decreasing. The latter is the case for success rate of Collect Timetables. Thus,

d (success rate of Collect Timetables)
0 2.3
d(FhM) < 23)

Zanshin adopts a simplified notation to express these differential relations, as follows:

A (awareness requirement / parameter) [a,b] (op) C

On this notation, [a, b] is the domain of the function — if not defined, it is assumed to be
N. (op) is the comparison operator to be used (>, >, <, <, = or #), and C is any constant. In
our example, the relation between the success rate of Collect Timetables and the FhM parameter

can be defined as follows:

A(AR2/FhM)[0,1] < 0

The next section presents the Zanshin framework, which uses the extended goal model

presented in this section as the basis for executing an adaptation cycle.

2.7. ZANSHIN FRAMEWORK 43

2.7 Zanshin Framework

In Zanshin (SOUZA, 2012), the change of parameters aiming to improve the satisfaction
of awareness requirements is called reconfiguration. Using Control Theory terminology, this
operation corresponds to adjusting control input in order to achieve a given reference value.

Besides Reconfigure, SOUZA; LAPOUCHNIAN; MYLOPOULOS (2012b) defines a

set of operations (called adaptation strategy patterns), as follows:

» Abort — Specifies that the system should fail gracefully, by taking the necessary

actions to reduce the potential damages of the failure.
» ChangeParameter — Modify a parameter to a pre-defined value.

» Delegate — Delegates the solution of the failure to an external actor and wait until

the problem is fixed.

» RelaxDisableChild — Ignores the satisfaction/execution of the child of a given

element.

= Replace — Replaces a given requirement for another one. It can be used, among
others, to replace a task with another one, as well as to replace an awareness require-

ment with a less restrictive one.
= Retry — Re-attempts to satisfy the failed awareness requirement.

= StrengthenEnableChild — The opposite of RelaxDisableChild, it requires the sat-

isfaction/execution of the child of a given element.

= Warning — Notifies an external actor about the present failure.

The Abort, Delegate, Retry and Warning strategy patterns only notify the target system
that these actions must be performed — it is up to the target system to act on these requests
sent by Zanshin. Other patterns also affect the internal reasoning of the Zanshin’s adaptation
component. For instance, when an awareness requirement ARX is replaced by an awareness
requirement ARY, Zanshin’s reasoning will start to ignore ARX and only monitor ARY. The
Delegate pattern, besides requesting the notification of an external actor, will also make Zanshin
wait for the resolution of the failure. Similarly, the RelaxDisableChild and StrengthenEnable-
Child will influence Zanshin’s reasoning.

A prototype implementation of Zanshin’s adaptation component is available for public
use 2. The target system provides execution data to Zanshin’s component and enacts any adap-
tation action suggested by the component. On the other hand, Zanshin’s component analyzes

data provided by the target system and, when necessary, suggests the execution of adaptation

2Zanshin’s wiki: https://github.com/sefms-disi-unitn/Zanshin/wiki

2.8. SUMMARY 44

actions. In other words, this component facilitates the execution of the adaptation cycle depicted
on Fig. 2.8.

The first two steps of the adaptation cycle are performed by the target system, consisting
of sending data about the system execution to Zanshin’s component. Based on this data and
on the system’s goal model, the component will perform its reasoning to identify whether an
adaptation is required and, if necessary, what is the best adaptation to perform (steps 3 and 4).
Then the component will perform the part of the adaptation strategy that affects the reasoning
itself, and send instructions to the target system with the operations that need to be performed
(steps 5 and 6). Finally, the target system will act on the instructions received from Zanshin (step
7), and the cycle continues. Further information on the reasoning algorithms used by Zanshin’s
component are available at SOUZA; LAPOUCHNIAN; MYLOPOULOS (2012a) and SOUZA
(2012).

Figure 2.8: Adaptation cycle of the Zanshin framework

7 The target system 1
receives the q Target System
instruction sent by 'EfOFmS Zan_shlnd
Zanshin and acts when a monitore
upon it task starts to

' execute

If the adaptation strategy
selected by Zanshin requires

some action to be done by the Target §ystem informs
6 target system, Zanshin sends the Zanshin the rgsult of 2
instruction to the target system the execution
(e.g., retry or delegate) (successful or
unsuccessful)
Zanshin perform its part of the Zanshin analyzes if the
adaptation strategy (for received information
instance, it may relax the implies the failure of
constraints imposed by the an awareness

failed awareness requirement) If a failure is
5 ~ identified, Zanshin ,
automatically
identifies what is

the best adaptation
strategy to apply

requirement

2.8 Summary

In this chapter the baseline of this work is presented: Requirements Engineering, Goal
Models, Statecharts, Flow Expressions, Control Theory and Zanshin.

Goal Models, expressing the requirements of the system to be, are the starting point
of the architectural design process comprised in the MULAS framework. This model will be
incrementally refined with more information regarding adaptation, architectural design, and
requirements themselves. The output is an enriched version of the requirements goal model,
called Design Goal Model (DGM), which will be described in Chapter 3. One of the possible
refinements concerns the execution flow of the system, described with Flow Expressions. These
expressions allow the definition of the following flow concepts: sequentiality, parallelism, op-

tionality and multiplicity. The DGM, containing flow expressions, can then be used to generate

2.8. SUMMARY 45

Statecharts, which represent the behavioral view on a software system architecture.

Control Theory provides principles that can be used for managing the adaptation in a
software system, e.g., feedback loop, parameters, indicators and relations. Different approaches
for developing self-adaptive systems are based on these principles, such as Zanshin (SOUZA;
LAPOUCHNIAN; MYLOPOULOS, 2011), which extends requirements goal models to in-
clude the information required to enact feedback loops. Moreover, it provides a standard set of
components that, linked to a instrumented system, reads that extended goal model and control
the execution of adaptation within that system. In Chapter 3 we further extend that goal model

in order to handle not only requirements concerns but also architectural ones.

46

Adaptation on Requirements and Architec-

ture

In this chapter we analyze which adaptation information is relevant at both requirements
and architectural design levels, later introducing our proposal to present such information in
an integrated model. The first section discusses adaptation concerns related to requirements,
whereas the second section discusses adaptation concerns related to architectural design. The
third section presents our proposal for integrating these concerns through a single model: the
Design Goal Model (DGM).

3.1 Requirements

In the topic of requirements, an important distinction is that between early requirements
and late requirements (CASTRO; KOLP; MYLOPOULOS, 2002). Early requirements focuses
on understanding the problem being addressed, identifying and analyzing stakeholders, their
intentions, and their relationships. In doing so, early requirements models describe the current
state of affairs of a group of stakeholders, i.e., it is an as-is representation. On the other hand,
late requirements is focused on the system-to-be, i.e., it concerns the definition of a system that
will help satisfy the stakeholder goals. Since the scope of this thesis lies on the relationship
between requirements and architecture, we are not concerned with links between early require-
ments and late requirements. Thus, our starting point is the late requirements model.

Use Cases is a largely adopted approach for documenting and analyzing late require-
ments, on which each use case describes (completely or partially) a usage or interaction sce-
nario. While there is no standard template for documenting use cases, some of the fields usually
included in their description are: actors, preconditions, triggers, postconditions, basic flow, and
alternative flows (or extensions). The latter field can be used to explicitly define variability and
adaptation for that scenario, as exemplified in Table 3.1.

Table 3.1 partially describes an use case for a meeting scheduler system, which is able to

automatically define the schedule for a meeting given the timetable of the individuals expected

3.1. REQUIREMENTS

47

Table 3.1: Partial Use Case for Define Schedule

Actor End-User
Preconditions The End-User is responsible for this meeting
Attendees for this meeting have been defined
Postconditions Date and time for this meeting has been registered in the system
Basic Flow 1) End-User selects a meeting to schedule

Alternative Flows

2) End-User defines an acceptable attendance rate for the meeting
3) End-User requests a schedule

4) System identify possible schedules

5) End-User selects a schedule

3a) End-User request to input a schedule

3a.1) End-User input a schedule

3a.2) System estimates attendance rate for the meeting
3a.3) End-User confirm schedule

4a) There is no schedule that satisfies the acceptable attendance
rate

4a.1) System notifies End-User

4a.2) System reduces acceptable attendance rate by 1

4a.3) Repeat step 4

4b) Timetables of attendees are not registered in the system
4b.1) System notifies End-User
4b.2) Go to step 3a.1

3.1. REQUIREMENTS 48

to attend the meeting. The first alternative flow (3a) illustrates the variability of this use case,
where the scheduling can be done automatically as described in the basic flow, or manually
as described in this alternative flow. The selection of which option to adopt will rely on the
End-User, according to what is requested in step 3. The other two alternative flows represent
system adaptation. In 4a, the system will reduce the acceptable attendance rate and try to define
a schedule again whenever it is not possible to define a schedule that satisfies the acceptable
attendance rate, while keeping the user informed. In 4b, the system is unable to schedule the
meeting automatically due to lack of information (attendees’ timetables), thus it switches to
manual scheduling.

Goal models also allow to explicitly define requirements variability, in terms of OR-
refinements. Fig. 3.1a shows the OR-refinement of Define schedule. Similar to the use case,
there are two ways of defining the schedule, manually or automatically. However, traditional
goal models are not capable of representing additional adaptation information, such as when to
adapt and what parameters can be changed. Hence the need for goal modeling extensions, such
as those proposed by the Zanshin framework (SOUZA et al., 2013).

Based on control theory, Zanshin allows to define parameters and indicators with re-
spect to elements of goal models, as well as relationships between the former and the latter.
Parameters express the variability that can be exploited during an adaptation. l.e., parameters
describe what can be changed with respect to a given goal model element. For instance, Fig.
3.1b shows the Acceptable Attendance Rate (AAR) parameter of the Schedule Automatically
task, as well as the Manual or Automatic (MAf¢) parameter of the Define Schedule goal. Indica-
tors, which define what needs to be monitored during system execution, are expressed through
awareness requirements. In the example of Fig. 3.1b the awareness requirements AR/ shows
that the Define schedule goal should NeverFail. Thus, this goal needs to be monitored at runtime

so that, in case of failure, some reaction can be performed.

3.1. REQUIREMENTS 49

Figure 3.1: Partial Goal Model for Define schedule
a) b)

(Define Schedule) (Define Schedule) © AR1: NeverFail

// // e
< Schedule > < Schedule >
Manuall
Znuaty < Schedule > Manually < Schedule >

Automatically Automatically

\

€ AAR

> > * o

Goal Task AND-refinement OR-refinement Parameter = Awareness
Requirement

Parameters

AAR- Acceptable Attendance Rate
Legend MAt - Manual or Automatic

The impact of parameters on indicators is expressed in terms of differential qualitative
relations (Section 2.7). In this example, smaller numbers for AAR increase the likelihood of
the system being able to successfully define a schedule. This relationship can be expressed as

follows:

A(AR1/AAR) <0

Lastly, adaptation strategies describe how to react in case of failure — i.e., what adap-
tation to perform. The strategies for the Define schedule example are presented in Fig. 3.2. If
the scheduling is not performed successfully even though the timetables of the expected atten-
dees are available (applicability condition), the system will reconfigure, notify the user and try
again (actions). Given the relation on Eq. 3.1, the reconfiguration will be to decrease the value
of Acceptable Attendance Rate (AAR). On the other hand, if the timetables are not available
(applicability condition), the system will perform a specific change of parameter (switch MAT
to schedule manually), notify the user, and try again (actions), similarly to the alternative flows
presented in Table 3.1.

In summary, adaptation at the late requirements level is defined in terms of what can be
changed, what needs to be monitored, the relationship between control variables and indicators,
as well as when to check the indicators and how to react in case they are not satisfactory. Using
the Zanshin terminology, this corresponds to control variables, indicators, qualitative relations
and adaptation strategies, respectively. The next sections presents consideration on the topic of
adaptation at the architectural design level..

3.2. ARCHITECTURAL DESIGN 50

Figure 3.2: Specification of the adaptation strategies for Define schedule with Zanshin

AwReq AR1: goal Define schedule should never fail

- Adaptation Strategy 1.1:

- Action: Reconfigure()

- Action: Warning(end-user)

- Action: Retry(1000)

- Applicability Condition: timetables available
- Adaptation Strategy 1.2:

- Action: ChangeParam(MAt, schedule manually)
- Action: Warning(end-user)

- Action: Retry(1000)

- Applicability Condition: timetables not available

3.2 Architectural design

While on the previous section we discussed adaptation at the requirements level, here
we discuss adaptation at the architectural level: first, considering architectural design as whole;

then, focusing on the behavioral view with statecharts.

3.2.1 General adaptation

Architectural design is concerned with the generation of architectural models, which
can include: components & connectors models for describing the system structure (GARLAN;
MONROE; WILE, 1997); statecharts for describing the system behavior (BACHMANN et al.,
2002); feature model for expressing the variability of the system (GURP; BOSCH; SVAHN-
BERG, 2001); and so on. These different models are complementary, each one capturing a
particular view of the system being designed. Thus, different techniques are required in order
to derive these different models.

In order to allow for flexible systems, it has been argued that architectural models need
to support the variability contained in the requirements models (YU et al., 2008)(YU et al.,
2008). Thus, instead of constraining the space of alternatives by selecting only one of the
options to satisfy a goal in the requirements model, all of the options would be included in the
system (when feasible). Indeed, this high variability is welcome for adaptive systems, since
it increases the number of possible adaptations. Nonetheless, it is also important to consider
that the design process is not simply a translation process, but it also involves the addition or
creation of new elements that complement the requirements model. Thus, for the particular case

of architectural design for adaptive systems, there are three new concerns that arise:

a. Additional variability — in the same way that alternative options can be identified

3.2. ARCHITECTURAL DESIGN 51

throughout requirements elicitation, new alternative options may be identified dur-
ing architectural design. For instance, different algorithms can be used to schedule
a meeting automatically, each with its different benefits and drawbacks. Moreover,
different behaviors could be defined for a set of elements. Considering the Sched-
ule Automatically and Schedule Manually tasks, different behaviors are possible,
such as: first schedule automatically, if not successful then schedule manually; let
the user decide which scheduling to use, and then perform the scheduling; and so
on. The alternatives identified during architectural design will expand the space of
adaptation possibilities.

b. Additional adaptation elements — since we aim to support adaptation not only at
the requirements level, but also at the architectural level, it is required to support the
definition of adaptation elements that refer to architectural concerns. The adaptation
elements are: indicators, parameters, qualitative relations and adaptation strategies.
For instance, if a statechart shows that the meeting scheduler system sends reminders
for a meeting in a set interval, this interval could be defined as a control variable of
the system.

c. Additional features to support adaptation — the support of adaptation may require
the inclusion of new features in the system. This is the case, for instance, when the
system requires some kind of instrumentation in order to monitor the satisfaction of

indicators.

3.2.2 Adaptation on Statecharts

As previously discussed, the development of adaptive systems allows the postponement
of some decisions from design time to runtime. For instance, instead of deciding beforehand
whether to use a web-service X or Y, an adaptive system may support the use of both web-
services, making a decision at runtime based on criteria such as availability and performance.
Other example is to support multiple resolutions on a video streaming app, to be selected based
on bandwidth, instead of being predefined. This kind of flexibility found on adaptive systems
allows the system to perform optimally, according to its context. Since adaptation is related to
decisions, in order to discuss statechart adaptation it is necessary to understand the key decisions
that are made when creating a statechart: which are the possible states of the system, and which
are the possible transitions from one state to another.

The decision of which states to include in a statechart may vary according to the gran-
ularity and the concerns of interest of the architect. For instance, if an architect is concerned
with network communication, the architect may describe a set of connection-related operations,
as depicted in Fig. 3.3.a (adapted from EGYED; WILE (2001b)). This statechart shows the
possible states for a video streaming client. Initially, the client selects a streaming server to use,

and then start loading. From the Loading state, the system may go to the Stopped state, and

3.2. ARCHITECTURAL DESIGN 52

Figure 3.3: Examples of statecharts with different concerns: (a) shows the set of
operations required to connect with a stream server, while (b) shows the possible states
of buttons in a graphical user interface

(a) (b)
.) e N\
set B button clicked
Selecting Bold off
B button clicked

=
-
=
%]
o
g E
<
=
[e]
= _
= g
3
=~ =
2 5
Qo 3
o
z
3
=
o |
=
1%
S
=

Terminating

A
| Error '4—

go 4
Stopped

Underline U button clicked
on -
Underline off
U button clicked

. J

o —
State Default State Transition
AND state

XOR state

Playing

Legend

then it may alternate between the Stopped and Playing states. From the Loading, Stopped, or
Playing states, the system may enter the Terminating state, and then go either to the Error state
or go back to the Selecting state. The Error state can also be entered from the Loading.

On the other hand, if the concern is the user interface of a system, the architect may
define super states representing graphical elements of the user interface and sub states that
describe the current situation of that element, such as in Fig. 3.3.b (adapted from KAYE;
CASTILLO (2003)). This statechart shows the possible states for three user-interface buttons
in a text editor: Bold, Italics, and Underline. The transition between the on and off states is
determined by mouse clicks.

In this thesis, we propose the MULAS framework, which is concerned with orches-
trating the execution of the different tasks of the system so that the stakeholder goals may be
achieved. Thus, as described in Chapter 4, our approach assumes a direct mapping from leaf
tasks of a goal model to states in a statechart. This mapping is illustrated in Fig. 3.4: the Define
Farticipants, Define Topics, and Define Required Equipments tasks are mapped to the Define
Farticipants, Define Topics, and Define Required Equipments state. Each state corresponds to
the execution of its respective task. Because of this mapping, the proposed framework does not
support the creation or removal of states at runtime: only behaviors defined at design time can
be adopted at runtime.

On the subject of transitions between states, at the macro level we can analyze different
possibilities for the execution flows of a system, while at the micro level there can be different
specifications of the transitions.

The statecharts in Fig. 3.5 exemplify different possibilities for defining the execution

3.2. ARCHITECTURAL DESIGN 53

Figure 3.4: An example of the direct mapping from tasks in goal models (a) to states in
statecharts (b)
(a) (b)

Fast characterization H H
«— “{ Define topics l
Characterize Meeting ?

Characterization \

time < 5 minutes
(Define participants)

Define Participants Define Required
Equipments
Y
Define Topics (Define required J

equipments

— — O —

Goal Task Quality AND-refinement OR-refinement State Default State Transition
Legend (goal model) Legend (statechart)

flow of an excerpt of the Meeting Scheduler System, containing three tasks: Define topics,
Define participants, and Define required equipments. In Fig. 3.5.a, the tasks are executed
sequentially. In Fig. 3.5.b the tasks are also executed in sequence, with the difference that
Define participants and Define required equipments are considered optional, which is evidenced
by these additional transitions: from Define topics to Define required equipments, from Define
topics to the exit of the superstate, and from Define participants to the exit of the superstate.
Lastly, in Fig. 3.5.c the tasks may be concluded in any order.

Traditionally, only one of these alternative flows would be selected and then included
in the system’s statechart. However, in the context of adaptive systems, it can be interesting to
develop the system supporting more than one of the possible flows, allowing to switch between
different flows at runtime.

Moving towards the micro level, it is necessary to specify the details of each transition
in the statechart, which are composed of triggers and conditions. The triggers are events that
may happen during the system execution and provoke a transition from a source state to a target
state, as long as the conditions of the transition hold true. In order to support adaptation of the
system’s behavior, we propose the parameterization of transitions.

Fig. 3.6.a shows an excerpt of a statechart with a timed transition, on which an e-mail
will be sent every twenty-four hours. Fig. 3.6.b shows the same excerpt but now with a param-
eterized event, where TIR stands for Time Interval between Reminders. With a parameterized
transition, the designer can define an initial value and then let the controller adjust it automati-
cally through a feedback loop, aiming to achieve the best results possible.

In summary, in order to accommodate the new alternatives identified during behavioral
design, we may create new parameters that can be modified by an adaptive framework. In the
statechart model, these parameters may refer to (i) the selection of alternative behaviors; (ii)
the definition of parameterized events; and (iii) the definition of parameterized conditions (as

discussed in the previous subsection).

3.2. ARCHITECTURAL DESIGN 54

Figure 3.5: Different statecharts exemplifying different execution flows for the same set

Deﬂng required ‘»(Define required J
equipments ;
equipments

(Define required]
equipments

of tasks
(a) (b) ()
e A e N
e A
‘\{ Define topics J Define topics ‘»(Define topics J
A | 22N
(Deflne partmpants) [(Defme partmpants) t»(Define participants)
Y (22 I N I ——
.

7
\

-
-
K
-

o —
State Default State Transition
AND state
XOR state
Legend

Figure 3.6: In the left-hand side, a timed transition with a static time interval; in the
right-hand side, a timed transition with a parameterized time interval

(a) (b)

'\»(Idle) ’\»(Idle)

sinoy g A1ana
YI1 A1ana

(Send e-mail) (Send e-mail)
OO —

State Default State Transition

Legend

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 55

In the next section we present our proposal on how to integrate adaptation at the ar-
chitectural designed level, described in this section, with adaptation at the requirements level,

described in the previous section.

3.3 Multi-Level Adaptation - the Design Goal Model

A key aspect of architectural design, as of any design activity, is its decision-making
nature. This is evidenced by the Rational Unified Process (RUP) definition of software ar-
chitecture: "the set of significant decisions about the organization of a software system (...)"
(KRUCHTEN, 2004). Given a problem, which in this case are the software requirements, soft-
ware architects will decide what is the best solution to be implemented, where best can be
defined in terms of performance, cost, maintainability, and other criteria.

Some systems implement only one solution, while others, called flexible or configurable
systems, implement different solutions. In the latter kind of system, the decision of what so-
lution to use is then postponed from design time to deployment time or run time. In adaptive
systems, this decision is made by the system itself, at run time. In order to capture the infor-
mation required for supporting adaptation both at the requirements level and at the architectural
level, we propose the Design Goal Model (DGM).

The Design Goal Model extends the goal model from the Zanshin framework in order to
capture adaptation information at the architectural level. This model can be fed to the Zanshin
framework in order to support runtime adaptation both at the requirements and the architectural
level. Moreover, it can be used to automatically generate architectural models. Besides goals,
tasks, quality constraints, parameters and awareness requirements, the Design Goal Model con-
tains design tasks, design constraints, assignments and behavioral annotations.

In order to capture design decisions that refine how a certain goal can be achieved, how
a certain task can be performed, and how a given quality constraint can be satisfied, we propose
the inclusion of design representations of these same concepts: (i) design tasks, (ii) design
constraints, and (iii) design assumptions in the Design Goal Model.

The use of requirements constructs for representing architectural design, in the context
of goal modeling, has already been explored in the literature (CASTRO; KOLP; MYLOPOU-
LOS, 2002; LAMSWEERDE, 2003; GRAU; FRANCH, 2007; PIMENTEL; FRANCH; CAS-
TRO, 2011). As argued in (BOER; VLIET, 2009), there is a large similarity between archi-
tecturally significant requirements and design decisions. Nonetheless, we opt to differentiate
design elements from their requirements cousins in order to make it clear, among other things,
who (stakeholders or designers) is responsible for making decisions with respect to those ele-
ments, and in which phase of the project they appear. We are assuming that requirements are
stated by stakeholders (customers, users). Thus, their rationale is mostly domain-related and
changes must be negotiated and approved by stakeholders. Unlike design elements, stated by

designers. In this case, the rationale is mostly technology-related, and changes are negotiated

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 56

internally by designers. Visually, this differentiation is presented by using dashed borders for
the design elements.

Design tasks are tasks that need to be supported by the system in order to achieve a goal
or perform another task, but are not explicitly required by stakeholders. For instance, Connect
to Database, Parse Data, Run Quicksort Algorithm (HOARES, 1962) are tasks that may be
executed by a system, even though they may not be required by customers or clients.

Similarly, design constraints are constraints identified by architects which refine other
elements of the system. It may refine stakeholders’ quality constraints, or it may refer to tech-
nical elements of the system, such as algorithms, components and connections. Examples of
design constraints: run algorithm in less than 2 seconds, use 128-bits encryption, Three way
handshake communication protocol, adopt Java as the main programming language, use a spe-
cific Java library.

Lastly, design assumptions are assumptions made by the system architects which, if
true, imply the satisfaction of its parent element. For instance, it can be assumed that a scal-
ability requirement will be satisfied given that no more than fifty users will interact with the
designed system simultaneously. However, if more than fifty users interact with the system
simultaneously, that scalability requirement will no longer be satisfied.

Besides these additional elements, assignment annotations allow architects to define
which actor, component, module or external system will be responsible for performing specific
tasks of the system. Lastly, behavioral annotations define the possible execution flows of the
system. With this set of refinement elements the architecture team will be able to design the
system by refining the stakeholders’ requirements.

Fig. 3.7 shows an excerpt of the Design Goal Model for the Meeting Scheduler system,
where the Schedule Automatically task is refined with three design tasks: Brute Force Algorithm,
Heuristics-based Algorithm, and Select Date. A design constraint was defined, in agreement
with the stakeholders, in order to limit the execution of these algorithms: Scheduling done
under 10 minutes. Moreover, the domain assumption Rooms Available means that the automatic
scheduling in only possible if rooms are available. The awareness requirement AR3 indicates
that the Define Schedule goal should never fail, while the MCA parameter defines the Maximum
amount of Conflicts Allowed for the scheduling. The higher the number of conflicts allowed,
the easier it will be to Define Schedule successfully. Lastly, the behavioral annotations define
the flow of the system in terms of flow expressions. The annotation on Define Schedule consists
of a selection between Schedule Manually (t15) and Schedule Automatically (t16). Similarly,
the annotation on the Schedule Automatically task shows that only one of the algorithms will
be used throughout a single execution flow: Brute Force Algorithm (dt52) or Heuristics-based
Algorithm (dt53). After the execution of one of these algorithms, the Select Date task (dt54)
will be performed.

The possible refinements in the Design Goal Model are summarized in Table 3.2. The

first column shows a list of parent elements, while the remaining columns indicate children

57

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL

M Iojowrered
M M JUOWIAIMDY SSAUATBMY
M M M uondwnssy ugrsa(
M M A A A wrensuo)) udsa(g
N A A A A Jse], usisaq
M A A A uondwnssy urewoq
a a a A W s W » yurensuo) Kiend
A A A A A A A Asel,
A A A A A A S N N [e0D
judwRImbay uvopdwmssy jurensuo)) ysel, uopdwinssy jureI)suo))
RPWeRIe SSAUdICMY ugIsa(q ugIsd(q usIsd(q urewo(LAHmend) JSeL, [0
syuauIg[e uoneidepy syuauIg[e usIsaq SIUSUIQLS sjuawaIIbay
SIUQUWIRLQ UAIP[IYD juared

[POJA [20D) USISI(T 2} UI SJUSWAUYSI I[qISSOd :7°€ eI

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 58

Figure 3.7: Excerpt of the Design Goal Model for a Meeting Scheduler System
(t15]t16)

Define Schedule

/O AR3: NeverFail

[((dt52][dt53) dt54) |

Schedule
Automatically

Scheduling done |
in under 10 minutes !

D — —
Goal Task Cc?#sat]:;){nt Asggmgllrilon AND-refinement OR-refinement
@ Bl T e
A & o P . o
Design Task PDesigp A Design Assi Parameter Awareness
Requirement
Legend

elements. A checkmark indicates that the parent can be refined with that kind of child element.
For instance, the first checkmark on the Goal row indicates that a goal can be refined with other
goals; the second checkmark on the Goal row indicates that a goal can be refined with tasks; so
on and so forth. The absence of a checkmark indicates that the parent element cannot be refined
with that particular child. For instance, the absence of a checkmark on the intersection of the
Task row with the Goal column means that a task cannot be refined with goals.

All of the requirements elements (goal, task, quality constraint, and domain assump-
tion) can be refined with any of the design elements (design task, design constraint, and design
assumption), as shown on Table 3.2. Goals can also be refined with (sub-)goals, tasks, quality
constraints and domain assumptions. Quality constraints, while non-functional requirements,
can be refined not only with other quality constraints and domain assumptions but also with
tasks, similarly to operationalizations in the NFR Framework (CHUNG et al., 2000). The same
rationale applies to refining design constraints with design tasks. We are adopting Zanshin’s no-
tion of having tasks as the lowest level requirements, hence tasks cannot be refined with further
tasks. Domain assumptions cannot be operationalized, thus they can only be refined with other
domain assumptions, design assumptions, or adaptation elements. Similarly, design assump-
tions can only be refined with other design assumptions or with adaptation elements. Design
elements can be refined only with other design elements or adaptation elements. In fact, any
requirements element or design element can be refined with adaptation elements. Awareness
requirements can be refined with another awareness requirements or with design tasks, with
the latter meaning that the design task is related to the monitoring of the parent awareness re-

quirement. Parameters can also be refined with design tasks, meaning that the task is related to

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 59

enacting changes to that parameter. For instance, considering a parameter door open or closed
in a smarthome system, the non-trivial tasks Open Door and Close Door are required in order
to enact changes in that parameter.

Table 3.3 presents the possible annotations in the Design Goal Model. Goals, tasks and
design tasks can be annotated with behavioral annotations, whereas only tasks and design tasks

can be annotated with assignments.

Table 3.3: Elements that can be annotated with flow expressions and assignments

Element Annotation

Behavioral Annotation Assignment
Goal v
Task v v
Quality Constraint
Domain Assumption
Design Task v v
Design Constraint
Design Assumption
Awareness Requirement
Parameter

The metamodel of the Design Goal Model (Fig. 3.8), along with its constraints (List-
ing 3.1), formalize the possible refinements previously described. Each node in the model can
be either a requirements element (goal, task, quality constraint and domain assumption), a de-
sign element (design task, design constraint and design assumption), or an adaptation element
(awareness requirement and parameter). These nodes may have behavioral annotations, in the
form of flow expressions, whereas assignments are defined as attributes of tasks and design
tasks.

Additionally, the constraints of the metamodel are defined with OCL (OMG, 2012) and
presented in Listing 3.1, in conformity with Table 3.2. The first invariant (mustHaveDifferent-
Targets) prevents a node from having a link with itself. The remaining invariants formally define
the possible refinements for each element: goal, task, quality constraint, domain assumption,
design task, design constraint, design assumption, awareness requirement and parameter.

In order to mitigate the complexity of the Design Goal Model, different views were
defined: requirements, design, assignment and behavior. These views prevent the visualization
of elements that are not necessary for the task at hand. For instance, when modifying the system
requirements it is not relevant to visualize design elements. Similarly, when including the design
elements, it is not essential to observe behavioral annotations. Table 3.4 specifies the elements
visible on each view, with the visible elements marked with check marks and optionally visible

elements are marked with question marks.

60

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL

uBWUBISSY- 1UBWUBISSY-
J912weled juawaainbayssauaiemy | |uondwnssy usisag juiesisuoyusisag ysejusisag uondwnssyulewoq| | juteszsuodAjenp ysel |eoo
juawajjuonelrdepy juawajjusisag jJuaWa|3sauawaiinbay

uoljejouuyjesoineyag x0

<

apoNpa3leIoUUR

3poN

—
0 5
S T
170 ua.ed * 0
x 0 apou
v
R=

|apoAjeoDusisaq

[OPOIA 80D USISO(T Y} JO [SPOWEIIA :§°€ dINJI

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 61

Listing 3.1: OCL constraints that define the possible refinements in the Design Goal
Model

context Link inv mustHaveDifferentTargets:
self.parent <> self.child

context Link inv goalAsParent:
self.parent.oclIsTypeOf (Goal) implies
self.child.oclIsKindOf (RequirementsElement) or
self.child.oclIsKindOf (DesignElement) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv taskAsParent:
self.parent.oclIsTypeOf (Task) implies
self.child.oclIsTypeOf (QualityConstraint) or
self.child.oclIsTypeOf (DomainAssumption) or
self.child.oclIsKindOf (DesignElement) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv qualityConstraintAsParent:
self.parent.oclIsTypeOf (QualityConstraint) implies
self.child.oclIsTypeOf (Task) or
self.child.oclIsTypeOf (QualityConstraint) or
self.child.oclIsTypeOf (DomainAssumption) or
self.child.oclIsKindOf (DesignElement) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv domainAssumptionAsParent:
self.parent.oclIsTypeOf (DomainAssumption) implies
self.child.oclIsTypeOf (DomainAssumption) or
self.child.oclIsTypeOf (DesignAssumption) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv designTaskAsParent:
self.parent.oclIsTypeOf (DesignTask) implies
self.child.oclIsKindOf (DesignElement) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv designConstraintAsParent:
self.parent.oclIsTypeOf (DesignConstraint) implies
self.child.oclIsKindOf (DesignElement) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv designAssumptionAsParent:
self.parent.oclIsTypeOf (DesignAssumption) implies
self.child.oclIsTypeOf (DesignAssumption) or
self.child.oclIsKindOf (AdaptationElement)

context Link inv awarenessRequirementAsParent:
self.parent.oclIsTypeOf (AwarenessRequirement) implies
self.child.oclIsTypeOf (DesignTask) or
self.child.oclIsTypeOf (AwarenessRequirement)

context Link inv parameterAsParent:
self.parent.oclIsTypeOf (Parameter) implies
self.child.oclIsTypeOf (DesignTask)

context BehavioralAnnotation inv elementsThatCanBeAnnotated:
self.annotatedNode.oclIsTypeOf (Goal) or
self.annotatedNode.oclIsTypeOf (Task) or
self.annotatedNode.oclIsTypeOf (DesignTask) or

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 62

Table 3.4: The different views of the Design Goal Model. Question marks indicate that
the visualization of the element is optional in that view

Element Views

Requirements Design Assignment Behavior
Goal
Task
Quality Constraint

SNENENEN

Domain Assumption
Design Task
Design Constraint
Design Assumption
Awareness Requirement ?

R NS YN NENENEN
R NN NENENEN

Parameter ?

R N N N SR NEN

Assignment

BN

Behavioral Annotation

The syntax of the design goal model, illustrated in Fig. 3.7, was based on existing
goal modeling notations for the sake of familiarity. Nonetheless, it was adapted taking into

consideration principles for designing effective visual notations (MOODY, 2009):

1. Principle of Semiotic Clarity: there should be a 1:1 correspondence between
semantic constructs and graphical symbols — this principle was followed since
there is no symbol redundancy (multiple symbols for the same concept), no symbol
overload (different concepts for the same symbol), and no symbol excess (symbols
that do not represent any concept). There is symbol deficit (concept not represent
by a symbol), such as differential relations. However, as noted in (MOODY, 2009),
this is welcome in a software engineering context in order to reduce diagrammatic
complexity.

2. Principle of Perceptual Discriminability: different symbols should be clearly
distinguishable from each other — this principle is against notations that adopt
too similar symbols for different concepts, such as the Data Flow Diagrams from
Gane & Sarson (GANE; SARSON, 1979), which relies solely on rectangles. In the
design goal model, besides different shapes we also adopted different colors, which
is an example of coding redundancy. This helps to distinguish between, among
others, goals and quality constraints, which are represented by shapes within the
same family of rounded rectangles. The following design elements present the same
shapes of their requirements counterparts: design tasks, design constraints, and de-
sign assumptions. This similarity is intentional, since they represent similar con-
cepts at different abstraction levels. Nonetheless, they are discernible not only by

their border lines but also by their brightness. Moreover, these elements are visually

3.3. MULTI-LEVEL ADAPTATION - THE DESIGN GOAL MODEL 63

distinguished from adaptation elements (awareness requirements and parameters),
as well as the behavioral element (flow expression), through the use of different
structures.

3. Principle of Semantic Transparency: use visual representations whose appear-
ance suggests their meaning — ideally, it would be possible to infer the meaning
of a symbol from its appearance. As an example, it is suggested to represent actors
in i* models with stick figures (as in use cases), to represent resources with trees,
and so on (MOODY; HEYMANS; MATULEVICIUS, 2010). However, considering
that goal modeling notations such as i* and Tropos are already well known in the re-
quirements engineering community, we decided to keep using their standard shapes.
The one instance where we applied this principle is the assignment symbol: we use
the icon of a person to express the assignment of a task to someone.

4. Principle of Complexity Management: include explicit mechanisms for deal-
ing with complexity — the complexity management mechanism of the design goal
model are its different views. Moreover, i* levels of complexity are prevented by
adopting a strict tree structure, rather than a graph one.

5. Principle of Cognitive Integration: include explicit mechanisms to support in-
tegration of information from different diagrams — the design goal model is
lacking with regard to this principle, since it does not provide visual indications of
its integration with statecharts.

6. Principle of Visual Expressiveness: use the full range and capacities of visual
variables — the different concepts expressed in the design goal model are differ-
entiated by: shape (rectangle, rounded rectangle, hexagon, circle and diamond),
color (e.g., goals are green, while tasks are blue), brightness (design elements are
darker than requirements elements), structure (e.g., the textual element of a goal is
contained within its symbol, while the textual element of a parameter is at the side
of its symbol), and textual cues (e.g., awareness requirements are preceded by an
identificator in the form of ARxX).

7. Principle of Dual Coding: use text to complement graphics — three concepts
can be distinguished through textual cues: awareness requirements, parameters and
behavioral annotations. Awareness requirements are preceded by an identificator in
the form of ARxx. Parameters are represented with three letters acronyms, even
though this constraint is not mandatory. Lastly, the text of behavioral annotations
are identifiable for being in the form of regular expressions.

8. Principle of Graphic Economy: the number of different graphical symbols
should be cognitively manageable — the design goal model exceeds the recom-
mended limit of six symbols. In order to mitigate this issue, we decided to use sim-
ilar shapes for similar concepts (e.g., tasks and design tasks), while strengthening

their visual expressiveness.

3.4. SUMMARY 64

9. Principle of Cognitive Fit: use different visual dialects for different tasks and
audiences — this principle suggests that different dialects (e.g., different symbols)
can be used in different contexts, considering the different needs of expert and
novice modelers, as well as the characteristics of differentia media (e.g., software
tools and paper sketching). Considering that the design goal model is still incipient,

this principle has not been applied yet.

3.4 Summary

The Design Goal Model (DGM), presented on this chapter, allows to specify software
systems’ adaptation based not only on high level concerns expressed by stakeholders, but also
on low level, technical aspects of the system. However, creating such a model is not a trivial
endeavor. In order to facilitate the system design, leading to the creation of a DGM, we propose
an architectural design process, described in the next chapter. Starting with an initial require-
ments goal model, this process proposes a series of iterative and incremental refinements to be
applied in the model resulting from architecture- and adaptation-related decisions.

Moreover, the process described in the next chapter also supports the generation of
statecharts from a DGM, which provide a proper visualization of the behavioral view on the
system architecture. This statechart can then be refined to include adaptation elements, which

allow to reify the adaptation strategies defined for the system.

65

From Requirements to Architectural Design

In this chapter we present a process for moving from requirements towards architectural
design, illustrated with examples from a meeting scheduler system. In the first section, the com-
plete requirements of a Meeting Scheduler system are presented, based on its requirements goal
model. The next section describes the process itself, with its eight steps: Identify design tasks,
constraints and assumptions; Assign tasks; Define basic flows; Identify indicators, parameters
and relations; Specify adaptation strategies; Generate base statechart; Specify transitions; and

Include adaptation elements.

4.1 Requirements for the Meeting Scheduler system

The requirements for a Meeting Scheduler system were briefly introduced in Section
3.1. Building on that, this current section presents the requirements resulting from a series
of iterations of the Requirements Engineering and Architectural Design process. The final
requirements model is shown in Fig. 4.1.

The main goal of the Meeting Scheduler system is to Schedule Meeting. In order to
achieve that goal, it is necessary to fulfill the following sub-goals: Characterize Meeting,
Collect Timetables, Define Schedule, Manage Meeting, and Administer System. Meeting char-
acterization is the moment when a user start to call for a meeting, setting up its properties such
as the people to be invited and a date range where the meeting may happen. The gathering of
timetables from the invited personnel is required in order to identify at what time a meeting
could be scheduled so that the attendance rate is maximized. The Define Schedule goal refers
to the actual scheduling of a meeting. Tasks related to updating a meeting, such as canceling
and changing rooms are part of the Manage Meeting goal. Lastly, Administer System is a sup-
porting goal related to updating and visualizing data in the system, such as managing users and
visualizing reports.

Besides the aforementioned sub-goals, there are two overarching quality constraints
that the stakeholders expect to be satisfied: Scalability and Portability. Scalability refers to the
ability of the system to be performant even with a large amount of users or requests. Portability

66

4.1. REQUIREMENTS FOR THE MEETING SCHEDULER SYSTEM

puaba

Sssaualemy lsjaweleqd

juswainbay Juswaulyaryo juswauyal NY

uondwnssy
urewoq

julessuon
Kyjend AseL 1e09

o e G+ «— [] aCD

00y abue
g g 2lqejieAy swooy oea
(pLZ)aaniiedxe GV O—

oydn

(W1%06) PV O siepudjen

Ae:ma_u_v_mn_ om:m.._v A ajeq abueyn v VSV &
sjuedionsed AnoN

sie10q 9BuzyD 11E419A9N 9V O
Hodoy

abesn wooy asg

poday aag A sias abeuep v suoydyews pue 5d

lleanewoIny
a|npaysg

Allenue ajnpayss

|[ed)ewony
399|109

95U81IN290 WLIUOD

yoday
Buinpayog a9g

a|npaydg auyaq

/ WHE &
Bunesyy |9ouen [le310heN (£UV'O
(z‘pL)aseasdagpuai]ioN 28V O
Bunoay abeuep

oday sbunosyy 998

Kungereos (s%06)piessaoong ;LY G

Amgeyod

wa)sAg Jajsiuiwpy

paiinbay auyaqg

1rew3 £q 393110

Sjuswdinb3

SejnuIw G Jopun ul
auop uonezuajoeleyd

Augesn

Bupesy ajnpayos)¢

Wo)SAS 19[NPaydS SUAIA Ay} JO sIuaWIIMbay] :I°p 3anJ1 g

1le419AdN L4V O

sjuauuioddy ajeALd MIIA —YdA

Pamo||y S}O1ju0Y JO Junowe wnwixey - oW
Auey moy woi4 - y4

SBWIOINYHWIAS IO dRLIOINY - YSY

siojoweled

auoyd £Aq 399]100

sa|qejawt] 393109

swooy

sjuedioied suye

s|qe|ieAy 995

abuey ajeq suyag

soido) suyaq

Bunsen
aziiv)0RIRYD

4.1. REQUIREMENTS FOR THE MEETING SCHEDULER SYSTEM 67

was defined as being able to access the meeting scheduler system through different devices, so
that users can interact with the system on the fly, as stated by the System Accessible via PC and
Smartphone quality constraint.

The Characterize Meeting goal is refined onto five tasks: Define Topics, Define Date
Range, See Available Rooms, Define Participants, and Define Required Equipments. The Define
Topics task 1s where the user, that is calling a meeting, defines its agenda, while Define Date
Range delimits the boundaries for the meeting scheduling. The See Available Rooms and Define
Required Equipments tasks are related to room reservation: the first one provides a list of rooms
available for that meeting, whereas the second one allows the user to specify which equipments
will be needed for that meeting, which may constrain the room selection. For instance, if a video
projector is required for a meeting, only rooms with that equipment can be chosen. Moreover,
the Define Participants task is used to declare who is going to be invited. Considering that
this characterization could be cumbersome if poorly implemented, the stakeholders defined a
Usability constraint on which the characterization must be completed in less than five minutes,
as defined by its sub-constraint: Characterization done in under 5 minutes.

In order to select the best meeting date it is important to obtain the timetables that ex-
press at which time the invited participants are available. Three alternative means for achieving
the Collect Timetables goal were identified: Collect by Phone, Collect by Email, and Collect
Automatically. Since automatic collection requires less human effort, it is the preferred option;
nonetheless the other alternatives are not necessarily discarded.

The actual scheduling may be performed automatically or manually, as defined by the
Define Schedule goal. Although in most cases the automatic scheduling is preferred, in some
cases the meeting organizer may prefer to schedule manually, thus both options need to be
included in the system. This is the case, for instance, when the meeting involves external guests
whose timetables are not available for the system.

In order to be able to Manage Meeting, the Meeting Scheduler systems needs to support
the following tasks: Cancel Meeting, Confirm Occurrence after the meeting is held, Change
Room, Change Date, and Notify Participants of changes in meetings.

The Administer System goal can be achieved through the Manage Users and Manage
Rooms tasks, as well as the See Report goal. These tasks are example of requirements that
were identified during the architectural design phase, i.e., while creating a solution to the earlier
elicited requirements. Considering that different people would interact with the Meeting Sched-
uler system, some with different permissions, some that would receive e-mails from the system,
and so on, it was observed that user information would be required. Considering personnel
turnaround, this information would be modified throughout the system’s service life time, thus
some kind of management would be necessary. Similar management would most likely be
necessary for the meeting rooms and their equipments. These tasks were then proposed and
accepted to be included in the requirements goal model. Lastly, the See Report goal is related

to the managers’ need of obtaining information about the meetings and about the system itself,

4.1. REQUIREMENTS FOR THE MEETING SCHEDULER SYSTEM 68

manifested in three tasks: See Room Usage Report, See Scheduling Report, and See Meetings
Report.

Besides goals, tasks, quality constraints and domain assumptions, the requirements goal
model also consists of awareness requirements and parameters. SOUZA (2012) suggests the
following sources for the identification of awareness requirements: critical requirements, non-
functional requirements, preferable solutions, trade-offs, preemptive adaptation, other aware-
ness requirements (meta-awareness), and qualitative elicitation.

The awareness requirements for the meeting scheduler system, indicating which ele-

ments of the goal model need to be monitored at runtime, are as follows:

= ARI1: SuccessRate(90%) — Quality constraint Characterization done in under 5

minutes should have a success rate of at least 90%.

s AR2: NotTrendDecrease(7d,2) — The success rate of the Collect timetables goal

should not decrease two weeks in a row.
= AR3: NeverFail — The Define Schedule goal should never fail.

s AR4: SuccessRate(90%,1M) — The Calendars Up to Date domain assumption

should have a success rate of at least 90%, measured every month.

= ARS: MaxFailure(2,7d) — The Rooms Available domain assumption should fail at

most twice every week.
= ARG6: NeverFail — The Notify Participants task should never fail.

s AR7: NeverFail — The Characterize Meeting goal should never fail.

While awareness requirements express what needs to be monitored in the system, pa-
rameters define what can be modified at runtime, aiming to improve the satisfaction level of the

awareness requirements. The parameters of the Meeting Scheduler system are:

= ASA: Automatic or Semi-Automatic — This parameter provides two options to
the Schedule Automatically task: fully automatic or semi-automatic. With the for-
mer, the system will define a single best date for the meeting, which will then be
confirmed or not by the user. With the latter, the system will provide a range of

good dates, leaving the selection of the best one to the user.

s FHM: From How Many — This parameter defines the satisfactory percentage of
meeting participants’ timetables that must be collected. Ideally, all timetables should
be collected. However, if it is difficult to obtain all timetables, the expected percent-

age can be reduced.

4.2. ARCHITECTURAL DESIGN 69

s MCA: Maximum amount of Conflicts Allowed — When scheduling a meeting,
the best scenario would be to select a date where all the invited personnel is able to
attend. Considering that this scenario is not always possible, this parameter deter-
mines what is the maximum amount of conflicts that will still lead to a satisfactory

scheduling. The higher the value of MCA, the easier it is to schedule a meeting.

= VPA: View Private Appointments — This parameter defines whether the system
will be able to view private appointments in its users’ calendars. While accessing
such data may raise privacy concerns, it potentially provides better results in terms

of attendance rate.

The next section shows the incremental refinement of goal models with the inclusion of
design elements, as part of the Architectural Design process. In particular, it is also possible to

identify new awareness requirements and parameters, as it will be described in Section 4.2.4.

4.2 Architectural Design

The goal of this architectural design process is to guide systems designers and architects
on the definition of system behavior. By following the process, they will be able to: refine the
requirements model with design elements, resulting on a design goal model; identify adaptation
opportunities related to system design, as well as to specify them; define system behavior in
such a way as to enact the specified adaptation.

The process comprises eight steps, as depicted by its Business Process Model and Nota-
tion (BPMN) diagram1 (OMG, 2011) in Fig. 4.2. The first five steps are related to the refinement
of design goal models: Identify design tasks, constraints and assumptions; Assign tasks; Define
basic flows; Identify indicators, parameters and relations; and Specify adaptation strategies.
The other three steps are related to statecharts: Generate base statechart; Specify transitions;
and Include adaptation elements.

While these steps may be followed mostly sequentially, waterfall-like, in realistic set-
tings it is expected that the architect will go back and forth, by introducing additional refine-
ments to already refined elements. Furthermore, this process constitutes a loop, as shown by
the circular arrow on the bottom-center region of the figure. In fact, in accordance with the
Twin Peaks directive of iterative and incremental design (NUSEIBEH, 2001), it is possible to
generate statecharts from partial design goal models, i.e., from models that have not been fully
refined all the way down to its leaf elements. For instance, if only the behavior of the immediate
children of a root goal is defined, the result is a very high-level statechart. As further refine-

ments are specified and new elements are included in the model, the resulting statechart gets

! In the text of this thesis the word step is adopted when referring to BPMN tasks, as to prevent confusion with
goal models’ tasks

70

4.2. ARCHITECTURAL DESIGN

Moy Moy 13lqo sfseyssaoold 2N JUdAD
T abessajy eleg d-q sseL Aemeres puz uelS
(7]
o
- —@ (¢ o00
uoneoynads A v
uoneldepy
oot \
| I
_ _
| susened |
" uoieauag |
X :
+ I
w«cw.&w_w I
uoireydepe | uolesydads
apnul (8'€'y) _ | uopeldepy
I
» suonisuel _ I
I Ayoads (L°€v) A2 “ T o ,_
I I
I _ | I
| “ A Jeyoare)s aseq b I
! L aresauan (9'€'h) H LY |
| |
_ Lo ——x saibarelns |
I _ “ [uoneidepe I
| | | | o I
| “ _ [Ayoads (ge'v) suole|al
_ Lo b X pue ‘sisewered J
| I Lo | ‘sI0ye21pUl
I ueyoslRls | _ Heyoalels _ _ I | Anuspl (7e'p)
_ P Lo | ™ & SMmoyy diseq
S - e S | b auyeq (e'e')
| | !
[I
| I
L | L o syse)
Lo | o Lo ubissy ('€'v)
_ _ I | “ “ I suondwnsse
[_ oy | _ “ A pue ‘sjurelisuod
“ _ | “ | _ | | “ ‘sysey ubisap
L ! v L o Anuspl (T°€v)
| | ! | | | |
| | |
I I I
ISPON [B0D | “ ! 19pon [e0 | “ ISPON 80D “ “ |1opon [e0D | | ISPON [B0D | _ ISPON 80D
ubisaq | | _ ubisaq _ | ubiseq | | ubisaq “ | | cw_wmn_\mEmEm__:_umw_
| | | | | | | |
[“ oy [_ I [
)N ____ [o _ o oN__ D G _J

$50001d USISP [RININIYDIE) JO MIIAIIAQ :T°H dINSI]

4.2. ARCHITECTURAL DESIGN 71

more complete. Thus, it is not necessary to fully complete one step in order to proceed to the
next one.

The first step, Identify design tasks, constraints and assumptions, supports the refine-
ment of a goal model by including elements that are not initially required by the stakeholders,
but are relevant from the architectural point of view, expressed as design tasks, design con-
straints and design assumptions. The second step, Assign tasks, consists of assigning the re-
sponsibilities for the execution of tasks —- e.g., tasks that will be performed by an external
actor (human or otherwise). This assignment is helpful for defining the scope of the system.

In the next step, Define basic flows, the architect introduces possible flows for every
sub-tree in the goal model. Roughly, these flows describe in what order are the sub-elements
to be fulfilled or executed, so that their parent element can be considered fulfilled or executed.
These flows are expressed as alternative flow expressions, introduced as annotations to a goal
model using a top-down, bottom-up, or middle-out strategy. These expressions are later used to
automatically generate a statechart that represents the system’s behavior.

The next two steps are related to the adaptation capabilities of the system: Identify
indicators, parameters and relations and Specify adaptation strategies. The former is con-
cerned with including in the design goal model those elements proposed by Zanshin (SOUZA;
LAPOUCHNIAN; MYLOPOULOQOS, 2011), but now also considering the design elements pre-
viously included in the first step. In the Specify adaptation strategies step it is defined how
the system will react to failures — e.g., by retrying the execution of a task, or by changing the
parameters described in the goal model.

The second part of the process is related to system behavior. The first step, Generate
base statechart, makes use of derivation patterns to automatically create a statechart from the
flow expressions previously defined. Although flow expressions are a useful intermediate ab-
straction between goal models and statecharts, they are not as expressive as statecharts. Thus,
in the next step, Specify transitions, the transitions of the statechart are refined with their events
and conditions, which are identified by analyzing when any given transition should take place.

The last step, Include adaptation elements, is concerned with reifying the adaptation
cycle. Adaptation elements included during this step allow to monitor the system execution, as
well as to enact the adaptation strategies that were defined in the Specify adaptation strategies
step.

The following subsections further describe each step of the architectural design process,

using the Meeting Scheduler system as a running example.

4.2.1 Identify Design Tasks, Constraints and Assumptions

Requirements expressed as goal models describe the problem space for the system-
to-be, capturing concerns from different stakeholders such as customers, users and domain

experts. During design, i.e., as we move towards the solution space, the different elements of the

4.2. ARCHITECTURAL DESIGN 72

requirements model need to be further refined, reflecting design decisions that have been made.
These decisions can be classified in three categories: existence decisions, property decisions,
and executive decisions (KRUCHTEN, 2004).

Existence decisions declare that some element will be a part of the system (positively),
or that some element will not be included in the system (negatively, or a non-existence decision).
Property decisions describe qualities that the system must present (or, negatively, not present).
Executive decisions do not refer to the system design itself, but instead are related to the process
of designing the system. For instance, decisions about process steps, team size and tools to be
used. This latter kind of decision is not addressed by the MULAS architectural design process.
The other positive decisions can be expressed in the Design Goal Model.

In order to capture design decisions that refine how a certain goal can be achieved, how
a certain task can be performed, and how a given quality constraint can be satisfied, we pro-
pose the inclusion of design tasks and design constraints in the goal model (PIMENTEL et al.,
2014). As argued in BOER; VLIET (2009), there is a large similarity between architecturally
significant requirements and design decisions. Nonetheless, we opt to differentiate design el-
ements from their requirements cousins in order to make it clear, among other things, (i) who
(stakeholders or designers) is responsible for making decisions with respect to those elements,
and (i1) in which stage of the project they appear. This differentiation is done by using dashed
borders for the design elements (e.g., design tasks and design constraints in Fig. 4.3).

Design tasks and design constraints are included in the goal model through AND/OR
refinements. By including these elements in the goal model, rather than using a separate design
decisions model, we can take advantage of existing goal-reasoning infrastructure. For instance,
MULAS currently adopts the Zanshin framework (SOUZA et al., 2013) to perform a feedback
loop over goal models. In future work, the MULAS framework could be extended to bene-
fit from capabilities provided by other goal-based frameworks, such as the ability to adapt a
running system to specific contexts (LAPOUCHNIAN; MYLOPOULOQOS, 2009), to calculate
metrics (FRANCH, 2009; PIMENTEL; FRANCH; CASTRO, 2011), to generate components
& connectors models (CASTRO et al., 2012; SOARES et al., 2012), and so on.

4.2.1.1 Example

In Fig. 4.3 we present the additional elements of the design goal model for the Meeting
Scheduler system, which will be explained in the remainder of this subsection. Each refinement
in the model is the result of a design decision, and as such may refer to the system as a whole
or to a particular aspect of the system. For instance, the Persistence design constraint, which
refines onto Files or Database, which is then refined onto MySQL or NoSQL, refers to the
persistence mechanism to be used by the system as a whole. On the other hand, the Use Web
Services constraint refers to a particular aspect of the system: automatic scheduling.

Another design constraint of the system is the decision to develop a Client-Server Sys-

tem, aiming to satisfy the System Accessible via PC and Smartphones constraint. That constraint

73

4.2. ARCHITECTURAL DESIGN

Sjuaunuioddy ajentid MaIA - VdA puabay
POMOIY S0 Jo o VO g o
1By MOY WOl - U3 n uoyduns: Juensuody
SjewWOINYiWSg IO JReWONY ~ySY | | Ssauaiem v Jajpwieied b Aylenp uBisag yseL ubisag

siojowesed o * I] l '
b T uiewog FEieno° ¥seL 1209
T «— [@E&cD

(W1'%06)212¥S5209NS YUV 1)

(%06)91$5200NS 1LYV O

I1e419AON L4V O

SIUTRIISUOD)
ugIsa(] pue syse], uSIsa(q YIM ‘[OPOJA [BOD) USIS(] I9[NPayYdS SUNAIA ¢ 9In3I

4.2. ARCHITECTURAL DESIGN 74

may be satisfied either by developing Native Clients for each platform, such as Windows, An-
droid, and 10S, or by developing a Web Based System accessible through Internet browsers.
Different frameworks can be used to develop a web based system, such as JavaServer Pages
(JSP), JavaServer Faces (JSF), and Google Web Toolkit (GWT).

Scalability was defined as the following design constraint: Response Time < 2s. It was
assumed that if the system has less than 100 simultaneous users (design assumption), that design
constraint would be satisfied. Otherwise, it is necessary to Distribute Application Server.

Regarding the See Report goal, it was decided to user a Report Library, choosing be-
tween the following options: Jasper Reports, Dynamic Reports, and Pentaho. Lastly, the
Scheduling done in under 10 minutes was included with respect to automatic scheduling in
order to prevent long executions of the scheduling algorithms.

Design tasks provides additional information on how the requirement tasks can be en-
acted. The See Available Rooms, Define Participants and Define Required Equipments tasks
have similar design refinements, related to the need to obtain information from the system: Get
List of Available Rooms, Get List of Users and Get List of Available Equipments. Furthermore,
in order to enable the user to See Available Rooms, the system needs to Display List of Available
Rooms. Similarly, in order to support the Define Participants task, the system needs to provide
the option to Select Participants, while to Define Required Equipments it is necessary to Input
Required Equipments.

The collection of timetables can be achieved through three alternatives: Collect by
Phone, Collect by Email, and Collect Automatically. In order to Collect Participants it is nec-
essary to Contact Participants, 1.e., to actually make phone calls to the people who were invited
for the meeting. The Input Participants Availability design task was also deemed necessary.
These two design tasks result from the decision to delegate the actual calls for a user of the
system, who would then input the required information into the system. This delegation will be
made explicit in the next step of the process: Assign tasks.

Continuing on the topic of timetable collection, another possibility is to Collect by
Email. In order to perform this task, the following design tasks were devised: Request Timeta-
bles by Email, i.e., send emails to each person invited for a meeting with information about the
meeting and instructions for sending their timetables; considering that some participants may
forget to send their timetables, the Remind Participants design task was also included in the
design goal model; lastly, since the timetables will be sent by email, the system will need to
Receive Timetables and subsequently Process Timetable; .

The last alternative for achieving the Collect Timetables goal is to Collect Automat-
ically. Instead of developing calendar management functionalities, it was decided to import
the timetable data from a third-party system, in our example the Google Calendar, with the
assumption that Calendars Are Up to Date.

Concerning the Define Schedule goal, the stakeholders required that the system must
provide both the options to Schedule Manually and to Schedule Automatically. In order to

4.2. ARCHITECTURAL DESIGN 75

Schedule Manually, a user will View Collective Timetable, i.e., the joint timetable of all invited
participants, and then Input Chosen Date. For the automatic scheduling, it was decided to
provide two different scheduling algorithms: a simple Brute Force Algorithm that tries all the
possibilities, and a Heuristics-based Algorithm.

Another set of design tasks included in the design goal model is contained within the
Administer System sub tree. The BREAD Users and BREAD Rooms design tasks are refine-
ments, respectively, of the Manage Users and Manage Rooms tasks. BREAD is an acronym
for browse, read, edit, add, and delete (STOLZE et al., 2007), which are the basic operations
for creating and maintaining data about a certain entity in software systems. Furthermore, user
management also includes the Setup Google Calendar Credentials design task, in order to be
able to access the Google Calendar data from each user.

Lastly, the Manage Access design task is refined with the following design tasks: Login,
Logout, and Reset Password. These are examples of tasks that are not required by the stake-
holders, since they are not related to the main goal of Schedule Meeting, but that are relevant to
consider in terms of architectural design.

Besides deciding what tasks need to be performed, it is also necessary to decide who or
what is going to execute them — i.e., tasks can be delegated not only to a person, but also to an
organization or to a software system, among others. For this reason, the MULAS architectural

design process includes an Assign Tasks step, described in the following subsection.

4.2.2 Assign Tasks

The design goal model presents the tasks that need to be performed by the system-to-be,
but does not prescribe who is responsible for performing them: human actors, organizations,
software systems, etc. This step of the process consists of defining such responsibilities, which
is particularly relevant in the context of socio-technical systems, where human actors are not
mere users that interact with a technical system, being instead contributing components of the
system (EMERY, 1959).

The importance of different kinds of actors is acknowledged in the i* modeling language
and framework (YU et al., 2011), where not only actors are explicitly represented but also
their specializations: agent, position, and role. This explicit representation is helpful in the
early requirements phase, allowing to represent the needs and capabilities of each actor. In late
requirements and architecture we are focused on the system itself, thus the notion of actors is not
included in the design goal model. However, considering the broader picture of socio-technical
systems, it is still relevant to be able to represent the delegation of certain tasks to human actors,
organizations, or even other (possibly already existing) software systems.

The Assign tasks step takes a design goal model as input, resulting in an updated design
goal model with assignments as output. A task or design task may be assigned to one or more

actors, with the meaning that it may be performed by any one of them. If, instead, part of the

4.2. ARCHITECTURAL DESIGN 76

Figure 4.4: Example of assignment in the Meeting Scheduler system

Collect by Phone

"""""" B ("Input Participants'\’

Ve S
¢Contact Participants . Availability 7

S P 4
W Secrefary;Meeting Organizer

task will be performed by an actor and another part by another actor, the original task can be
further refined with sub-tasks assigned to different actors.

Assignments are expressed by labels below the assigned element. The left side of the
label show the icon of a person, to represent the assignment. The actors to whom the task are

assigned to are listed to the right of the icon, as shown in Fig. 4.4.

4.2.2.1 Example

In our running example, the Contact participants (by phone) task may be performed
either by a secretary or by the meeting organizer (Fig. 4.4). All the other tasks are either
performed or assisted by the system-to-be. This assignment was chosen since developing the
capability of making automatic phone calls and collecting timetables would be too costly. In
order to make this kind of decision, it may be necessary to consult with the project stakeholders
in order to find the most beneficial option.

As seen in this step, as well as in the previous step, there are different ways to perform
a task. For instance, a single task may be refined with different design tasks. Furthermore,
tasks may be executed by different actors, including social actors and other software/hardware
systems. The next step is concerned with yet another way on which the execution of tasks may

vary: their execution flow.

4.2.3 Define Basic Flows

In this step we define the order of goal fulfillment and task execution, through the use
of flow expressions. This is done by, for each element that will be refined, defining a flow
expression which describes the behavior of its children elements. For instance, if a hypothetical

goal g/ 1s annotated with the following flow expression

12 (t31t4) 15

it means that whenever g/ is to be fulfilled, the 72 task needs to be executed, followed by 3 or
t4, and lastly 5. Fig. 4.5 shows an example of a flow expression on an excerpt of the Meeting
Scheduler DGM. There, the See Available Rooms task (19) is annotated with the following flow

4.2. ARCHITECTURAL DESIGN 77

expression:

(dt37 di38)

This annotation means that the execution of #9 corresponds to the execution of Get List
of Available Rooms (dt37), followed by the execution of Display List of Available Rooms (dt38).

The symbols that can be used in flow expressions are informally presented in Table 4.1,
while a formal grammar for such expressions is described in Section 5.2. By writing the flow
of each sub-tree in the goal model, instead of considering the system as a whole at once, it
becomes easier to define the system flow. Nevertheless, while the goal model can facilitate the
definition of the system’s behavior, it is necessary to consider the following concerns: (i) the
meaning of the AND/OR goal refinements, (ii) variations on structure, and (iii) intermediate

states, as follows.

Figure 4.5: Example of behavioral annotation (flow expression) on a DGM

| (dt37dt38) |

See Available
t9 Rooms

e —— -
4

N

Display List of s,
vailable Rooms ,/

GetListof ™

4

V4
a ?
vallable Rooms /

Table 4.1: Symbols adopted in the flow expressions

Symbol Meaning Example
blank space Sequence (tl t2), first ¢t/ and then 12
| Alternative (t11t2),t xort2
? Optional (tl t2? t3),first ¢/ and then ¢3, or first ¢/ fol-
lowed by £2 and 3
* Zero or more times (tl t2* t3),first ¢/, then 2 zero or more times,
then ¢3
+ One or more times (t1 t2+), first ¢/, then 2 one or more times
- Concurrency (t1-t2),tl and 2 are executed concurrently
line break Alternative flows (tl t2)
(t2 tl)

, tI and then 2, or 2 and then ¢/

4.2. ARCHITECTURAL DESIGN 78

Before defining the flow expressions it is important to reconsider AND refinements
present in the original model. At the requirements level, an AND refinement means that the
system must support functionality for fulfilling all the children elements of that refinement. At
runtime, though, this does not mean that all of these children need to be executed every time in
order to achieve the parent goal. For instance, consider the Manage Meeting goal in the Meeting
Scheduler system (Fig. 4.1) and two of its sub-tasks: Cancel Meeting and Confirm Occurrence.
This AND refinement states that both options must be supported by the system. Nonetheless,
for any meeting only one of these tasks would be executed, never both, since it is not possible to
confirm the occurrence of a canceled meeting. Thus, the flow expression containing these tasks
will present them as alternatives, even though this may seem counter-intuitive: Cancel Meeting
| Confirm Occurrence.

Another concern is related to variations on structure, when the flow expression of a
given node refer to nodes that are not its direct children. This is the case, for instance, of
the excerpt shown on Fig. 4.6-A). When trying to arrange a meeting, a user may select to
collect timetables by email. When that option is selected, the system should send an Email to
meeting participants (Request Timetables by Email, dt45). In order to collect timetables, it is not
sufficient to just request timetables; it is also necessary to receive them. However, replies from
participants may be sent at any time. Thus, it is necessary to be able to Receive Timetable at any
time, regardless of whatever other interaction may be happening on the system. Since the act of
receiving timetables is independent from the remainder of the system, it can be represented as
a concurrent flow.

At first glance, one may consider the possibility of expressing this concurrency as shown
on the left-hand side of Fig. 4.6-A: dt45-dt47 (i.e., dt45 is concurrent with dt45). However, dt47
(textitReceive Timetable) is concurrent not only to dt45 (Request Timetables by Email), but to
the system as whole. Thus, this concurrency must be stated on the root goal, as shown on the
right-hand side of Fig. 4.6-A: (il (g21g31g41g5) il)-(i3 dt47 i3). The statechart corresponding
to this flow is shown on Fig. 4.6-B. From an idle state (Idle 1, il), a user may Characterize
Meeting (g2), Collect Timetables (g3), Define Schedule (g4), or Manage Meeting (g5), always
returning to the idle state (i/). Concurrently to that, the system may Receive Timetables.

Lastly, a common practice when creating statecharts is to use intermediate states as
a point where the system is idle, waiting for some input, e.g., waiting for a selection by the
user. One possible way to include this kind of state here would be to include in the design
goal model a design task representing the intermediate state — e.g., Select Option — and then
include that design task in the flow expression. However, considering how frequently these
states appear, and aiming to reduce visual pollution in the design goal model, we decided to
support the inclusion of such states directly in the flow expressions. Thus, intermediate states
can be specified by inserting them in a flow expression, identified as iX, where X is any integer.

Considering that there are different ways for a system to perform a set of tasks, deter-

mining the behavioral refinement (through flow expressions) is not a matter of direct translation,

4.2. ARCHITECTURAL DESIGN 79

Figure 4.6: Example of variation on structure on an excerpt of the Meeting Scheduler

system. A) Design Goal Model; B) Statechart
[(i1 (92]|g3|g4|g5) i1)-(i3 dt47 i3) |

a)

Schedule Meeting
Characterize \
@ Meeting
@ anage Meeting

dt45-dt47

b) Characterize

Meeting (g2

Collect Timetables (g3)

Receive Timetables
(dt47)

Collect by Email (t13)

Request Timetables
by Email (dt45)

Schedule (g4

Manage
Meeting (g5

4.2. ARCHITECTURAL DESIGN 80

but it rather constitutes an important design decision. It is, thus, influenced by non-functional
requirements, reuse of components, previous decisions (for instance, regarding the architectural
style for the system structure), among other factors. For instance, we are going to consider the
Characterize Meeting goal (g2). The goal model dictates that to be able to Characterize Meet-
ing, the system must provide the following capabilities: Define Topics (t7), Define Participants
(t10) and Define Required Equipments (t11). There are different ways of performing these tasks,
four of which are represented in Fig. 4.7.

The first option is to execute them in sequence —- first Define Topics (t7), then Define
Farticipants (t10), and lastly Define Required Equipments (t11). The second option expresses
a different sequence, where Define Participants is performed before Define Topics. The third
option is the same sequence of the second one, but with the execution of Define Participants
and Define Required Equipments flagged as optional. Lastly, option four presents options one
and three separated by a line break, meaning that they are alternative behaviors — i.e., both are
valid behaviors of the system.

This kind of decision-making has to be performed for every node in the Design Goal
Model. Different strategies can be adopted: top-down, bottom-up, and middle-out. Based on
our experience, and on informal feedback received from students during an experiment (which
is described on Chapter 7), top-down seems to be the most difficult strategy. This is likely
due to the fact that the flow expression for root goals is usually more complex than the flow
expression of other goals. On the other hand, middle-out and bottom-up are both good options,
since the flow of elements at lower levels are usually easier to define. Since the algorithms
described on Chapter 5 support the statechart derivation of partially annotated models, software
designers can proceed iteratively and incrementally: annotate an excerpt of the model, generate
statechart, analyze the resulting statechart, then go back to the design goal model, modify or
expand its flow expressions, and repeat the cycle. Moreover, simulation tools” can be used to

help ascertaining whether the specified behavior is correct.

Figure 4.7: Possible flows for the Characterize meeting goal

Characterize
Meeting

Option 1) £7 t10 t11
Option 2) £10 t7 t11
Option 3) £10 t7? t11?
Option 4) t7 t10 t11
t10 t7? t11?

. i Define Required
a Define Topics @ Equipments
efine Participants >

81

4.2. ARCHITECTURAL DESIGN

sjuawjuioddy 8jeAlid MOIA -YdA puaba
POROIIY SIIJUGD jo JunOWE WnUIXEN -VON S
uey Moy wosd - Wy
OEWOINYHLUIS 10 INLWIOINY - YSY ssoualemy Jajpwieied }_"“_En“".«wn iseL ubisaq
Sisjowesed o * o

(N1'%06)91edsS5399NS pYV O

9 ejeg o3 dn
siepuajed
8|qe|ieAy SWooy

e (PLZ)ouniteAXeIN :SUY O

(el

Ai 020 5P siasq abeuely

R Rl (95IP G6IP) VSV @ — Ajieanewoiny e - g
6282IL2) VOu & E ¢ p
CECATD VSIP (CSIPIZSI) 98P 611P

I1B419A0N :€¥V O

\
()
WHi &

CIRITR) \ bl

© y @
3Iqe|ieAY 83§
i e | o) (6o L6
sjuswdinb3 e
oS
T o) o)

OYIP BEIP.

‘seJnujw g Jepun uj
[uop uoyezusjoeieyd)

06)912YSS200NS MV O

Avp
e41909N L8V O——2(szomboreun e
A
@ (85w ¢8I (2P 81 0VIP L1)-(LEW LYIP BEWP)) _
Buneajy anpayos

~(8SIP 61 & L1181 0L 23)
[({801 2P €)-,(omp - (((82] Bleblzb) 1) ((221p 6.4P)1223P) 91)]

suorssaIdxg MO[{ Y)Im pajejouue [opoJAl [eOD) USIS(] Jo[npayos Sundojy :8°'p dan3ig

4.2. ARCHITECTURAL DESIGN 82

4.2.3.1 Example

The resulting flow expressions for the Meeting Scheduler system are depicted in Fig.
4.8. The flow expression for the Characterize Meeting goal, considering all of its sub-tasks,

was defined as follows:

(17t108 11?197 dr58)
((dr39 dtd1 dr37) — (17 dr40 18 dr42? dr38? dt58))

The line break in this expression shows that there are two valid behaviors. The first one
is a sequence: first execute Define Topics (t7), then Define Participants (¢t10), then Define Date
Range (18), then optionally execute Define Required Equipments (t11), then optionally execute
See Available Rooms (t9), and lastly Process Characterization (dt58). The flows of the tasks 19,
t10 and ¢11, in their turn, are simple sequential executions of their respective children, as can be
seen in Fig. 4.8.

The second behavior for the Characterize Meeting goal (flow expression 4.3) is com-
posed by two concurrent flows. The first concurrent flow executes a sequence of design tasks:
Get List of Users (dt39), Get List of Available Equipments (dt41), and Get List of Available
Rooms (dt37). The second concurrent flow is a sequence similar to the first alternative behav-
ior: first execute Define Topics (t7), then Select Participants (dt40), then Define Date Range
(#8), then optionally execute Input Required Equipments (dt42), then optionally execute Dis-
play List of Available Rooms (dt38), and lastly Process Characterization (dt58). The idea is
that the required lists are being loaded while the user is interacting with the system.

The flow expression for the Collect Timetables goal (g3) is a simple set of alternative
choices — either Collect by Phone (t12), Collect by Email (t13), or Collect Automatically (t14),
as defined by the flow expression 4.4. The selection of which alternative to execute depends
on user requests, as it is going to be defined in the Specify transitions step of the architectural

design process.

(112|¢13|r14)

The flow of the Define Schedule goal (flow expression 4.5) is defined as a choice be-
tween Schedule Manually (t15) and Schedule Automatically (t16). In its turn, Schedule Manu-
ally (flow expression 4.6) is executed by optionally executing View Collective Timetable (dt50),
and then Input Chosen Date (dt51). The flow of Schedule Automatically (flow expression 4.7),
is defined as a choice between Brute Force Algorithm (dt52) and Heuristics-based Algorithm
(dt53), followed by Select Date (dt54).

(t15]r16)

(dt50? di51)

>The ATM case study on Chapter 6 describes the use of a simulation tool for verifying the system’s behavior.

4.2. ARCHITECTURAL DESIGN 83

((dr52|d153) dt54)

Different intermediate states were defined in the Meeting Scheduler system. For in-
stance, in the flow expression of the Manage Meeting goal (flow expression 4.8) an intermedi-
ate state i4 is used to let the user decide which comes next: Cancel Meeting (t17) and Notify
Farticipants (t19), Confirm Occurrence (t18), or Change Details (g20) and Notify Participants
(¢19). Similarly, the flow for the Administer System goal (flow expression 4.9) has an intermedi-
ate state i5 before a choice between Manage Users (t24), Manage Rooms (t25), and See Report
(826).

(i4 ((¢17 t19)|¢18|(g20 £19)))

(i5 (124]125|g26))

The flow expression of the root goal of the Meeting Scheduler system is defined as

follows:
((i6 (dr77)(dr79 dr77)) (i1 (g2|g3|g4|g5|g6|dt78)))* — (i2 dr46)* — (i3 dt4T dt48)*)

This flow contains three concurrent flows: the first one is the main interaction with the sys-
tem, where the user characterize meetings, define schedules, manage meetings, and so on (flow
expression 4.11). The second one, flow expression 4.12, represents the periodical sending of re-
minders by the system — at certain points in time, the system will Remind Participants (dt46).
The third flow, also executing concurrently to the remainder of the system, refers to the ability to
receive (dt47) and process (dt48) the timetables sent by email, as stated by the flow expression
4.13.
(i6 (dt77|(dr79 dt77)) (il (g2|g3|g4|g5|g6|dt78)))* 4.11

(i2 dr46)* 4.12

(i3 dt47 dr48)*

According to the flow expression 4.11, the system starts in an idle state (i6), from which
it is possible to Login directly (dt77), or to Reset Password (dt79) before logging in. Then,
from the intermediate state i/, it is possible to Characterize Meeting (g2), to Collect Timetables
(g3), to Define Schedule (g4), to Manage Meeting (g5), to Administer System (g6), or to Logout
(dt78), where the flows pertaining to these goals have already been described.

Although the definition of flow expressions for a system may seem to be a cumbersome
task, it is made easier by the ability of generating partial statecharts from partially refined design
goal models. In other words, it is not necessary to define the behavioral refinement of the entire
model in order to visualize the resulting statechart, which is consonant with the Twin Peaks
notion of iteratively and incrementally refining requirements and architecture (NUSEIBEH,
2001). Moreover, it is not required to include every node within the flow expressions. For

instance, the Contact Participants task (dt43) was not included in any flow expression — thus,

4.2. ARCHITECTURAL DESIGN 84

not included in the system’s behavior — since it has been previously assigned to human actors
(see Fig. 4.4).

The three steps of the architectural design process presented so far are generic; they
are not specific to any particular class of systems: Identify Design Tasks, Constraints, and As-
sumptions, Assign Tasks, and Define Basic Flows. The next two steps are related to adaptation
specification, hence only necessary when designing adaptive systems. They are: Identify indi-

cators, parameters and relations and Specify adaptation strategies.

4.2.4 Identify indicators, parameters and relations

In this step the design goal model is enriched with additional awareness requirements
and parameters, referring to the elements that were included during the previous architectural
design steps: design tasks, design constraints, design assumptions, assignments, and flow ex-
pressions. When an awareness requirement is attached to an element in a goal model, the
implications are twofold: (i) that element will be monitored at runtime; (ii) it will be possible
to react to failures related to that element.

The following elements can be analyzed to help the elicitation of awareness require-
ments: critical requirements; critical design tasks, constraints, or assumptions; preferable solu-
tions; trade-offs; tasks that are difficult to test offline; functionalities provided by third-parties;
transition triggers; transition conditions; preemptive adaptation; other awareness requirements
(meta-awareness); qualitative elicitation.

Besides awareness requirements, which indicate what needs to be monitored, it is nec-
essary to define the system parameters — i.e., what can be modified in the system. In order
to accommodate the new alternatives identified throughout the architectural design process, we
may create new parameters that can be modified by adaptation mechanisms when a reconfigura-
tion of the system is required. Parameters related to design tasks, design constraints and design
assumptions are equivalent to parameters related to their requirements counterparts: tasks, qual-
ity constraints and domain assumptions, respectively. Additionally, in the context of statecharts,
parameters may refer to (i) the selection of alternative behaviors; (ii) the definition of parame-

terized events; and (iii) the definition of parameterized conditions.

4.2.4.1 Example

Considering those design elements which need to be monitored and which failures
are strongly undesired, three additional awareness requirements were defined for the Meeting

Scheduler system:

= ARS8: NeverFail — Design task Login should never fail. This design task is critical
because, if it is not completed properly, users will not be able to access the system’s

functionalities.

4.2. ARCHITECTURAL DESIGN 85

= AR9: MaxFailure(5,7d) — Design constraint Response Time < 2s should fail at
most twice every week. If this constraint is not satisfied it is necessary to analyze
whether these failures were due to some occasional hiccup, or if evolutive mainte-

nance is due in order to prevent further slowdowns.

= AR10: NotTrendDecrease(1d,2) — The success rate of the design constraint Avail-
ability of Service > 90% should not decrease two days in a row. This constraint will
be monitored because services are provided by third-party companies, and thus can-

not be trusted completely.

Additionally, four new parameters were created based on the new refinements of the
Design Goal Model included throughout the architectural design process, as follows:

» Pre - Preload — This parameter defines which of the alternative behaviors of the
Characterize Meeting goal will be executed (flow expression 4.3): the regular one
(first alternative behavior) or the second one, with preloading of its different lists
(second alternative behavior). Range: WithoutPreload or WithPreload.

= SeS - Selected Service — To exemplify a scenario of service selection (FRANCH
et al., 2011), we are assuming that different web service providers can be used to
perform the functionality of scheduling automatically. Instead of selecting a single
service, the selected service was defined as a parameter, which can thus be modified
throughout the system execution. Range: Servicel, or Service2, or Service3, or

Service4.

s TIR - Time Interval between Reminders — As described in Section 4.2.3, the
Meeting Scheduler system sends periodic reminders to its users, with the view of
collecting their timetables (flow expression 4.12). Instead of pre-defining a fixed
time interval for these reminders, it will be dynamically defined by this parameter.
Hence, it will be possible to change this interval at runtime, aiming to find an interval

which improves user response. Range: from / to 336, in hours.

= Sce - Scheduling algorithm — As there are different algorithms that can be used to
perform the scheduling automatically, with different tradeoffs between performance
and number of conflicts, this parameter will allow to choose between them. Range:

HeuristicsBasedAlgorithm or BruteForceAlgorithm.

The DGM with these additional parameter highlighted with dashed circles is presented
in Fig. 4.9. The first of these parameters, Pre is related to alternative behaviors —- different
ways of executing the same set of tasks. The second one, SeS, specifies which service will
be used to provide the Schedule Automatically functionality. The third one, TIR, will be used
to define the trigger event for the Remind Participants task (Section 4.2.7). Lastly, the Sce

parameter is used to select which algorithm to use for the Schedule Automatically task.

86

4.2. ARCHITECTURAL DESIGN

wipuoBle Buympayos - 205 pusboq
S eg popolos 305 ey wopdunssy _ uensuon
~ " "peojaig -ald ssaualemy Jojauleied Ayjeng ubisaq YseL uBiseq

sjuaunuioddy ajeaud MOIA - VdA [e] *

PaMOIIY SO 4O JUNOWE WnUIXE - YW
Auey Moy woi3 - U3

OIS 10 eWOINY - VSV UAWAUYALYO JUSIBUYRLONY

ssojouwesed <t — _H_ . O U

odey.
Buinpayds ees.

(WL'%06)218YS5929NS PV ()

e e
oBesn wooy ses. (s &
ejeqg 0} dn
swooy ebeuey

==> =
1™ siosn snooueynus § (z'p)oseosohgpusILION : \
0h uen s90n “ Z'PL) \QPURILION 28V O

(%06)erenssaaons :kuv O

‘sejnujw g Jepun up
‘ouop uopezuejoRIEYD)
-

~
oud @)
[] S :
- Bupeow
I1e0RoN 2LV O ozuajRIRYY
A

(sor0110 paysep Yim paySiysy) syusuws[e uoneidepe
[EUODIPPE PIIM WA)SAS IS[NPAYDS SUNIJA B JO [OPOJA [BOD) USISA(6§ N3]

4.2. ARCHITECTURAL DESIGN 87

After defining new parameters and awareness requirements, the architect must also de-
fine new differential relations that describe the impact of parameters on each awareness require-
ment. For our running example, we identified that Pre is related to Characterization done in
under 5 minutes (AR1, Eq. 4.14). The first value in an enumeration is its default value. There-
fore, the default value of Pre is WithoutPreload. 1f its value is changed to WithPreload, the

Characterization done in under 5 minutes constraint is more likely to be satisfied.

A(AR1/Pre) >0 4.14

TIR is inversely proportional to AR2 (Eq. 4.15), in a range from 1 to 336 hours (two
weeks). AR2 refers to Collect Timetables. Thus, the smaller the value of TIR — i.e., the
more frequently reminders are sent — the more likely it is that the timetables will be collected

successfully.

A(AR2/TIR) < 0 4.15

The scheduling algorithm to be used (Sce) influences AR3 (Eq. 4.16), which is related
to the Define Schedule goal. The default value for this parameter is HeuristicsBasedAlgorithm.
If the Define Schedule goal fails, it is possible to switch to BruteForceAlgorithm, which is slower
but provides better results.

A(AR3/Sce) > 0 4.16

Lastly, the SeS parameter affects the satisfaction of the Availability of Service > 90%
constraint (AR10, Eq. 4.17). If the currently selected service has poor availability, another
service may be selected.

A(AR10/SeS) > 0 4.17

In summary, whether the meeting characterization is performed with preloading impacts
the success of performing the characterization in less than five minutes; higher intervals between
sending reminders decrease the likelihood of successfully collecting timetables; the scheduling
algorithm to be used influences the successful achievement of the Define Schedule goal; and the
selected service affects the satisfaction of the Availability of Service > 90% design constraint.

The complete sets of awareness requirements and adaptation parameters for the Meeting

Scheduler system are presented in Table 4.2 and Table 4.3, respectively. These tables contain

4.2. ARCHITECTURAL DESIGN 88

the awareness requirements and parameters related both to the requirements elements, described
in Section 4.1, and those related to the design elements, introduced in this section. The next step

is concerned with defining how to react in case those awareness requirements are not satisfied.

4.2.5 Specify adaptation strategies

Adaptation strategies define what should happen once an awareness requirement has
failed. One of the strategies provided by Zanshin is the reconfiguration, where Zanshin itself
will decide which parameters to change based on the relations between awareness requirements
and parameters (SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012b).

Besides reconfiguration, Zanshin provides a set of strategy patterns that represent pos-
sible adaptations at a higher abstraction level, such as relaxing the constraints imposed by an
awareness requirements and ignoring a child element when analyzing the satisfaction of its par-
ent (SOUZA; LAPOUCHNIAN; MYLOPOULOS, 2012b). Since the MULAS framework is
concerned not only with the system requirements but also with its behavior, we have extended

Zanshin’s adaptation strategy patterns, as follows.

= Abort — Give up on satisfying a given awareness requirement and move on to a
specific state. This can be used to go back to a specific system menu, or even to shut

down the entire system.

s Abort With Action — Similar to Abort, but with a set of intermediate actions to
allow the graceful failure of the system. Examples of possible actions are to show an
error message, to save data on a database, and to notify system administrators about

the failure.

» Delegate — Some problems may only be solved by human actors. This pattern is
about notifying the actors in charge of a certain awareness requirement, delegating
the responsibility for addressing its failure. Among others, this may refer to per-

forming maintenance on the software system.

= Retry — Retry the execution of a given task by going back to its respective state,

after a certain delay (specified in milliseconds).

» Step Back — Instead of continuing with the normal flow of the system, go back
to the last executed state. This strategy pattern is particularly useful when the last
transition was based on a user choice, since it will give the user an opportunity for

making a different choice.

» Notify — The system should notify some actor about the present failure.

4.2. ARCHITECTURAL DESIGN

Table 4.2: Description of the awareness requirements for the Meeting Scheduler
System, both requirements- and architecture-related

The Characterization done in under 5 minutes quality
constraint should have a success rate of at least 90%.

Id Awareness Requirement ~ Description
AR1 SuccessRate(90%)
AR2 NotTrendDecrease(7d,2)

The success rate of the Collect timetables goal should
not decrease two weeks in a row.

The Define Schedule goal should never fail.

The Calendars Up to Date domain assumption should
have a success rate of at least 90%, measured every

The Rooms Available domain assumption should fail at
most twice every week.

The Notify Participants task should never fail.

The Characterize Meeting goal should never fail.

The Login design task should never fail.

The Response Time < 2s design constraint should fail at
most five times every week.

AR3 NeverFail
AR4 SuccessRate(90%,1M)
month.
AR5 MaxFailure(2,7d)
AR6 NeverFail
AR7 NeverFail
AR8 NeverFail
AR9 MaxFailure(5,7d)
AR10 NotTrendDecrease(1d,2)

The success rate of the Availability of Service > 90%
design constraint should not decrease two days in a row.

Table 4.3: Parameters of the Meeting Scheduler System, both requirements- and

architecture-related

Id Description

Range

ASA Perform Automatic

Automatic scheduling

Semi- Enumerated [Automatic, SemiAutomatic]

Percentage [0%, 100%]

FHM Collect timetables From How
Many people

MCA Maximum amount of Conflicts Al-
lowed when scheduling

Pre Preload on the meeting characteri-
zation

SeS Selected Service for automatic
scheduling

TIR Time Interval between Reminders

VPA View Private Appointments on
users’ calendars

Sce Scheduling algorithm selected for

the Schedule Automatically task

Integer [0, 50]
Enumerated [WithoutPreload, WithPreload]

Enumerated [Servicel, Service2, Service3,
Service4]

Integer [1, 336]

Enumerated [NotAllowed, Allowed]

Children [HeuristicsBasedAlgorithm, Brute-
ForceAlgorithm]

4.2. ARCHITECTURAL DESIGN 90

Table 4.4: Adaptation strategies for the Meeting Scheduler system

Awareness Requirement Adaptation Strategy

ARI1(CharacterizationDoneInUnderSm): 1. Reconfigure()

SuccessRate(90%)
AR2(CollectTimetables): 1. Reconfigure()
NotTrendDecrease(7d,2)
AR3(DefineSchedule): NeverFail 1. Reconfigure()

StepBack()
AR4(CalendarsUpToDate): 1. RelaxReplace(AR4, AR4_85%)
SuccessRate(90%,1M) 2. Delegate(CompanyManager)
ARS(RoomsAvailable): 1. Notify(CompanyManager)
MaxFailure(2,7d)
AR6(NotifyParticipants): NeverFail 1. Retry(5000)

AR7(CharacterizeMeeting): NeverFail 1. Retry(ProcessCharacterization, 5000)

ARS8(Login): NeverFail 1. Retry(5000)
AR9(ResponseTime<2s): 1. Delegate(SoftwareArchitect)
MaxFailure(5,7d)

AR10(AvailabilityOfService>90%): 1. Reconfigure()

NotTrendDecrease(1d,2)

4.2.5.1 Example

Table 4.4 shows the adaptation strategies devised for the Meeting Scheduler system,
1.e., how the system will react to each failure. For ARI, AR2, and ARI0, the strategy is to Re-
configure, based on the differential relations defined on the previous step. For AR3, besides
reconfiguring, the system also steps back, returning to a previous step. AR6 and ARS8 adopt
simple Retry strategies, whereas AR7 retries by returning to a specific state: Process Charac-
terization. In case of failures related to AR5, which refers to the number of rooms available for
meetings, a Company Manager is notified. When AR9 is not satisfied, the issue is delegated to
a Software Architect. Lastly, the first reaction to failures on AR4 is to decrease the required suc-
cess rate, from 90% to 85%. If, even so, AR4 fails again, this issue is delegated to a Company
Manager.

In the next steps, the focus moves from Design Goal Models to Statecharts. A base

statechart is generated automatically and then refined through further design decisions.

4.2. ARCHITECTURAL DESIGN 91

4.2.6 Generate base statechart

Considering the behavioral refinements defined in the previous steps, it iS now possi-
ble to generate a base statechart model, which presents a comprehensive view of the system
behavior. In order to support the automatic generation of statecharts, we define a set of deriva-
tion patterns related to the different flows that may be expressed —- sequential, alternative, and
concurrent —- as well as to their optionality and multiplicity. These patterns, grounded on the
graphical representation from SHAW (1978), is depicted in Fig. 4.10. The formalization of
these patterns is described on Chapter 5.

The simplest case is that of the sequential tasks. There is one state to represent the
execution of each task. The completion of a task leads to a transition to a state that represents the
execution of the next task in the sequence. The first state is that related to the first child element,
which is expressed in the statechart through the “default state” arrow. The exit transition is
triggered upon completion of the last task.

For the alternative tasks, there will be transitions going from the previous state(s) to
the different states that represent the alternative tasks. Thus, the selection of which alternative
to perform in a given moment will be defined by the events and conditions of the different
transitions.

For the concurrent tasks we use the notion of orthogonal states, which are separated in
the diagram by dashed lines. Thus, whenever the system enters the super-state, it will start the
execution of each one of the concurrent tasks.

The multiple (one or more) execution of a flow is expressed by a transition from the
end to the beginning of the flow. The optionality is achieved by creating a transition from the
beginning to the end of the flow, without entering the optional states. The case of zero or more

executions is a mix between one or more executions and the optional execution.

4.2.6.1 Example

The statechart resulting from the application of those patterns is displayed in Fig. 4.11.
The system has three orthogonal regions. The top-right region handles the receiving and pro-
cessing of timetables, whereas the bottom-right region is concerned with sending reminders to
participants. The left area starts with an idle state, from which it is possible to Login or to Reset
Password. After login, the system transitions to another idle state, from which it is possible to
Characterize Meeting, Collect Timetables, Define Schedule, Manage Meeting, Administer Sys-
tem, or Logout. After the execution of each of its respective flows, with the exception of Logout,
the system returns to that idle state, from which the same flows can still be transitioned to.

Even though this resulting statechart expresses the valid behaviors for the system, it
does not define which of the possible states should be entered at a given moment. For instance,
from this base statechart we know that the system goes from an idle state (i6) to the Login state

(dt77), but when is this transition triggered? How can we know whether the next state after i6 is

4.2. ARCHITECTURAL DESIGN

Figure 4.10: Visual representation of patterns for deriving statecharts from flow
expressions

Sequential tasks:
ABC

Alternative tasks
(triggered):
(A|B]|C)

Concurrent tasks:

N
o

One or more

executions: (AB)+

Zero or more .’
A (B)

executions: (AB)*

Optional o

execution: (AB)?

93

4.2. ARCHITECTURAL DESIGN

(123) a3eq 28uey)

(8519 uonezuapeseyy
ssad01g

|
(8€3p) swooy 3|qe|ieny " (£€3p) swooy
Jos1 Aey 219811eAY 403511399
i

(zv3p) syuawdinb3
pauinbay nduj

(zz3) wooy a8uey)

(813) 93Ud1IN0
wiyuo)

(ema)
Sunaaly [2due)

(611)
swedipnied AjNON

(8)
28uey ajeq auyag

(s8) Sunaa aBeuey

(v53P) @38Q 23|35

(€530) W08y
P3seq-sIsuNaH

(23 s21doy auyaq

/

l(853p) uoneziiareseyd

(z53p) wiLo8|y
§522014

22104 3318

/

(8€3p) sWo0Y 3|qe|ieAy
401351 Aeyds

(913) Ajjeanewoiny a|npayds

(L6W) swooy
21qe|IeAY JO 1517 399

(t5wp)
3eq uasoy? Induj

(07p) 2|qeIaWIL
9A1399]|0) MAIA (zvap) syuawdinby

pauinbay nduj

(s11) Ajjenuepy 3jnpayas

(1p3p) suawdinby

(623) poday
s3unaay 395

(v9) ainpayds auyaq

[
swawdinb3 paiinbay autjaq

(823 odoy

[
Sulinpayds aas

(83)
(981p) 2380 230PdN 28uey ajeq auyag

Jepualed 2ay)

(2 oday
aesn wooy 235

(ov3p)
suedpied 199195

(929) 1ioday aas

(61P) Jepudjed
5/8009 W01} 193103

(9v3p) suedidnied

(6€3P)
51950 J0 3511399

(1) Ajleanewoiny 193103

sajqeawilL Jsanbay

(sw)
swooy av3Iyg

(523) swooy ageuely

(21 31p1

(9519) slenuapain
Jepuale) 3|3009 dnyas

(v930) Ajijiqejieny
siuedpnied ynduf

(803p)

S9]qRIaWIL S04 (53) 195 Qv 3N

23) auoyd Aq 193110
(en) auoyd Aq 199110) (29) Bunaa azesey)

(521 s1asn ageueiy

(623p)

(€9) s3jqe3awi] 399)|0)
piomsseq 1953y

(819) 10807

(L0p)
sa|qeawL aA2IRY

() ajpl

(99) wAISAS 123

(09) wigon

09 BURaoIN SIPauS

WQ)SAS I9[NPAYDS SUIAIA Y3 J0J 1Ieydde)s seq I [°p dIn3i

4.2. ARCHITECTURAL DESIGN 94

Login (dt77) or Reset Password (dt79)? This additional information will be defined in the next
step, by specifying transitions in terms of their triggers and conditions.

So far we have defined the basic flow of the system, making it possible to check at
runtime if the trace of task execution is valid. However, in order to define the system behavior
in the face of optionality, multiplicity and alternatives, we need to know when a particular task

should be triggered, which is the focus of the next step.

4.2.7 Specify transitions

In this step it is defined which events trigger a particular alternative, the execution of an
optional task, as well as whether a flow should be repeated or not. Any event can be used as a

trigger, but there are four particular classes of events that are likely to appear in a statechart:

= User request: a task is triggered by solicitation from a user — this is the case for
most of the tasks of our running example. For instance, the events Login requested
and Reset Password request trigger the outgoing transitions from i6 (Table 4.5, num-
bers 1 and 2).

= Timer: a temporal condition defines when a transition may happen, e.g., at 30 min-
utes intervals. In the Meeting Scheduler system, this is the case of the transition
from i/ to dt78 (Logout): Logout requested OR After 4 minutes (Table 4.5, number
4).

= Requested by another task: a task is triggered by the completion of another task.

= Requested by another system: in cases where the system interoperates with exter-

nal systems, a task may be triggered by such an external system.

It is also possible to define a combination of alternative events — for instance, a given
task will be executed upon user request or at 30 minutes’ intervals. (Table 4.5, number 4).

Besides events, it is often useful to associate conditions to transitions. Some elements
of the design goal model can guide the definition of these conditions: domain and design as-
sumptions, quality and design constraints, as well as other tasks and design tasks that must be
executed first.

Domain and design assumptions indicate hypotheses that must hold true in order to sat-
isfy its parent elements. Thus, when creating a statechart, some assumptions may be introduced
as conditions for certain transitions, such as assumptions related to time of day (certain task can
only be executed at night) or to available resources (the system must enter a given state only if
bandwidth is higher than 800kb/s). Quality and design constraints may also impose conditions
to the execution of a given task. In this case, the task could be considered completed only if
that quality constraint is satisfied. Lastly, it is also important to identify possible inter-relations

between tasks, for the cases where the execution of a task excludes the execution of another one,

4.2. ARCHITECTURAL DESIGN 95

or when a task is a pre-condition for another task. This last case is only partially expressed in
flow expressions — for instance, it can be inferred from the Meeting Scheduler’s base statechart
(Fig. 4.11) that it is only possible to characterize a meeting after Login has been executed. On
other cases, it is necessary to include the execution of said tasks as a condition. E.g., the Remind
Farticipants task can only be executed it the Request Timetables by Email has been executed,
as stated by transition number 22 (Table 4.5).

In order to simplify the visualization of statecharts, we have adopted a task completed
event as being the default trigger — thus, when a transition does not present any event or
condition, it means that the transition should occur whenever the task represented by the source
state has been completed. For instance, the system transitions from Define Topics (t7) to Get
List of Users (dt39) when the Define Topics task is completed (Fig. 4.12). The other triggers
need to be manually defined in a table, as shown on Fig. 4.5.

We have decided to specify transitions using a table, instead of specifying them directly
on the statechart, in order to facilitate model updates: whenever there are changes on a design
goal model, leading to the generation of a new base statechart, it will be possible to recover the

transitions specification from the table and apply it to the newer statechart.

4.2.7.1 Example

Table 4.5 presents the triggers for the Meeting Scheduler system. Triggers 1 to 3, as well
as triggers 5 to 21, are simple user requests. The fourth trigger defines a combination of user
request and timer — Logout (dt78) is performed when it is requested or when it has been for
four minutes in the idle state (i/). Similarly, the twenty-second trigger defines that Remind Par-
ticipants (dt46) is triggered by a user request or at every TIR, where TIR is a parameter defined
in the Identify indicators, parameters and relations step (Time Interval between Reminders —
Section 4.2.4). Lastly, the Receive Timetables state is triggered every time a timetable is sent
(trigger 23). Fig. 4.12 shows the statechart for the Meeting Scheduler with the specified transi-
tions.

The next step consists of modifying a statechart in order to enact the adaptation strate-
gies defined on the Specify adaptation strategies step (Section 4.2.5).

4.2. ARCHITECTURAL DESIGN

96

Table 4.5: Transitions specification for the Meeting Scheduler system

Number From — To

Triggers and conditions

1 16 — dt77
2 i6 — dt79
3 il — g2

4 il —dt78
5 il — dt44
6 il — dt45
7 il — dt49
8 il — dt50
9 il =116
10 il1—i4

11 i4—t17
12 i4 — 18
13 i4— 122
14 i4 — 121
15 i4 — 123
16 il —1i5

17 i5 — dt55
18 i5 — dt57
19 i5 — 127
20 i5— 128
21 i5— 129
22 i2 — dt46

23 i3 — dt47

Login requested
Reset Password requested
Characterize Meeting requested
Logout requested

OR After 4 minutes
Collect by Phone requested

Collect by Email requested
Collect Automatically requested
Schedule Manually requested
Schedule Automatically requested
Manage Meeting requested
Cancel meeting requested
Confirm occurrence requested
Change Room requested
Change Date requested
Change Participants requested
Administer System requested
Manage Users requested
Manage Rooms requested
See Room Usage Report requested
See Scheduling Report requested
See Meetings Report requested
Remind Participants requested
(Request Timetables by Email executed)
OR Every TIR

(Request Timetables by Email executed)
Timetable sent

97

4.2. ARCHITECTURAL DESIGN

s1asn abouoyy

(98) WaysAS Ja3sIUILIPY

(T
[} puaba
s 40X
s QY
@ e, wmswena ons
— Q.0
I
I
I
i
I
i
I
I
I
i
i
I
i
I
i
I
i
i
I
I
i
I
I
I
I
I
I
i
I
I
I
i
I
I
i
I
i
I
i
i
I
I
I
i
(623) Joday
I s8unaa 29s
! P
! 440day sbup
| (823) oday
! Bulinpayds aas
i paisan
| Buiny
| (L73) woday
29esn wooy 995
! pajsant
| abosn
I
(9t3p) syuedidnued ! (928) yoday 295
puiway !
-
&3 gz | (£5)
££3 WM i3 SwWooy av3yg
a5 3 RS
(s73) swooy a5eue)
ﬁ (2) 3lpI j !
i
(953p) s|enuapal)
Jepua|e) 313009 dnyas
(8v3p) W
s9|qeIdwl) 559204d) | (sw) 195 Qv3NE
I
(v23) s19sn a8euey
(2v3p) !
sa|qesawi] anday | |
I
I
I
i
I

(€23) syuedidiped
aduey) parsanbas

(123) @3eQ 98ueY)

(z23) wooy adueyd

(0z8) sjie3aq a8ueyd

(813) @2Ua41N200
wuo)

pardd
22211220 wi)

(1)
Bunaay |9oue)

(613)
syuedpined AjioN

(v1) alpI

paisanbai
BuR2aN [2U0)

(58) Bunaan ageuey

(psIp) @18Q 193|195

(€53P) wiyyo8)y

(253p) wyyos|y
92404 2)nug

(9m3) AjjeanewoIny anpayas

(t53p)
2)eQ uasoy) ndu|

(0swp) 3|qe3aWI L
9A1129]|0D) MAIA

(sT) Ajlenuey ajnpayas

(¥8) 9|npayas auyaq

(983p) @3eQ 23€PdN
Jepua|ed yay)

(6%3p) Jepuajed
9[8009 wouj 123)|0)

Aypoowoiny pinpayds

paisynbas
bupaap abduopy

paisanbas

(vT3) Ajjeanewolny 193j0)

(svwp) [rlew3 Aq
sa|qelawi] 3sanbay

(€13) jlew3 Aq 3291100

Bz

(z13) auoyd Aq 303100

(€8) sajqerawi] 199]|0)

nbas

1ow3 Aq 12977

paisanbas

2203

29

washs sarsupy

(843p) 1n0807

(1) 91p|

saanupu p 123y

‘patsanbal 1n0bo]

(853p) UOnEZIIRIIRIRYD
532014

_mmimEooz mn_nm__m><
40351 Aejdsig

(L) swooy
3|qe|IeAY JO 3511329

i

(zv3p) I
pasinbay induj

QLG

(83)

28uey ajeq auyaq (6€3p)

(ov3p)
syuediiiied 93|35

(3) saido auyaq

(T3p) suawdinby
|IBAY JO 3517 399

5195 40 1517 19D

(853p) uonezIIRYORIRYD
$5920.d

(8€3P) sSwooy 3|qe|ieAy
403511 Aeydsig

(L€p) swooy
3]qe|ieAy JO 1517199

(zvwp) suawdinby
paJinbay andu|

(T$3p) suawidinby

(83)
a8uey ajeq auyaq

(6€3p)
$135M 40 3511329

(63) swdBy a|qe|ieay 2as

suawdinb3 palinbay auyag

B 22121001042

(28) Bunea azualdeiRY)

(63p)
piomssed 19say

(£23p) wiB07

piomssog 12say

Parsanbal uibol

paisanbal

"UOTJBZI[ENSIA PAOUBYUD JOJ PAPIWO SJUIAD UONISULI] JNBJI(]

‘suonIsueI) payroads oY) YIIMm WAISAS JIANPAYIS SUNIN Y} J0J 1IBYIRIS T f I3

J
(13) Bunaa 3Inpayds

4.2. ARCHITECTURAL DESIGN 98

4.2.8 Include adaptation elements

The adaptation components provided by frameworks such as Rainbow (GARLAN et al.,
2004) and Zanshin (TALLABACI; SOUZA, 2013) are able to identify when an adaptation is
required, and what is the best adaptation to perform. However, the system as a whole, often
referred to as the target system, is still responsible for gathering the monitoring data that will
be sent to and processed by these components, as well as for enacting the adaptation itself. For
instance, considering the Meeting Scheduler system as the target system, and the Login task

(dt77) and its NeverFail awareness requirement (ARS8) as our focal point, we have that:

1. the Meeting Scheduler system will monitor the execution of the Login task;

2. the resulting data will be sent to the adaptation component, reporting whether the
execution was successful or unsuccessful;

3. in case of failure, the adaptation component will identify the respective adaptation
strategy: retry after a five seconds delay (Table 4.4);

4. the Meeting Scheduler system itself will wait the five seconds delay and retry to

execute the Login task, at which point this cycle restarts.

The goal of this sub-process is to instrument the target system so that it is able to monitor
the required information, send it to an adaptation component, and finally enact the required
adaptations. This is achieved through the steps presented in Fig. 4.13: Specify monitoring
points and Apply adaptation strategy patterns.

In the Specify monitoring points step, every awareness requirement will be mapped
onto a start action and an end action — the former declares when the monitoring should start,
and takes the form of informStartARX. The latter defines when it finishes, and is defined as
informResultARX. Then, it is necessary to specify when these actions should be performed.

The instrumentation of the system not only determines runtime monitoring, but also
how to process the responses provided by the adaptation component. For instance, how will the
system react when the adaptation component informs that it needs to retry a task, or to notify
an actor? These reactions are defined on the adaptation strategies specification (Section 4.2.5),
and are translated onto the statechart through the Apply adaptation strategy patterns step (Fig.
4.13).

4.2.8.1 Example

The monitoring points for the Meeting Scheduler system are defined in Table 4.6. The
specification of some points can be straightforward, such as those for ARS8, which specifies that
the Login task should never fail. Since this awareness requirements is local to a single task, both
the start and end points are also localized. This is also the case for ARI, AR4 to AR7, and ARI10
(related, respectively, to Characterization done in under 5 minutes, Calendars Up to Date,

Characterize Meeting, and Availability of Service > 90%). The awareness requirement AR2

4.2. ARCHITECTURAL DESIGN

Figure 4.13: The Include adaptation elements sub-process

Adaptation Strategy

\
I
I
I
Patterns :
I
___________ |
L
| |
Adaptation | |
Strategies I |
—---= | |
| ~—~» e ——— <
- | '
Design : | : | :
I
Goal Model : : Monitoring Points : I :
| I T
Y] Y V. V¥
Specify Apply adaptation
—_— A . »
monitoring points strategy patterns
A T A T
| | | |
| | | |
| | | |
| | | |
| | | |
—_———— N - — - .’ ________ |
I
L=
Statechart Statechart
Statechart
0o JD—

Start End Gateway Task Data sequence Message
event event object flow flow

puaba

4.2. ARCHITECTURAL DESIGN 100

refers to the Collect Timetables goal. Since the children of that goal are spread into different
flows, it was also necessary to spread its end actions into the different states that represent those
children: dr44, dt48 and dr49 (Input Participants Availability, Process Timetable, and Collect
from Google Calendar, respectively). A similar separation was made with the end actions
related to AR3, which is related to Define Schedule. The informStartARX and informResultARX

actions are placed on each start and end point, respectively, as shown on Fig. 4.14.

Table 4.6: Start and end points for monitoring the awareness requirements of the
Meeting Scheduler system

Awareness Start End
Requirement
AR1 g2 (Characterize Meeting) g2 (Characterize Meeting)
AR2 g3 (Collect Timetables) dt44 (Input Participants Availability);,

dt48 (Process Timetable);
dt49 (Collect from Google Calendar)

AR3 g4 (Define Schedule) t15 (Schedule Manually) ;
t16 (Schedule Automatically)

AR4 dt86 (Check Calendar Update Date) dt86 (Check Calendar Update Date)
AR5 t16 (Schedule Automatically) t16 (Schedule Automatically)
ARG t19 (Notify Participants) t19 (Notify Participants)

AR7 g2 (Characterize Meeting) g2 (Characterize Meeting)
ARS8 dt77 (Login) dt77 (Login)

AR9 dt58 (Process Characterization) dt58 (Process Characterization)
AR10 t16 (Schedule Automatically) t16 (Schedule Automatically)

The Login (dt77) task can be used to exemplify the outcome of this sub-process. The
awareness requirement ARS8, which is attached to the Login task, determines that it should never
fail (Table 4.2). Its monitoring points were defined having the task itself as both the start and end
points (Table 4.6). Hence, the entry action informStartARS and the exit action informResultARS
were include in the state that represents the execution of that task. The adaptation strategy for
ARS8 determines that, in case of failure, the system should retry it, after a 5000 milliseconds
delay (Table 4.4). This strategy is expressed in the statechart by a transition from the next state
(i1) back to the Login state, with the respective event (After 5000ms) and condition (RetryARS),
where RetryARS is a flag which indicates whether the retry strategy for ARS applies (Fig. 4.14).

The other inclusions on the statechart, besides the monitoring actions, are: new outgoing
transitions from Heuristics-based Algorithm (AR3); new exit actions on Schedule Automatically
(AR3 and AR)5); new exit actions on Check Calendar Update Date (AR4); new transition from
Schedule Automatically to Schedule Manually (AR5); new transition from i/ to Notify Partic-

101

4.2. ARCHITECTURAL DESIGN

/)

T |executed)
emind participant

equested (Request
timetables by email

executed)

(623) 1oday
s3unaay 295

2
vioday sbung

(873) Loday
Bulinpayas aas

paisan
Bu

(£z3) Loday
a8esn wooy 33as
paisan
abosp

(928) poday 335

(2sp)
swooy gv3yg

(s23) swooy a8eue]

(953p) s|enuapa.)
Jepuaje) 3|8009 dnyas

(Jzywansayuwiofur yxa
(8v3p)
S3|qejawi| ssadold

(ssw) s1asn Qvayg

s1as a3eue
(v23) s1asn u S_\

(£12p)
S3|qe1aw] dA1I3Y

waspiqoiowny |

[CET)

(s 31p1

sias abouo

(€23) syueddiueq
a3uey) a159nb21
SpuDdPRIBNBUDY)

(123) ?1eq a8uey)

paisansqs
2100 26Uy
1) wooy a5ue
[t22)] Y L] ToToAbas
wooy 6upy:
(0z8) s|ie1a@ asuey)
(813) @U311N220
wuiuo)
parybas
220210 wiliod
(Joywansayuiiofur x> (m)

(Joyvuoiswiofur Anua Bunaa |92ue)

(v) 31p1

parsanbar
Bunaay 22u0)

(s8) Bunaay me:m_@

(98) wansAs Jaasuwpy)

(psIp) @18Q 109]9S

-

(£53p) WyLIO3)yY (edvAay)
Ppaseq-soisLNay

(zsp) wiypuosy
32404 Anug
(.13boubAuDdwo, 913,)Afnou
uay3 (syvAfoN) fi
(,saBouDpwa1sAs, *,9T3,)Afi1ou
uaya (eyvAfaon) /i
(Jorywansayusiofur

(Joryvapiswiofur
()syvioiswiofur Aua
(913) AjjearewoIny 3|npayd

(153p)
3)eQ uasoy) indu|

(0s3p) 3|qe3aWIL
3A1323]|0) MBIA
eI GO 1o
(sm) Ajlenueln ajnpayas
— - 77
(Jeyvaoiswiofur Asua
(¥3) 3|npayas auyag)

(,4960uDNAUDAWIOD, *,981p,)23063(2p
uals (yaiobajaa) fi
(Jpyvansayuuiofur yxa
(pivaoisusiou Anua

(983p) @218Q 21EPdN
Jepuajed Y23y

(Jzgvansayusiofur yxa
(6%3p) Jepuaje)
318009 Wo1j 193]10)

159nbas
Bunzap pBouon

2150nba)
Aor0woiny\pinpayas

paisanbas

uo 2inpayds

paisanbas

(¥13) Ajleanewoiny 12309

(sp3p) lew3 Aq
sa|qejawi] 1sanbay

(€13) j1lew3 Aq 193|0D

(Jzyyansayuuiofur yxa

(v93p) Axijigey
syueddiped induj

BT

(z13) auoyd Aq 123]]0D

(Jzyvaoiswiofur Aua
(€3) sa|qerawi] 31100)

paysanbas

parsanbas

Palo)

192

warshs ISPy

(823p) 1n007

[ET]

sanu p 13y

Pa1sanbal nobo7

(,199y21/210M3f0S,
(853p) uonezuuayeley) !
5532014

(8€Ip) Swooy 3|qejieAy !
401 Aeydsig

(evap) I I
paJinbay 1nduj I

(83)
a8uey a1eq auyaq | (6€3p)
! 5135 4O 15!

(ov3p) |
sjuedidiied 193195 |

(£3) soidoy aulya@

TSI aIomios,

 Sg>auilf25u0dsay, J21062/2p

uay (6Y¥21062/20) Ji
(LyyfAnay) (J6yvansaywaofur yxa
(Joyvuviswioful Anua
(85Ip) UoRZIIYORIRYD
5532014

(8€3p) swooy a|qeji
Jo 151 Aejdsig

(2€3p) swooy
1eAY JO 3517399

(zv3p) syuawdinby
paJinbay indu|

(143p) s3uawdinby
leAY JO 1517399

[132))
syuawdinb3 paiinbay auyaq

(83)
a8uey ajeq auyaQ

(6€3P)
51350 JO 15113199

(23 saido] auyaq

()zyvainsayusiofur
Parsanbas ()ruvansayusiofu
oW 22112120104) ()zyvasoisuiofur

o)

w

(Jryvaoiswiofur Aua
(z8) Sunaan dzudpeRIRY))

parsanbai
piomssng 1353y

(643p)
plomssed 1959y

()8yvansayuiofur uxa
(Jgyvioiswiofur Aua

(L03p) wBo Parsanbai uibo]

w0005 433y

syuouwId[e uoneldepe pue suonisues)

(13) Bunaa 3|Npayds

Surpnjour ‘waisAs IMPayoS SUnI Y 10§ 1eyddels 91[dwo) H1p NS

4.3. SUMMARY 102

ipants (AR6); new transition from i/ to Process Characterization (AR7); new exit actions on
Process Characterization (AR9);

With the monitoring points, additional transitions and additional actions included in
this sub-process, the target system becomes able to reify the adaptation strategies previously
defined.

4.3 Summary

The architectural design process described in this chapter allows to incrementally cre-
ate a design goal model from a requirements goal model. Throughout the process, the model
is enriched with (i) design tasks, (ii) design constraints and (iii) design assumptions (Identify
design tasks, constraints and assumptions step); (iv) assignments (Assign tasks step); (v) flow
expressions (Define basic flows step); (vi) additional awareness requirements; (vii) additional
parameters; and (viii) the relations between parameters and indicators (Identify indicators, pa-
rameters and relations step). Moreover, the (ix) adaptation strategies for the system are defined
(Specify adaptation strategies step); a (x) statechart model is derived (Generate base statechart
step); its (xi) transitions are refined (Specify transitions step); and the system is instrumented
through (xii) monitoring points and (xiii) the application of adaptation strategy patterns (/nclude
adaptation elements step).

With this process it is possible to design an adaptive system handling both requirements-
and architecture-related adaptation concerns. The Meeting Scheduler system was used to illus-
trate the outcome of each step of the process. For the sake of understandability, the process
and the meeting scheduler example were presented sequentially, similarly to a waterfall-like
process. An illustration of the process being enacted incrementally and iteratively is presented
in Appendix A.

In order to facilitate the use of the proposed process, we developed a tool that supports
the creation of design goal models, as well as the derivation of statecharts. This tool is described
in Chapter 5.

103

GATO - Goal to Architecture tool

In the previous chapters we presented the steps required to refine goal models towards
the generation of statecharts, as well as to further refine the statechart. Here we present the
Goal to Architecture tool (GATO), developed in order to support the architectural design pro-
cess by means of modeling capabilities. The first section of this chapter provides an overview
of the tool, presenting its requirements and user interface. The second section describes the
mechanisms we developed in order to automatically generate base statecharts. The third section

discusses the tool integration with the Zanshin framework.

5.1 Overview

During initial experiments with our framework, we identified the need for providing tool
support, mainly because otherwise the translation of flow expressions onto statecharts would be
too cumbersome. Thus, we developed a prototype tool which supports the modeling required
by the process, as well as the derivation itself. The modeling is performed on a web-based client
using the JointJS library!, which provides facilities for displaying diagrams on websites.

The requirements for our supporting tool are presented in Fig. 5.1. It supports the edi-
tion of requirements elements (goals, tasks, domain assumptions, and quality constraints), as
well as of the edition of design elements (design tasks, design constraints, design assumption,
assignments, and behavioral refinements) and the edition of adaptation elements (awareness
requirements and parameters). After included in the model, each element may be moved, re-
named, or deleted.

Besides editing and managing goal models, it is also possible to create adaptation spec-
ifications (adaptation strategies and parameters) and to specify transitions (events and condi-
tions). The tool also supports the derivation of statecharts from the design goal model. Lastly,
the functionality of Export to Zanshin was included in order to facilitate the integration with
Zanshin’s component.

The GATO tool has three main quality constraints: Portability of model editing, Re-

!Available at http: //www. joint js.com.

http://www.jointjs.com

104

5.1. OVERVIEW

puaboa

JUBWAUYRFYD JUSWBUYAFANY

<G

A|

uleJ}Suo
} a__um_éo ysel |eos

CoOcCCD

pEULO 19RO peoT]
|e110398A dpiAoId
|9pON dAeS
v

|9po abeuep

juawubissy ppy

juswauyay
JoiAeyag ppy

Ayeno ybiy

s|iejaq
siajaweled auyaq

A J9)8weled ppy v

salbajens
uoneydepy auyaqg

juawalinbay
ssaualemy ppy

Aunqerey

Meyosles
sjelauan)

sjuawa|g
uonejdepy ppy

juswia|z aAoN
juswalg 838jeq

uoneoyioadg
uonejdepy ajeasd

suopIpuo) pue

SjuaAg auyaqg HEUdRIEIS

Keidsig

uoneoyioadg
suolisuel] ajeal)

Heyoaje)s aAuaqg

ulysuez o} podxg

ubisag
wajshg ajealn

[001 Y21y 03 [pon) Y JO SyUSWINbIY :1°S danJr g

uondwnssy
ubisaq ppy

juswa|g

ubisaq ppy

juswalgz sweuady

Jutensuod Ayjeno

ubisaq ppy

uondwnssy
yse| ubisaq ppy ulewogq ppy

ISPOIN 3P

SUETETE]
sjpusawalinbay ppy

juresysuod
Ayiend ppy

AseL ppy
1209 PPY

xnui JQ ‘e
‘SMOPUIM UM 31p3

Aungenod

5.1. OVERVIEW 105

liability of model managing, and High Quality of saved images. By portability we mean the
ability to run over different operating systems: Windows, Mac, and Linux. Reliability, which
is too abstract, was made concrete with an Autosave task. l.e., if the tool presents an autosave
functionality, the system is considered to be sufficiently reliable. Lastly, in order to satisfy the
High Quality constraint, it was decided to Provide Vectorial Format>, such as SVG? (Scalable
Vector Graphics).

A screenshot of the tool is presented in Fig. 5.2. The central area (Fig. 5.2-B) contains
the goal model itself, in this case showing the requirements of the Meeting Scheduler system.
By pointing the mouse over the different elements of the model, users may add goals, tasks,
quality constraints, domain assumptions , awareness requirements, and parameters. It is also
possible to move, delete, and rename each element.

The panel on the bottom section of the tool is the toolbar (Fig. 5.2-C), which contains
some visualization options: hide/show the ids of the elements, and hide/show adaptation ele-
ments (awareness requirements and parameters). It also provides some basic file management
functionalities: save/load model, resize the drawing area, create a new model (clear), and ex-
port to image (Save SVG). Other two functionalities accessible through buttons in this panel are
presented later in this chapter: analyze model and metamodel.

The top-left panel (Fig. 5.2-A) shows buttons to navigate between the four tabs of
the tool, which are based on the proposed process: 1) Views, 2) Adaptation specification, 3)
Derivation, and 4) Transitions. The first tab, which is the one shown on Fig. 5.2, is related to the
design goal models. There, it is possible to edit the model and to navigate through its different
views. This tab supports the first three steps of the architectural design process presented in the
previous chapter: Identify design tasks, constraints and assumptions; Assign tasks; and Define
basic flows. Furthermore, it partially supports the fourth step: Identify indicators, parameters
and relations.

As described on Section 3.3, the Design Goal Model has four different views: the Re-
quirements view, the Design view, the Delegation view , and the Behavior refinement view. All
those views can be accessed through this first tab, where it is possible to switch back and forth
between the views. For instance, when switching from Assignment to Requirements, all the
design elements and assignments are hidden, so that the model can be visualized and edited as
a regular requirements model.

The Requirements view allows to visualize and edit a requirements goal model, with
goals, tasks, quality constraints, domain assumptions, awareness requirements and parameters.

Fig. 5.2 shows the requirements view of the Meeting Scheduler system on the GATO tool.

ZVectorial image formats usually provide high quality images because, unlike bitmaps, they do not present
quality loss under resizing.
3SVG is a largely adopted image file format, specified through a World Wide Web Consortium standard.

106

5.1. OVERVIEW

[epowersp L NG anes M
Eesp B Eale 9Z159Y 7 |2pow peo] ® |2pow aneg @

jepow szfleuy @ sjuswsalg uoneldepy mous @ sq| moys @

1BqIooL o8
- VN e N FmEmees g B - B =
A wooy abuey v
B 413A3N LHY O auoyd £q 13100
{ amegabueydy > /
sjuediaiued AnoN
n| UL,
3 JesIuILpY _ £oUBLINDIQ W0 SIS WHL &
IIe419A3N 98V O i \ &
Tk
sajgejawl | 300D SO0
siiejaq abueyd Bunaapy jaoues ' 2lqeliEAY 335

Burjaajy abeuey

/ (z'pL)esearnagpyal NON :Z¥Y O \

SANUIW S J2pUn ul
puop uonezuajoeiey

soido] auyaq

%06)21EHSS30ING 1LHY O

Agereas

llediaraN JHY O

Y

Bunasp a|npayss

suogsued) (p uonesus (g uoneadeds uoneldepy (7 -~ [swewannbay] smaip (|

\4

awop

Ieq[oo0}
(D ‘eare urewn (g ‘uond9qas el (Y [001 OLVD Ay Ul M3IA sjuawInbay] :7°s aan3i

5.1. OVERVIEW 107

In the Design view it is possible to not only visualize requirements and adaptation el-
ements, but also to visualize and edit design elements: design tasks, design constraints, and
design assumptions. Fig. 5.3 shows the design view of the Meeting Scheduler system on the
GATO tool, with its design elements: Get List of Available Rooms, Display List of Available
Rooms, Get List of Users, Select Participants, Get List of Available Equipments, Input Required

Equipments, and Process Characterization.

Figure 5.3: Design view in the supporting tool. Compared with the requirements view,
this view also presents design tasks, design constraints, and design assumptions

Home

1) Views [Design] ~ 2) Adaptation specification ~ 3) Derivation 4) Transitions

Schedule Meeting g

© ART: NeverFail

haracterization dong
in under 5 minutes

Define Topics

© ARZ: NotTrendDecrease(7d,2)

Define Schedule

/z\l

O AR3: NeverFail

Toolbar

@ Show IDs @ Show Adaptation Elements ® Analyze model
® Save model ® Load model /" Resize area i Clear

& Save SVG Y Metamodel

5.1. OVERVIEW 108

The Assignments view shows the same elements from the design view, but also allows
to create and visualize assignments on the goal model. Fig. 5.4 shows the assignments view
for the Meeting Scheduler system. Assignments are represented by the icon of a person. In this
example, the only task that is assigned is the Contact Participants design task, which is assigned

to a Secretary or to a Meeting Organizer.

Figure 5.4: Assignments view in the supporting tool. Compared with the design view,
this view also presents task assignments, as in the Contact Participants design task

Home

1) Views [Assignment] - 2) Adaptation specification 3) Derivation 4) Transitions

Schedule Meeting

O ART: NeverFail

P

haracterization dong
in under 5 minutes

O\AR2: NotTrendDecrease(7d,2

/

Collect Timetables

Manage Meel

Cancel Meeting

LConfirm Occurrence,
Define Schedule

72N

O AR3: NeverFail

Toolbar

® Show IDs @ Show Adaptation Elements ® Analyze model
® Save model @® Load model /" Resize area i Clear

& Save SVG Y Metamodel

5.1. OVERVIEW 109

The Behavior refinement view allows to see and edit flow expressions. Since the ids
of the model elements are referenced on the flow expression, the tool also displays the ids, on
the bottom-left region of each model element. Fig. 5.5 shows the behavior view of the Meeting
Scheduler system, with its flow expressions. For example, take the Define Required Equipments
task, as its flow expression references dt41 and dt42. By observing the ids displayed in this view,
it is possible to know that dr41 is the id of the Get List of Available Equipments design task,
whereas dt42 represents the Input Required Equipments design task.

Figure 5.5: Behavior Refinement view in the supporting tool. Compared with the
assignments view, this view also presents the ids of each element and their behavior
refinements (flow expressions)

1) Views [Behavior] = 2) Adaptation specification 3) Derivation ~ 4) Transitions

[((i6 (dc77) (dc79 de77)) (i1 (g2|g3|gd|g5|g6|dcTE8))) *— (12 dtde) *— (i3 dcd7 dcds) =)

Gchedule Meeting
? dt58)-(t7 dt40d t8 dt42? d4dt38? dt58)) a

Characterize © ART: NeverFail

Meeting

. Usability
haracterization dong
in under 5 minutes

< Process

"""""" = {id ((ti7 tig) [t

O AR1: SuccessRate(90%

(dv37 dr3g) [eseesssseses (t12|tl3|clé4)

e anage |
. O AR2: NotTrendDecrease(7d,2)

See Available 5 P Cancel Meeting
5 Rooms

il et i \ %) v—
_____ ———=n, i / » gl efine Schedule @
s

__________ O AR3: NeverFail (
= B ollect by Phone
£ Get List of @ (dt4s doEa) |

(dc507? dt5l)

@® Show IDs @ Show Adaptation Elements & Analyze model
® Save model ® Load model .~ Resize area @ Clear

& Save SVG Y Metamodel

5.1. OVERVIEW 110

Besides editing the design goal model, the GATO tool is also able to analyze the model.
This automated analysis identifies two potential problems: goals that are not refined onto tasks,
and elements that are still missing in the flow expressions. The results of this analysis are
displayed in a warnings panel at the bottom of the screen, while the problematic elements are
highlighted in the model itself. Fig. 5.6 shows the results of an automatic analysis on the Meet-
ing Scheduler system. On this example, the warnings panel shows that the Manage Meeting
goal is unrefined, whereas the Contact Participants task is not included in the flow expressions
of the system.

Figure 5.6: Screenshot of the supporting tool showing the warnings panel below the
design goal model

Home

1) Views [Design] ~ 2) Adaptation specification ~ 3) Derivation 4) Transitions

Schedule Meeting g

Manage Meeting

Define Schedule) © AR3: Neve

See Available
Rooms
ng g

/ Schedule
€D Warning! the following goals were not refined: ‘(g5) Manage Meeting
@D Warning! the following tasks were not included in the flow expression: ‘(dt43) Contact Participants
Toolbar

@ Show IDs @ Show Adaptation Elements ® Analyze model
® Save model ® Load model +* Resize area il Clear

& Save SVG Y Metamodel

5.1. OVERVIEW 111

As described earlier on this section, the GATO tool has four tabs: Views, Adaptation
specification, Derivation, and Transitions (Fig. 5.2-A). The previous screenshots show the first
tab of the tool, with the different views of the design goal model. The second tab, Adaptation
specification, is where the user can define the adaptation strategies of the system, as well as the
range of its parameters, supporting the Specify adaptation strategies step of the architectural
design process.

Fig. 5.7 shows the adaptation specification of the Meeting Scheduler system. The left-
hand region of this tab shows the adaptation strategies for each awareness requirement of the
system. The right-hand region of the tab presents the range of each parameter of the system.
While awareness requirements and parameters are retrieved from the design goal model, the

adaptation strategies and ranges are input by the user.

Figure 5.7: Screenshot of the supporting tool showing the adaptation specification

1) Views ~ ERAENEVELGE W= WL 3) Derivation 4) Transitions

Awareness Requirement Adaptation Strategy Parameter Range
AR10: NotTrendDecrease(1d,2) 1. Reconfigure() ASA
AR1: SuccessRate(20%) FHM
AR2: NotTrendDecrease(7d.2) MCA
AR3: NeverFail Pre
SeS
AR4: SuccessRate(30%, 1M) TIR
- . . VP1

ARE: MaxFailure(2,7d)

: VPA
ARG NeverFail
ART: NeverFail 5000)
ARB: NeverFail

ARS: MaxFailure(5,7d)

@ Show IDs @ Show Adaptation Elements & Analyze model
® Save model @® Load model /” Resize area # Clear

& Save SVG Y Metamodel

5.1. OVERVIEW 112

The third tab of the GATO tool, Derivation, which is concerned with the automatic
generation of a base statechart, is discussed in Section 5.2. The fourth tab, Transitions, is
concerned with the seventh step of the architectural design process: Specify transitions (Section
4.2.7). Whereas the transitions of the base statechart are identified during derivation, on this tab
the user specifies the events and conditions for each transition.

Fig. 5.8 shows the transitions specification for the Meeting Scheduler system on the
GATO tool. On this example, only two transitions are specified: the transition from i6 to dt77
(Login), and the transition from i6 to dt79 (Reset Password). These transitions are triggered by
the Login requested and Reset Password requested events, respectively.

The next section presents in details the derivation of statecharts, describing not only its

user interface but also the statechart derivation algorithm we have developed.

Figure 5.8: Screenshot of the supporting tool showing the transitions specification

1) Views [Requirements] = 2) Adaptation specification ~ 3) Derivation [EESREEREITNE

Transition Triggers and Conditions
start(start)--=i6(iG)

start(start)-->i2(i2)

start(start)-=i3(i3)

dt79(Reset Password - dt79)-->dt77(Login - dt77)
i6(i6)-—-=dt77(Login - dt77)

i6(i6)—=dt79(Reset Password - dt79)

dt39(Get List of Users - dt39)-=dtd0{Select
Participants - dt40)

t7(Define Topics - t7)—=dt39(Get List of Users - Empty
dt39)

dtd0(Select Participants - dt40)->t8(Define Date Empty

Range - t8)

dt41(Get List of Available Equipments - dt41)— Empty
=dtd2({Input Required Equipments - dt42)

t8{Define Date Range - t8)-->dt41(Get List of Empty
Awailable Equipments - dt41)

dt37(Get List of Available Rooms - dt37)- Empty
>dt38(Display List of Available Rooms - dt38)

t8(Define Date Range - t8)-->dt37(Get List of Empty

.......

Available Rooms - dt37)

dt42(Input Required Equipments - dt42)->dt37(Get Empty
List of Available Rooms - dt37)

t3{Define Date Range - t8)->dt58(Process Empty
Characterization - dt58)

dt42(Input Required Equipments - dt42)- Empty
>dt58(Process Characterization - dt58)

dt38(Display List of Available Rooms - dt38)- Empty

>dt58(Process Characterization - dt58)

© 0 N ;R W =

5.2. STATECHART DERIVATION 113

5.2 Statechart Derivation

The module for deriving statecharts from flow expressions was built using the SableCC
tool*, which automatically generates Java code for parsing an input text, as well as for creating
and traversing an abstract syntax tree of the parsed text. The code is generated by SableCC
taking as input a custom-defined grammar, which specifies the tokens and production rules of
the language that will be parsed. An excerpt of the grammar for our flavor of flow expressions is
presented in Listing 5.1, showing the tokens used in the expressions (lines 2-12) and how they

can be used to define the terms of the expressions (lines 16-28).

Listing 5.1: Grammar for flow expressions

Tokens
lparen =" (";
rparen
or =
shuffle r-r,;

Il
~
| —_— ~—
~
~

plus =+,

times = ’"x’;

questionmark = ’'?’;

whitespace = (space | newline)+;

id = letter (letter | digit) *;

Productions
exp = {term} term
| {sequence} exp whitespace term

14
term = {basicterm} basicterm

| {alternative} term or basicterm

| {orthogonal} term shuffle basicterm
| {zeroormore} term times

| {oneormore} term plus

| {optional} term questionmark

’
basicterm = {state} id

| {nested} lparen exp rparen

4

The code for actually identifying the states, transitions and concurrent states that should
be derived from a given flow expression was developed on top of the depth-first tree traverser
generated with SableCC. This mapper was wrapped up as a restful service using Jersey”, allow-
ing it to be invoked from our web-based client. The result of the derivation is then displayed

back in the web client.

4 Available at http://sablecc.org.
>Java library, available at http: //jersey. java.net.

http://sablecc.org
http://jersey.java.net

5.2. STATECHART DERIVATION 114

The code generated by SableCC takes as input a string of characters (the flow expres-
sion) and generates its lexical tree, according to the provided grammar. It also provides an
implementation of the Visitor design pattern in order to traverse the tree. According to the
operator in each segment of the tree, it calls the appropriate custom-defined methods.

In order to generate the statechart, the first thing we do is to identify the initial states.
The pseudocode for this algorithm is presented in Algorithm 1. The general idea is to find the
elements to the left hand of the expression, ignoring what is in the right hand, in the case of a
Sequence (lines 2-4). If the expression is an Alternative, both sides of the expression need to be
evaluated (lines 5-8). In the case of a Optional expression, we need to consider both the term
itself and what is in its right hand (lines 9-14). These functions are called recursively until a Id

is reached, in which case the Id is included in the set of initial states (lines 15-17).

Algorithm 1 EvalFirstStates
1: initialStates <— ¢

[\

: function CASEASEQUENCEEXP(e)
e.leftHand.apply()
end function

Rl

function CASEAALTERNATIVETERM(e)
e.leftHand.apply()
e.rightHand.apply()

end function

9: function CASEAOPTIONALTERM(e)
10: e.getTerm.apply()
11: if e.isPartOfASequence() then
12: e.parent.rightHand.apply()
13: end if

14: end function

15: function CASETID(e)
16: initialStates.add(e)
17: end function

5.2. STATECHART DERIVATION 115

After identifying the initial states, we can identify the remaining states and transitions,
as described in Algorithm 2. When a Sequence expression is found, we identify the final states
of the expression in the left side, and also the initial states of the expression in the right side
(lines 4-5). The code for finding the initial states was already presented in Algorithm 1. The
identification of the final states is similar to the identification of initial states, but traversing the
tree to the right (Algorithm 3). Then transitions are created from the final states of the left side
to the initial states of the right side (lines 6-10). For the case of One Or More terms, we identify
the initial and final states of the term itself, and create the appropriate transitions (lines 12-20).

The recursion ends when an Id is reached (lines 21-23).

Algorithm 2 EvalMapping

1: states <— ¢
transitions <— ¢

»

3: function CASEASEQUENCEEXP(e)

4: previousStates gets e.leftHand.evalLastStates.apply()
5: nextStates gets e.rightHand.evalFirstStates.apply()

6: for all ps € previousStates do

7: for all ns € nextStates do

8: transitions.add(ps, ns)

9: end for
10: end for

11: end function

12: function CASEONEORMORETERM(e)

13: lastStates gets e.leftHand.evalLastStates.apply()
14: firstStates gets e.rightHand.evalFirstStates.apply()
15: for all Is € lastStates do

16: for all fs € firstStates do
17: transitions.add(ls, fs)
18: end for

19: end for

20: end function

21: function CASETID(e)
22: states.add(e)
23: end function

5.2. STATECHART DERIVATION 116

Algorithm 3 EvalLastStates
1: lastStates <— ¢

2: function CASEASEQUENCEEXP(e)
3: e.rightHand.apply()
end function

~

function CASEAALTERNATIVETERM(e)
e.leftHand.apply()
e.rightHand.apply()

end function

9: function CASEAOPTIONALTERM(e)
10: e.getTerm.apply()
11: if e.isPartOfASequence() then
12: e.parent.lefttHand.apply()

13: end if
14: end function

15: function CASETID(e)
16: lastStates.add(e)
17: end function

The use of a grammar-based approach for performing the goal model - statechart trans-
formation was selected in detriment of model transformation languages such as ATL and QVT,
since the most relevant information for this transformation is the flow expression, which is
textual. In order to verify the implementation of this algorithm we developed automatic tests
comparing the results for given expressions to their expected results.

The result of the derivation is displayed back in two ways: as a list of states, their
hierarchy, and transitions, depicted in Fig. 5.9; as a visual diagram, shown on Fig. 5.10. The
creation of visual diagrams, from this output, is still in early development. Currently, the tool
generates a statechart only with the atomic states; in future developments we expect to be able

to include the super-states on the diagram as well.

117

5.2. STATECHART DERIVATION

Ispoweyspy L OAS Bneg M
Jean B eale 8zisey , |9pow peo| @ |epoll aaeg @

|epow szfjeuy @ spsws|g uonedepy moys @ S| MoYs @

1eqjoo]

isaes (NY

(#3 zmie-(riv (grgbi=—{(Fp (L0 05 (5106 1<-(E2Nen)

(BLysL—-(zzizes (eLsLe—-(1znier (6106121021 (rsplysipa—(goiplegip (roiplygip<—(zsiplzoip
(15wl L sIp<—~(05I)05IP dgeiplagin<—{6rIP)erip (gsiplesip<—(aciplacip (asiplesip<—~(Zrip)zrip (a5Iplagip<
~(gug3 (2eW)LEWw=—-(ZrTrip (26 Lep<—-(2083 gepleeip=—(2ep) e (1rIp) Lrip<—-(gygs (ZrplTrip

(17l Lrp angie-(opplorp (soplecip<—(1143 (orplorip<—(sCIR)aEIP (61IP)6LIp<—(ana (413P)L13P< ([atp 1#AP 1) lopp

~(g0g (20p) L 1p<—(62P)6Lp (ENEk—(peis)uels (Z)z1e—(pels)els (gl)gi<—(pels)yels [suopisuelr | zi-lllzapllliszisaalz)izsp)(lase sap))) sillisw (calzalizligblisnr 21))

FIU(Fse (coplzaapi(ep cosp)Nilagp snpliispp)iFnp)liliesip &lisop 1op))

7P Lvip € 9P cllzwp 1p)) g1 (owe 6£3p))) L) (L3P 68P)ILAPR) 91)) (uoissaidkg Mol PaUIGLISD

TR BT GTY AT ISP 9SPSR SALY ETE TN LT 8L BLE ALY R RSP ESIP TSP LGP 0SIp E
‘GEIP “GEIP SEIP FRIP C2SID C2EID CLEID TR CLYIP @1 OFIP CGEID L1 L LD AP LLIP 9l 1S31RS Jjwoy

(BPIP AP el avip 2 g aB gB w B e6° 28 L s ap 1 p 9nLB
{egwpsrLyeyoLy Nzl (ryelyzined (9uvs e (s1vozbatyalyLyvsh p ,
. .) , , ; ; i i J -
. (92b'571'72v'5ieb (e Lewler (orP 6EIPIOL (2P LyR) L (rriP)zh (SmPlEns (g 6rply Ly e
(LS 0SWISLY (PSP eI ZSWIgLY ey Zay 120020 (95 ssmray (L5w)ses (6T ey 12970 sams Yox (35 e} LI @I QLI L)) @ .
Z

HELRES “SJUSLLISUIS] JOINELSC SAIELLSYE 13885

suoipsuel] (¢ TGDEAVES (S uoneoayineds uoneldepy (7 = [sjuswaunbay] smaip, (|

alwop

UOTJBALIOP 11BYDR)S 3 JO IndINO JO J0YSURIIG :6°S dINJI

118

5.2. STATECHART DERIVATION

oHIp - simedionaeg pummag

W VXX /

_J QCIpP - [EHURP2I) Jepuale) 3[Foon dujey

T

QT4 - 2DVRLINII() WLIFUO)) _DH

€71 - siedionreg 280
1 7T} - mooy 35w

611 - siedionred Aoy

1T} - 21 35ue)

LT3 - Bumasy [20uR))

wesderp 1eyoe)s Sunnsal ay) Jo J0YsuddIdS Q'S NIy

5.3. INTEGRATION WITH ZANSHIN 119

5.3 Integration with Zanshin

In this section we present the integration of the GATO tool with the Zanshin framework.
This integration consists of exporting Zanshin models based on design goal models. By export-
ing such models, we expect to significantly reduce the effort required to enact the adaptation
cycle using the generic adaptation component which is a part of the Zanshin framework. The
use of that component is described on an Automatic Teller Machine (ATM) case study (Section
6.1).

At the time of the ATM case study, the integration of the GATO tool with the Zanshin
framework was not yet performed. Throughout that study, we identified opportunities for au-
tomating the creation of Zanshin models, by mapping the constructs from MULAS design goal
models onto constructs of Zanshin models.

Fig. 5.11 shows the mapping between the design goal model (DGM) metamodel and
Zanshin’s metamodel. DGM goals are mapped onto Zanshin goals. DGM tasks and design
tasks are mapped onto Zanshin tasks. DGM quality constraints and design constraints are
mapped onto Zanshin quality constraints. DGM domain assumptions and design assumptions
are mapped onto Zanshin domain assumptions. DGM awareness requirements and parameters
are mapped onto Zanshin awareness requirements and parameters, respectively. Lastly, DGM
links are mapped onto the self-association of the Requirement class in Zanshin’s metamodel.

With this mapping it is possible to export Zanshin models directly from the GATO tool,
which allows to delegate part of the adaptation cycle to the component provided by the Zanshin
framework. This functionality is accessible through the Metamodel button on the bottom-left
region of the GATO tool (Fig. 5.2).

120

13j9We.eqd

uoneinsyuo)

T°0

juawalinbay ssauasemy

uonesngiuod

12PolN[e0D

|eoHlool

JseL

O
= T ujewog utensuo) Ayjend
o 3newopad - -
o
S
% U K = —
_ b.
—— e e c— c—— e— C— v —— @ — s e— e —— — f— e— — C— e— e—
Jajaweled Juawaal jurensuojusdisaq ysejusisaq al DAuend yseL |eoo

5.3. INTEGRATION WITH ZANSHIN

Y

juawsajjuoneidepy

V.

juawa|zusisag

V.

JudwWajIsiuaWalInbay

—

uonelouuyjesomeyag| * 0

apoN

|
]
H
%0

(wopoq)

1°0 pIlyd
10 jualed
%0 apou
B4
£
L d

[epowrelaw s urysuez pue (doy) jopowrelowl NOHJ oY) ueamlaq Surddejy :11°S 9an31]

5.4. SUMMARY 121

5.4 Summary

The Goal to Architecture tool (GATO) developed to support the MULAS framework
was presented in this chapter. It allows to create a requirements goal model and to include the
refinements described in Chapter 4 which result in a Design Goal Model. In order to improve the
visualization of the model, the tool provides different views: requirements, design, assignment
and behavior. Moreover, it supports adaptation specification, the specification of transitions,
and the automatic generation of statecharts from design goal models.

This tool was used to assist in the creation of the case studies presented in the next

chapter, as well as for creating the design goal model diagrams depicted on this thesis.

122

Concept Proof

This chapter presents the application of the MULAS framework to the development
of two different systems. These studies not only illustrate the use of the framework, but also
provide early validation by showing that it is feasible to adopt this framework on different
classes of system.

The first concept proof example adopts a system as described on the software engineer-
ing literature, namely the Automatic Teller Machine (ATM) system. A design goal model and a
statechart of the ATM system were created with the MULAS architectural design process, along
with its adaptation specification. Based on these models, simulations were executed in order to
assess the adaptation mechanisms of the proposed framework.

The second example is a robotic system designed to monitor a specific environment.
Unlike other systems presented on this thesis, this is a real system, developed through an R&D
(research and development) initiative involving real academic and industrial partners, without
participation of the author of this thesis. Through document analysis and interviews, we retroac-
tively created artifacts from the MULAS framework, representing the system’s requirements
and design. Using a small scale robot it was possible to assess the execution of the system’s

adaptation cycle on a real scenario.

6.1 The ATM system

Aiming to better illustrate and evaluate the MULAS framework, its architectural de-
sign process was applied resulting in the creation of a statechart for the well-studied Auto-
matic Teller Machine (ATM) system (WANG; MYLOPOULOS, 2009; WANG et al., 2010;
BALSER et al., 2004; ROLLAND; ACHOUR, 1998; KOTONYA; SOMMERVILLE, 1996;
CHOI; YEOM, 2002; GURP; BOSCH, 2002). In previous work, an implementation of this
system was integrated with the Zanshin framework (TALLABACI; SOUZA, 2013), allowing
us to concentrate, for this concept proof, on the generation of a behavioral model with support
for adaptation mechanisms.

Fig. 6.1 shows a goal model with the requirements for an ATM system. This model

123

6.1. THE ATM SYSTEM

adojaaug jdasoy

junowy
ysodaq 399

uonjoesuel)
EMEIPYHA WIOH]

pusba

JuswoUYdl JuIWBUYAL
-40 “aNv

JUNo22Yy
ysodaq 309

junosay
uoneunsaqg ¥29yd

<+ <—

spung WLV %9949

adojaauz up
junowy Ajuusp

juno22y
uoneunsaq 199

junowy
Jajsuel) 199

uonoesues)
J9jsuel] wiopad

1dis98y Jund

HO W1V winy

yueg 0}
uo}PBUUOY 3S0|D

uayoy
onesuadwo) julid

uondwnssy julesjsuo
utewoq fuenp AseL |eo9

1O CD

junowy
[EMEIPYIM 39D

ysep asuadsiqg

Jsodag ssaosoud

uoijewuoju|
ysodaq 399

Junoldy
[EMEIPUIM 399

|EMBIPYHM SS8201d

yseo apinoid

JUNO22Y
uibuo 309

diyd yum pren

pien onaubepy

uojjewoyu|
[eMeIpyyM 399

uoneuLoju|
Jajsuel] 399

/

Nid @3epljeA

uonesnuaYINY

JaquinN pJed 389

uonesnuayny
jundiabuiy

uopnesnuayiny SNS

uoljoesUel] WIoHdd

ueg o}

Nid ypm uojoauuo) dnjeg

ajesnuayIny

UoRoesuel] uliuod uoljoesuel] 399|198

ojuj p1ed 329

uoyesnUBYINY
103084 OM|

Junowy yse 3993aq

uopoesuel]

s8jnuIp Z 19pu
WLV 19npuos INUIN 2 J3pun

auo(uonesnuayINy

s|qe|ieAy
LY aYen

ajqejieAeun
WLV 4en

18wojsny
ajesnuayny

UQ NLv wingp

SI19WO0)SN) dAISS

W1V Hels

WLV 8pinoid

[PPOIN siudwaanbay NIV :1°9 3an3I

6.1. THE ATM SYSTEM 124

is based on a model from WANG; MYLOPOULOS (2009), which in its turn is based on the
documentation and implementation from BJORK (2004). The ATM software system is embed-
ded in an ATM machine, which is used by bank costumers one at a time in order to perform
transactions such as withdrawal and deposit. The system is also used by operational staff from
the bank, responsible for starting the ATM and for shutting it down. This operator also needs to
insert bank notes in the machine, which are required for dispensing cash in withdrawal transac-
tions. In order to provide this and other transactions, the system needs to know how much cash
is available, as well as to setup its connection with the main banking system and then become
available for use. At a latter point, the system can be shut down by an operator, which consists
of the following tasks: Make ATM Unavailable, Close Connection to Bank, and Turn ATM Off.

The core of the system operation is expressed in the Serve Customers goal, for which
the system needs to Authenticate Customers and Conduct ATM Transactions. The authenti-
cation relies on Get Card Info, Authenticate with PIN and Two Factor Authentication, where
PIN stands for Personal Identification Number. Since the bank operates with different kinds of
cards, the system needs to support both Magnetic Cards and Cards with Chip. The PIN is an
input provided by bank customers, and then validated by the system. Two Factor Authentication
provides an additional layer of security, since instead of only providing card and PIN users will
also have to go through another identification step. For instance, through Fingerprint Authenti-
cation, Authentication with Extra Keycodes, or through electronic messages sent to customers’
cell phones with SMS Authentication. d

In order to Conduct ATM Transactions, it is required to Select Transaction, Perform
Transaction and Confirm Transaction. The transactions available to be performed are With-
draw, Deposit and Transfer. In order to perform these transactions, the system needs to receive
information from the customer about the transaction, perform any required checking and val-
idation, and then actually perform the transaction. The customer receives confirmation of the
transaction through Display Confirmation or through Print Receipt.

While real ATM systems include many more additional transactions, this reduced set
of functionalities based on TALLABACI; SOUZA (2013) represents the core of ATM systems,
which includes: receiving and validating input from users, checking and processing requested
transactions, performing requested transactions, and providing confirmation of performed trans-
actions.

Building on the work described in TALLABACI (2012) and TALLABACI; SOUZA
(2013), we present next the adaptation elements identified at the requirements level (Fig. 6.2):
awareness requirements, (Table 6.1), parameters, and the relationships between the latter and
the former. The Detect Cash Amount task is critical in order to enable withdrawal operations,
thus it was established that it should never fail (AR1). Even more critical is to Setup Connection
to Bank, since without it the transactions will not become available. Thus, it was also estab-
lished that this task should never fail (AR2). Similarly, Serve Customers should fail at most
twice in a month (AR3), while Confirm Transaction should never fail (AR4). Regarding the

6.1. THE ATM SYSTEM 125

Table 6.1: Description of the awareness requirements for the ATM System

Id Awareness Requirement Description

AR1 NeverFail Detect Cash Amount task should never fail.

AR2 NeverFail Setup Connection to Bank task should never fail.

AR3 MaxFailure(2,30d) Serve Customers goal should fail at most twice on a
30 days’ interval.

AR4 NeverFail Confirm Transaction goal should never fail.

AR5 SuccessRate(90%,1d) Authentication Done Under 2 Minutes quality con-
straint should have a success rate of at least 90% per
day.

AR6 StateDelta(Undecided,*,30s) Select Transaction task should be decided within 30
seconds.

Authentication Done in Under 2 Minutes quality constraint, it should succeed at least 90% of
the time, measured daily (ARS). Lastly, there is a time limit to perform the Select Transaction
task: 30 seconds (ARG).

While awareness requirements define the indicators of the system, i.e., what needs to
be monitored, parameters define what can be changed in the system. For instance, consider the
Provide Cash goal. The requirements model shows that the system is expected to be able to both
Dispense Cash and Print Compensation Token; hence the AND-refinement. This compensation
token is a receipt that the customer will receive when the transaction is not successful, allowing
him to receive the requested amount from a bank clerk instead. Thus, at a single time, only one
of these options will be selected. This selection is one of the parameters of the ATM system:
Cash or Task (CoT). The other parameters of this system are Number of Operators Available
(NOA) and Value of Daily Limit (VDL)

The NOA parameter identifies how many operators are available for assisting bank cos-
tumers, answering doubts and thus potentially improving the success rate of the Serve Cus-
tomers goal. This relationship is expressed by the following differential relation, using the

shorthand notation described in Section 2.7:
A (successRateO fServeCustomers/NOA)[0,10] > 0

Bank customers have a limit for how much money they can withdraw in any given day.
Low limits are good for security and operational purposes. However, low limits may reduce the
successful rate of the Withdraw goal, since customers may not be able to withdraw as much as
they want. This relationship between Value of Daily Limit (VDL) and Withdraw is expressed

as
A (successRateO fWithdraw/VDL) [0, 4o) > 0

Fig. 6.2 presents the complete requirements model for the ATM system, including its

126

6.1. THE ATM SYSTEM

junowy
ysodaq 399

pusba

juswauydl JuswaUlal
Jajoweieq 0 -anv

adojaaug jdasoy uoljoesues]

juswalinbay
EMEIPYNA\ WIOHS

juno2oy ssaualemy
juno2oy ysodaq 309 o . L
uoneunsaqg %¥29yo spung WLV %29yd uopdwnssy Julensuo)
uayoy Y urewoq Aujenp ¥sel 1e0o9
u:oM%__M_.QM_“> onesuadwo) julid

1 @E&;cCD

udY0] 10 Yyseg— 109
a|qejieAy siojesadQ O JaqUINN- YON
ywr Ajeq yo anjeA - JaA

junowy
[EMEIPYIM 39D

yse asuadsiqg

Jsodag ssaosoud

uoijewuoju|
ysodaq 399

Junoldy
[EMEIPUIM 399

|eMBIPYIIM SS8201d sisjoweled

juno22y
uoneunsaq 199

JUNo22Y yseo apinoid

uibuo 309

diyd yum pren

pien onaubepy

uojjewoyu|
[eMeIpyyM 399

junowy
Jajsuel) 199

uonewsoju|
Jaysuel] 399

uoljoesUel] WIoHdd

Nid @3epljeA

uonesnuaYINY

JaquinN pJed 389

uonoesues)
J9jsuel] wiopad

uonesnuayny
jundiabuiy

uoneonuayiny SNS

1dis98y Jund

Nid upm ueg 03

ajesnuayIny

uonosuuo) dnjeg

/

uopoesuel] WIUOD

uoljoesuel] 399|198

N

)e312Q91eISioNy O

lledIaneN:YIY O~

11e449A3N:ZHVY O

ojuj p1ed 329

uoyesnUBYINY
103084 OM|

(s0g*,‘pap1oaplin Junowy yse 3993aq

yueg 0}
uo}PBUUOY 3S0|D

HO W1V winy

uopoesuel]

s8jnuIp Z 19pu
WLV 19npuos INUIN 2 J3pun

auo(uonesnuayINy

s|qe|ieAy
LY aYen

11E419ASN: LYY O

ajqejieAeun
WLV 4en

18wojsny
ajesnuayny

(P1°%06)21BYSS2I9NS:GUV O

UQ NLv wingp

SI12Wo)IsSN) aAILS
(Pog‘)ainjiexe: ey O—

W1V Hels

s10jowered pue syuowAIINbar ssouareme YIIm [SPOA SIUSUIRINbIY LV 79 In3L|

WLV 8pinoid

6.1. THE ATM SYSTEM 127

awareness requirements and parameters. Based on this model, we performed an empirical eval-

uation of the MULAS framework, as described in the next subsection.

6.1.1 Evaluation using the ATM system

In this subsection we present an early evaluation of the MULAS framework using the
ATM system. This evaluation aimed at identifying the suitability of the framework, verifying
if its resulting artifacts were actually capable of enacting adaptation strategies on a simulated
environment. This system was chosen considering that its goal model, awareness requirements,
parameters, and adaptation actions were previously created by other authors (TALLABACI,
2012; TALLABACI; SOUZA, 2013). Ergo, instead of creating a requirements goal model
from scratch, it was possible to focus solely on the architectural design process. Moreover, the
profusion of scientific work exploring this class of systems not only suggests its relevance but
also provided inspiration for additional adaptation scenarios.

This evaluation consisted of the following steps, which will be further described in the

ensuing subsections.:

1. Apply the process described in Chapter 4 to the ATM requirements model, resulting
in a Design Goal Model and a statechart;

2. Use a statechart modeling and simulation tool to enact the run-time states of the
ATM based on the statechart obtained in step 1;

3. Integrate the statechart created in step 2 with the adaptation component of the Zan-
shin framework, thanks to the ability of the simulation tool to plug customized Java
code to different parts of the model;

4. Execute adaptation scenarios, verifying that the proper adaptations are performed
during simulation; i.e., verifying whether the adaptation strategies that were speci-

fied were actually enacted.

6.1.1.1 Step 1 - Following the Architectural Design process

Based on the requirements model of the ATM system (Fig. 6.2), a concept proof was
performed following the eight steps of the process to move from requirements to statecharts for
adaptive systems: Identify design tasks, constraints and assumptions; Assign tasks; Define basic
Sflows; Identify indicators, parameters and relations; Specify adaptation strategies; Generate
base statechart; Specify transitions; and Include adaptation elements.

The Identify design tasks, constraints and assumptions step is, in fact, a continuation
of the AND-OR refinements of the requirements goal model. The difference is that instead
of refining according to what is required by stakeholders (i.e., refining the problem), here the
refinement is based on identifying how to make it possible to build a system that satisfies the

requirements (i.e., define/refine the solution). This can take the form of AND refinements —

6.1. THE ATM SYSTEM 128

Figure 6.3: Excerpts of the ATM Design Model, with Design Tasks and Assignments

Process Deposit
Check Destination Verify Amount Goal Task
Account @n Envelope

erl —_— — H
Accept Envelope AND- OR- Assignment
refinement refinement
Legend

e.g., in order to provide X, the system needs to provide Y and Z. It can also take the form of OR
refinements, specifying alternative ways of satisfying a requirement — e.g., X can be provided
by providing Y or by providing Z. Concretely, these refinements will result in the inclusion of
design tasks, design constraints and design assumptions in the goal model, which then becomes
a design goal model.

By analyzing the requirements model of the ATM system and the existing literature on
the subject, some elements of the goal model were further refined, such as Get PIN, Detect
Cash Amount, and Verify Amount in Envelope. The Get PIN task was refined with three differ-
ent alternatives for getting the PIN code: through a regular keypad, through a 2-key keypad, or
through a touchscreen keypad. For the Detect Cash Amount task, two alternatives were iden-
tified: Use Cash Sensor and Use Operator Entry. In the latter option, the amount of money
available in the ATM is tallied up by a bank employee; this information is then provided to the
system. Fig. 6.3 presents excerpts of design refinements for the ATM system.

In the Brazilian banking system, the usual way of making deposits in an ATM is as
follows: the customer gets a bank envelope, inserts bank notes on it and seal the envelope; the
customer, interacting with the ATM and requesting a deposit transaction, inputs data such as
target bank account and amount of money to deposit; during the operation, the ATM prompts
the customer to insert the envelope and conclude the transaction; at a later moment, bank clerks
gather the envelopes, check the amount of money in the envelopes is correct, and then confirm
the transactions. That is why the Verify Amount in Envelope task was assigned to a bank clerk,
as depicted in Fig. 6.3.

After identifying design elements and assigning tasks from the system, the next step is to
Define basic flows. Fig. 6.4 shows the flow expressions for an excerpt of the ATM system. The
flow expression from the root goal, Provide ATM (gl), indicates that its behavior is defined as
starting the ATM (g2), then serving customers zero, one or more times (g7), and finally shutting
down the ATM (g/0). Similarly, the behavior of Start ATM (g2) is defined by the sequential
execution of its children tasks, from 3 to t6: Turn ATM On (t3), Detect Cash Amount (14), Setup

6.1. THE ATM SYSTEM 129

Figure 6.4: Behavioral annotations for an excerpt of the ATM Design Model
(92g7* 910)
Provide ATM

(g8 g9* dt58)
(g8 g9)+ dt58) Shutdown ATM

erve Customers

t3 t4 t5 t6
a7

dt11 Make ATM
(') TumATMOn > dt12 @ Available P N
(dt11 dt12?) - Jerminate Session }
(i1 (dt11]dt12)) Authenticate @ ------------ 4
Setup Connection @ Customer
Detect Cash @ to Bank
Amount Conduct ATM
@ Transaction
, R rrr e -,

N Y
se Cash Sensor)» Use Operator ™,
@ ------------ / @ Entry /
C HCoOC] > >

Goal Task cuality | AND-refinement OR-efinement

\ a i . o
Design Task Design Quality
Constraint Parameter Awareness
Requirement

Legend

Connection to Bank (15), and Make ATM Available (16).

In the same way that OR refinements of goals can express alternative ways for achieving
a goal, it is possible to define alternative behavioral refinements, which specify different flows
for the system. This is the case of Serve Customers (g7), with two alternative flow expressions,
and Detect Cash Amount (t4), with four alternative flow expressions, totaling eight different
possible flows for the system execution. The requirements model dictates that to be able to
Serve Customers the system must provide functionalities to Authenticate Customer and Conduct
ATM Transaction. There are different behaviors for this goal, as shown in Fig. 6.4. The first
option is to authenticate customers (g8) only once, and then conduct ATM transactions (g9) any
number of times. The second option is to authenticate customers (g8) before conducting each
transaction (g9). Both options conclude with terminate session (dt58).

This is also the case for Detect Cash Amount (t4), which has four alternative behavioral
refinements. The first option is to use only a cash sensor (dt/1), while the second option is to
use only the entry of an operator (dt12). The third option is to use the cash sensor and then
use the operator entry only if it is necessary (e.g., if there is a malfunction on the cash sensor).
The last alternative includes the use of an intermediate state (i/) where the operator can select
whether to use the cash sensor or to entry the value manually.

In the next step of the architectural design process, Identify indicators, parameters and

relations, two new parameters were identified (see Fig. 6.5):

» CaD - Cash Detection — This parameter defines which of the alternative behaviors

6.1. THE ATM SYSTEM 130

of the Detect Cash Amount task (t4) will be executed: the first one, with only Use
Cash Sensor (dt11) or the second one, with Use Operator Entry (dt12).

s PMe - PIN Mechanism — This parameter refers to the selection between three
alternatives for Get PIN: Get PIN from Keypad, Get PIN from two-key Keypad, and
Get PIN from Touchscreen Pad.

Continuing with the process, it is necessary to Specify adaptation strategies — 1.e., to
define how the system must react in case of failures. One of the adaptation scenarios that will
be adopted in the concept proof here described concerns the Detect Cash Amount task (t4),
which is OR-refined onto Use Cash Sensor (dtl1) and Use Operator Entry (dt12), where dtl1
is the default option. Detecting how much money is available in the ATM terminal when it is
turned on is essential for its proper operation, which is indicated by the awareness requirement
AR1:NeverFail (Table 6.1). This selection is defined by the CaD parameter. The adaptation
strategy for this awareness requirement specifies what to do in case of a failure of #4: to make
sure it is not a temporary glitch, the ATM should retry with the cash sensor twice; if it still
fails, reconfigure to use operator entry; finally, if manual entry also cannot satisfy the goal, the
system should abort.

The Setup Connection to Bank task (t5) is also critical, which is represented by its
NeverFail requirement (AR2) — if it is not successful, the ATM will not be able to perform any
transaction. Thus, the following adaptation strategy was devised: in case of failure, the system
must retry the execution of that task at most five times; if after 5 tries the connection has not
been set up, the system must abort.

The adaptation strategy for AR3, which is related to Serve Customers (g7) consists of
performing a reconfiguration and a delegation. The parameter related to AR3 is NOA — Number
of Operators. Since the system itself is not able to increase the number of employees attending
customers on an bank agency, the actual reconfiguration must be performed by a bank manager,
hence the delegation.

For AR4, related to Confirm Transaction (g26), and ARS, related to Authentication Done
Under 2 Minutes, the adaptation strategies are retry and abort, respectively. Lastly, the adapta-
tion strategy for AR6, which is related to Select Transaction (124), is to abort.

In order to verify the correct derivation of statecharts from the Design Goal Model, we
used the Goal to Arch tool presented in Chapter 5, so as to perform the Generate base statechart
step with the ATM system model.

When starting a statechart generation, the tool allows us to select between one or more
flow expressions for those cases where alternative behaviors were defined. Once these behaviors
are selected, the tool traverses the design goal model generating a combined flow expression.
For instance, consider the Deposit goal (g30) shown in Fig. 6.5. Its flow expression is g4 6
g47. In its turn, the flow expression for g46 (Get Deposit Information) is t48 t49, whereas
the flow expression for g47 (Process Deposit) is t 50 t51. Thus, the combined flow expres-

131

6.1. THE ATM SYSTEM

junowy g

ysodaq 309

junoddy @

uoneulysaqg 323y

adojaauzg ui @

junowy Ajuap

uoneunsaq 199

junosdy e

ublo 199

junowy
J9jsuel] 399

uopjew.oyu|
Jajsuel] 399

usodaq 399 100 ¢

puaboy
Juawaiinbay
Ssaualemy Jejeweled juiesisuod
Juno22Yy e @-ﬂm_nmw.n yse] ubisaq
ysodeq 109 lo) * Lm
HaLONY Rjeny” ¥sel eo9
«— [COCCDO

oljew.oju| 9

AN

UdY0[10 ysey - 109

9|qe|leAy siojesadQ JO JaquinN- YON

i Ajieq jo anjep - 1AA
UBYI3\ Nid - SNd

uo23}aq Ysed - e
si9jaweled

diyd ynm paey

[emelpyimMm 3129
(17} Ot

G ®)
N,

woJ} Nid 199

Nid 3129

01P1691PI8NIP. 9
Jaquinp p.e9 39 b E]
\, JojesadQ asn
uopjesuayIny @ gLz S -

jundiabuiy

Nid yim e
) jeanuayny
! 1] 3939|9 I
l1edIonaN: Y O G) AN (0z1 619 e 11e449A9N:ZHY O
¢80 Lo N o ou| pieg 199
(sge'«'pap1a2plin)eleasiels:guy O 103084 OM L o Junowy yseJ 30939
Ut | (95l5GHpsY) |
uol}93UU0Y 3SO|D uopoesuel] @ = 9GHGSHYS} ((Z1LaplLap) L1)
e epen (¢z1P L1p)
LRI auoQ uopeoRuUBINY WLV 8¥en ¢ o
s|qejieAeun 92b Geb vel 19Wojsn)y e P
E LV &3el (P1'%06)2)eySS999NS:GUV O ajeanuayny
’ 8GIP
{ uoisseg Su—._:_..aﬂ u VON ¢ €66 G616 116
/' |||||||||||| \
S18W0JSNY SAIS! e

(¢z1 221 L2Y)

(PoE‘Z)2n]ie IXEN:ENY O — e
(gsip .66 86)

(91 6} 73 €1)
(016,26 2b)

SuoIssaIdxa mop Yam [SpOIA [B0D) USISo ALY :S°9 3In31

6.1. THE ATM SYSTEM 132

sion considering only the subtree of g30 (Deposit) would be t48 t49 t50 t51.

While traversing the model, the tool also identifies the XOR-states and its sub-states
resulting from the combination, which in this excerpt would be g30(g46,g47), g46(t48,t49) and
g47(t50,t.51) —i.e., g30 is a XOR-state containing g46 and g47; g46 is a XOR-state containing
148 and t49; and g47 is a XOR-state containing 50 and t51.

6.1. THE ATM SYSTEM 133

Listing 6.1: Output of the statechart derivation for the ATM system

-

XOR-states: gl(g2,97,910), g2 (t3,t4,t5,t6), t4(dtll,dt1l2), g7(g8,99,dt58),
g8(gl4,gl5,953), gld(glée), gle(tl7,tl8), gl5(tl1l9,t20), tl19(dte8,dte9,
dt70), gb53(t54,t55,t56), g9(t24,925,926), g25(g29,g930,931), g29(g37,g38,
g39), g37(t40,t41l), g38(t42,t43), g39(t44,t45), g30(gd6,947), gdo(t4s,
t49), g47(t50,t51), g31(g32,t33), g32(t34,t35,t36), g26(t27,t28), gloO(
t21,t22,t23)

Atomic states: t3, dtl11l, dt12, t5, t6, tl7, tl18, dteée8, dte69, dt70, t20, t54
, t55, tbe6, t24, t40, t41, t43, td42, t45, td44, t48, t49, t50, t51, t34,
t35, t36, t33, t27, t28, dt58, t21, t22, t23

Transitions: ~->t3, t3->dtll, t3->dtl2, dtll->t5, dtl2->t5, t5->t6, dte8->
t20, dt69->t20, dt70->t20, tl7->dt68, tl7->dte69, tl7->dt70, tl1l8->dt68,
t18->dt69, t18->dt70, t20->t54, t20->t55, t20->t56, t40->t41l, t43->t42,
t41->t43, t45->t44, t42->t45, td2->t44, t48->t49, t50->t51, t49->t50,
t34->t35, t35->t36, t36->t33, t24->t40, t24->t48, t24->t34, t27->t28,
t42->t27, t45->t27, td44->t27, t51->t27, t33->t27, t27->t24, t28->t24,
t54->t24, t55->t24, t56->t24, t54->dt58, t55->dt58, t56->dt58, t27->dt58
, £t28->dt58, dt58->t17, dt58->t18, te6->tl7, t6->tl8, t21->t22, t22->t23,

t6->t21, dt58->t21

Concurrent states: none

-

The complete Design Goal Model with the behavioral refinements of the ATM system
is shown in Fig. 6.5. After selecting the first two behavioral alternatives for Detect Cash
Amount (t4) and the first behavioral alternative for Serve Customers (g7), the resulting combined

expression of the ATM system is

(t3 (dtll.dtl12) t5 t6) ((((tl7|t1l8)) ((dte8|dt69]dt70) t20)
(t54|t55]t56)) (t24 (((t40 t4l) (t43 td42) (t45? t447?))|((t48
t49) (t50 t51))|((t34 t35 t36) t33)) (t27 t28?))*dt58)* (t21 t22
t23)

where a dot separates alternative behaviors.

This combined expression is not meant to be human-readable, inasmuch as it is some-
what large and unstructured. Instead, it is an intermediary artifact produced by the supporting
tool when generating a statechart from the design goal model.

Once a combined flow expression is generated, it is then sent by the tool client to the
tool server, where it will identify the states, transitions and AND-states (concurrent states). The
output generated by the Goal to Arch tool, including the XOR-states, is presented in Listing
6.1, where a tilde (~) represents the initial state of the system. From this output, our statechart
is defined as the tuple (S,7,R), where S is the union of the atomic states, the XOR states
and the AND (concurrent) states — i.e., every state of the system; 7 is the set of transitions
between states; and R is the union of the set of XOR state refinements and the set of AND state
refinements — i.e., the hierarchical relationships between states. A manually created diagram

for this statechart is depicted in Fig. 6.6.

134

6.1. THE ATM SYSTEM

3e3S YOX
oS aNY pm
@ vogsuel asineeg e |3
— Q.0
((N)
s . N
(c€1) uondesuel (9€1) 3unowy (5€1) 3unoday (ved)
PJSUBIL WI0}I3d Jajsuel] 399 oneunsaq 12 :MHMSM
s N
‘oyu| Jajsues} 199 (——— h
I
| \
// (073) NId
adojaug wwa_umw“mmwm Azd 5m3vau:=os< 8v3) JuUn02d BSEVEN
Saus L C_mo ElREDL} usodaq 199
‘ ysodaq ssa20.4d ‘oju| :moawodd/\
_ H_monvo\ uonesnuUayINy
__ 2 SIS
L
4 ;D ﬁ) (0£3p) ped
U0, 9210542N0
TN (o) oo Huoneanuauangl| | || ssossions
" uug asuadsig | LY 34D [Junidiaguiy
- ~ uonesnRUBAYINY
|EMEIPYIAN $53001d 04Ul [EMBIPYIM 199
/ yse) apinoid _ / 103084 o\E.\ < *\z_a Ek% aednuayIny)
_ / MEIPYUM) V\ —
/ / / co_ﬁmmcmé
=
»((L1l e
»|uonewunyuoy ﬂumcww;w&%
Aeidsig | L -
L 0130BSUEI] WO uon
L 1 Vv 1onpuoy) L JaquinN pJe) 199
(853p) K L oju| pJed 199)
uoISSas L JaWoIsN) 91e21IUBYINY)
S1eUIWID
q Aeul $I19W0ISN) SAIIS)
A
721)jueg o (123) ;_\ [p—
uonBUU0) a|qejieneun |« leAy Uorauor
as0) LY e v ten heul
INLY umopInys Ay ves
Junowy yse) 199189
INLY 3pinold
S J

WRISAS ALY 2} 10J 11eydole)s aseq :9°9 9angIg

6.1. THE ATM SYSTEM 135

This subsection described the enactment of the MULAS architectural design process
for an ATM system, starting from a requirements model and moving towards statecharts, in-
cluding its design goal model and the specification of adaptation strategies. Even though the
process is described sequentially, step by step, in actuality the process was enacted iteratively
and incrementally.

In the following subsections additional steps specific to the evaluation being presented
on this section are presented, which includes a simulation of the system execution using a

statechart tool.

6.1.1.2 Step 2 - Using a statechart tool

The second step of this evaluation was the creation of a model of the ATM statechart in
a statechart tool, in order to be able to simulate the system execution at later steps. The selected
tool was the Yakindu Statechart Tools (YST)!, since it not only provides simulation capabilities
but also provides syntactic validation, including the detection of unreachable states, as well as
the generation of source code in Java, C, and C++. Moreover, it supports the utilization of
Java code as part of the simulation, which is essential in order to integrate with the standard
component from the Zanshin framework.

Since the Goal to Arch tool does not support any kind of integration with statechart tools,
the model was created manually through Yakindu’s user interface, based on the data presented
on 6.1. After the statechart was modeled, additional procedures were still required in order to

integrate it with Zanshin’s component, as described in the following subsection.

6.1.1.3 Step 3 - Integration with Zanshin

The Zanshin framework includes a prototypal implementation of its reasoning/commu-
nication component. Its input includes information provided both offline (such as goal model
and adaptation strategies) and online (execution data providing the activation and satisfaction
status of goals, tasks, quality constraints and domain assumptions). With such information, it
is able to identify the failure of awareness requirement and then select an adaptation strategy to
execute, enacting the adaptation cycle described in Section 2.7.

The setup of Zanshin’s component requires the execution of the following steps, as
documented on its wiki’: install a required Integrated Development Environment (IDE) —
namely, Eclipse’; create a metamodel based on the target system goal model; create an editor
tool based on that metamodel; instantiate the metamodel, using the editor tool that was created;

customize the Java communication code available in Zanshin’s repository*, which will be a part

"Yakindu Statechart Tools: http://statecharts.org/

2Zanshin’s wiki: https://github.com/sefms-disi-unitn/Zanshin/wiki

3Eclipse is an integrated development environment with facilities to support, among others, programming and
modeling activities.

4Zanshin’s source-code repository: https://github.com/sefms-disi-unitn/Zanshin

6.1. THE ATM SYSTEM 136

of the target system; install and configure Zanshin’s component.

Zanshin is based on the Eclipse Modeling Framework (EMF)>. As such, the goal model
of the system, including Zanshin’s specificities (awareness requirements, parameters, differen-
tial relations, etc.), is an XML file based on a metamodel of the system, which in turn is based
on Zanshin’s metamodel. The XML file representing the ATM goal model is shown in Listing
6.2.

Line 3 shows the root goal of this system: Provide ATM. Most other elements in the
model will be children of the root goal or of its children (lines 4 to 114), with the exception
of parameters (lines 116 to 122) and relations (line 123). Goals, tasks, quality constraints, and
domain assumptions are simple elements, structured accordingly to XML’s tag hierarchy. For
instance, the element for Start ATM starts on line 4 and only ends on line 12. Thus, Start ATM is
parent of Turn ATM On (line 5) and Detect Cash Amount (line 6), among others. By default, this
parent-children relationship is an AND-refinement. OR-refinements must be explicitly stated
through a refinementType attribute, as is the case of Use Cash Sensor and Use Operator Entry
(lines 7 and 8).

Awareness requirements are a little peculiar, since their relationship with another model
element is defined by a rarget attribute. Awareness requirements may have two kinds of chil-
dren: condition and strategies. For instance, AR4 (lines 106 to 114) has a SimpleResolution-
Condition (line 107). With this kind of condition a failure is said to be solved when the next
evaluation of that awareness requirement is successful, considering the adaptation cycle. More-
over, it contains a RetryStrategy, meaning that in case of failure, the adaptation strategy to be
selected is Retry.

The version of Zanshin’s component available during the preparation of this thesis only
supports the definition of awareness requirements of the NeverFail type. For this reason, only
the awareness requirements AR1, AR2, and AR4 are included on Listing 6.2 (lines 85 to 114).
Additionally, this version of Zanshin does not support the definition of enumerated parame-
ters. That is why the parameters CaD (Cash Detection: Cash Sensor or Operator Entry), PMe
(PIN Mechanism: Regular Keypad, Two-Key Keypad, or Touchpad), and CoT (Cash or Token:
Dispense Cash or Print Token) are defined as integer instead of enumerated.

Lastly, it was also necessary to integrate the statechart simulation in YST with Zan-
shin’s adaptation component. The integration with Zanshin was accomplished by defining Java
methods that, when invoked by actions defined in the statechart, provide the current value of
parameters, while also initiates the action of sending to Zanshin information about the system
execution (monitoring points), which is required in order to determine the success or failure
of awareness requirements. Additionally, the Java code monitors Zanshin’s responses (such
as RetryARI and AbortARI), firing the events required to perform the adaptation actions sug-
gested by Zanshin, as defined in the Include adaptation elements sub-process of the architec-

tural design process (Section 4.2.8). These methods are a part of the AtmZanshinWrapper class,

SEclipse Modeling Framework: http://www.eclipse.org/modeling/emf/

6.1. THE ATM SYSTEM 137

Listing 6.2: ATM model as required by Zanshin’s component

-
<?xml version="1.0" encoding="UTF-8"7>

<atm: AtmGoalModel xmi:version="2.0" xmlns:xmi="http ://www.omg.org/XMI" xmlns: xsi="http ://www.
w3.0rg/2001/XMLSchema—instance" xmlns:atm="http :// disi.unitn.it/zanshin/1.0/atm" xmlns:it.
unitn.disi.zanshin.model="http :// disi.unitn.it/zanshin/1.0/eca">
<rootGoal xsi:type="atm:GProvideATM">
<children xsi:type="atm:GStartATM">
<children xsi:type="atm:TTurnOnATM"/>
<children xsi:type="atm:TDetectCashAm">
<children xsi:type="atm:TUseCashSens" refinementType="or"/>
<children xsi:type="atm:TUseOperEntry" refinementType="or"/>
</children >
<children xsi:type="atm:TSetUpConnect"/>
<children xsi:type="atm:TMakeATMAvail"/>
</children >
<children xsi:type="atm:GServeCust">
<children xsi:type="atm:GAuthentCust">
<children xsi:type="atm:GGetCardInfo">
<children xsi:type="atm:GGetCardNumber">
<children xsi:type="atm:TMagntCard"/>
<children xsi:type="atm:TChipCard"/>
</children >
</children >
<children xsi:type="atm:GAuthentWPin">
<children xsi:type="atm:TGetPin">
<children xsi:type="atm:TEnterPinFromK" refinementType="or"/>
<children xsi:type="atm:TEnterPinFrom2K" refinementType="or"/>
<children xsi:type="atm:TEnterPinFromTouch" refinementType="or"/>
</children >
<children xsi:type="atm:TValidatePin"/>
</children >
<children xsi:type="atm:GAuthentTwoFact">
<children xsi:type="atm:TTwoFactFinger" refinementType="or"/>
<children xsi:type="atm:TTwoFactExtra" refinementType="or"/>
<children xsi:type="atm:TTwoFactSMS" refinementType="or"/>
</children >
<children xsi:type="atm:QAuthUnder2Min"/>
</children >
<children xsi:type="atm:GConductTrans">
<children xsi:type="atm: TSelectTrans"/>
<children xsi:type="atm:GPerfTrans">
<children xsi:type="atm:GWithdraw">
<children xsi:type="atm:GGetWithdInfo">
<children xsi:type="atm:TGetWithdrAcc"/>
<children xsi:type="atm:TGetWithdrAmo"/>
</children >
<children xsi:type="atm:GProcWithdraw">
<children xsi:type="atm:TCheckAtmFunds"/>
<children xsi:type="atm:TPerfWithdTrans"/>
</children >
<children xsi:type="atm:GProvideCash">
<children xsi:type="atm:TDispCash"/>
<children xsi:type="atm:TPrintCompTok"/>
</children >
</children >
<children xsi:type="atm:GDeposit">
<children xsi:type="atm:GGetDeplnfo">
<children xsi:type="atm:TGetDepAcc"/>
<children xsi:type="atm:TGetDepAmo"/>
</children >
<children xsi:type="atm:GProcDep">
<children xsi:type="atm:TCheckDestAcc"/>
<children xsi:type="atm:TAcceptEnv"/>
<children xsi:type="atm:TVerifyEnvelope"/>
</children >
</children >
<children xsi:type="atm:GTransfer">
<children xsi:type="atm:GGetTransInfo">

66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89
90

91

92
93
94

95
96
97
98
99
100

101
102
103

104
105
106
107
108
109

110
111
112

113
114
115
116
117
118
119
120
121
122
123

124

6.1. THE ATM SYSTEM 138

<children xsi:type="atm:TGetFromAcc"/>
<children xsi:type="atm:TGetToAcc"/>
<children xsi:type="atm:TGetTransAmo"/>
</children >
<children xsi:type="atm:TPerfTransTrans"/>
</children>
</children >
<children xsi:type="atm:GConfirmTrans">
<children xsi:type="atm:TDisplay"/>
<children xsi:type="atm:TPrintReceipt"/>
</children >
</children >
<children xsi:type="atm:TTerminateSess"/>
</children >
<children xsi:type="atm:GShutAtm">
<children xsi:type="atm:TMakeATMUnavail"/>
<children xsi:type="atm:TCloseConnect"/>
<children xsi:type="atm:TTurnOffATM"/>
</children >
<children xsi:type="atm:ARl" target="//@rootGoal/ @children .0/ @children.1">
<condition xsi:type="it.unitn.disi.zanshin.model:SimpleResolutionCondition"/>
<strategies xsi:type="it.unitn.disi.zanshin.model:RetryStrategy" time="5000">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="2"/>
</strategies >
<strategies xsi:type="it.unitn.disi.zanshin.model:ReconfigurationStrategy" algorithmId="
qualia">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="1"/>
</strategies >
<strategies xsi:type="it.unitn.disi.zanshin.model: AbortStrategy">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="1"/>
</strategies >
</children >
<children xsi:type="atm:AR2" target="// @rootGoal/ @children.0/ @children.2">
<condition xsi:type="it.unitn.disi.zanshin.model:SimpleResolutionCondition"/>
<strategies xsi:type="it.unitn.disi.zanshin.model:RetryStrategy" time="10000">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="3"/>
</strategies >
<strategies xsi:type="it.unitn.disi.zanshin.model: AbortStrategy">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="1"/>
</strategies >
</children >
<children xsi:type="atm:AR4" target="// @rootGoal/ @children.1/ @children.1/ @children.2">
<condition xsi:type="it.unitn.disi.zanshin.model:SimpleResolutionCondition"/>
<strategies xsi:type="it.unitn.disi.zanshin.model:RetryStrategy" time="2000">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="5"/>
</strategies >
<strategies xsi:type="it.unitn.disi.zanshin.model: AbortStrategy">
<condition xsi:type="it.unitn.disi.zanshin.model:
MaxExecutionsPerSessionApplicabilityCondition" maxExecutions="1"/>
</strategies >
</children >
</rootGoal >
<configuration >
<parameters xsi:type="atm:CaD" unit="1" value="0" metric="integer"/>
<parameters xsi:type="atm:PMe" unit="1" value="0" metric="integer"/>
<parameters xsi:type="atm:VDL" unit="100" value="300" metric="real"/>
<parameters xsi:type="atm:NOA" unit="1" value="1" metric="integer"/>
<parameters xsi:type="atm:CoT" unit="1" value="0" metric="integer"/>
</configuration >
<relations indicator="//@rootGoal/ @children.3" parameter="// @configuration/ @parameters.0"
lowerBound="0" upperBound="1"/>
</atm: AtmGoalModel>
L

6.1. THE ATM SYSTEM 139

presented on Listing 6.3.

Lines 4 to 17 are attributes whose values are modified according to instructions received
from Zanshin’s component. For instance, if an reconfiguration is performed by Zanshin, chang-
ing the Value of Daily Limit (VDL) parameter from 300 to 400, the value of the VDL attribute
will be modified accordingly (line 7). Those attributes related to adaptation actions are like-
wise modified based on Zanshin’s instructions. For example, supposing that Zanshin identified
that the AR2 awareness requirement has failed, triggering the Retry adaptation strategy: on this
scenario, the value of the retryAR?2 attribute would be changed from false to true (line 14).

Due to a limitation on Yakindu Statechart Tools (YST), the statechart simulation is not
able to access these attributes directly. For this reason, this class also contains getter methods
for every attribute — these methods simply return the value of the respective parameter (lines
60 to 95). These methods are invoked during simulation as statechart actions, as shown on Fig.
6.7. For instance, the CaD method is invoked to ascertain whether the system should Use Cash
Sensor or Use Operator Entry (Fig. 6.7-A). Similarly, the abortARI method is invoked to verify
if that specific adaptation strategy is active (Fig. 6.7-B). If, during a simulation, the system is in
the Setup Connection to Bank state and that adaptation strategy is activated, then the respective
transition will be executed.

The other kinds of methods shown on Fig. 6.7 are also part of the AtrmZanshinWrapper
class. The startZanshin method is a one-off method which must be invoked before interacting
with Zanshin, hence its inclusion as an entry action on the first state of the system (Fig. 6.7-C).
Its implementation (Listing 6.3, lines 20 to 26) setups the communication with Zanshin and
informs that a new session has been started. Lastly, monitoring methods are used to let Zanshin
know the status of different awareness requirements. For instance, informStartARI (Fig. 6.7-
D) informs Zanshin that AR/ is now active. The informResultARI method, on the other hand,
informs Zanshin that the goals, tasks, or design tasks related to that awareness requirement
were concluded, either successfully or with failure. Information about success or failure must
be included in the implementation of the method according to the simulation scenario to be
executed (Listing 6.3, lines 33 to 38).

The adaptation cycle with Yakindu and Zanshin starts when Zanshin receives notifica-
tions about the execution of a task. If the notification indicates the failure of an awareness
requirement, Zanshin then analyzes the goal model and the adaptation strategies of the system
to identify the appropriate adaptation strategy to execute. The proposed adaptation strategy sent
by Zanshin (if any) will be read by a Java method that process the received instruction and
updates the proper attributes (Listing 6.4).

This method from Listing 6.4 is able to process three kinds of instructions: INITIATE,
representing a Retry strategy; APPLY_CONFIG, which represents a Reconfigure strategy; and
ABORT, representing its namesake. Lines S to 16 handle Retry strategies, setting the respective
attributes from an ArmZanshinWrapper object. Reconfigure strategies are handle on lines 18 to

31. On this case, the only parameter that may be reconfigured is CaD — Cash Detection, where

© 0 NN AW N =

6.1. THE ATM SYSTEM

140

Listing 6.3: Source code of the AtmZanshinWrapper class

public class AtmZanshinWrapper {

private TargetSystemController controller;

// parameters

public int CaD 0; //Cash Detection

public int PMe = 0; //PIN Mechanism

public double VDL = 300; //Value of Daily Limit
public int NOA = 1; //Number of Operators Available
public int CoT = 0; //Cash or Token

// adaptation actions

public boolean retryAR1 = false;
public boolean abortAR1 = false;
public boolean retryAR2 = false;
public boolean abortAR2 = false;
public boolean retryAR4 = false;
public boolean abortAR4 = false;

//method to start a new session with Zanshin’s component (server)
// this method is required in order to start the interaction with Zanshin
public void startZanshin ()
{
this.controller = TargetSystemController. getlnstance (this);
this.controller.startSession ();

}

//Methods related to Monitoring
public void informStartARI ()

{
this.controller.logRequirementStart (AtmRequirement.T_DETECT _CASH_AM) ;
}
public void informResultAR1 ()
{
//use logRequirementFailure if simulating a failure scenario
//use logRequirementSuccess if simulating a success scenario
this.controller.logRequirementFailure (AtmRequirement.T_DETECT _CASH_AM) ;
}
public void informStartAR2 ()
{

this.controller.logRequirementStart (AtmRequirement.T_SET _UP_CONNECT) ;
}
public void informResultAR2 ()
{
//use logRequirementFailure if simulating a failure scenario
//use logRequirementSuccess if simulating a success scenario
this.controller.logRequirementFailure (AtmRequirement.T_SET_UP_CONNECT) ;

}
public void informStartAR4 ()
{
this.controller.logRequirementStart (AtmRequirement.G_CONFIRM_TRANS) ;
}
public void informResultAR4 ()
{

//use logRequirementFailure if simulating a failure scenario

//use logRequirementSuccess if simulating a success scenario

this.controller.logRequirementFailure (AtmRequirement .G_CONFIRM_TRANS) ;
}

59
60
61
62
63
64
65
66
67
68
69
70
71
7
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87
88
89
90
91

92
93
94
95

6.1. THE ATM SYSTEM

141

//Methods that check if its respective adaptation action was triggered

public boolean retryARI1 () {
return retryARI;

}

public boolean abortAR1() {
return abortARI ;

}

public boolean retryAR2() {
return retryAR2;

}

public boolean abortAR2() {
return abortAR2;

public boolean retryAR4 () {
return retryAR4;

}

public boolean abortAR4() {
return abortAR4;

}

//Methods to get the updated value of their respective parameters
public int CaD() {
return CaD;
}
public int PMe() {
return PMe;

public double VDL() ({
return VDL;

}

public int NOA() {
return NOA;

}

public int CoT() {
return CoT;

}

}

Figure 6.7: Screenshot of the simulation tool, with different kinds of actions
highlighted: A) parameter-related actions; B) statechart actions related to adaptation
action; C) initialization action; D) monitoring actions

main region

{1
Start ATM
8
=
ri
o . mount) Setup Connection to Bank
— \ X
—~—_ A entry / informStartAR4() S CashAman
—al T exit / informResuIARA() System.detectCashAmountCompleted
= \
entry / startZanshin() rl g _/"/ \

e [retryAR4()] e ‘f__/' \‘\

= e / \

— | Y / \

L = | [CaD&:=D] (/‘ \ System.makeA|
Sygtem-tarmAtmOnCompleted / Use Cash Sebsor Systepﬁ.SetupCDnnecti}alnToBankCDmplete ;
[CaD()7=1] / \
v / \ /
Use Operator Entry \ /
[sbgrtar1()] S
Make ATM available

6.1. THE ATM SYSTEM 142

‘0’ represents the option for Use Cash Sensor and ‘1’ represents the selection of Use Operator
Entry.

With this setup, it is possible to execute simulations with Zanshin using a statechart
simulation tool, which allows to test feedback loops on adaptive systems before developing the
target system itself. Details on the simulation executed with the ATM system are presented on

the next subsection.

6.1.1.4 Step 4 - Simulation

With the preparation described on the previous subsection it was possible to execute
simulations and verify appropriate responses to failure scenarios that should lead to adaptation.
Given the limitations on the implementation of Zanshin’s component, it was only possible to
perform three of the adaptation scenarios identified on the first step of this concept proof (Sec-
tion 6.1.1.1): those with NeverFail awareness requirements. The three scenarios are as follows.

The first adaptation scenario is related to AR/, which specifies that the Detect Cash
Amount task should NeverFail (Fig. 6.5). The adaptation strategy for this awareness require-
ment specifies what to do in case of failure: to make sure it is not a temporary glitch, the ATM
should retry with the cash sensor twice; if it still fails, reconfigure to use operator entry; finally,
if manual entry also cannot satisfy the goal, the system should abort (Listing 6.2, lines 85 to
96). Since the goal of this simulation is to verify if the system adapts correctly — i.e., if the
correct adaptation strategies are selected and enacted —, we are assuming that all attempts of
detecting the amount of cash available are going to fail. Thus, the expected behavior for this

scenario is:

Failure (Use Cash Sensor);
Retry;

Failure (Use Cash Sensor);
Retry;

Failure (Use Cash Sensor);
Reconfigure - Retry;

Failure (Use Operator Entry);
Abort;

© Nk WD =

The second adaptation scenario refers AR2, which states that the Setup Connection to
Bank task must NeverFail (Fig. 6.5). If the connection setup is not successful, the ATM will
not be able to perform any transaction. Thus, the following adaptation strategy was specified:
in case of failure, the system must retry the execution of that task at most three times; if after
three tries the connection has not been set up, the system must abort (Listing 6.2, lines 97 to

105). Assuming successive failures of Setup Connection to Bank, the expected behavior is:

1. Failure (Setup Connection to Bank);

© % NN AW N -

6.1. THE ATM SYSTEM 143

Listing 6.4: Java method that receive instructions from Zanshin and modify attributes
from AtmZanshinWrapper accordingly

private void processAdaptationAction(AdaptationAction action) {

log.info (" Adaptation Thread processing action: {0}", action);
String reqName = "";
switch (action. getlnstruction()) {
case INITIATE:
reqName = action.getParams () [1].toString();
if (AtmRequirement.T_DETECT_CASH_AM. matches (reqName)) {
wrapper.retryAR1 = true;
}
else if (AtmRequirement.T_SET UP_CONNECT. matches (reqName)) {
wrapper.retryAR2 = true;
}
else if (AtmRequirement.G_CONFIRM_TRANS. matches (reqName)) {
wrapper.retryAR4 = true;
}
break ;

case APPLY_CONFIG:
@SuppressWarnings ("unchecked")
Map<String , String> newConfig = (Map<String , String >)action.getParams () [0];
if (newConfig.containsKey (AtmRequirement.CaD. getName())) {
String value = newConfig. get (AtmRequirement.CaD. getName ()) ;
try {
float temp = Float.parseFloat(value);
wrapper .CaD = Math.round (temp) ;
} catch (NumberFormatException e) {
log.error("Parameter value cannot be parsed:

}
wrapper.retryAR1 = true;

"

+ value);

}

break;

case ABORT:

reqName = action.getParams () [1].toString();

if (AtmRequirement.ARl. matches(reqName)) {
wrapper.retryAR1 = false;
wrapper . abortAR1 = true;

}

else if (AtmRequirement.AR2. matches(reqName)) {
wrapper.retryAR2 = false;
wrapper . abortAR2 = true;

}

else if (AtmRequirement.AR4.matches(reqName)) {
wrapper .retryAR4 = false;
wrapper . abortAR4 = true;

}
break;

default:
break ;
}

6.1. THE ATM SYSTEM 144

Retry;
Failure (Setup Connection to Bank);
Retry;
Failure (Setup Connection to Bank),;
Retry;
Failure (Setup Connection to Bank);
Abort;

S S T

Lastly, AR4 specifies that the Confirm Transaction goal should NeverFail (Fig. 6.5).
The adaptation strategy for this awareness requirement is to retry, with a limit of five retries. If
the confirmation is not successful after these retries, the system should abort (Listing 6.2, lines
106 to 114). Thus, the expected behavior for this third adaptation scenario is as follows:

Failure (Confirm Transaction);
Retry;
Failure (Confirm Transaction),
Retry;
Failure (Confirm Transaction);
Retry;
Failure (Confirm Transaction);

Retry;

0 N4k LD =

Failure (Confirm Transaction),

—
e

Retry;

—
—_—

. Failure (Confirm Transaction);
. Abort;

[S—
[\

These adaptation scenarios were simulated through the Yakindu tool. Fig. 6.8 shows a
screenshot of the tool running a simulation of the first adaptation scenario. The larger part of
the tool display a statechart. During simulation, the current state the system is in is highlighted
— for instance, on this screenshot the active state is Use Cash Sensor, highlighted in red®.

The tool also provides a list of events from the statechart, shown in the top-right corner
of the screenshot. The occurrence of an event is simulated by clicking on the event name. The
tool will process the event and react accordingly, by triggering a transition. For instance, the
current state of the system is Use Cash Sensor, which is a sub-state of Detect Cash Amount.
There is a transition from Detect Cash Amount to Setup Connection to Bank, where the event
that trigger this transition is System.detectCashAmountCompleted. Thus, if a user clicks on the
detectCashAmountCompleted event positioned at the top-right area of the screen, the system

will indeed transition from one state to another.

®In grayscale versions of the thesis the active state presents a darker tone.

6.1. THE ATM SYSTEM 145

Lastly, the bottom-right section of the screen (Fig. 6.8) shows a log provided by Zan-
shin’s component. This log presents the messages received at and sent from Zanshin, as well as
its internal reasoning. Through this log it is possible to analyze the adaptations taking place on
the system.

Listings 6.5, 6.6, and 6.7 present excerpts of Zanshin’s log that describe the execution
of the first, second, and third adaptation scenarios, respectively. The full log for each scenario
is available on appendices B.1, B.2, and B.3, respectively. All of these logs start from the
beginning of a new session — i.e., when Zanshin’s component is ready to handle adaptation for
that particular system.

Listing 6.5 shows the log for the first adaptation scenario, which includes ARI, CaD
- Cash Detection, and the following tasks: Detect Cash Amount, Use Cash Sensor, and Use
Operator Entry. Lines 2 and 3 shows that Zanshin received the information that Detect Cash
Amount has failed, and then it identifies that this failure is related to AR/ (lines 4 and 5). On
lines 6 and 7 Zanshin selects to handle this failure with a Retry strategy. The system behavior
described on lines 9 to 14 is exactly the same: Detect Cash Amount fails, Zanshin recognizes
that the failure is related to AR/, and then selects a Retry strategy.

The beginning of the next set of lines is also the same: on lines 16 to 19 Detect Cash
Amount fails and Zanshin recognizes that the failure is related to ARI. However, this time
Zanshin informs that “RetryStrategy is not applicable because it has been applied at least 2
time(s) this session” (line 20). Thus, a Reconfiguration strategy is selected (lines 21 and 22),
leading to a change on the CaD parameter (lines 23 to 25). Please note that the value of CaD
determines which task is executed between Use Cash Sensor and Use Operator Entry, as shown
on Fig. 6.7-A. Thus, while before the default task for Detect Cash Amount was being performed
(Use Cash Sensor), with the change of CaD the Use Operator Entry will be performed instead.

In the following lines, it is shown that Detect Cash Amount has failed again, which
is recognized as being related to AR/ (lines 27 to 30). Neither Retry nor Reconfiguration is
applicable now, as per condition rules defined on the lines 88 and 91 of Listing 6.2. Thus,
Zanshin selects an Abort strategy (Listing 6.5, lines 31 to 34). Since there is no more possible
adaptation action for AR/, Zanshin terminates its session.

On the second adaptation scenario, Listing 6.6, the task under focus is Setup Connection
to Bank, which is related to AR2. On lines 2 and 3 Zanshin is informed of the failed execution
of Setup Connection to Bank. It then recognizes this failure as related to AR2 (lines 4 and 5),
and then selected a Retry strategy. This behavior repeats on lines 9 to 14, as well as on lines 16
to 21. After the third retry this strategy is abandoned (line 27). Instead, the Abort strategy is

selected.

146

6.1. THE ATM SYSTEM

|

™ »

~ 3TUT IUCTIZNJISUT BuTpdemdol Ja]
ITEM IUOTIZNJISUT BuTpdemdol 43
_H__._HE TUOTIONJ3SUT SuTpaemdo) a3
WJIY IUOTIONJALSUT SuTpaemdol a3

PIUTLapUN 03 1353Jd U33q SEY W

I) Wyysel33a3agn sseTd 4o saoue:
Adoo :uotionazsut Sutpaemdod Ja3]

#8a3eays BurfTddy
iT3eidepe pajzatas
a1shalay A8azeaas
w sey waqoad 3yl
IISS35 MalU pajeadd

(626 c5:7Tiel
(626 c5:7Tiel
(626 c5:7Tiel
(626 c5:7Tiel
(626 c5:7Tiel

IBTIeL <- (WyYsel3>aiago "jad) 7
iy "3T 03 SutJddaiaa shaymy T sel
- wyysel32aiago J 17

9 53|14 weaboigy o [Jlomaweld 1050] UIysuez
cBF @Y%k x .
O o 57 30su0D m

sarpadoiyg

4 _ [| »
(N TP Ivr oy T¥ TV L s JFF TNy

s

I I e E R e R

_
_
| PRROWo S [qeEenyfy=qem |
PRR[OWoIUNoWyse =3P 4 |
|
|

o oqUeEgo [Uoosuuojangag

OO UeEgo | U0ID=aU00350]
wa3sis =r
HneRg {= 9
PaEanbayWiyumopIngs |
1ojerzdueg =r

11}

Iwep|

P uoienulg =52

UG =

11}

i |

\E WY 3ew
[(OTyvuege]

egojugissuucsdnias lalsis

HO W1Y uang jueqg 0] UoIPIUUCD) IS0 a1q

W1V umopinys

r —\

wnowy ysed iduy

[T=s()ae2]
paiz|dwooug

105U35 Ysed as(

e

Adg=d
[OTdvAia=a] -

LY

=345

(Juiysuezye

: (JTHvANsSaYWIoI / Jx3 uo niv
pa32|dWwoIunNoWyYSEDIP WSISAS (TuvUEISWIoMI / AnUS
leq 01 uoiP3uuo) dnies © Wnowy ysed 1033124)
W1V 1els
Bl
D — M“w J1a5'L

(JySu-wonoq) o[uonNIIX? s, urysuez pue (JYsu-doy) 10933113 01 SJUIAD JO
IST] 9y} “(3J3)) SAIeIS Ju_LInd Ay} Surke[dsip ‘(001 UOTIBINWIS A} JO JOYSUAAIOS :8°9 AINJIL

19
20

21
22
23
24
25
26
27
28
29

30
31

32
33

34
35

6.1.

THE ATM SYSTEM

147

Listing 6.5: Log excerpt of the execution of the first adaptation scenario (ARI)

INFO:

DEBUG: Received log for
DEBUG: Received log for

Successfully created a new user

session for
life —cycle method call
life —cycle method call

target system atm: 1.422.716.236.486
in session atm/1.422.716.236.486: TDetectCashAm .START()
in session atm/1.422.716.236.486: TDetectCashAm.FAIL()

INFO: Requirement TDetectCashAm has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: ARI (ref. TDetectCashAm) —> failed

INFO: (Session: ARl / 2015-01-31 11:57:16.523) Strategy RetryStrategy is applicable.

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.716.236.486: TDetectCashAm.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.716.236.486: TDetectCashAm.FAIL()

INFO: Requirement TDetectCashAm has 1 AwRegs referring to it. Assuming all AwRegqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: ARl (ref. TDetectCashAm) —> failed

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Strategy RetryStrategy is applicable.

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.716.236.486: TDetectCashAm.START ()

DEBUG: Received log for life —cycle method call in session atm/1.422.716.236.486: TDetectCashAm.FAIL ()

INFO: Requirement TDetectCashAm has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: ARl (ref. TDetectCashAm) —> failed

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Strategy RetryStrategy is not applicable because it has been applied at least
2 time(s) this session.

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Strategy ReconfigurationStrategy is applicable.

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Selected adaptation strategy: ReconfigurationStrategy

INFO: Parameters chosen: [CaD]

INFO: Values to inc/decrement in the chosen parameters: [1.00000]

INFO: Produced new configuration with 1 changed parameter(s)

DEBUG: Received log for
DEBUG: Received log for

life —cycle method call
life —cycle method call

in session atm/1.422.716.236.486: TDetectCashAm .START()
in session atm/1.422.716.236.486: TDetectCashAm .FAIL ()

INFO: Requirement TDetectCashAm has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: ARl (ref. TDetectCashAm) —> failed

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Strategy RetryStrategy is not applicable because it has been applied at least
2 time(s) this session.

INFO: (Session: ARl / 2015-01-31 11:57:16.523) Strategy ReconfigurationStrategy is not applicable because it has been applied
at least 1 time(s) this session.

INFO: (Session: ARI / 2015-01-31 11:57:16.523) Strategy AbortStrategy is applicable.

INFO: : ARl / 2015-01-31 11:57:16.523) Selected adaptation strategy: AbortStrategy

INFO: : ARl / 2015-01-31 11:57:16.523) The problem has been solved or there is nothing else to try. Adaptation

session will be terminated.

B L~

— S0 oW

13
14
15
16
17
18

19
20
21
22
23
24
25

26
27

28
29
30

6.1. THE ATM SYSTEM 148

Listing 6.6: Log excerpt of the execution of the second adaptation scenario (AR2)

INFO: Successfully created a new user session for target system atm: 1.422.718.157.453

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.FAIL ()

INFO: Requirement TSetUpConnect has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: AR2 (ref. TSetUpConnect) —> failed

INFO: (Session: AR2 / 2015-01—-31 12:29:17.490) Strategy RetryStrategy is applicable.

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.FAIL()

INFO: Requirement TSetUpConnect has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: AR2 (ref. TSetUpConnect) —> failed

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Strategy RetryStrategy is applicable.

INFO: (Session: AR2 / 2015-01—-31 12:29:17.490) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.FAIL ()

INFO: Requirement TSetUpConnect has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: AR2 (ref. TSetUpConnect) —> failed

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Strategy RetryStrategy is applicable.

INFO: (Session: AR2 / 2015—-01—-31 12:29:17.490) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.157.453: TSetUpConnect.FAIL()

INFO: Requirement TSetUpConnect has 1 AwReqs referring to it. Assuming all AwRegqs are NeverFail and reporting AwReq state
change: fail

INFO: Processing state change: AR2 (ref. TSetUpConnect) —> failed

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Strategy RetryStrategy is not applicable because it has been applied at least
3 time(s) this session.

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Strategy AbortStrategy is applicable.

INFO: (Session: AR2 / 2015-01-31 12:29:17.490) Selected adaptation strategy: AbortStrategy

INFO: (Session: AR2 / 2015—-01—-31 12:29:17.490) The problem has been solved or there is nothing else to try. Adaptation
session will be terminated.

The third adaptation scenario, on Listing 6.7 is very similar to the second scenario. The
main difference is that the task involved is Confirm Transaction, related to AR4. Moreover,
instead of three retries, now five retries are allowed. In fact, after five retries (lines 7, 14, 21,
28, and 35) Zanshin informs that “RetryStrategy is not applicable because it has been applied
at least 5 time(s) this session” (line 41), selecting to Abort (lines 42 and 43).

Constrasting the actual execution of these three adaptation scenarios with the expected
behavior, it is possible to conclude that the simulation was performed successfully. Based on
the MULAS artifacts, specially on its statechart, it was possible to simulate the execution of an
adaptive system, which displayed a correct behavior — i.e., it performed all adaptation actions
according to what was specified.

The preparation for this simulation took between three and four hours, due to the need
to manually prepare three different models: Zanshin requires the goal model to be expressed
as a metamodel (i), which describe the elements of the goal model, as well as a model in-
stance (ii) describing the relationships between elements; also, it was necessary to create a
statechart diagram (iii) with the Yakindu tool, based on the output of the Goal to Arch tool
(Chapter 5). Moreover, the integration with Zanshin’s component requires additional program-
ming, which also requires some effort. This time span of three to four hours prevents quick
modeling-simulation iterations. However, based on this experience, we believe it to be possible
to automate most of these steps, which may drastically reduce the time required to perform this

kind of simulation.

N N

= RN V)

13
14
15
16
17
18

19

21
22

24
25

26
27
28
29
30
31
32

40
41

42
43
44

6.1. THE ATM SYSTEM

149

Listing 6.7: Log excerpt of the execution of the third adaptation scenario (AR4)

INFO: Successfully created a new user session for target system atm: 1.422.718.724.215

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is applicable.

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START ()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL ()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is applicable.

INFO: (Session: AR4 / 2015—-01—-31 12:38:44.266) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is applicable.

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL ()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is applicable.

INFO: (Session: AR4 / 2015—-01-31 12:38:44.266) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is applicable.

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Selected adaptation strategy: RetryStrategy

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.START()

DEBUG: Received log for life —cycle method call in session atm/1.422.718.724.215: GConfirmTrans.FAIL()

INFO: Requirement GConfirmTrans has 1 AwReqs referring to it. Assuming all AwReqs are NeverFail and reporting AwReq
change: fail

INFO: Processing state change: AR4 (ref. GConfirmTrans) —> failed

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Strategy RetryStrategy is not applicable because it has been applied
5 time(s) this session.

INFO: (Session: AR4 / 2015-01—-31 12:38:44.266) Strategy AbortStrategy is applicable.

INFO: (Session: AR4 / 2015-01-31 12:38:44.266) Selected adaptation strategy: AbortStrategy

session will be terminated.

state

state

state

state

state

state

at least

INFO: (Session: AR4 / 2015—-01-31 12:38:44.266) The problem has been solved or there is nothing else to try. Adaptation

6.2. THE ENVIRONMENT MONITORING ROBOT 150

6.2 The Environment Monitoring robot

In the remainder of this thesis we focused on the design of adaptive software systems.
Here, we focus on an adaptive system on which hardware takes a central role: a robot for mon-
itoring equipment temperature. For confidentiality reasons, we cannot provide further details
about the context of this project.

The benefit of performing this concept proof is twofold. On one hand, it allows us to
analyze the use of the MULAS framework within the context of hardware-intensive systems.
On the other hand, it allows to analyze potential limitations of the framework when adopted for

documenting real systems.

6.2.1 Requirements and Design

The main goal of this Environment Monitoring (EM) system is to Monitor Environment
(Fig. 6.9). Since the environment it is supposed to monitor is dangerous, the client defined
that the system should request Minimal Intervention on the Site, if any. After considering the
possible options, it was decided to develop a robotic system (Use a Robot quality constraint),
to be used under Good Weather.

The Monitor Environment goal is refined onto three sub-goals: Provide History Data,
Measure Temperature, and Handle Alerts. The temperature measurement can be achieved
through Capture Thermal Image, but first the robot needs to Get in Position for Image Cap-
ture. This captured image can then be used to Calculate Temperature.

Information captured by the robot can be accessed by end users, as part of the Provide
History Data goal. In order to provide this capability, the system needs to Record Captured Im-
age and Record Temperature Data. This information can then be viewed by users, as expressed
by the Display History Data goal. The system may Display Temperature per Equipment, as
well as Display Images per Date. For the latter, besides Display Image it is also possible to Set
Zoom, Set Color Contrast, and Set Color Palette.

Based on the gathered information, the system must also Handle Alerts. After perform-
ing the Analyze Temperature and Analyze Temperature Records tasks, the system must Display
Alerts in case the temperature of an equipment reaches a dangerous zone. Moreover, users may
Add Alert Manually.

During design, the research team considered different options for the conception of this
robotic system, such as using a robot that moves over a rail (Rail Robot) or an Aerial Robot.
These alternatives refine the Use a Robot quality constraint (Fig. 6.10). In light of safety
concerns and the Minimal Intervention on the Site constraint, a third alternative was selected: a
Wheeled Robot.

Other design elements are included on Fig. 6.10. With respect to the Generate Alert Au-
tomatically, it was observed that it is necessary to persistently store the generated alert, which is

151

6.2. THE ENVIRONMENT MONITORING ROBOT

g Jsesuod 10j0J }13S
JusWwouYarYO JuswaulyarANY uonduwinssy juesjsuon
) - uewoq Kyjenp ysey |eog

<G+

A|

spaly Aeidsig

M3V pi023y
Kjjlenuep
M3V PPY

joqoy e asn

ajls ayj uo

/

19Yjeap\ poos

ainjesadwa]
ainses|y
UOIUAID)U| [ewuly

o)i9jed 10|0 138

ajeq Jad
sabeuw Aejdsig

sploday
QImesadwa) azAjeuy

juawdinb3z sad

ainjesadwa) injesadwa] Aejdsig

azAjeuy

abeuw }snipy

aumde) abew)|
10} uolisod ui 329

/'

Ajjleanewoiny
9|y 9jesauan

ejeq

fioysiH Aeidsig ejeq ainjesadwa |

pio2ay

abew| jewsay
aimyden

ainjesadwa)
aje|najen

abeuw)|
paimde) pioday

sua|y s|pueH

ejeq
Ki03sIH apinoid

JUBWIUOIIAUT JOHUOI

wWo)SAS INH oY) JO [OPOIA Siuawainbay] :6°9 9angiyg

6.2. THE ENVIRONMENT MONITORING ROBOT 152

represented by the Record Alert design task. Furthermore, it was decided to allow the creation,
modification, and removal of rules that define when an alert should be issued. This is repre-
sented by the BREAD Alert Rules design task, where BREAD stands for Browse, Read, Edit,
Add, Delete.

A requirement that was extensively refined during the design process is the Get in Po-
sition for Image Capture task, which defines the robot’s locomotion. The most basic (design)
task is to Move Robot. 1t is also possible to Orientate Camera, which may either Turn or Tilt
Vertically. This orientation is necessary for pointing the camera to the equipment that will
be monitored. It is also necessary to Navigate Robot, which refers to controlling the robot’s
position.

The robot’s navigation may be performed manually (Navigate Manually): through a
Control pad, users may control the movement of the robot. Moreover, the system’s Graphical
User Interface also provides specific buttons for controlling the robot manually.

Automatic navigation allows the robot to move autonomously through a substation
(Navigate Automatically). For this, an inspection route must be defined, through the Edit In-
spection Route design task. One of the elements of this route is a set of operations points, which
are positions over a pre-defined path (line) on a substation (BREAD Operation Point). These
positions are detected (Detect Position) through RFID markers on the ground (Detect RFID
Markers), as well as through the distance traversed by the robot (Count Steps).

The inspection route also includes equipments that need to be monitored (BREAD Equip-
ments), specific parts of these equipments (BREAD Equipment Part), and regions of interest
(BREAD Region of Interest). These regions of interest are rectangular areas on a picture defin-
ing which section of a picture represents an equipment part.

Lastly, it is relevant that the robot does not move towards forbidden zones. For this
reason, the Do not Deviate from Route constraint was defined. The mechanism devised to
satisfy this constraint is to make the robot follow a line marked on the floor (Follow Line design
task).

Fig. 6.11 shows the flow expressions of the EM system. The resulting transitions can
be seen on Listing 6.8, which represents the output provided by Goal to Arch tool (Chapter
5). The flow expression of g/, albeit reasonably large, can be analyzed by considering its
three concurrent segments, which are separated with hyphens. Each one of these segments

corresponds to a concurrent region on the system’s statechart, shown at Fig. 6.12:

w (i1 (€21 i1)* (dt32 i1)* (dt47 i1)* (g2 i1)* (dt34 i1)*) — corresponds to the bot-
tom region of the statechart. This region represents user-interaction with the system.
From Idle 1 (il), a user may access different functionalities of the system: the sys-
tem may Display Alerts (121); the user may control the robot through the system’s
Graphical User Interface (dt32), Browse, Read, Add, Edit or Delete (BREAD) Alert
Rules (dt47); the system may Provide History Data (g2); lastly, users may Edit In-
spection Route (dt34).

153

6.2. THE ENVIRONMENT MONITORING ROBOT

pusba

uondwnssy jules}suo)
urewoq Ayjenp ubisaq Ysel ubiseq

[S e

JusWwoUaFYO JuswauyeragNY Em___m___%u yeeL)

+— «— [JCOCD

1SE5U0D J0[0] 9

ajeq sad
sabew) Aeidsig

juawdinb3 Jad
dinjesadwa] Aejdsig

aumesadwa)
azhAjeuy abeuwy 3snipy
ainyde) abew|

10} UOHISOd Ul 199

Haly pi0day
T
Kjjenuepy
sps)y Aejdsig HalY PPY
l Jayieam uooo/V
!7

Ajleanewoiny
9|y djesauss)

ejeq
abew| [euuay] Kioysiy Aejdsig

aimde)

ainjesadwa)
aje|noen

abewy
painjde) pioday

SH3lV s|pueH

ainjesadwa]
ainsesp\

ejeq

joqoy e asn Ki03siH apinoid

ayis 8y} uo
UOIJUBAIBIU| [EWIUIN

JUBWIUOIIAUT JOHUO

waISAS A Y} JO [OPOIA [e0D u3Iso(("9 NS

6.2. THE ENVIRONMENT MONITORING ROBOT 154

n (i2 t14 t4 t19) — corresponds to the top left region of the statechart. This segment
represents a cycle that is performed whenever a new thermal image is received:
first Calculate Temperature (t14), then Record Temperature Data (t4), and lastly
Generate Alert Automatically (t19).

n (i3 (dt25i3)? (dt26i3)? (dt33 ((dt26 t13 t3 dt25)I(dt26 dt41))?)*) — corresponds
to the top-right region of the statechart. This flow represents the main loop of the
actual robot. If being controlled manually, the system may Move Robot (dt25) or
Orientate Camera (dt26). 1f on automatic, i.e., when executing an inspection, the
robot will Navigate Automatically (dt33). When it is on the right position, it will
Orientate Camera (dt26), Capture Thermal Image (t13), Record Captured Image
(13), and continue to move (dz25).

Whereas this section presents the general requirements and design elements of the EM
robotic system, the following section describes its specific adaptation elements, such as aware-

ness requirements, parameters, and adaptation strategies.

6.2.2 Adaptation

For this project, it is critical that the proposed robot does not go beyond the area desig-
nated for its movement. In the design goal model (Fig. 6.10), this constraint is expressed as the
Do not Deviate from Route constraint. In order to satisfy this constraint, it was decided that the
robot must follow a line marked on the floor (Follow Line design task). The act of following
a line can be enacted by moving forward and then performing corrective actions — moving to
the left or to the right — whenever the robot goes astray. In other words, the robot will adapt its
behavior according to its positioning relative to a path (line).

It is possible to implement this adaptation using the component that is a part of the Zan-
shin framework. That component has the peculiarity of not being able to handle any information
regarding a failure. For instance, if we were to define a NeverFail awareness requirement to the
Follow Line task, it would not be possible to perform the correct adaptation, since we would not
know if the robot should move to the right or to the left. For this reason, three additional design
constraints were included in the model: Do Not Deviate to the Right, Do Not Deviate to the
Left, and Do Not Move if Away from the Line (Fig. 6.13). A NeverFail awareness requirement
was defined for each one of these constraints — respectively, AR/, AR2, and AR3.

Once what needs to be monitored is defined (deviation), it is also necessary to specify
what happens if some correction is necessary (adaptation actions). For this scenario, it is pos-
sible to define a parameter that represents which corrective action must be performed: MTP
— Movement To Perform. 1t is also necessary to define a Change Parameter action for each
awareness requirement: if Do Not Deviate to the Right (AR]) fails, the value of MTP changes to
MoveToTheLeft; if Do Not Deviate to the Left (AR2) fails, the value of MTP changes to Move-
ToTheRight; lastly, if Do Not Move if Away from the Line (AR3) fails, i.e., if the robot is moving

155

6.2. THE ENVIRONMENT MONITORING ROBOT

puaba

uonduwnssy julensuo)
urewoq Ayjenp ubisag Ysel ubisaqg

[s e

JUBWRUYBFYO JuBWBUYRFANY E»m___.amh%o - €09

+— «— [COCCD

(8€IPlLEIPI9EIPISEIR)

ajeq sad e

sabew Aeidsig

Haly pi1oday e
Ajleagewoiny e

T
@ J3]y 9jelausn
Ajjenue
r_o__< vv_ﬂ {891 €21 22)
13UHESM PO sply alpueH e
> j0qoy e asn

s ayj uo v
UOIJUBAIBYU| [eWIUIy < a
JUBWIUOIIAUS JOHUO

V4
g (%)

KioysiH Aejdsig

spaly Aejdsig

sje|nojeg

painyded pioosy

ainsea|y

ejeq
K10}s1H apinoid

[G((Lyp 9zIp)l(SzIp €1 €11 923P)) £€1P) (€1 92IP) é(€! SzIp) €D)-(613 11 w13 2)-(:(11 #1P) »(11 26) (11 293P) (11 Zep) (11 L2 1Y) |
wASAS INH a3 JO suorssardxyg Mol :T1°9 9IngL]

6.2. THE ENVIRONMENT MONITORING ROBOT 156

Listing 6.8: Output of the statechart derivation for the EM system

~
Transitions: ~->il, ~->i2, ~->i3, t21->i1, il->t21, il->t21, dt32->il, il->
dt32, il->dt32, il->dt32, dt47->il, il->dt47, il->dt47, il->dt47, il->
dt47, t20->tl1l, t11->t20, t11->t20, t8->tll, t9->tl1l, tl0->tll, t1l->t8,
t11->t9, t1l->t10, tl1ll->t8, tll->t9, tl1l->t10, tll->t8, t1l->t9, tll->
10, t6->t11l, t6->il, t1l->i1, tll->il, tl1l->il, il->t6, il->t6, il->t6,
i1->t6, il->t6, dt35->il, dt36->il, dt37->il, dt38->il, il1->dt35, il->
dt36, il->dt37, il->dt38, il->dt35, il->dt36, il->dt37, il->dt38, il->
dt35, il->dt36, il->dt37, il->dt38, il->dt35, il->dt36, il->dt37, il->
dt38, il->dt35, il->dt36, il->dt37, il->dt38, il->dt35, il->dt36, il->
dt37, il->dt38, i2->t14, tl4->t4, t22->t23, t23->t48, t4->t22, dt25->i3,
i3->dt25, dt27->dt28, dt28->i3, i3->dt27, i3->dt27, dtdl->dt42, dtd2->
dt39, dt39->dtd4l, dt27->dt28, dt28->t13, t13->t3, t3->dt25, dt27->dt28,
dt28->dt4l, dt39->dt27, dt39->dt27, dt39->dtdl, dt25->dtdl, dt39->dt4l,
i3->dt41l, i3->dtd4l, i3->dt4l

far from the designated path, the value of MTP changes to Stop. If there is no failure, the robot
is allowed to move forward.
The following subsection describes the enactment of this adaptation on a real, small

scale robot, which provided positive results.

6.2.3 Experimentation

In order to evaluate whether it is feasible to use the MULAS framework on a hardware-
intensive system, as well as on the context of a real project, this experiment consisted of enacting
the adaptation cycle described in Section 6.2.2 on a real robot, using the adaptation component
included in the Zanshin framework.

Partnering with the research team that developed the EM robot, we assembled a smaller
scale robot for experimentation. On this robot we adopted the design and the operating system
of an early prototype that was used as a concept proof for the EM robot. Since this smaller
robot does not have the same capabilities as its larger counterpart, the experimentation was per-
formed using only a subset of the EM system functionalities, related to mobility and navigation.
This robot is able to move around the environment through manual input or through automatic
control, with the latter being achieved by following a specific line on the floor.

Fig. 6.14 shows a picture of the robot, highlighting its main components. A webcam
mounted towards the floor provides pictures that are used for line detection (Fig. 6.14-A). This
webcam is connected to an ordinary computer, which performs the image processing required
for line detection. Based on the results of image processing, the computer will select one of
the following instructions: turn left, turn right, move forward, or stop. These instructions are
sent from the computer to the robot through a USB port (Fig. 6.14-B). This port is attached to
a microcontroller board (Fig. 6.14-C), model Arduino Uno R27, which translates instructions

"http://arduino.cc/en/main/arduinoBoardUno

157

6.2. THE ENVIRONMENT MONITORING ROBOT

puaba
s YOX - N\ A
Aes ANV N
uoyisuell g ynejeq s (63)
-— AUY. O 1SBJ3U0) J0|0D 13S
(omy)
(83) wooz 395 a119|ed 40j0D 195
(£8) a8ew 1snlpy)
S~ | 7
-
(02y) > (T13) ?™eQ
Allenuen 13|y ppY _A | Jad safew| Aejdsig
4 N
(91) 3uswdinb3 yad
ainjesadwa] Aejdsig
(s8) ezeq (28) ezeq
_ Aso1siH Aejdsig Ao31sIH
_ mU_>OLn_\
(8€1p) 1ied
/ juawdinb3 qvayg
(£€3p) 3s3133u]
Jo uoi8ay avIyg
(9€1p)
(£¥3p) juawdinb3l av3yg
S3|NY H3|Y Av3IHg
(S€1p) ul0d
uoljesadp av3iyg
(T73) sualy Aerdsig
_ (€1p) 1n0Y uoidadsu| 11p3)
(z€1p) @dep91y|
195 [eaydesn
-
s N !
|
(£T3) °8ew (€3) @8ew | (¥13) aumjesadwa | Z ol
|ewJay] aumde) paJnide) pioday | 91e|ndje) I
I
»{ (s3p) 3090y anow | 1) eeq
) 1 _ ainjesadwa) pioday
|
(821p) Alleaian 3L (z#3p) sdais uno) _
|
(6€3p) 3ur1 Mmojj04 ! (h
I (83) 13|V p10day
(czap) winy |
- sJ9xJeN QI4Y 199190 Jt— _
I
1p) eJadue) aiejuald
(923p) 2 o (0v3p) uonIsod 199190 |
! Y
€€1p) Ajleonrewoiny ajesineN |
(e€p) Al N) | (z) (€73) spi0day
| Pinjesadwsa] azAjeuy, oinjesadwa] azAjeuy,
|
_ L (6T3) AjleannewolIny U3y 9jeJauso)
|
623p) 10qoy desineN | |
L (623p) 109 J !)

WAISAS INH U3 JO Meydae)s aseq 79 N3

(T8) 3UswuoJIAUT JOJIUOIN

6.2. THE ENVIRONMENT MONITORING ROBOT 158

Figure 6.13: Awareness requirements and parameters on the EHM system’s design goal
model

Design Task Design Quality
Constraint

— —>

AND-refinement OR-refinement

(o]
Parameter RAwa;eness‘
/ equirement
O AR2: NeverFail / Legend
O AR3: NeverFail

O/AR1: NeverFail

Figure 6.14: Picture of the robot equipment. A) Webcam; B) USB port; C)
Microcontroller board; D) Motor driver; E) Power supply; F) Right wheel; G) Left
wheel

received from the USB port onto I/O signals that control the motor driver (Fig. 6.14-D). Based
on these signals, the motor driver provides electricity to the motors that turn the wheels (Fig.
6.14-F and Fig. 6.14-G). The power supply consists of six 1.5V batteries for the motor driver,
as well as six 1.5V batteries for the microcontroller board (Fig. 6.14-E).

Navigation of the robot is achieved by marking a line on the floor, over which the robot
must move. Fig. 6.15 shows the robot positioned over the line that will be followed, which
has a light part on the middle and a dark part on the sides. Based on pictures captured from a
webcam mounted on the robot, it is possible to apply traditional image processing techniques
and identify the center of the line. Comparing the center of the line with the center of the
image, it is possible to know if the robot needs to move either to the left or to the right. In order
to perform the required processing we developed a Java program using the OpenCV? library,
which includes an implementation of different image processing algorithms.

Fig. 6.16 shows pictures of the line shown on Fig. 6.15, taken at different processing

80pen Source Computer Vision library, available at http://opencv.org/

6.2. THE ENVIRONMENT MONITORING ROBOT 159

Figure 6.15: Picture of the robot positioned over a line to be followed

v/

steps. Fig. 6.16-A shows the image captured through webcam, after being transformed to
grayscale. The dark areas on the sides of this image represent the dark tape that is used to
delimit the line, whereas the light area on the center of the image represents the light tape on
the middle of the path. The white blob on the top of the image is a reflex of light, whereas the
somewhat darker area to the bottom of the blob is due to shadow cast by the webcam.

After thresholding, the result is a pure black-and-white image, shown in Fig. 6.16-
B. Erosion and dilation are then applied to reduce noise (Fig. 6.16-C). With this image, it
is possible to identify the area of the line by identifying the larger white area on the image,
using algorithms from SUZUKI; ABE (1985). The extremities of this area are delimited by thin
straight lines on Fig. 6.16-D. Based on this area, it is possible to find the horizontal center of the
line, depicted as a small black circle on the top of Fig. 6.16-D. On this case, the perceived center
of the line is close to the center of the image, meaning that the robot is correctly positioned over
the line.

In contrast, Fig. 6.17 shows the processed images when the robot is over a curve. As
it moves forward on a curve to the right, the center of the white area (representing the middle
of the line) moves to the right. This indicates that the robot should turn right in order to keep
following the line.

Besides the programming specific to this domain, it was also necessary to perform the
integration with Zanshin, following the procedure described on Section 6.1.1.3 (Step 3): create
a metamodel based on the target system goal model; create an editor tool based on that meta-
model; instantiate the metamodel, using the editor tool that was created; and customize the Java
communication code available in Zanshin’s repository. With this setup the robot was able to
successfully follow the path depicted on Fig. 6.15. The distance from the center of the robot to
the perceived center of the line, throughout a traversal of the path, is shown on Fig. 6.18.

Fig. 6.18 shows that the robot was able to stay reasonably close to the center of the

line, only twice going slightly beyond one centimeter. Positive values indicate that the robot

6.2. THE ENVIRONMENT MONITORING ROBOT 160

Figure 6.16: Image captured via a webcam mounted on the robot, when over a straight
line, after different processing steps. a) captured image, in grayscale; b) image after
thresholding; c) image after erosion and dilation; d) image with rectangular contour and
horizontal center

b e
b b

Figure 6.17: Image captured via a webcam mounted on the robot, when over a curve,
after different processing steps. a) captured image, in grayscale; b) image after
thresholding; c) image after erosion and dilation; d) image with rectangular contour and

horizontal center
a) b)

6.3. SUMMARY 161

Figure 6.18: Distance from the center of the camera to the center of the visible part of
the line being followed, over time

Distance from center (cm)

is to the right of the center of the line, whereas negative values indicate that it is to the left.
The average distance from center on this run was -0.100 centimeters, with standard deviation of
0.481. However, it is important to notice that the distance plotted on Fig. 6.18 is based on the
perceived center of the line — the distance from the perceived center to the actual center may
vary from zero to &= 1 centimeter. For comparison, the width of the line varies between 12 and

13 centimeters.

6.3 Summary

This chapter presented our initial efforts to evaluate the MULAS framework. First, a
concept proof on the development of an ATM system, which shows the evolution of its initial
requirements goal model towards a Design Goal Model and the statechart generated from the
latter, using the GATO tool that was described in the previous chapter. For the sake of clarity,
the ATM concept proof was presented as if the architectural design process was completely
followed sequentially. However, the enactment of the process was actually incremental.

The resulting models from the design process are then used to simulate the system be-
havior with a statechart simulation tool, which showed the correct execution of the adaptation
scenario described in the concept proof. As the simulation on Section. 6.1.1.4 (Step 4) il-
lustrates, the use of statecharts in combination with Zanshin’s adaptation component helped
defining the behavior of an adaptive system, bridging the gap between the system requirements
and the system reification in terms of statecharts.

The second concept proof goes a step further and use the MULAS framework and Zan-

6.3. SUMMARY 162

shin’s component to actually develop and run a robotic system. This concept proof was based
on a real project resulting from an R&D project involving academic and industrial partners. On
the experimentation section of this concept proof it was shown that the developed system was
able to successfully enact the adaptation segment of the Environment Monitoring system.
While the evidence presented on this chapter is anecdotal, the following chapter presents
a set of empirical experiments that evaluate different aspects of the MULAS framework: the
scalability of the algorithms for automatically generating statecharts from a design goal model

(from Section 5.2), and the design process that is described on Chapter 4.

163

Experiments

In order to evaluate different characteristics of the proposed framework, a mix of em-
pirical methods was utilized. Two controlled experiments were conducted: the first one had
the goal of evaluating the scalability of the automatic generation of statecharts from Design
Goal Models; the second one aimed at analyzing the use of the architectural design process by

non-experts.

7.1 Scalability Evaluation

Besides analyzing if the statechart generated with the MULAS Architectural Design
process is able to enact the correct adaptation strategies when coupled with Zanshin’s adaptation
component, a controlled experiment was performed to assess the scalability of the statechart
generation algorithm. The goal of this empirical study is to analyze whether the algorithm is
able to handle the generation of statecharts for large systems within a reasonable time.

If the generation takes too long (in the range of hours), the architectural design process
would be deemed practically infeasible, since it would not allow for the incremental generation
of statecharts. Ideally, the algorithm duration should be within the range of seconds, allowing
to provide a quick feedback for the software architect that is designing the flow of the system.

The input for this experiment is a set of ten flow expressions corresponding to models
with different number of elements (100, 200, 300, 400, 500, 600, 700, 800, 900, and 1000).
This evaluation could have included larger models, but this number is sufficient to provide a
notion of the performance of the algorithm. Furthermore, when analyzing goal models used in
industrial projects (MAIDEN et al., 2011), we could not find any model with more than 1000
elements’.

A first flow expression, with 100 elements (see Listing 7.1), was randomly generated

and then composed to create the larger expressions. These expressions use all possible opera-

IThe largest model in this thesis has 102 elements. The largest model presented in a collection of goal modeling
showcases (MAIDEN et al., 2011) has approximately 493 elements. The larger example in a recent study that
analyzed the complexity of goal models contains approximately 200 elements (GRALHA; GOULAO; ARAUJO,
2014).

7.1. SCALABILITY EVALUATION 164

tors: sequential, alternative, concurrent, optional, zero or more times, and one or more times.
The derivation of each expression was executed 1000 times, cycling between the expressions,

in order to reduce interference from the operating system.

7.1. SCALABILITY EVALUATION 165

Listing 7.1: Randomly generated flow expression with 100 elements
(R

tlx £2? €3 (t4]t5|t6|t7) t8 (t91tl10)? tll+ tl2 (t13-(tl4 tl5 (tl6]tl7)))
£tl187? (tl9+4)7? 120 t21? t22+ t23 (t241t25|t26(t27) t28 (t29]t30)? t31x t32
(£33-(t34 t35 (t36]t37))) t387 t39+ 140 t4lx td42? td43 (t44|t45|td6(|td7)
t48 (t49|t50)? t51+ t52 (t£53-(t54 t55 (t56|t57))) t58?2 (t59+)? 160 t6l?
£62+ t63 (t64|t65]t66[t67) t68 (t69[t70)? t71lx t72 (t73-(t74 t75 (t76]
t77))) t78? t79+ 180 t81lx t827 t83 (t84|t85|t86]t87) t88 (t89|t90)? t9l+
£92 (t93-(t94 t95 (t96]t97))) t98? t99x il00

Table 7.1: Average time for deriving statecharts from flow expressions, with standard
deviation o

Size Average time (ms) o

100 65.25 6.32
200 73.08 8.28
300 79.80 6.15
400 84.63 9.59
500 89.07 9.71
600 92.44 12.60
700 94.82 6.29
800 94,68 5.35
900 100.21 8.59
1000 103.98 8.63

Table 7.1 presents the results of the experiment, with average execution times and its
standard deviation. The measurement was conducted on a computer with a 64 bits Pentium Dual
CPU T4300 processor with 2.1 GHz and 3 Gb of memory. These results show that the derivation
of statecharts from design goal models can be performed quickly even on large models, thus
indicating that the derivation algorithm is scalable.

These results shown on Table 7.1 do not include an execution of the derivation from
flow expression with 800 elements, which lasted for 1919 milliseconds. That execution was
clearly an outlier, 1989% higher than the average, which was bringing the standard deviation
from 5.35 to 57.94.

7.2. PROCESS ASSESSMENT 166

Figure 7.1: Average Execution Time of the statechart derivation algorithm. The solid
line represents the actual average execution time, while the dashed line represents its
linear regression

110

105

100 H

95

90

85

average execution time

80

75

70

65 T T T T T T T T
100 200 300 400 500 600 700 800 900 1000

number of elements

The solid line on Fig. 7.1 presents an alternative representation of the average execution
time per number of elements, whereas the dashed line represents its linear regression. This
graph suggests that the execution time of the statechart derivation algorithm is linear.

Two threats to the validity of this study were identified:

» Unrealistic input — it is not known if the flow expressions adopted in this experi-

ment are representative of the flow expressions to be found in real, large systems.

» Possible lack of complexity — Although the flow expressions used for this exper-
iment contain all the possible operators, they do not contain all of their possible
combinations. Some combinations may prove to be more complex than the ones

found in this study, which may result on longer execution times.

Moreover, future development on the Goal to Arch tool includes the capability to au-
tomatically generate a visual representation of the statechart, instead of providing the current
text-based list of states and transitions. Once this feature is developed it will be necessary to
rerun this experiment, since the generation of visual diagrams will, most likely, require longer

execution times.

7.2 Process assessment

When conducting research on information systems it is essential not only to develop
theories and artifacts, but also to evaluate them (HEVNER; MARCH; PARK, 2004). Besides

7.2. PROCESS ASSESSMENT 167

the assessment itself, the evaluation may provide additional information which can be used to
further refine and improve the proposed solution. Hence, as part of this research, we have used
a mix of evaluation methods.

In the previous section we have shown the evaluation of the suitability of the proposed
framework for designing adaptive systems, showing that the resulting artifacts were able to reify
the adaptive feedback loop.

Considering the effort required to perform the generation of base statecharts, we devel-
oped algorithms to automatically derive a statechart from the design goal model. The scalabil-
ity of these algorithms was evaluated with positive results, showing that they can be applied to
large, realistic systems. However, the previous evaluations were conducted by the authors, thus
it was still not clear whether the process could be successfully applied by others — and, if so,
how easy would it be, and how good would the resulting artifacts be?

The design and results of a controlled experiment (SJ@ BERG et al., 2005) with 15

subjects on which we explore those questions is presented in the following sub-sections

7.2.1 Experiment Definition and Planning

This experiment was designed aiming to analyze the MULAS architectural design pro-
cess, for the purpose of evaluation and improvement, with respect to its use by non-experts,
from the point of view of software engineers, in the context of students applying the process on
a toy example. This is a exploratory qualitative study, aimed at identifying early indications on
the applicability of the process and on the quality of the resulting artifacts. It can be character-
ized as a multi-test within object study, as a single object is examined across different subjects
(WOHLIN et al., 2012).

This experiment took place on a requirements engineering course within a computer
science program, with a sample of 15 undergraduate and graduate (master) students. Thus,
its context can classified as a specific context (results cannot be generalized), in an offline
environment (i.e. it is not a part of industrial software development), with students working

on a toy problem.

7.2.1.1 Hypotheses, Variables, and Measures

Albeit being a qualitative study, the definition of hypotheses, variables and measure-
ments is helpful for guiding the planning of the experiment, as well as the results analysis.
Thus, the following null hypotheses were defined:

» Hpl: The syntactical correctness of a statechart created with the MULAS treatment

is the same as with the control treatment.

» Hp2: The complexity of a statechart created with the MULAS treatment is the same

as with the control treatment.

7.2. PROCESS ASSESSMENT 168

= H(3: It is not viable for non-experts to enact the MULAS architectural design pro-

cess.
» Hp4: The MULAS architectural design process is complex.

If the null hypotheses can be rejected with relatively high confidence, it is then possible

to consider alternative hypotheses:

» H,1: The syntactical correctness of a statechart created with the MULAS treatment

is higher than with the control treatment.

» H,2: The complexity of a statechart created with the MULAS treatment is smaller

than with the control treatment.
= H,3: It is viable for non-experts to enact the MULAS architectural design process.
s H,4: The MULAS architectural design process is not complex.

The independent variable of this study is the statechart generation process, which can
assume one of the values in {MULAS, ad hoc} — MULAS is the creation of statecharts using
the MULAS architectural design process, whereas ad hoc is the creation of statecharts without
any kind of guidance (control group). Each of these options correspond to a experimental
treatment.

The dependent variables are: syntactical correctness of statecharts, complexity of state-
charts, process viability, and process complexity. The metrics adopted to measure these variable
are described next.

The syntactical correctness of statecharts can be measured by the number of syntactical
errors, where more errors implies less correctness. To evaluate the complexity of statecharts,
we adopted the metrics proposed and validated by GENERO; MIRANDA; PIATTINI (2002);
MIRANDA; GENERO; PIATTINI (2003): number of states and number of transitions.

While the first two hypotheses can be tested by comparing the results of both treatments,
the remaining two hypotheses are tested by analyzing only the results of the MULAS treatment.
To assess the viability of non-experts enacting the MULAS architectural design process, we
analyzed the correct use of flow expressions (based on number of errors, coherence with the
statechart, and coherence with the expected behavior), as well as the correct use of adaptation
strategies patterns (number of errors). Lastly, the perceived complexity of the process can be
analyzed by means of Likert items (Appendix C.4).

The controlled variables are time spent studying MULAS and time spent to perform the
experiment. The first variable was controlled by assuring that all subjects in the MULAS treat-
ment group had the same amount of classes on the topic. Moreover, no resource on the topic
was made available for them, preventing studies away from class. To prevent this lack of indi-

vidual studies from harming the quality of the results, a reference guide was provided to each

7.2. PROCESS ASSESSMENT 169

subject during the experiment itself. This reference guide summarized the steps, notation, and
patterns from the architectural design process. The second variable was controlled by requiring
all the students to remain in the experiment room for a set amount of time —- no subject was

allowed to leave early or to stay late.

7.2.1.2 Subjects, Treatments, and Instrumentation

The sample of this study is a set of students from a requirements engineering course
offered at the Center of Informatics in the Federal University of Pernambuco, during the sec-
ond semester of 2014. Thus, this sampling can be classified as a non-probability, convenience
sampling (WOHLIN et al., 2012).

In this experiment we compare (i) the use of the MULAS architectural design pro-
cess for creating statecharts with (ii) the creation of statecharts without the use of any partic-
ular method or process (ad hoc). Subjects on the first treatment compose the MULAS group,
whereas subjects on the second treatment compose the control group.

Subjects were assigned to the different treatments randomly. Since the same object
(an e-commerce system) was used in both treatments, this can be classified as a completely
randomized design. Since there was an odd number of participants, the distribution was not
evenly: seven subjects were assigned to the MULAS group, while eight subjects were assigned
to the control group. Therefore, there is a slight unbalance on the distribution of subjects.

The object of this study is a description of the behavior of an online bookstore system.
Considering the specificities of each treatment, two slightly different instruments were created
for the same object (Appendices C.2 and C.3). In the first instrument, applied to the MULAS
group, adaptation was described using awareness requirements and parameters. However, since
participants of the control group were not trained on these concepts, the same adaptation was
described textually in their instrument (Appendix C.3).

The measurement instrument devised to collect data about the complexity of the MU-
LAS architectural design process was a questionnaire composed of eighteen Likert items (LIK-
ERT, 1932), presented in Appendix C.4. Since this questionnaire refers to the MULAS archi-
tectural design process, it was applied only to participants of the MULAS group. The data
regarding other aspects of the experiment was collected manually upon the statecharts created
by the subjects.

Besides these measurement instruments, we also designed a characterization question-
naire containing questions about the software engineering background of the subjects (Ap-
pendix C.1). This questionnaire was applied to both groups.

Lastly, according to WOHLIN et al. (2012), guidelines such as process descriptions and
checklists are part of the instrumentation of a experiment. Thus, subjects in the MULAS group
received a description of the MULAS architectural design process to be consulted during the
experiment. Since the control group did not adopt any particular process or method, no such

instrument was provided to them.

7.2. PROCESS ASSESSMENT 170

While this section describes the definition and planning of the experiment, the following
section presents the preparation of the experiment, as well as the execution of the experiment
itself.

7.2.2 Experiment Preparation and Execution

Before performing the experiment we needed to assure that all subjects had enough fa-
miliarity with statecharts. This was achieved through a series of activities: first, the students
participated on 6 hours of classes on statecharts, including theory, practice, and tool support.
Then, they were tasked with an assignment on which they needed to create a statechart based
on a textual description of the requirements and of the expected behavior of a software sys-
tem. In order to assure that each student created their statecharts individually, the students
had to perform an oral examination where they described the statechart they created and an-
swered questions related to their model. Since this assignment was part of their grading in the
requirements engineering course, the students were motivated to perform well on this assign-
ment. Nevertheless, students with unsatisfactory results in this phase were excluded from the
experiment.

With this training and examination, the control group was ready to take part on the
experiment, since they had shown that they were able to successfully perform the task of the
experiment: to create a statechart based on a textual description of the behavior of a system,
without adopting any particular method or process. For the students on the MULAS group we
provided an additional 5.5 hour training on the MULAS framework and its architectural design
process, consisting of theoretical lessons and practical activities.

The training and examination performed during the preparation of this experiment re-
quired a total of 16.5 hours of classroom interaction with subjects. On top of this time, a
reasonable effort was required in order to plan the experiment, as well as to prepare the training
resources and the experiment instruments. This preparation took place over the span of seven
weeks.

The experiment execution was carried out on a 2-hour session, corresponding to the du-
ration of a regular class. In the first 10 minutes the students answered a characterization ques-
tionnaire, used to obtain their background on software modelling, in particular, and software
engineering, in general. The following 1 hour and 40 minutes were spent with the execution
of a set of tasks, resulting on the creation of a statechart based on the goal model of a system
and on a textual description of its behavior. The remaining 10 minutes was used for a feedback
questionnaire composed of 18 Likert items, answered only by those subjects on the MULAS
treatment. In order to reduce bias, this questionnaire was applied anonymously.

During the experiment, the following protocol was observed: only questions about the
instruments could be answered by the experimenter; no question about the MULAS architec-

tural design process or about statecharts could be answered; no interaction between subjects

7.2. PROCESS ASSESSMENT 171

was allowed.

The set of tasks required from the subjects was slightly different between treatments, but
they both had the same experimental object: an online bookstore. The subjects were provided
with the system’s requirements (expressed as a goal model), and a textual description of the
expected behavior of the system. Fig. 7.2 shows the goal model, whereas the textual description

of its behavior is as follows:

The Saravd Bookstore intends to develop a web-based e-commerce system, where
it can sell the books in its inventory. Accessing the website, users will see a listing
of available books. If the user finds the desired book in the listing, she will be able
to view the book details directly from the listing. If the book was not found on the
listing, the user can use a search mechanism, as many times as warranted, until the

book is found —- then, the book details can be viewed.

Once the desired book is found and its details are viewed, the user has 3 options:

either buy the book, or send a book recommendation, or write a book review.

In order to perform the purchase, the user must follow the following procedure:
first it is required to provide personal data, then calculate shipping costs, confirm
order, and lastly perform the payment. However, the shipping costs calculation
is not always performed, as the user may choose to have the book delivered on a

physical store. To make a purchase, no kind of registering or login is required.

Regardless of user interaction, the system shall send e-mails at 12-hours intervals

for those users whose payment have not been approved yet.

Even though it can be considered a simple behavior, it involves non-trivial flow ex-
pressions, comprising the different constructs from the flow expression language: sequences,
alternatives, optionality, repetition, and parallelism. The following flow expressions represent a
possible solution: g2 — ((il t4)+) forgl,t7 téx t5 (g8 | t31 | t32) forg2,
andt9 t10? t11 t23forgs.

The tasks performed by the subjects can be divided in two sub-sets. The first sub-set
was concerned with the regular behavior of the system (without adaptation), whereas the second
sub-set was concerned with the adaptation behavior. The MULAS group had to create a state-
chart following the following steps of the process: Define basic flows, Generate base statechart,
Specify transitions, and Include adaptation elements. For this group, the adaptation behavior
was defined in terms of awareness requirements and adaptation strategies. The full description
of the tasks are presented on Appendix C.2. Additionally, a reference guide with main elements
of the MULAS framework was made available for the students during the experiment. For the
control group, the adaptation behavior was described textually, since they had not been intro-

duced to these concepts. Still, they had to perform two tasks: create a statechart that represents

7.2. PROCESS ASSESSMENT 172

Figure 7.2: Goal Model used in the empirical evaluation

@ Sell Books

Send Payment
° Reminder
@ Choose a Book

° List Books
@' ecommend Book

@s“rch for Book > éiaw Book Dstails>
t5

@- erform Purchase

\

@' erform Payment
Provide
e Personal Data
Confirm Order
= (11 \ >
@ hipping Costs

cCHcmC3T

Goal Task Quality Domain
Constraint ~ Assumption

_— >

AND- OR-
refinement refinement

Legend

the regular behavior, and modify the created statechart in order to include the adaptation behav-
ior (C.3). No supporting tool was allowed for the experiment, thus the outcomes of the tasks
were produced manually over pen and paper.

After the execution of the experiment, the collected data was validated, checking against
unanswered questions, incomplete answers, questions with more than one answer, and unread-
able text. No problem was found on the collected data.

With this structured activity, where subjects on both treatments tackled the same object,
we were able to compare statecharts created with and without the MULAS architectural design

process, as described in the following section.

7.2.3 Results and Analysis

The first hypothesis (Hp1) is related to syntactical correctness of the statecharts created
by the experiment participants. In order to measure correctness, we can analyze the number of
errors in the statechart. Fig. 7.3 provides an overview on the number of errors observed in the
statecharts created during the experiment. Different bars represent different subjects, whereas
different shades on the same bar represent different kinds of errors made by the same subject.

On each group, three subjects made syntactical errors, suggesting a balance on the syn-
tactical correctness of both treatments. When considering the number of rules violated, the
results are also identical: on the MULAS group, two of the subjects violated one syntactical
rule each, whereas one subject violated two syntactical rules, totalling up four kinds of mis-

takes; the same is the case on the control group. However, when considering the number of

7.2. PROCESS ASSESSMENT 173

Figure 7.3: Syntactical errors in the statecharts created during the execution of the
experiment. Different shades in the same bar indicate different kinds of errors. A)
MULAS group; B) Control group

A) MULAS group B) Control group
16 16
14 14
12 12
g 10 S 10
S 3 5 8
g g
g 6 g 6
Sy Y
2 +— 2
subject subject

instances of each error, there are more syntactical errors on the MULAS group (17) than in the
control group (6). This disparity of 183.33% is due to a single kind of mistake repeated thirteen
times by a single subject: the lack of events on statechart transitions. While the sample of this
experiment is not statistically relevant, we are assuming that this subject (represented by the bar
in the middle of the MULAS group, Fig. 7.3) is an outlier, as it made 3266,67% more mistakes
than the average on the same group, and 700% than the second subject with most mistakes on
the same group.

Hypothesis Hyp2 is concerned with the complexity of the statecharts. Since all subjects
covered the entire behavior requested in the textual description of the system, it was possible
to directly compare the statecharts from the control group and from the MULAS group. Three
metrics for measuring the structural complexity of statecharts were validated by MIRANDA;
GENERO; PIATTINI (2003): Number of Activities, Number of States and Number of Transi-
tions. Since no statechart activity? was defined in this experiment, we adopted only the latter
two metrics.

Comparing the number of states in the regular behavior, there is a slight difference
between the MULAS treatment (average of 10.85 states), 15.69% less than the ad-hoc treatment
(average of 12.87 states), as shown in Fig. 7.4-A. Moreover, the number of transitions in the
MULAS treatment was considerably smaller than in the ad-hoc treatment: an average of 16.57
transitions against an average of 22 transitions, a difference of 24.68% (Fig. 7.4-B).

The difference is even more relevant when considering the adaptation behavior. In the
MULAS treatment, considering each subject, no additional state was included in the statechart,
while only one additional transition was included — in conformity with the adaptation strategies

patterns. In the control group, an average of 2.4 additional states and 4.5 additional transitions

ZStatechart activities are long-term actions, which represent continuous and interruptible work that is carried
out while the system is in a given state (HAREL, 1987).

7.2. PROCESS ASSESSMENT 174

Figure 7.4: Number of elements in the statecharts created during the execution of the
experiment. A) Average number of states; B) Average number of transitions

A) Average number of states B) Average number of transitions

15,27 26,5
12,87 22

10,85 10,85
16,57 17,57

24 a5

1
0
W MULAS group B MULAS group
regular behavior adaptation behavior total Control group regular behavior adaptation behavior total Control group

were included in the model.

In order to analyze the viability of the enactment of the MULAS architectural design
process by non-experts (Hp3), we can consider the number of errors specifically related to the
process. In order to do so, we analyzed the flow expressions created by subjects in the MULAS
group with respect to syntactical errors, coherence with its respective statechart and coherence
with the textual description of the expected behavior. Moreover, we also measured the number
of errors related to the application of adaptation strategies patterns.

An overview of the number of errors related to flow expressions is shown on Table 7.2.
None of the subjects made syntactical errors —- i.e., all of their expressions were valid ex-
pressions. Two out of the seven subjects had incoherencies between their flow expressions and
their statechart — one made one mistake, and the other one made two mistakes. In both cases,
the statechart represented the expected behavior of the system, but were in discordance with
the flow expressions. Two other subjects wrote correct expressions coherent with the textual
description, but in the statechart included additional transitions —- one included one transition,
and the other included two transitions. Thus, these expressions were also incoherent with their
respective statecharts. Inversely, another subject wrote flow expressions coherent with his stat-
echart, but incoherent with the textual description of the system behavior. Considering these
different kinds of mistakes, only two subjects wrote flow expressions correct on all aspects.

Besides analyzing the use of flow expressions, we also analyzed the use of adaptation
strategies patterns (Table 7.3). The experiment instrument required the use of two adaptation
strategies patterns: notify and retry (Appendix C.2). All subjects successfully reified the notify
pattern. Only two subjects made a mistake on the retry pattern, as follows: the additional
transition had the wrong source state.

Lastly, hypothesis Ho4 is concerned with the complexity of the MULAS architectural
design process. Through a post-experiment questionnaire containing 18 questions (Appendix
C.4) it was possible to assess the complexity of the process, as perceived by the experiment sub-
jects. These questions are formulated as Likert items (LIKERT, 1932), i.e., they are statements

to which the respondent may strongly disagree, disagree, be neutral, agree, or strongly agree.

7.2. PROCESS ASSESSMENT 175

Table 7.2: Number of errors related to flow expressions. Each row represents a subject
of the MULAS group

Syntactical errors Incoherence between Incoherence between
flow expression flow expression and
and statechart textual description of

the system behavior
0 1 0
0 2 0
0 1 0
0 2 0
0 0 1
0 0 0
0 0 0

Table 7.3: Number of errors related to adaptation strategy patterns. Each row represents
a subject of the MULAS group

Adaptation strategy pattern

Notify Retry
0 1

SO OO OO
el elNelle el

7.2. PROCESS ASSESSMENT 176

Figure 7.5: Answers of the post-experiment questionnaire — questions A to H

a) The mapping from tasks to states facilitates the creation of
statecharts

b) The mapping from goals to super-states improves the
organization/structure of statecharts

c) The use of flow expressions facilitates the creation of
statecharts

d) The use of goal models facilitates the creation of
statecharts

e) The use of flow expressions makes the creation of
statecharts more systematic

f) The creation of statecharts contributes to a more complete
specification of the system

g) Statecharts facilitate system understanding

h) The use of patterns facilitate the reification of the
specified adaptations

'§

strongly disagree
disagree

neutral

agree

strongly agree

Fig. 7.5 shows the questions and answers of the first eight questions of the questionnaire.
From these answers, 94.64% are positive, while the remaining 5.36% are neutral. In particular,
questions a, ¢, d, and h ask whether different parts of the process facilitate the creation of
statecharts.

Follow-up items ask about the ease of use of each kind of flow expression construct:
sequence, alternative, optionality, repetition, parallelism, and idle states. The answer to those
questions were mostly positive, with some disagreements (as shown in Fig. 7.6). Contrary
to our intuition, the repetition and parallelism cases had the most positive results, without any
disagreement. This was unexpected since, based on our own experience, those two constructs
are the most complex ones.

The remaining questions are related to four adaptation strategy patterns that were cov-
ered in the pre-experiment training: abort, notify, reconfigure, and retry. The answers, while
mostly positive, contained some disagreements: one for the abort pattern, two for the reconfig-
ure pattern, and one for the retry pattern (Fig. 7.7). Comparing the four patterns, the reconfigure
one seems to be the most problematic, as it has the highest number of disagreements (two) and
the lowest number of strong agreements (zero).

As described previously in this chapter, this experiment is a qualitative study, rather than

7.2. PROCESS ASSESSMENT 177

Figure 7.6: Ease of use for different constructs, according to the subjective

questionnaire

5 .

From left to right:
4 M strongly disagree
33 3 3 M disagree
2 2 2 2 222 M neutral
1 11 1 11 1 M agree
oo 0 00 0 000 0 W strongly agree
sequence alternative repetition optionality paralelism idle states

Figure 7.7: Ease of use for different adaptation strategies patterns, according to the
subjective questionnaire

4 4 4 4 From left to right:
m strongly disagree

M disagree

 neutral

11 1 1 11 1

M agree

0 m strongly agree

abort notify reconfigure retry

7.2. PROCESS ASSESSMENT 178

quantitative. Thus, its results cannot be generalized to other context. The goal of this study is
to provide early evaluation of the approach, besides providing inputs for further improvements.
Even though it is not possible to conclusively reject or confirm the hypotheses of this exper-
iment, due to a lack of statistical significance, it is possible to ponder the implications of the

results in this specific context:

= Hpl: The syntactical correctness of a statechart created with the MULAS treat-
ment is the same as with the control treatment — this hypothesis cannot be re-
jected since the statecharts created by the MULAS group presented, in total, more

errors than those created by the control group.

= Hp2: The complexity of a statechart created with the MULAS treatment is
the same as with the control treatment — this hypothesis can be rejected, since
the statecharts created by the MULAS group presented less complexity than those
created by the control group, as measured by the number of states and the number
of transitions. Thus, in this specific context, the alternative hypothesis H,2 must be
true: the complexity of a statechart created with the MULAS treatment is smaller

than with the control treatment.

= Hp3: It is not viable for non-experts to enact the MULAS architectural de-
sign process — this hypothesis can be rejected, since there are subjects that were
able to enact the process successfully. Hence, in this specific context, the alterna-
tive hypothesis H,3 must be true: it is viable for non-experts to enact the MULAS

architectural design process, given proper training

s Hp4: The MULAS architectural design process is complex — based on the re-
sults of the post-experiment questionnaire, it is possible to affirm that this hypothesis
can be rejected. Therefore, in this specific context, the alternative hypothesis H,4

must be true: the MULAS architectural design process is not complex.

The next section presents further considerations regarding the results here presented.

7.2.4 Discussion

During the classes it was observed some difficulty on understanding the difference be-
tween the alternative and the optional constructs. Although the difference was discussed in
class, one subject still mistakenly used the alternative symbol to represent an optional task. In
order to prevent this kind of confusion, the supporting resource (process description) can be
improved to clarify the meaning of each construct and to explicitly show the difference between
them. Another recurrent doubt during classes concerned the difference between the zero-or-

more and one-or-more variations of the repetition construct. However, this issue seems to have

7.2. PROCESS ASSESSMENT 179

been resolved during classes, since there was no error related to this doubt in the flow expres-
sions created by the subjects during the experiment.

During the experiment, most of the subjects from the MULAS treatment group made
at least one mistake related to the flow expressions. However, these mistakes were localized
in a specific excerpt of the expressions. Thus, even though there were mistakes, most of each
expression was written correctly. Furthermore, the use of a supporting tool can prevent these
errors, by enforcing the coherence between flow expressions and their respective statecharts.

In the beginning of this experiment the authors had concerns about the usability of the
process, since it had never been applied by non-experts. During the classes and the experiment
itself we could observe that the subjects were able to learn how to perform each step of the
process — in particular, the creation of flow expressions and the application of the adaptation
strategies patterns. The evidence gathered with this experiment, although not conclusive, sug-
gests that the process is indeed usable given proper documentation and training, since: one of
the seven MULAS subjects was able to correctly follow the process, and four other subjects
concluded the process with only minor mistakes.

Besides the objective comparison of complexity, based on metrics validated by MI-
RANDA; GENERO; PIATTINI (2003), when analyzing the different statecharts we observed
that statecharts created with the MULAS process are more uniform in terms of structure and
nomenclature, resulting in similar models. This uniformity indicates that these statecharts seem
to be easier to understand, as well as being easier to compare against each other.

With the characterization questionnaire answered during the experiment, we observed a
bias in the distribution of subjects between treatments: the MULAS group contained 5 master
students and 2 undergraduate students, whereas the control group had 2 master students and 6
undergraduate students. In order to prevent possible biases in future experiments it is advisable
to apply the characterization questionnaire beforehand, so that some blocking technique may
be adopted if needed be.

In the remainder of this sub-section we discuss other threats that may compromise the

validity of this experiment.

» Conclusion validity — The conclusion validity is concerned with the factors that
could affect the ability to draw conclusions about the experiment. As described pre-
viously, this is an initial experiment with a small sample. Thus, the results from
this experiment have no statistical relevance and cannot be generalized for the pop-
ulation as a whole. Moreover, since the object of the experiment was based on a
toy example, it may not be representative of real adaptive systems. In order to mit-
igate these threats it would be necessary to perform a larger experiment with more

representative samples and object.

= Internal validity — The threats to internal validity are influences that can affect the

results with respect to causality. Aiming to prevent threats in the History and Mat-

7.3. SUMMARY 180

uration categories, we applied both treatments to the same object at the same time.
To reduce the impact of Selection within our sample, the assignment of subjects
to different groups was randomized. Lastly, reducing the effect of Instrumentation,
no supporting tool was used by the subjects during the experiment. Moreover, all
measurements were taken with objective metrics, ensuring that the assessment per-

formed by different observers would obtain the same results.

» External validity — Threats to external validity are conditions that limit our ability
to generalize the experiment to real practice. In that respect, empirical studies with
students provide some particular challenges (CARVER et al., 2003). In order to
reduce the difference between results obtained with students and results obtained
with professionals, CARVER et al. (2003) suggests that the tasks they execute in
the experiment must be highly structured. That is the rationale for our decision of
providing a complete description of the expected behavior in the object, as well as
to provide a clear set of steps for the execution of the experiment (Appendices C.2
and C.3). Another concern when performing experiments with students is that of
motivation. In order to provide motivation, the participation on this experiment was
used as part of their grade. Nonetheless, this participation was voluntary — students
who did not want to partake on it could have an alternative method of evaluation. In

the end, two students decided not to participate on this experiment.

s Construct validity — Construct validity concerns generalizing the results of the
experiment to the concept or theory behind the experiment. When analyzing the re-
sults of the feedback questionnaire, it is important to consider hypothesis guessing
—i.e., that the subjects may provide positive feedback because they believe they are
supposed to. Additionally, object representativeness may compromise the construct
validity. In order to mitigate this threat our object contained representations of all
classes of constructs, both in the regular behavior (sequences, alternatives, option-
ality, repetition, and parallelism) and in the adaptation behavior (action-based and

transition-based, plus monitoring).

7.3 Summary

This chapter presented a scalability evaluation, showing that the statechart derivation
algorithm performs well even when taking large models (1000 elements) as input. This level of
performance is important in order to provide quick feedback for tool users, as they will be able
to quickly see the resulting statechart after modifying the Design Goal Model.

Moreover, an empirical evaluation with software engineering students showed that it is

feasible for non-expert users to enact the proposed architectural design process. The results are

7.3. SUMMARY 181

not conclusive, but they are promising, as some of the collected metrics are slightly positive
when contrasted with an ad hoc approach.
The next chapter presents final considerations about this work, including its limitations

and future work.

182

Conclusion

In this chapter we present a summary of our contributions and some final considerations,

as well as future work to be carried on for the advancement of the MULAS framework.

8.1 Context

There are different approaches and frameworks for supporting the development of adap-
tive systems, but they are often restricted to a single aspect of software development. For
instance, the Zanshin framework (SOUZA et al., 2013) provides support for handling adapta-
tion at the requirements level, enacting the monitoring-diagnosis-compensation cycle. Rainbow
(GARLAN et al., 2004) provides similar capabilities, but addressing architectural models —
namely, components and connectors. However, with the former the developer is at a loss on
how to implement the system, since the starting point is at a too high abstraction level. With the
latter there is no relation between the architectural models and the system requirements, which
can lead to a mismatch between the stakeholders’ expectations and the delivered solution. A
multi-level solution that handles these different aspects of software adaptation can improve the
development of adaptive software systems by supporting a broader set of adaptations, as well
as by bridging the gap between requirements and architectural design from the adaptation point
of view.

However, as convincingly argued by BROOKS (1986), there is no single solution that
solves all the problems in software engineering. In fact, the support of adaptation may increase
the complexity and the size of software systems, thus increasing the effort required to develop
adaptive systems. This kind of problem can be mitigated by means of Model Driven Engineer-
ing.

Model Driven Engineering is an approach for software development focused on models,
rather than on source code. Ideally, a software developer would not need to write a single line
of source code — instead, executable code would be automatically generated from the models.
In practice, the majority of the current approaches still require manual coding. Nonetheless,

such approaches are able to reduce the effort required for software development, providing ben-

8.2. CONTRIBUTIONS 183

efits with regard to productivity, portability, and maintainability (KLEPPE; WARMER; BAST,
2003).

In this thesis we presented the MULAS framework — Multi Level Adaptation for Soft-
ware Systems. On one hand, it integrates requirements-based and architecture-based adaptation
within a single framework. On the other hand, it integrates adaptation frameworks with model
driven engineering. In the following subsection the main contributions of this thesis are pre-

sented.

8.2 Contributions

In Chapter 3 we presented the results of our investigation on software adaptation, dis-
cussing possible adaptations at the requirements level and at the architectural level. Based on
this investigation, we proposed the Design Goal Model (DGM), also described in Chapter 3
along with its metamodel and constraints. The DGM allows to express, in a single model, in-
formation about requirements, architectural design, and adaptation, hence enabling multi-level
adaptation.

Considering the intertwined nature of requirements engineering and architectural de-
sign (NUSEIBEH, 2001), we proposed an architectural design process with which a system’s
architecture can be iteratively and incrementally designed. Throughout this process, presented
in Chapter 4, the goal model is enriched with design tasks, design constraints, design assump-
tions, assignments, behavioral annotations, additional awareness requirements and additional
parameters. Moreover, adaptation strategies are specified and a statechart is derived and re-
fined. The resulting statechart is instrumented with the actions required to communicate with an
external adaptation component (such as Zanshin’s), and is able to enact the adaptation strategies
that were specified.

Acknowledging the effort that would be required in order to create and maintain the
models used throughout the process, we developed the Goal to Architecture (GATO) tool, a
modeling tool that supports the creation of the process artifacts, including the design goal model
with its multiple views (Chapter 5). This tool is unique in the context of goal modeling tools
in the sense that its execution does not require the installation of any specific piece of software,
being accessible through modern web browsers.

Moreover, derivation patterns and algorithms for the generation of statecharts from De-
sign Goal Models are also presented in Chapter 4 and Chapter 5. These algorithms were imple-
mented and integrated with the GATO tool. By means of a controlled experiment, described in
Chapter 7, it is possible to observe that these algorithms are able to handle large models with

good performance.

8.3. RELATED WORK 184

8.3 Related Work

In this section we discuss related work that represent the state of the art on the main
topics covered within this thesis: software adaptation and the creation of architectural models

from requirements.

8.3.1 Software Adaptation

The following subsections provide a brief overview of approaches that target adaptation

at the requirements level and at the architectural level, respectively.

8.3.1.1 Requirements-centric

There are several approaches for developing adaptive systems based on goal models. In
this subsection we discuss some of them, including those on which our process is based.

LAPOUCHNIAN; MYLOPOULOS (2009) and ALI; DALPIAZ; GIORGINI (2010)
use the notion of context to express domain variability. The goal model is annotated with context
expressions that define conditions on the model elements. During runtime, a system may check
if a task being performed is allowed on that context and, if not, it may change its behavior. Both
approaches are concerned with reasoning at requirements level, without prescribing any specific
architecture.

DALPIAZ; GIORGINI; MYLOPOULOS (2009) also uses context-enriched goal mod-
els, aiming to deploy adaptive systems. Besides constraining the selection of alternatives, the
context is used to define activation events and commitment conditions for goals and precon-
ditions to tasks. Compensations are also defined to mitigate the occurrence of failures. Their
approach describes the architecture of a component responsible for performing the adaptation-
related reasoning. However, it does not prescribe how to define the architecture of the system
that will interact with this component.

MORANDINI; PENSERINI; PERINI (2008) propose to use goal models enriched with
environment and fault modeling. The goal status is expressed in terms of environment condi-
tions, similar to the context annotations. Fault modeling is used to define situations on which
recovery activities may be performed to prevent or mitigate a fault. This is similar to the concept
of obstacles that is part of KAOS. Besides being a comprehensive approach, it is only suited to
develop multi-agent systems.

At another level of requirements engineering for adaptive systems (BERRY; CHENG;
ZHANG, 2005), there are some approaches based on the notion that requirements might change
at runtime and that the system should be able to respond to these changes with minimal human
intervention. However, as of today there are still too many open issues on these approaches,
such as how to express the new requirements in a way that is both simple to the user to define

and that can be understood by the machine.

8.3. RELATED WORK 185

JIAN et al. (2010) allows the insertion of goals at runtime. However, to respond to these
changes new modules must be incorporated to the system as well. This approach also uses a
notation for expressing environmental conditions similar to the contextual approaches above.

QURESHI et al. (2010) also allows the changing of goal models at runtime: add goal,
add means-end, suspend means-end, resume means-end and relax means-end. To address these
news goals it uses a service-based architecture, on which a lookup mechanism will identify
services that may satisfy the new requirements. The services may either already exist on the
system’s pool or may be found through web service search mechanisms.

BENCOMO; WHITTLE; SAWYER (2010) also deals with the notion of changing goal
models at runtime, through requirements reflection. Additionally, it uses a flexibility language
to deal with uncertainty.

BARESI; PASQUALE (2010) propose the use of adaptive goals, in contrast to conven-
tional goals. The adaptive goals specify countermeasures to be performed when a conventional
goal is violated.

SOUZA (2012) presents the Zanshin framework, which is part of the baseline of the
MULAS framework. It extends goal models with control theory concepts, allowing to define
the requirements of adaptive systems. As described in Chapter 2, the Zanshin framework only
tackles requirements-based adaptation.

More recently, CHEN et al. (2014) also proposed to integrate requirements and design
concerns in the context of adaptive software systems. While their work is focused on the struc-

tural view, ours includes the behavioral view.

8.3.1.2 Architecture-centric

Most of the approaches for architecture-based adaptation is focused on components and
connectors models. Rainbow (GARLAN et al., 2004) uses the Acme language (GARLAN;
MONROE; WILE, 2010) to describe a software architecture, and it has its own language to de-
fine adaptation strategies (CHENG; GARLAN, 2012). A standard component enacts an external
feedback loop, which can trigger the execution of custom-made scripts that are specific for the
system being instrumented. When faced with different possibilities, it uses utility functions to
decide which adaptation to perform.

The K-Component framework (DOWLING; CAHILL, 2001) define adaptation con-
tracts, on which component interfaces and connectors are static whereas component instances
and connector properties are dynamic. Adaptation is triggered by the violation of architectural
constraints, in terms of configurations, components, connectors and their properties. Instead of
relying on an Architecture Description Language (ADL), the K-Component framework extract
information about the architecture of the instrumented system directly from C++ source code.

The work by ALLEN; DOUENCE; GARLAN (1998) adds control mechanisms to com-
ponents described with the Wright ADL. Adaptation is defined on a Configuror program, where

triggers are defined based on properties of components and connectors of the instrumented sys-

8.3. RELATED WORK 186

tem and the adaptation itself is described as the attaching and detaching of components and
connectors.

OREIZY; MEDVIDOVIC; TAYLOR (1998) classify architectural adaptation in four
types: component addition, component removal, component replacement and reconfiguration
(change of connector bindings). The adaptation itself can be performed manually, through
an interactive model, or automatically, through its own language called ArchShell (OREIZY,
1996).

The StarMX framework (ASADOLLAHI; SALEHIE; TAHVILDARI, 2009) is able to
manage the adaptation of Java systems based on custom policies containing decision-action
rules. These policies can access properties of the system components, also being able of in-
voking the Java methods of these components. As Rainbow, this framework provides a set of
standard components that facilitate the implementation of self-adaptive systems.

The work by CETINA et al. (2009) use condition rules that trigger the activation or
deactivation of system features. Based on these conditions, it plugs or unplugs components and
connectors from the instrumented system. Unlike other works here discussed, this framework
support the definition of high-level conditions, such as the house is empty and the alarm is

failing (examples from a smart home system).

8.3.2 Architectural Design and Derivation

In the following subsections we present approaches for creating architectural models

based on requirements models.

8.3.2.1 Derivation of component models

The SIRA approach (BASTOS; CASTRO, 2005) focuses on a systematic way to as-
sist the transition from requirements models in i* to architecture. It describes a software sys-
tem from the perspective of an organization, as stated by the Tropos methodology (CASTRO;
KOLP; MYLOPOULOS, 2002). Both requirements and architecture models are described us-
ing the i* language (YU et al., 2011). An organizational architectural style is chosen based on
a catalogue of non-functional requirements presented in KOLP; GIORGINI; MYLOPOULOS
(2006). i* elements, at requirements level, are grouped, inside an actor, according to their con-
tribution to achieve some responsibilities. Then, an architectural design model is created by
considering the similarities between the requirements actors and the architectural actors present
in the chosen organizational architectural style.

LAMSWEERDE (2003) defines a method to produce architectural models from KAOS
requirements models. In that approach, requirements specifications are gradually refined to
meet specific architectural constraints of the domain and an abstract architectural draft is gen-
erated from functional specifications. The resulting architecture is recursively refined to meet

the various non-functional goals analyzed during the requirements activities. It relies on KAOS

8.3. RELATED WORK 187

modeling language, which consists of a graphical tree and a formal language.

In SILVA et al. (2007) a set of mapping rules is proposed between the Aspectual Ori-
ented V-graph (AOV-graph) and the Aspectual ACME, an ADL based in Acme. This approach
does not address the adaptability softgoal. Each element (goal/softgoal/task) present in an AOV-
graph is mapped to an element of Aspectual ACME, depending on its position in the graph hier-
archy. The information about the source of each element in the AOV-graph is registered in the
properties of a component or a port in Aspectual ACME. These properties make it possible to
keep the traceability and propagation of change from Aspectual ACME to AOV-graph models
and vice-versa.

The CBSP approach (GRiiNBACHER et al., 2001) supports the derivation from textual
requirements to architecture. It is based on traversing a list of requirements and identifying
information relevant to the system’s architecture. The identified information is then refined
towards the specification of an architecture.

The STREAM approach (Strategy for Transition between Requirements and Architec-
tural Models) takes requirements models on the i* language as input and provides components
and connectors models as output (CASTRO et al., 2012). With the support of transforma-
tion rules, the architect refactors the requirements model considering modularity criteria, and
derive component and connector models that reflect the structure of the refactored i* model.
STREAM-A (PIMENTEL et al., 2012) is an extension of STREAM that includes support for
requirements-based adaptation.

8.3.2.2 Derivation of behavioral models

There are other approaches that use goal models as a starting point for the definition of
system behavior. LIASKOS et al. (2012) support the definition of systems where the order of
task execution is constrained at design time through Linear Temporal Logic (LTL) expressions.
Instead of architectural design, the goal of this approach is to support the customization of
system behavior.

The work by YU et al. (2008) uses the hierarchy of a goal model to derive the struc-
ture of a statechart, where higher level elements are superstates and lower level elements are
transitions. The order of execution of the states is defined by the visual order of the elements,
from left to right, along with annotations for expressing alternatives, sequentiality, parallelism
or delegation. One of the emphases of this approach is to ensure that the variability expressed
in the requirements model is preserved in the architectural models.

LETIER et al. (2008) start with KAOS models and derive Labeled Transition Systems
(LTS), which resemble statecharts. The goal models in KAOS present a temporal formaliza-
tion in LTL. Leaf-level goals are assigned to agents and can be refined into operations, which
are specified through pre-conditions, post-conditions and triggers. Thus, the derivation of the
behavioral models is mostly (but not only) a translation of formalism, with little human input.

There are a number of approaches that handle the derivation of statecharts from scenar-

8.3. RELATED WORK 188

10s, which describe specific interactions between users and the system. In these approaches, the
focus is on how to combine different scenarios and thus identify the overall states of the system.
WHITTLE; SCHUMANN (2000) use UML sequence diagrams and generate UML statecharts.
HAREL; KUGLER; PNUELI (2005) use live sequence charts and an extension to traditional
sequence diagrams that supports optional and mandatory interactions. A synthesis algorithm
based on model checking generates a statechart. The hierarchy of these diagrams is based on
UML models provided as input.

GOMAA; SHIN (2003) discuss the occurrence of variability in different architectural
models. In the case of statecharts, variability is expressed through alternative transitions related
to different features of the system. Thus, certain states will only be entered if a specific feature

is available.

8.3.3 Summary of related work

Table 8.1 shows the major characteristics of each related work presented in this section
— whether they support adaptation, and of which kind, as well as whether and which type of
architectural derivation is supported. For comparison, the MULAS framework is included as
the last entry in that table.

As can be seen in Table 8.1, MULAS differentiate from other proposals by not only
supporting requirements- and design-related adaptation, but also by supporting the systematic

design of the system behavior.

8.3. RELATED WORK 189

Table 8.1: Comparison of related work

Work Adaptation Derivation

Requirements Design Design Structure Behavior

(structure) (behavior)
LAPOUCHNIAN; MY- v

LOPOULOS (2009)
ALIL DALPIAZ;

GIORGINI (2010)
DALPIAZ; GIORGINI;

MYLOPOULOS (2009)
MORANDINTI;

PENSERINI; PERINI

(2008)
JIAN et al. (2010)
QURESHI et al. (2010)
BENCOMO; WHITTLE;

SAWYER (2010)
BARESI; PASQUALE

(2010)
SOUZA (2012)

CHEN et al. (2014)
GARLAN et al. (2004)
DOWLING; CAHILL

(2001)
ALLEN; DOUENCE;

GARLAN (1998)
OREIZY:; MEDVI-

DOVIC; TAYLOR (1998)
ASADOLLAHI; SALE-

HIE; TAHVILDARI

(2009)
CETINA et al. (2009) partial v
BASTOS; CASTRO

(2005)
LAMSWEERDE (2003)
SILVA et al. (2007)
GRiGNBACHER et al.

(2001)

CASTRO et al. (2012)

PIMENTEL et al. (2012) v
LIASKOS et al. (2012)

YU et al. (2008)

LETIER et al. (2008)

WHITTLE,; SCHU-

MANN (2000)
HAREL; KUGLER;

PNUELI (2005)
GOMAA; SHIN (2003)
MULAS v partial v

SN

v

partial

AONEENEEN S

NN N SN

N NN

AN N NS

8.4. CONSIDERATIONS 190

8.4 Considerations

We have presented a systematic process for deriving architectural behavioral models
—- namely, statecharts —- from requirements models, supporting the Twin Peaks model (NU-
SEIBEH, 2001) of software design. Through a series of incremental refinements the architect
can move towards architecture, by (i) adding design elements (tasks and constraints), (ii) adding
behavioral refinements (in the form of flow expressions), and (iii) generating statechart mod-
els from (possibly incomplete) models. Acknowledging the inherent variability of the design
process, where different solutions for a single problem can be devised, the design goal model
supports the documentation of alternative design elements and alternative behavior refinements,
which can lead to the generation of multiple (alternative) statecharts. Since the resulting models
are statecharts without any extension, it is amenable for validation, simulation and code gener-
ation using existing tools. Moreover, the properties of these models can be checked and proved
using one of the several formalizations of statecharts (for instance, LEVI (1997)).

A key element of our proposal is the integration of requirements and design elements
in a single model. The use of different views in the supporting tool allows to seamlessly nav-
igate between requirements and design elements. Moreover, the integration with the Zanshin
framework allows to support both requirements-based and architectural-based adaptation (AN-
GELOPOULOS; SOUZA; PIMENTEL, 2013).

While this work provides a process and supporting mechanisms that facilitate the deriva-
tion of statecharts, key decisions on what flow to adopt still rest entirely with the architect. The
integration of this work with ontology-based approaches (AMELLER; FRANCH, 2011; DER-
MEVAL et al., 2015) and the identification of behavioral patterns could add additional guidance,
thereby improving the quality of resulting models.

The design goal model describes some of the architectural design decisions of the soft-
ware project. However, it does not capture some of the information that is deemed relevant in
the context of software architecture documentation, such as rationale, status and source (DER-
MEVAL et al., 2012).

Lastly, whereas flow expressions proved to be useful as an intermediary artifact between
goal models and statecharts, they are an additional element to be maintained by the architect
during system evolution. For this reason, a prototype tool (GATO) was developed aiming to
reduce the effort of creating and maintaining design goal models, as well as to support statechart

derivation.

8.5 Limitations
This work presents a series of limitations, regarding the following aspects:

= Expressiveness of the design goal model — The design goal model proposed in this

8.5. LIMITATIONS 191

thesis is based on the extended goal model, originally proposed in LAPOUCHNIAN
(2011) and further developed on SOUZA (2012). That extension includes awareness
requirements and parameters, which are relevant as they correspond to the control
theory concepts of reference value and control input. However, as a result of the
focus on these control theory concepts, two other important concepts have been
partially neglected: contribution links and context. The explicit use of contribution
links and context annotations may improve the expressiveness of the design goal
model. Nonetheless, it is necessary to balance this expressivity with the complexity

of the proposed model.

Moreover, since the focus of this research project was on system behavior, we were
not able to include proper support to other architectural design elements, such as
components and connectors. although not as fully fledged as it could be, some sup-
port is provided, since variations on these elements can be expressed as parameters,

and decisions regarding these elements can be expressed through design constraints.

= Heuristics for selecting optimal flows — In the MULAS framework we propose
the use of flow expressions to define the possible flows of the system. However, we
do not provide any guidance that helps the architect in the decision of which flow
may be best in different contexts and scenarios. Further investigation is required in

order to identify heuristics, patterns, or techniques to facilitate such decision.

= Derivation patterns — In this thesis we have proposed a series of patterns that
allow the generation of base statecharts from a goal model annotated with flow ex-
pressions. This derivation results in statecharts of a particular style, which may not
be suitable for every software architect: goals, tasks, and design tasks of the design
goal model are mapped onto states in a statechart. However, different architects may
prefer different styles — for instance, YU et al. (2005) maps leaf elements in a goal
model to transition actions. It is also possible to envision cases where it may be

desired to map some elements onto events, instead of onto states.

The decision of providing a uniform mapping is to systematize the process. Further
evaluation is necessary in order to identify cases where this mapping may not be

satisfactory, as well as how to handle these cases.

= Modularity of the resulting statecharts — The statechart resulting from the auto-
matic derivation does not follow good practices related to modularity (e.g., transi-
tions between super-states). As result, sometimes the models has more transitions
than what is strictly necessary, increasing the complexity of the statechart. The
derivation is performed in this way in order to allow the architect to specify each
transition, with its events and conditions, as it is not possible to know beforehand

whether a transition may be grouped with other transitions.

8.6. FUTURE WORK 192

In order to mitigate this possible, we believe that it is possible to develop an algo-

rithm that automatically refactors the statechart after the transitions are specified.

= Tool support — In this thesis we have described the GATO (Goal to Architecture)
tool, which was developed specifically to support the MULAS framework. This tool
is functional, which is evidenced by its use in the creation of all the goal models
depicted in this thesis. However, more effort is required in order to make the tool
suitable for public use, related not only to actual development but also to the creation

of user documentation, such as user guides or tutorials.

» Compositional adaptation — Parameterized adaptation is adaptation related to the
modification of variables. In contrast, compositional adaptation is related to modi-
fying structural parts of the system (MCKINLEY et al., 2004). While we have con-
ducted early endeavors on the latter (PIMENTEL et al., 2012) during this research,
the MULAS framework is focused only on the former.

8.6 Future Work

We expect to continue this research project with the following improvements:

1. Other enhancements for the supporting tool. We plan to investigate which im-
provements could be made to the GATO tool in order to increase productivity and
usability. Some of the features that could be developed are collaborative model-
ing, server-side saving and versioning, customized views, and tablet-tailored user
interface.

2. Further architectural adaptation. In this thesis we cover architectural adaptation
in terms of design decisions and alternative flows for statecharts. We plan to expand
on this repertoire by also supporting adaptation related to components and connec-
tors models, as well as deployment models.

3. Further adaptation expressiveness. The Zanshin framework supports the def-
inition of which elements must be monitored and what adaptations can be per-
formed. However, existing approaches handle additional adaptation concerns, such
as context (VILELA et al., 2015; DALPIAZ; GIORGINI; MYLOPOULOS, 2013;
VILELA et al., 2015) and uncertainty (WHITTLE et al., 2010; SALAY et al., 2013).
We plan to analyze which additional concerns would be relevant to support in the
MULAS framework and how they can be integrated in the current feedback loop.

4. Further modeling expressiveness. Some architectural decisions are dependent on
other decisions — for instance, the decision of which application server to use de-

pends on the adopted programming language. As future work, we plan to investigate

8.6. FUTURE WORK 193

if expressing this kind of dependencies in design goal models is relevant and how it
could be included.

5. Heuristics and guidelines. In order to facilitate the use and improve the results
obtained with this framework, further guidance can be provided on the decision-
making aspects of the proposed architectural design process.

6. Further validation and improvements of the MULAS process. By applying the
MULAS framework to larger projects, as well as to projects on industrial settings,

further limitations could be identified and new improvements could be devised.

194

References

ABDELWAHED, S.; KANDASAMY, N. A Control-Based Approach to Autonomic
Performance Management in Computing Systems. In: Autonomic Computing - Concepts,
Infrastructure, and Applications. [S.1.]: CRC Press, 2007. p.149-168.

ALL R.; DALPIAZ, F.; GIORGINI, P. A Goal-based Framework for Contextual Requirements
Modeling and Analysis. Requirements Engineering Journal, [S.1.], v.15, n.4, p.439-458,
2010.

ALLEN, R.; DOUENCE, R.; GARLAN, D. Specifying and analyzing dynamic software
architectures. 1998 Conference on Fundamental Approaches to Software Engineering,
[S.L], p.21-37, 1998.

AMELLER, D.; FRANCH, X. Ontology-based Architectural Knowledge representation :
structural elements module. In: ADVANCED INFORMATION SYSTEMS ENGINEERING
WORKSHOPS. ... [S.l.: s.n.], 2011. p.296-301.

ANGELOPOULOS, K.; SOUZA, V. E. S.; PIMENTEL, J. Requirements and Architectural
Approaches to Adaptive Software Systems: a comparative study. SEAMS, [S.L.], p.23-32,
2013.

ASADOLLAHI, R.; SALEHIE, M.; TAHVILDARI, L. StarMX: a framework for developing
self-managing java-based systems. 2009 ICSE Workshop on Software Engineering for
Adaptive and Self-Managing Systems, [S.1.], p.58-67, May 2009.

ASTROM, K. J.; MURRAY, R. M. Feedback Systems - An Introduction for Scientists and
Engineers. [S.1.]: Princeton university press, 2012. 408p.

BACHMANN, F. et al. Documenting Software Architecture : documenting behavior.
[S.L: s.n.], 2002. (January).

BALSER, M.; BiaUMLER, S.; KNAPP, A.; REIF, W.; THUMS, A. Interactive verification of
UML state machines. Formal Methods and Software Engineering, [S.1.], v.LNCS3308,
p.434-448, 2004.

BARESI, L.; PASQUALE, L. Live goals for adaptive service compositions. In: ICSE
WORKSHOP ON SOFTWARE ENGINEERING FOR ADAPTIVE AND SELF-MANAGING
SYSTEMS (SEAMS °10), 2010., New York, USA. ... ACM Press, 2010. p.114-123.

BASTOS, L. R. D.; CASTRO, J. From requirements to multi-agent architecture using
organisational concepts. SIGSOFT Software Engineering Notes, [S.1.], v.30, n.4, p.1-7,
2005.

BENCOMO, N.; WHITTLE, J.; SAWYER, P. Requirements reflection: requirements as
runtime entities. ACM/IEEE 32nd International Conference on Software Engineering,
[S.1.], p.199-202, 2010.

BERRY, D.; CHENG, B. H. C.; ZHANG, J. The four levels of requirements engineering for
and in dynamic adaptive systems. In: INTERNATIONAL WORKSHOP ON

REFERENCES 195

REQUIREMENTS ENGINEERING FOUNDATION FOR SOFTWARE QUALITY
(REFSQ), 11., Porto, Portugal. ... [S.l.: s.n.], 2005. p.5.

BJORK, R. C. An Example of Object-Oriented Design: an atm simulation.
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/, [S.1.], 2004.

BOER, R. C. de; VLIET, H. van. On the similarity between requirements and architecture.
Journal of Systems and Software, [S.1.], v.82, n.3, p.544-550, Mar. 2009.

BROOKS, F. P. No Silver Bullet — Essence and Accident in Software Engineering.
Information Processing, [S.1.], p.1069-1076, 1986.

BRUN, Y. et al. Engineering Self-Adaptive Systems through Feedback Loops. In: Software
Engineering for Self-Adaptive Systems. [S.1.]: Springer Berlin Heidelberg, 2009. p.48-70.

CARVER, J.; JACCHERI, L.; MORASCA, S.; SHULL, F. Issues in using students in
empirical studies in software engineering education. Proceedings of the Ninth International
Software Metrics Symposium, [S.1.], p.239-249, 2003.

CASTRO, J.; KOLP, M.; MYLOPOULOS, J. Towards Requirements-Driven Information
Systems Engineering: the tropos project. Information Systems, [S.1.], v.27, n.6, p.365-389,
2002.

CASTRO, J.; LUCENA, M.; SILVA, C.; ALENCAR, F.,; SANTOS, E.; PIMENTEL, J.
Changing attitudes towards the generation of architectural models. Journal of Systems and
Software, [S.1.], v.85, n.3, p.463—479, Mar. 2012.

CETINA, C.; GINER, P,; FONS, J.; PELECHANO, V. Autonomic computing through reuse
of variability models at runtime: the case of smart homes. Computer, [S.1.], n.October,
p-46-52, 2009.

CHEN, B.; PENG, X.; YU, Y.; NUSEIBEH, B.; ZHAO, W. Self-adaptation Through
Incremental Generative Model Transformations at Runtime. 36th International Conference
on Software Engineering, [S.1.], p.676-687, 2014.

CHENG, B. H. C. et al. Software engineering for self-adaptive systems: a research roadmap.
Software Engineering for Self-Adaptive Systems - LNCS, [S.1.], v.5525/2009, p.1-26, 2009.

CHENG, S.-W.; GARLAN, D. Stitch: a language for architecture-based self-adaptation.
Journal of Systems and Software, [S.1.], v.85, n.12, p.2860-2875, Dec. 2012.

CHENG, S. W.; GARLAN, D.; SCHMERL, B. Evaluating the effectiveness of the rainbow
self-adaptive system. In: ICSE WORKSHOP ON SOFTWARE ENGINEERING FOR
ADAPTIVE AND SELF-MANAGING SYSTEMS, SEAMS 2009, 2009. Proceedings. ..
[S.L: s.n.], 2009. p.132-141.

CHOI, H.; YEOM, K. An approach to software architecture evaluation with the 4+1 view
model of architecture. Ninth Asia-Pacific Software Engineering Conference, 2002., [S.1.],
p.286-293, 2002.

CHUNG, L.; NIXON, B.; YU, E.; MYLOPOULOS, J. Non-functional Requirements.
Software Engineering, [S.1.], 2000.

REFERENCES 196

DALPIAZ, F.; BORGIDA, A.; HORKOFF, J.; MYLOPOULOS, J. Runtime Goal Models :
keynote. In: IEEE SEVENTH INTERNATIONAL CONFERENCE ON RESEARCH
CHALLENGES IN INFORMATION SCIENCE. ... [S.l.: s.n.], 2013.

DALPIAZ, F.; GIORGINI, P.; MYLOPOULOS, J. An architecture for requirements-driven
self-reconfiguration. Advanced Information Systems Engineering, [S.1.], 2009.

DALPIAZ, F.; GIORGINI, P.; MYLOPOULOQS, J. Adaptive socio-technical systems: a
requirements-based approach. Requirements engineering, [S.1.], v.18, n.1, p.1-24,
Sept. 2013.

DERMEVAL, D. et al. Applications of ontologies in requirements engineering: a systematic
review of the literature. Requirements Engineering journal, [S.1.], 2015.

DERMEVAL, D.; PIMENTEL, J.; SILVA, C.; CASTRO, J.; SANTOS, E.; GUEDES, G.
STREAM-ADD - Supporting the Documentation of Architectural Design Decisions in an
Architecture Derivation Process. In: IEEE 36TH INTERNATIONAL CONFERENCE ON
COMPUTER SOFTWARE AND APPLICATIONS, 2012.... [S.l.: s.n.], 2012. n.i, p.602-611.

DIAS, M. S.; VIEIRA, M. E. R. Software architecture analysis based on statechart semantics.
In: SOFTWARE SPECIFICATION AND DESIGN, 2000. TENTH INTERNATIONAL
WORKSHOP ON.... [S.l.: s.n.], 2000. p.133-137.

DOWLING, J.; CAHILL, V. The K-Component Architecture Meta-model for Self-Adaptive
Software. Proceedings of the Third International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns (REFLECTION °01), [S.1.], p.81-88, 2001.

EGYED, A.; WILE, D. Statechart simulator for modeling architectural dynamics. In:
SOFTWARE ARCHITECTURE, 2001. PROCEEDINGS. WORKING IEEE/IFIP
CONFERENCE ON.... [S.l.: s.n.], 2001. p.87-96.

EGYED, A.; WILE, D. Statechart simulator for modeling architectural dynamics.
Proceedings of the Working IEEE/IFIP Conference on Software Architecture, 2001,
[S.1.], n.August, p.87-96, 2001.

EMERY, F. Characteristics of Socio-Technical Systems. London: Tavistock Institute, 1959.
(1959).

FEATHER, M.; FICKAS, S.; FINKELSTEIN, A.; LAMSWEERDE, A. Requirements and
specification exemplars. Automated Software Engineering, [S.1.], v.4, n.4, p.419-438, 1997.

FEATHER, M.; FICKAS, S.; LAMSWEERDE, A. van; PONSARD, C. Reconciling system
requirements and runtime behavior. Proceedings Ninth International Workshop on
Software Specification and Design, [S.1.], p.50-59, 1998.

FERRENTINO, A. B.; MILLS, H. D. State machines and their semantics in software
engineering. In: IEEE COMPSAC’77 CONFERENCE. Proceedings... [S.l.: s.n.], 1977.
p.242-251.

FILIERI, A.; GHEZZI, C.; LEVA, A.; MAGGIO, M. Reliability-driven dynamic binding via
feedback control. In: ICSE WORKSHOP ON SOFTWARE ENGINEERING FOR
ADAPTIVE AND SELF-MANAGING SYSTEMS. ... [S.L: s.n.], 2012. v.2, p.43-52.

REFERENCES 197

FRANCH, X. A Method for the definition of metrics over i* models. Advanced Information
Systems Engineering, [S.1.], v.5565 LNCS, p.201-215, 2009.

FRANCH, X. et al. Goal-Driven Adaptation of Service-Based Systems from Runtime
Monitoring Data. In: IEEE 35TH ANNUAL COMPUTER SOFTWARE AND
APPLICATIONS CONFERENCE WORKSHOPS, 2011. ... IEEE, 2011. p.458-463.

GANE, C. P; SARSON, T. Structured systems analysis: tools and techniques. [S.1.]:
Prentice Hall Professional Technical Reference, 1979.

GARLAN, D.; CHENG, S.-W.; HUANG, A.-C.; SCHMERL, B.; STEENKISTE, P. Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer, [S.1.], v.37, n.10,
p-46-54, Oct. 2004.

GARLAN, D.; MONROE, R.; WILE, D. Acme : an architecture description interchange
language. Proceedings of the 1997 conference of the Centre for Advanced Studies on
Collaborative research (CASCON), [S.1.], p.1-15, 1997.

GARLAN, D.; MONROE, R.; WILE, D. Acme: an architecture description interchange
language. CASCON First Decade High Impact Papers, [S.1.], 2010.

GENERO, M.; MIRANDA, D.; PIATTINI, M. Defining and validating metrics for UML
statechart diagrams. 6th International ECOOP Workshop on Quantitative Approaches in
Object-Oriented Software Engineering, [S.1.], p.120-136, 2002.

GHANBARI, H.; SIMMONS, B.; LITOIU, M.; BARNA, C.; ISZLAI, G. Optimal autoscaling
in a [aaS cloud. Proceedings of the 9th international conference on Autonomic computing
- ICAC ’12, New York, New York, USA, p.173-178, 2012.

GOMAA, H.; SHIN, M. Variability in Multiple-View Models of Software Product Lines. In:
INTERNATIONAL WORKSHOP ON SOFTWARE VARIABILITY MANAGEMENT
(SVM). ... [S.L.: s.n.], 2003. p.63-68.

GRALHA, C.; GOULAO, M.; ARAUGJO, J. Identifying modularity improvement opportunities
in goal-oriented requirements models. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
[S.1.], v.8484 LNCS, p.91-104, 2014.

GRAU, G.; FRANCH, X. On the adequacy of i* models for representing and analyzing
software architectures. Advances in conceptual modeling: foundations and applications -
LNCS, [S.1.], v.4802, p.296-305, 2007.

GRAU, G.; FRANCH, X.; MAIDEN, N. PRiM: an i*-based process reengineering method for
information systems specification. Information and Software Technology, [S.1.], v.50, n.1-2,
p.76-100, 2008.

GREENSPAN, S.; MYLOPOULOS, J.; BORGIDA, a. On formal requirements modeling
languages: rml revisited. Proceedings of 16th International Conference on Software
Engineering, [S.1.], n.May, p.1-13, 1994.

GRiUNBACHER, P.; EGYED, A.; WAY, A.; PLACE, W.; REY, M. D.; MEDVIDOVIC, N.
Reconciling software requirements and architectures: the cbsp approach. In: FIFTH IEEE
INTERNATIONAL SYMPOSIUM ON REQUIREMENTS ENGINEERING. Proceedings. ..
IEEE Comput. Soc, 2001. p.202-211.

REFERENCES 198

GURP, J. V.; BOSCH, J.; SVAHNBERG, M. On the notion of variability in software product
lines. Proceedings of the Working IEEE/IFIP Conference on Software Architecture, [S.1.],
p.45-54, 2001.

GURP, J. van; BOSCH, J. Design erosion: problems and causes. Journal of Systems and
Software, [S.1.], v.61, n.2, p.105-119, Mar. 2002.

HAREL, D. Statecharts: a visual formalism for complex systems. Science of computer
programming, [S.1.], v.8, n.3, p.231-274, 1987.

HAREL, D.; KUGLER, H.; PNUELI, A. Synthesis Revisited: generating statechart models
from scenario-based requirements. In: Formal Methods in Software and Systems Modeling.
[S.L: s.n.], 2005. n.287, p.309-324.

HE, Y.; YE, Z.; FU, Q.; ELNIKETY, S. Budget-based control for interactive services with
adaptive execution. Proceedings of the 9th international conference on Autonomic
computing - ICAC ’12, New York, New York, USA, p.105-114, 2012.

HEINIS, T.; PAUTASSO, C. Automatic configuration of an autonomic controller: an
experimental study with zero-configuration policies. Autonomic Computing, 2008. ICAC’08.
International Conference on, [S.1.], p.67-76, 2008.

HELLERSTEIN, J. L.; DIAO, Y.; PAREKH, S.; TILBURY, D. M. Feedback control of
computing systems. [S.1.]: John Wiley & Sons, 2004.

HEVNER, A. R.; MARCH, S. T.; PARK, J. Design Science in Information Systems Research.
MIS Quarterly, [S.1.], v.28, n.1, p.75-105, 2004.

HOARES, C. A. R. Quicksort. The Computer Journal, [S.1.], v.5, n.1, p.10-15, 1962.

HORKOFF, J. et al. Taking Goal Models Downstream: a systematic roadmap. 8th
International Conference on Research Challenges in Information Science, [S.1.], 2014.

HORN, P. Autonomic computing: ibm’s perspective on the state of information
technology. [S.1.: s.n.], 2001.

JACOBSON, I.; SPENCE, I.; BITTNER, K. Use-case 2.0. [S.1.]: Ivar Jacobsen International,
2011. n.December.

JIAN, Y.; LI, T.; LIU, L.; YU, E. Goal-Oriented Requirements Modelling for Running
Systems. In: INTERNATIONAL WORKSHOP ON REQUIREMENTS @RUN-TIME, 1.,
Sidney, Australia. ... [S.L: s.n.], 2010.

JURETA, 1. J.; MYLOPOULOQS, J.; FAULKNER, S. Revisiting the core ontology and problem
in requirements engineering. Proceedings of the 16th IEEE International Requirements
Engineering Conference, RE’08, [S.1.], v.2008, p.71-80, 2008.

KAYE, J. M.; CASTILLO, D. Flash MX for interactive simulation. [S.1.]: Cengage
Learning, 2003.

KEPHART, J. O.; CHESS, D. M. The vision of autonomic computing. Computer, [S.1.], v.36,
n.1, p.41-50, 2003.

REFERENCES 199

KLEPPE, A. G.; WARMER, J. B.; BAST, W. MDA explained, the model driven
architecture: practice and promise. [S.l1.]: Addison-Wesley Professional, 2003.

KOLP, M.; GIORGINI, P.; MYLOPOULOS, J. Multi-Agent Architectures as Organizational
Structures. Autonomous Agents and Multi-Agent Systems, [S.1.], v.13, n.1, p.3-25,
July 2006.

KOTONYA, G.; SOMMERVILLE, I. Requirements engineering with viewpoints. Software
Engineering Journal, [S.1.], v.11, n.1, p.5-18, 1996.

KOTONYA, G.; SOMMERVILLE, I. Requirements Engineering: processes and
techniques. [S.1.]: John Wiley & Sons, 1998.

KRUCHTEN, P. An Ontology of Architectural Design Decisions in Software-Intensive
Systems. 2nd Groningen Workshop Software Variability, [S.1.], p.54-61, 2004.

LAMSWEERDE, A. V. From System Goals to Software Architecture. Formal Methods for
Software Architectures - LNCS, [S.1.], v.2804/2003, p.25-43, 2003.

LAMSWEERDE, A. van. Goal-oriented requirements engineering: a guided tour.
Proceedings Fifth IEEE International Symposium on Requirements Engineering, [S.1.],
p.249-262, 2001.

LAMSWEERDE, a. van; DARIMONT, R.; MASSONET, P. Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learnt. Proceedings of 1995 IEEE
International Symposium on Requirements Engineering (RE’95), [S.1.], p.194-203, 1995.

LAPOUCHNIAN, A. Exploiting Requirements Variability for Software Customization
and Adaptation. 2011. 227p. Ph.D. Thesis — University of Toronto.

LAPOUCHNIAN, A.; MYLOPOULOS, J. Modeling domain variability in requirements
engineering with contexts. Conceptual Modeling - ER 2009 - LNCS, Gramado, Brazil,
v.5829/2009, p.115-130, 20009.

LAPOUCHNIAN, A.; YU, Y.; LIASKOS, S.; MYLOPOULOS, J. Requirements-driven
design of autonomic application software. Proceedings of the 16th IBM Centre for
Advanced Studies Conference, [S.1.], 2006.

LETIER, E.; KRAMER, J.; MAGEE, J.; UCHITEL, S. Deriving event-based transition
systems from goal-oriented requirements models. Automated Software Engineering, [S.1.],
v.15, n.2, p.175-206, May 2008.

LEVL F. Verification of Temporal and Real-Time Properties of Statecharts. 1997. Ph.D.
Thesis — University of Pisa.

LIAN, J.; HU, Z.; SHATZ, S. M. Simulation-based analysis of UML statechart diagrams:
methods and case studies. Software Quality Journal, [S.1.], v.16, n.1, p.45-78, 2008.

LIASKOS, S.; KHAN, S. M.; LITOIU, M.; JUNGBLUT, M. D.; ROGOZHKIN, V.;
MYLOPOULOS, J. Behavioral adaptation of information systems through goal models.
Information Systems, [S.1.], v.37, n.8, p.767-783, Dec. 2012.

LIKERT, R. A technique for the measurement of attitudes. Archives of psychology, [S.1.],
v.22, n.140, 1932.

REFERENCES 200

MAHONEY, M.; ELRAD, T. Distributing Statecharts to Handle Pervasive Crosscutting
Concerns. Building Software for Pervasive Computing Workshop at OOPSLA 05, [S.1.],
2005.

MAIDEN, N.; YU, E.; FRANCH, X.; MYLOPOULOS, J. Proceedings of the iStar Showcase
‘11 - Exploring the Goals of your Systems and Businesses. London: [s.n.], 2011. 1-98p.

MCKINLEY, P. K.; SADJADI, S. M.; KASTEN, E. P.; CHENG, B. H. C. A Taxonomy of
Compositional Adaptation. [S.1.: s.n.], 2004. (May).

MIRANDA, D.; GENERO, M.; PIATTINI, M. Empirical validation of metrics for UML
statechart diagrams. Enterprise Information Systems, [S.1.], p.8§7-95, 2003.

MOOQDY, D. The “Physics” of Notations: toward a scientific basis for constructing visual
notations in software engineering. IEEE Transactions on Software Engineering, [S.1.], v.35,
n.6, p.756-779, Nov. 2009.

MOOQODY, D. L.; HEYMANS, P.; MATULEVICIUS, R. Visual syntax does matter: improving
the cognitive effectiveness of the i* visual notation. Requirements Engineering, [S.1.], v.15,
n.2, p.141-175, May 2010.

MORANDINI, M.; PENSERINI, L.; PERINI, A. Towards goal-oriented development of
self-adaptive systems. In: ICSE WORKSHOP ON SOFTWARE ENGINEERING FOR
ADAPTIVE AND SELF-MANAGING SYSTEMS (SEAMS ’08), 2008., New York, USA. ...
ACM, 2008. p.9-16.

NETO, G. G. d. C.; GOMES, A. S.; CASTRO, J. Mapping Activity Theory Diagrams into 1*
Organizational Models. Journal of Computer Science & Technology, [S.1.], v.5, n.2,
p.57-63, 2005.

NIAZ, I. A.; TANAKA, J. Code generation from UML statecharts. In: IASTED
INTERNATIONAL CONE. ON SOFTWARE ENGINEERING AND APPLICATION (SEA
2003), MARINA DEL REY, 7. Proceedings... [S.l.: s.n.], 2003. p.315-321.

NUSEIBEH, B. Weaving together requirements and architectures. Computer, [S.1.], v.34, n.3,
p.115-119, Mar. 2001.

NUSEIBEH, B.; EASTERBROOK, S. Requirements engineering: a roadmap. in ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering. New York, NY,
USA: ACM, [S.1.], p.35-46, 2000.

OMBG. Business Process Model and Notation (BPMN) Version 2.0. [S.1.: s.n.], 2011.
(January).

OMG. Information technology - Object Management Group Object Constraint Language
(OCL). [S.L]: OMG, 2012. (April).

OREIZY, P. Issues in the runtime modification of software architectures.
UCI-ICS-TR-96-35. [S.L.]: University of California, Irvine, 1996.

OREIZY, P.; MEDVIDOVIC, N.; TAYLOR, R. Architecture-based runtime software evolution.
Proceedings of the 20th international conference on Software engineering, [S.1.],
p.177-186, 1998.

REFERENCES 201

PASTOR, O.; MOLINA, J. C. Model-driven architecture in practice: a software
production environment based on conceptual modeling. [S.1.]: Springer, 2007.

Pettit Iv, R. G.; GOMAA, H. Modeling State-Dependent Objects using Colored Petri Nets.
CPN 01 Workshop on Modeling of Objects, Components, and Agents, [S.1.], 2001.

PIMENTEL, J.; CASTRO, J.; MYLOPOULOQOS, J.; ANGELOPOULOS, K.; SOUZA, V.E. S.
From Requirements to Statecharts via Design Refinement - in press. Proceedings of the 29th
Annual ACM Symposium on Applied Computing - SAC 2014, [S.1.], 2014.

PIMENTEL, J.; FRANCH, X.; CASTRO, J. Measuring Architectural Adaptability in i*
Models. In: XIV IBERO-AMERICAN CONFERENCE ON SOFTWARE ENGINEERING
(CIBSE 2011). ... [S.l.: s.n.], 2011. p.115-128.

PIMENTEL, J.; LUCENA, M.; CASTRO, J.; SILVA, C.; SANTOS, E.; ALENCAR, F.
Deriving software architectural models from requirements models for adaptive systems: the
stream-a approach. Requirements Engineering, [S.1.], v.17, n.4, p.259-281, June 2012.

PIMENTEL, J.; SANTOS, E.; DERMEVAL, D.; CASTRO, J.; FINKELSTEIN, A. Towards
Architectural Evolution through Model Transformations. In: INTERNATIONAL
CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING
(SEKE), 24. Proceedings. .. [S.L.: s.n.], 2012. p.448—451.

QURESHI, N. A.; PERINI, A.; ERNST, N. A.; MYLOPOULOS, J. Towards a Continuous
Requirements Engineering Framework for Self-Adaptive Systems. In: INTERNATIONAL
WORKSHOP ON REQUIREMENTS @RUN-TIME, 1., Sidney, Australia. ... [S.L: s.n.],
2010.

ROBERTSON, S.; ROBERTSON, J. Mastering the requirements process: getting
requirements right. 3rd Editio.ed. [S.1.]: Addison-Wesley, 2012.

ROLLAND, C.; ACHOUR, C. B. Guiding the construction of textual use case specifications.
Data & Knowledge Engineering Journal, [S.1.], v.25, n.March, p.125-160, 1998.

SALAY, R.; CHECHIK, M.; HORKOFF, J.; SANDRO, A. D. Managing requirements
uncertainty with partial models. Requirements Engineering, [S.1.], v.18, n.2, p.107-128,
Apr. 2013.

SANTANDER, V.; CASTRO, J. Deriving use cases from organizational modeling. In: IEEE
JOINT INTERNATIONAL CONFERENCE ON REQUIREMENTS ENGINEERING.
Proceedings... IEEE Comput. Soc, 2002. n.147192, p.32-39.

SAVOLA, R. M.; HEINONEN, P. Security-Measurability-Enhancing Mechanisms for a
Distributed Adaptive Security Monitoring System. 2010 Fourth International Conference on
Emerging Security Information, Systems and Technologies, [S.1.], p.25-34, July 2010.

SHAW, A. C. Software Descriptions with Flow Expressions. IEEE Transactions on Software
Engineering, [S.1.], v.SE-4, n.3, p.242-254, May 1978.

SILVA, L. F; BATISTA, T. V.; GARCIA, A.; MEDEIROS, A. L.; MINORA, L. On the
symbiosis of aspect-oriented requirements and architectural descriptions. Early Aspects:
Current Challenges and Future Directions - LNCS, Vancouver, Canada, v.4765/2007,
p-75-93, 2007.

REFERENCES 202

SJ? BERG, D. I. K. et al. A survey of controlled experiments in software engineering. IEEE
Transactions on Software Engineering, [S.1.], v.31, n.9, p.733-753, 2005.

SOARES, M. et al. Automatic Generation of Architectural Models From Goals Models. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND KNOWLEDGE
ENGINEERING (SEKE), 24. Proceedings... [S.l.: s.n.], 2012. p.444-447.

SOMMERVILLE, I. Software Engineering: seventh edition. [S.1.]: Pearson Education,
2004.

SOUZA, V. E. S. Requirements-based software system adaptation. 2012. Ph.D. Thesis —
University of Trento, Italy. (June).

SOUZA, V. E. S.; LAPOUCHNIAN, A.; MYLOPOULOS, J. System Identification for
Adaptive Software Systems: a requirements engineering perspective. In. CONCEPTUAL
MODELING - ER 2011. ... [S.l.: s.n.], 2011. p.346-361.

SOUZA, V. E. S.; LAPOUCHNIAN, A.; MYLOPOULOQS, J. Requirements-driven qualitative
adaptation. On the Move to Meaningful Internet Systems: OTM 2012, [S.1.], v.7565 LNCS,
p.342-361, 2012.

SOUZA, V. E. S.; LAPOUCHNIAN, A.; MYLOPOULOQS, J. (Requirement) evolution
requirements for adaptive systems. In: INTERNATIONAL SYMPOSIUM ON SOFTWARE
ENGINEERING FOR ADAPTIVE AND SELF-MANAGING SYSTEMS (SEAMS), 7. ...
IEEE, 2012. p.155-164.

SOUZA, V. E. S.; LAPOUCHNIAN, A.; ROBINSON, W. N.; MYLOPOULOS, J. Awareness
Requirements. In: LEMOS, R.; GIESE, H.; MiiLLER, H. A.; SHAW, M. (Ed.). Software
Engineering for Self-Adaptive Systems II. [S.1.]: Springer, 2013. p.133-161. (Lecture Notes
in Computer Science, v.7475).

STOLZE, M.; RIAND, P.; WALLACE, M.; HEATH, T. Agile Development of Workflow
Applications with Interpreted Task Models. Task Models and Diagrams for User Interface
Design, [S.1.], v.LNCS4849, p.2-14, 2007.

SUTCLIFFE, A.; SAWYER, P. Requirements elicitation: towards the unknown unknowns.
2013 21st IEEE International Requirements Engineering Conference (RE), [S.1.],
p-92-104, July 2013.

SUZUKI, S.; ABE, K. Topological structural analysis of digitized binary images by border
following. Computer Vision, Graphics, and Image Processing, [S.1.], v.29, p.396, 1985.

TALLABACI, G. Identification for Adaptive Software Systems - A Case Study. 2012. 62p.
MsC — University of Trento - Italy.

TALLABACI, G.; SOUZA, V. E. S. Engineering Adaptation with Zanshin: an experience
report. In: INTERNATIONAL SYMPOSIUM ON SOFTWARE ENGINEERING FOR
ADAPTIVE AND SELF-MANAGING SYSTEMS, 8. Proceedings... [S.l.: s.n.], 2013.

TIELLA, R.; VILLAFIORITA, A.; TOMASI, S. FSMCH+, a tool for the generation of Java
code from statecharts. In: PRINCIPLES AND PRACTICE OF PROGRAMMING IN JAVA, 5.
Proceedings... [S.l.: s.n.], 2007. p.93-102.

REFERENCES 203

VILELA, J.; CASTRO, J.; PIMENTEL, J.; LIMA, P. On the behaviour of context-sensitive
systems. XVIII Ibero-American Conference on Software Engineering - CIBSE 2015,
[S.L], p.10, 2015.

VILELA, J.; CASTRO, J.; PIMENTEL, J.; SOARES, M.; CAVALCANTI, P.; LUCENA, M.
Deriving the behavior of context-sensitive systems from contextual goal models. 30th Annual
ACM Symposium on Applied Computing - SAC 2015, [S.1.], p.1397-1400, 2015.

WANG, Y.; MYLOPOULQS, J. Self-Repair through Reconfiguration: a requirements
engineering approach. In: IEEE/ACM INTERNATIONAL CONFERENCE ON
AUTOMATED SOFTWARE ENGINEERING, 2009. Proceedings. .. IEEE, 2009. p.257-268.

WANG, Y.; ZHANG, Y.; SHEU, P. C.; LI, X.; GUO, H. The Formal Design Model of an
Automatic Teller Machine (ATM). International Journal of Software Science and
Computational Intelligence, [S.1.], v.2, n.1, p.102-131, Jan. 2010.

WEYNS, D.; Usman Iftikhar, M.; SODERLUND, J. Do external feedback loops improve the
design of self-adaptive systems? A controlled experiment. 2013 8th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS), [S.1.], p.3—12, May 2013.

WHITTLE, J.; SAWYER, P.; BENCOMO, N.; CHENG, B. H. C.; BRUEL, J.-M. Relax: a
language to address uncertainty in self-adaptive systems requirement. Requirements
Engineering Journal, [S.1.], v.15, n.2, p.177-196, 2010.

WHITTLE, J.; SCHUMANN, J. Generating statechart designs from scenarios. In:
INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING. ICSE 2000, 2000.
Proceedings... ACM, 2000. n.650, p.314-323.

WOHLIN, C.; RUNESON, P.; H6ST, M.; OHLSSON, M. C.; REGNELL, B.; WESSLéN, A.
Experimentation in software engineering. [S.1.]: Springer, 2012.

YU, E. Towards modelling and reasoning support for early-phase requirements engineering.
Proceedings of ISRE ’97: 3rd IEEE International Symposium on Requirements
Engineering, [S.1.], p.226-235, 1997.

YU, E.; GIORGINI, P.; MAIDEN, N.; MYLOPOULOQS, J. Social modeling for requirements
engineering. [S.1.]: Mit Press, 2011.

YU, E.; MYLOPOULOQOS, J. Why Goal-Oriented Requirements Engineering. In:
INTERNATIONAL WORKSHOP ON REQUIREMENTS ENGINEERING: FOUNDATIONS
OF SOFTWARE QUALITY - REFSQ’98, 4., Pisa, Italy. ... [S.L: s.n.], 1998. p.15-22.

YU, E. S.; MYLOPOULOS, J. Understanding “why” in software process modelling, analysis,
and design. Proceedings of 16th International Conference on Software Engineering, [S.1.],
p-159-168, 1994.

YU, Y.; do Prado Leite, J. C. S.; LAPOUCHNIAN, A.; MYLOPOULOQOS, J. Configuring
features with stakeholder goals. In: ACM SYMPOSIUM ON APPLIED COMPUTING - SAC
’08, 2008. Proceedings... ACM Press, 2008. p.645-649.

REFERENCES 204

YU, Y.; LAPOUCHNIAN, A.; LIASKOS, S.; MYLOPOULOS, J.; LEITE, J. C. S. P. From
Goals to High-Variability Software Design. In: FOUNDATIONS OF INTELLIGENT
SYSTEMS. ... [S.L.: s.n.], 2008. v.4994/2008, p.1-16.

YU, Y.; MYLOPOULOS, J.; LAPOUCHNIAN, A.; LIASKOS, S.; LEITE, J. C. S. P. From
Stakeholder Goals to High-Variability Software Design. [S.1.: s.n.], 2005.

ZHANG, Q.; ZHANI, M. E.; ZHANG, S.; ZHU, Q.; BOUTABA, R.; HELLERSTEIN, J. L.
Dynamic energy-aware capacity provisioning for cloud computing environments. Proceedings

of the 9th international conference on Autonomic computing - ICAC 12, [S.1.],
p.145-154, 2012.

205

Appendix

206

Example of iterative and incremental de-
sign with MULAS

This appendix shows a hypothetical example of the MULAS design process being used

iteratively and incrementally for designing a meeting scheduler system.

207

Figure A.1: Beginning of the meeting scheduler model, with only three goals: Schedule
Meeting, Characterize Meeting, and Define Schedule.

Schedule Meeting

(Characterize MeetinD (LRI SEEID)

Figure A.2: After further requirements elicitation, two new tasks and a new goal were
added to the model: Schedule Manually, Schedule Automatically, and Collect
Timetables.

Schedule Meeting

Define Schedule

Characterize Meeting
Collect Timetables

Schedule Manually m——
chedule

Automatically

Figure A.3: Considering the desired behavior of the system, it was decided to start with
Characterize Meeting (g2), then Collect Timetables (g6), and finally Define Schedule
(g3), which may be performed either manually (t4) or automatically (t5). This behavior
is represented by the flow expressions on top of g/ and g3. The resulting statechart is

presented in the next figure.
92 g6 g3

@ Schedule Meeting

@ Define Schedule

@ haracterize Meeting
@ Collect Timetables

Schedule Manually —
chedule
@ Automatically

208

Figure A.4: Initial statechart of the meeting scheduler system, based on the design goal
model from the previous figure.

Schedule Meeting (g1)
(R

(Define Schedule (g3))
t>(Characterize Meeting (gZD

'Schedule Manually (t4)
Y
(Collect Timetables (g6) "’(Schedule Automatically (ts))
.

J

Figure A.5: Continuing on, the following design decisions were made: to provide two
algorithms for the automatic scheduling (brute force and heuristics-based), as well as to
Use Web Services.

Schedule Meeting

Characterize Meeting
Define Schedule
Collect Timetables

Figure A.6: Running automatic analysis with the GATO tool, it was identified that the
following goals were not refined: Characterize Meeting (g2) and Collect Timetables
(g6). It was also identified that the following tasks were not included in the flow
expressions: Brute Force Algorithm (dt7) and Heuristics-based algorithm (dt8).

t4|t5

haracterize Meeting
@ @ Define Schedule
@ Collect Timetables

209

Figure A.7: Based on the previous feedback, the Characterize Meeting and Collect
Timetables goals were refined with additional tasks: Define Date Range, Define
Farticipants, and Collect by Email.

Schedule Meeting

Characterize Meeting

Define Schedule

' Collect Timetables)
Schedule Manually

< Collect by Email >

Define Date Range Schedule
Automatically

< Define Participants >

Figure A.8: The new tasks were included in the flow expressions: 10, t11, t12, dt7, and

de8.

@ Define Date Range

Define Participants

é Collect by Email >

Figure A.9: This is the statechart generated based on the design goal model shown in

the previous figure.

Schedule Meeting (g1)
4 p

Y (Define Schedule (g3))

(Characterize Meeting (g2)

.\—b(Define Date Range (t10))
e 'Schedule Manually (t4))

Yy
(. \
(Define Participants (t10)) / Schedule Automatically (t5)
- / J

>(Brute Force Algorithm (dt7))

(Collect Timetablgs (g6) N
y =(Heuristics-based algorithm (dt8))
(Collect by Email (t12) L)
. J J

210

Figure A.10: Unhappy with the behavior expressed in the previous figure, the designer

modified the flow expression on g/

(i1 (g2|g6lg3))*
Schedule Meeting

Collect by Email

. The resulting statechart is shown on the following

figure.

Figure A.11: Statechart representing the behavior of the meeting scheduler system,
according to the flow expressions defined in the previous figure.

Schedule Meeting (g1)

r

Idle (i1))

(Characterize Meeting (g2)

\(Deﬁne Date Range (t10) J

Y

\(Define Participants (t10) J

\.

) (Define Schedule (g3) 2))
)

(Schedule Manually (t4

('Schedule Automatically (t5) h
1 Brute Force Algorithm (dt7)

(Collect Timetables (g6)

%(Collect by Email (t12) J

.

| Heuristics-based algorithm (dtg)J

. J

Figure A.12: An awareness requirement was included in the model, expressing that the
Define Schedule goal should never fail.

Characterize Meeting

Define Date Range
Define Participants

< Collect by Email >

‘ Collect Timetables ’

O AR1: NeverFail

Z

Define Schedule

‘Schedule Manually

211

Figures A.1 to A.12 show the beginning steps of the creation of a meeting scheduler
system with the MULAS design process, illustrating the possibility of enacting it incrementally

and iteratively. For the full models of the meeting scheduler system, please refer to Chapter 4.

212

ATM Adaptation Scenarios - Complete Logs

The following pages present the complete log of the execution of different adaptation
scenarios, resulting from a simulation of the Automatic Teller Machine (ATM) system. For

more information regarding these adaptation scenarios, see Section 6.1.1.4 (Step 4).

B.1. LOG OF THE FIRST ADAPTATION SCENARIO 213

B.1 Log of the first adaptation scenario

Complete execution log of the first adaptation scenario of the ATM adaptation simula-
tion, described on Section 6.1.1.4 (Step 4). This log shows all information logged by Zanshin’s
component when performing the first adaptation scenario, related to ARI — NeverFail(Detect
Cash Amount).

B.1. LOG OF THE FIRST ADAPTATION SCENARIO 214

2015-01-31 11:57:16 [zanshin.controller] INFO: Successfully created a new user session for
target system atm: 1.422.716.236.486

2015-01-31 11:57:16 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.START ()

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement started: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@lfeScec (refinementType: and) (time:
null, state: undefined) (startTime: null)

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@1l85d6e8 (refinementType: and) (time: null
state: undefined) (startTime: null))

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: start / TDetectCashAm

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 11:57:16 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.FAIL (

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement failed: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@lfeScec (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement ended: TDetectCashAm
(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@lfeScec (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null
state: started) (startTime: null))

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: fail / TDetectCashAm

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@1l85d6e8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 11:57:16 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Requirement TDetectCashAm has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 11:57:16 [zanshin.adaptation] INFO: Processing state change: ARl (ref.
TDetectCashAm) -> failed

2015-01-31 11:57:16 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Created new session for AR1

2015-01-31 11:57:16 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:16 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Strategy RetryStrategy is applicable.

2015-01-31 11:57:16 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Selected adaptation strategy: RetryStrategy

2015-01-31 11:57:16 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Applying strategy RetryStrategy(true; 5000)...

2015-01-31 11:57:16 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iTDetectCashAm, iTDetectCashAm)

2015-01-31 11:57:16 [zanshin.core] DEBUG: Replacing requirement instances of class

TDetectCashAm (it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@lfeScec (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@f6a6d7 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 11:57:16 [zanshin.core] DEBUG: The status of GStartATM has been reset to
undefined

2015-01-31 11:57:16 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: terminate (iTDetectCashAm)

2015-01-31 11:57:16 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: rollback(iTDetectCashAm)

2015-01-31 11:57:16 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (5.000

2015-01-31 11:57:16 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iTDetectCashAm)

2015-01-31 11:57:16 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:16 [zanshin.core] DEBUG: Replacing requirement instances of class ARL

(it.unitn.disi.zanshin.model.atm.impl.AR1Impl@f518le (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR1Impl@l4cl£f00
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 11:57:16 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 11:57:16 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 11:57:16 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass ReconfigurationStrategy. Make sure this is on purpose...

2015-01-31 11:57:16 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: end / TDetectCashAm

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: fail / GStartATM

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: end / GStartATM

B.1. LOG OF THE FIRST ADAPTATION SCENARIO 215

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: fail / GProvideATM

2015-01-31 11:57:16 [zanshin.monitoring] INFO: Processing method call: end / GProvideATM

2015-01-31 11:57:23 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.START ()

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement started: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@f6a6d7 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null
state: undefined) (startTime: null))

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@1l85d6e8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: start / TDetectCashAm

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 11:57:23 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.FAIL (

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement failed: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@féaéd7 (refinementType: and) (time: null,
state: started) (startTime: null)

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement ended: TDetectCashAm
(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@fé6aéd7 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null
state: failed) (startTime: null))

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 11:57:23 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: fail / TDetectCashAm

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Requirement TDetectCashAm has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 11:57:23 [zanshin.adaptation] INFO: Processing state change: ARl (ref.
TDetectCashAm) -> failed

2015-01-31 11:57:23 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Retrieved existing session for ARl, one event already in the timeline

2015-01-31 11:57:23 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:23 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Strategy RetryStrategy is applicable.

2015-01-31 11:57:23 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Selected adaptation strategy: RetryStrategy

2015-01-31 11:57:23 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Applying strategy RetryStrategy(true; 5000)...

2015-01-31 11:57:23 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iTDetectCashAm, iTDetectCashAm)

2015-01-31 11:57:23 [zanshin.core] DEBUG: Replacing requirement instances of class

TDetectCashAm (it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@f6a6d7 (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 11:57:23 [zanshin.core] DEBUG: The status of GStartATM has been reset to
undefined

2015-01-31 11:57:23 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: terminate (iTDetectCashAm)

2015-01-31 11:57:23 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: rollback (iTDetectCashAm)

2015-01-31 11:57:23 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (5.000

2015-01-31 11:57:23 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iTDetectCashAm)

2015-01-31 11:57:23 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:23 [zanshin.core] DEBUG: Replacing requirement instances of class ARL

(it.unitn.disi.zanshin.model.atm.impl.AR1Impl@14cl1f00 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR1Impl@d5c83f
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 11:57:23 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 11:57:23 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 11:57:23 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass ReconfigurationStrategy. Make sure this is on purpose...

2015-01-31 11:57:23 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: end / TDetectCashAm

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: fail / GStartATM

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: end / GStartATM

B.1. LOG OF THE FIRST ADAPTATION SCENARIO 216

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: fail / GProvideATM

2015-01-31 11:57:23 [zanshin.monitoring] INFO: Processing method call: end / GProvideATM

2015-01-31 11:57:30 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.START ()

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement started: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 11:57:30 [zanshin.monitoring] INFO: Processing method call: start / TDetectCashAm

2015-01-31 11:57:30 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 11:57:30 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 11:57:30 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.FAIL (

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement failed: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: started) (startTime: null)

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement ended: TDetectCashAm
(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null
state: started) (startTime: null))

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 11:57:30 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 11:57:30 [zanshin.monitoring] INFO: Processing method call: fail / TDetectCashAm

2015-01-31 11:57:30 [zanshin.monitoring] INFO: Requirement TDetectCashAm has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 11:57:30 [zanshin.adaptation] INFO: Processing state change: ARl (ref.
TDetectCashAm) -> failed

2015-01-31 11:57:30 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Retrieved existing session for ARl, 2 events already in the timeline

2015-01-31 11:57:30 [zanshin.adaptation] INFO: (Session: AR1 / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:30 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Strategy RetryStrategy is not applicable because it has been applied at least 2 time(s) this
session.

2015-01-31 11:57:30 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Strategy ReconfigurationStrategy is applicable.

2015-01-31 11:57:30 [zanshin.adaptation] INFO: (Session: AR1 / 2015-01-31 11:57:16.523
Selected adaptation strategy: ReconfigurationStrategy

2015-01-31 11:57:30 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523

Applying strategy ReconfigurationStrategy(qualia; class-level)...

2015-01-31 11:57:30 [zanshin.adaptation.qualia] DEBUG: Creating a default algorithm...

2015-01-31 11:57:30 [zanshin.adaptation.qualia] WARNING: procIds null? true

2015-01-31 11:57:30 [zanshin.adaptation.qualia] INFO: Parameters chosen: [CaD]

2015-01-31 11:57:30 [zanshin.adaptation.qualia] INFO: Values to inc/decrement in the chosen
parameters: [1.00000]

2015-01-31 11:57:30 [zanshin.adaptation.qualia] INFO: Produced new configuration with 1 changed
parameter (s)

2015-01-31 11:57:30 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: apply-config(AtmGoalModel,
it.unitn.disi.zanshin.model.gore.impl.ConfigurationImpl@93dbal, class-level)

2015-01-31 11:57:30 [zanshin.adaptation] INFO: (Session: AR1 / 2015-01-31 11:57:16.523) The
problem has not yet been solved...
2015-01-31 11:57:30 [zanshin.core] DEBUG: Replacing requirement instances of class ARL

(it.unitn.disi.zanshin.model.atm.impl.AR1Impl@d5c83f (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR1Impl@l46bc20
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 11:57:30 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 11:57:30 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass ReconfigurationStrategy. Make sure this is on purpose...

2015-01-31 11:57:30 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 11:57:30 [zanshin.monitoring INFO: Processing method call: end / TDetectCashAm

2015-01-31 11:57:30 [zanshin.monitoring INFO: Processing method call: fail / GStartATM

2015-01-31 11:57:30 [zanshin.monitoring Processing method call: end / GStartATM

2015-01-31 11:57:30 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

[
[

-
=4
= |
o

2015-01-31 11:57:30 [zanshin.monitoring INFO: Processing method call: end / GProvideATM
2015-01-31 11:57:37 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.START ()

B.1. LOG OF THE FIRST ADAPTATION SCENARIO 217

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement started: TDetectCashAm
(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 11:57:37 [zanshin.monitoring] INFO: Processing method call: start / TDetectCashAm

2015-01-31 11:57:37 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.716.236.486: TDetectCashAm.FAIL(

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement failed: TDetectCashAm

(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement ended: TDetectCashAm
(it.unitn.disi.zanshin.model.atm.impl.TDetectCashAmImpl@3f4126 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@l5e6al2 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:37 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@185d6e8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 11:57:37 [zanshin.monitoring] INFO: Processing method call: fail / TDetectCashAm

2015-01-31 11:57:37 [zanshin.monitoring] INFO: Requirement TDetectCashAm has 1 AwRegs
referring to it. Assuming all AwRegs are NeverFail and reporting AwReg state change: fail

2015-01-31 11:57:37 [zanshin.adaptation] INFO: Processing state change: ARl (ref.
TDetectCashAm) -> failed

2015-01-31 11:57:37 [zanshin.adaptation] INFO: (Session: AR1 / 2015-01-31 11:57:16.523
Retrieved existing session for ARl, 3 events already in the timeline

2015-01-31 11:57:37 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has not yet been solved...

2015-01-31 11:57:37 [zanshin.core] INFO: (Session: AR1 / 2015-01-31 11:57:16.523)
Strategy RetryStrategy is not applicable because it has been applied at least 2 time(s) this
session.

2015-01-31 11:57:37 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523)

Strategy ReconfigurationStrategy is not applicable because it has been applied at least 1 time(s)
this session.

2015-01-31 11:57:37 [zanshin.core] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Strategy AbortStrategy is applicable.

2015-01-31 11:57:37 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523
Selected adaptation strategy: AbortStrategy

2015-01-31 11:57:37 [zanshin.core] INFO: (Session: AR1 / 2015-01-31 11:57:16.523)
Applying strategy AbortStrategy...

2015-01-31 11:57:37 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: abort (iAR1)

2015-01-31 11:57:37 [zanshin.adaptation] INFO: (Session: ARl / 2015-01-31 11:57:16.523) The
problem has been solved or there is nothing else to try. Adaptation session will be terminated.

2015-01-31 11:57:37 [zanshin.core] DEBUG: Replacing requirement instances of class ARL

(it.unitn.disi.zanshin.model.atm.impl.AR1Impl@l46bc20 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR1Impl@1778a52
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 11:57:37 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 11:57:37 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass ReconfigurationStrategy. Make sure this is on purpose...

2015-01-31 11:57:37 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 11:57:37 [zanshin.monitoring INFO: Processing method call: end / TDetectCashAm

2015-01-31 11:57:37 [zanshin.monitoring INFO: Processing method call: fail / GStartATM

2015-01-31 11:57:37 [zanshin.monitoring INFO: Processing method call: end / GStartATM

2015-01-31 11:57:37 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 11:57:37 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

B.2. LOG OF THE SECOND ADAPTATION SCENARIO 218

B.2 Log of the second adaptation scenario

Complete execution log of the second adaptation scenario of the ATM adaptation sim-
ulation, described on Section 6.1.1.4 (Step 4). This log shows all information logged by Zan-
shin’s component when performing the second adaptation scenario, related to AR2 — Never-

Fail(Setup Connection to Bank).

B.2. LOG OF THE SECOND ADAPTATION SCENARIO 219

2015-01-31 12:29:17 [zanshin.controller
target system atm: 1.422.718.157.453
2015-01-31 12:29:17 [zanshin.controller

] INFO: Successfully created a new user session for

] DEBUG: Received log for life-cycle method call in

session atm/1.422.718.157.453: TSetUpConnect.START ()

2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement started: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@5a0660 (refinementType: and) (time: null,

state: undefined) (startTime: null)
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement started: GStartATM

(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,

state: undefined) (startTime: null))
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement started: GProvideATM

(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,

state: undefined) (startTime: null))
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.controller

] INFO: Processing method call: start / TSetUpConnect
] INFO: Processing method call: start / GStartATM

] INFO: Processing method call: start / GProvideATM

] DEBUG: Received log for life-cycle method call in

session atm/1.422.718.157.453: TSetUpConnect.FAIL(

2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement failed: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@5a0660 (refinementType: and) (time: null,

state: started) (startTime: null)
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement ended: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@5a0660 (refinementType: and) (time: null,

state: failed) (startTime: null)
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement failed: GStartATM

(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,

state: started) (startTime: null))
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.core

] INFO: Processing method call: fail / TSetUpConnect
] DEBUG: Requirement ended: GStartATM

(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,

state: failed) (startTime: null)
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement failed: GProvideATM

(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,

state: started) (startTime: null))
2015-01-31 12:29:17 [zanshin.core

] DEBUG: Requirement ended: GProvideATM

(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,

state: failed) (startTime: null)
2015-01-31 12:29:17 [zanshin.monitoring

] INFO: Requirement TSetUpConnect has 1 AwRegs

referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:29:17 [zanshin.adaptation
TSetUpConnect) -> failed

2015-01-31 12:29:17 [zanshin.adaptation
Created new session for AR2

2015-01-31 12:29:17 [zanshin.adaptation
problem has not yet been solved...

2015-01-31 12:29:17 [zanshin.core
Strategy RetryStrategy is applicable.

2015-01-31 12:29:17 [zanshin.adaptation

] INFO: Processing state change: AR2 (ref.

] INFO: (Session: AR2 / 2015-01-31 12:29:17.490

] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
] INFO: (Session: AR2 / 2015-01-31 12:29:17.490

] INFO: (Session: AR2 / 2015-01-31 12:29:17.490

Selected adaptation strategy: RetryStrategy

2015-01-31 12:29:17 [zanshin.core
Applying strategy RetryStrategy(true;

2015-01-31 12:29:17 [zanshin.controller
instruction: copy-data (iTSetUpConnect,

2015-01-31 12:29:17 [zanshin.core

] INFO: (Session: AR2 / 2015-01-31 12:29:17.490

10000) ..

] DEBUG: RMI Target System Controller forwarding

iTSetUpConnect)

] DEBUG: Replacing requirement instances of class

TSetUpConnect (it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@5a0660 (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l6f£f60b (refinementType: and) (time: null,

state: undefined) (startTime: null)
2015-01-31 12:29:17 [zanshin.core
undefined
2015-01-31 12:29:17 [zanshin.controller
instruction: terminate (iTSetUpConnect
2015-01-31 12:29:17 [zanshin.controller
instruction: rollback(iTSetUpConnect)
2015-01-31 12:29:17 [zanshin.controller
instruction: wait (10.000)
2015-01-31 12:29:17 [zanshin.controller
instruction: initiate (iTSetUpConnect)
2015-01-31 12:29:17 [zanshin.adaptation
problem has not yet been solved...
2015-01-31 12:29:17 [zanshin.core

] DEBUG: The status of GStartATM has been reset to

] DEBUG: RMI Target System Controller forwarding

] DEBUG: RMI Target System Controller forwarding

] DEBUG: RMI Target System Controller forwarding

] DEBUG: RMI Target System Controller forwarding

] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The

] DEBUG: Replacing requirement instances of class AR2

(it.unitn.disi.zanshin.model.atm.impl.AR2Impl@al25fc (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR2Impl@l9b07£9

(refinementType: and) (time: null, state:

2015-01-31 12:29:17 [zanshin.core
undefined
2015-01-31 12:29:17 [zanshin.core

undefined) (incrementCoefficient: 1.0))

] DEBUG: The status of GProvideATM has been reset to

] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:29:17 [zanshin.core

] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring
2015-01-31 12:29:17 [zanshin.monitoring

INFO: Processing method call: end / TSetUpConnect
INFO: Processing method call: fail / GStartATM
INFO: Processing method call: end / GStartATM
INFO: Processing method call: fail / GProvideATM
INFO: Processing method call: end / GProvideATM

B.2. LOG OF THE SECOND ADAPTATION SCENARIO 220

2015-01-31 12:29:24 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.START ()
2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement started: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l6ff60b (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null
state: undefined) (startTime: null))

2015-01-31 12:29:24 [zanshin.monitoring] INFO: Processing method call: start / TSetUpConnect

2015-01-31 12:29:24 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 12:29:24 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:29:24 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.FAIL(

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement failed: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l6ff60b (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement ended: TSetUpConnect
(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l6£ff60b (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:29:24 [zanshin.monitoring] INFO: Processing method call: fail / TSetUpConnect

2015-01-31 12:29:24 [zanshin.monitoring] INFO: Requirement TSetUpConnect has 1 AwReqgs
referring to it. Assuming all AwRegs are NeverFail and reporting AwReg state change: fail

2015-01-31 12:29:24 [zanshin.adaptation] INFO: Processing state change: AR2 (ref.
TSetUpConnect) -> failed

2015-01-31 12:29:24 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Retrieved existing session for AR2, one event already in the timeline

2015-01-31 12:29:24 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has not yet been solved...

2015-01-31 12:29:24 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Strategy RetryStrategy is applicable.

2015-01-31 12:29:24 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Selected adaptation strategy: RetryStrategy

2015-01-31 12:29:24 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Applying strategy RetryStrategy(true; 10000)...

2015-01-31 12:29:24 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iTSetUpConnect, iTSetUpConnect

2015-01-31 12:29:24 [zanshin.core] DEBUG: Replacing requirement instances of class

TSetUpConnect (it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l6ff60b (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l3dl76a (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:24 [zanshin.core] DEBUG: The status of GStartATM has been reset to
undefined
2015-01-31 12:29:24 [zanshin.controller] DEBUG: RMI Target System Controller forwarding

instruction: terminate (iTSetUpConnect
2015-01-31 12:29:24 [zanshin.controller
instruction: rollback(iTSetUpConnect)

DEBUG: RMI Target System Controller forwarding

2015-01-31 12:29:24 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (10.000)

2015-01-31 12:29:24 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iTSetUpConnect)

2015-01-31 12:29:24 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has not yet been solved...

2015-01-31 12:29:24 [zanshin.core] DEBUG: Replacing requirement instances of class AR2

(it.unitn.disi.zanshin.model.atm.impl.AR2Impl@19007f9 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR2Impl@l4eae38
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 12:29:24 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:29:24 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:29:24 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:29:24 [zanshin.monitoring INFO: Processing method call: end / TSetUpConnect

2015-01-31 12:29:24 [zanshin.monitoring INFO: Processing method call: fail / GStartATM

2015-01-31 12:29:24 [zanshin.monitoring INFO: Processing method call: end / GStartATM

2015-01-31 12:29:24 [zanshin.monitoring Processing method call: fail / GProvideATM

2015-01-31 12:29:24 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

2015-01-31 12:29:31 [zanshin.controller DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.START ()

-
Z
]
o

B.2. LOG OF THE SECOND ADAPTATION SCENARIO 221

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement started: TSetUpConnect
(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@13dl76a (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:31 [zanshin.monitoring] INFO: Processing method call: start / TSetUpConnect

2015-01-31 12:29:31 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 12:29:31 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:29:31 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.FAIL(

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement failed: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@1l3dl76a (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement ended: TSetUpConnect
(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@13dl76a (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:29:31 [zanshin.monitoring] INFO: Processing method call: fail / TSetUpConnect

2015-01-31 12:29:31 [zanshin.monitoring] INFO: Requirement TSetUpConnect has 1 AwReqgs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:29:31 [zanshin.adaptation] INFO: Processing state change: AR2 (ref.
TSetUpConnect) -> failed

2015-01-31 12:29:31 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Retrieved existing session for AR2, 2 events already in the timeline

2015-01-31 12:29:31 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has not yet been solved...

2015-01-31 12:29:31 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Strategy RetryStrategy is applicable.

2015-01-31 12:29:31 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Selected adaptation strategy: RetryStrategy

2015-01-31 12:29:31 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Applying strategy RetryStrategy(true; 10000)...

2015-01-31 12:29:31 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iTSetUpConnect, 1iTSetUpConnect

2015-01-31 12:29:31 [zanshin.core] DEBUG: Replacing requirement instances of class

TSetUpConnect (it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@l3dl76a (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@lc7al0ef (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:31 [zanshin.core] DEBUG: The status of GStartATM has been reset to
undefined
2015-01-31 12:29:31 [zanshin.controller] DEBUG: RMI Target System Controller forwarding

instruction: terminate (iTSetUpConnect)
2015-01-31 12:29:31 [zanshin.controller
instruction: rollback (iTSetUpConnect)

DEBUG: RMI Target System Controller forwarding

2015-01-31 12:29:31 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (10.000)

2015-01-31 12:29:31 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iTSetUpConnect)

2015-01-31 12:29:31 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has not yet been solved...

2015-01-31 12:29:31 [zanshin.core] DEBUG: Replacing requirement instances of class AR2

(it.unitn.disi.zanshin.model.atm.impl.AR2Impl@l4eae38 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR2Impl@14765f1
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 12:29:31 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:29:31 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:29:31 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:29:31 [zanshin.monitoring INFO: Processing method call: end / TSetUpConnect

2015-01-31 12:29:31 [zanshin.monitoring INFO: Processing method call: fail / GStartATM

2015-01-31 12:29:31 [zanshin.monitoring INFO: Processing method call: end / GStartATM

2015-01-31 12:29:31 [zanshin.monitoring Processing method call: fail / GProvideATM

2015-01-31 12:29:31 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

2015-01-31 12:29:38 [zanshin.controller DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.START ()

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement started: TSetUpConnect
(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@lc7alef (refinementType: and) (time:
null, state: undefined) (startTime: null))

-
=4
= |
o

B.2. LOG OF THE SECOND ADAPTATION SCENARIO 222

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement started: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:29:38 [zanshin.monitoring] INFO: Processing method call: start / TSetUpConnect

2015-01-31 12:29:38 [zanshin.monitoring] INFO: Processing method call: start / GStartATM

2015-01-31 12:29:38 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:29:38 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.157.453: TSetUpConnect.FAIL(

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement failed: TSetUpConnect

(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@lc7alef (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement ended: TSetUpConnect
(it.unitn.disi.zanshin.model.atm.impl.TSetUpConnectImpl@lc7alef (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement failed: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement ended: GStartATM
(it.unitn.disi.zanshin.model.atm.impl.GStartATMImpl@dbb822 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:29:38 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@ll5cla5 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:29:38 [zanshin.monitoring] INFO: Processing method call: fail / TSetUpConnect

2015-01-31 12:29:38 [zanshin.monitoring] INFO: Requirement TSetUpConnect has 1 AwReqgs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:29:38 [zanshin.adaptation] INFO: Processing state change: AR2 (ref.
TSetUpConnect) -> failed

2015-01-31 12:29:38 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Retrieved existing session for AR2, 3 events already in the timeline

2015-01-31 12:29:38 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has not yet been solved...

2015-01-31 12:29:38 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Strategy RetryStrategy is not applicable because it has been applied at least 3 time(s) this
session.

2015-01-31 12:29:38 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Strategy AbortStrategy is applicable.

2015-01-31 12:29:38 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Selected adaptation strategy: AbortStrategy

2015-01-31 12:29:38 [zanshin.core] INFO: (Session: AR2 / 2015-01-31 12:29:17.490
Applying strategy AbortStrategy...

2015-01-31 12:29:38 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: abort (iAR2)

2015-01-31 12:29:38 [zanshin.adaptation] INFO: (Session: AR2 / 2015-01-31 12:29:17.490) The
problem has been solved or there is nothing else to try. Adaptation session will be terminated.

2015-01-31 12:29:38 [zanshin.core] DEBUG: Replacing requirement instances of class AR2

(it.unitn.disi.zanshin.model.atm.impl.AR2Impl@14765f1 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR2Impl@2b59dl
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 12:29:38 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:29:38 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:29:38 [zanshin.monitoring INFO: Processing method call: end / TSetUpConnect

2015-01-31 12:29:38 [zanshin.monitoring INFO: Processing method call: fail / GStartATM

2015-01-31 12:29:38 [zanshin.monitoring INFO: Processing method call: end / GStartATM

2015-01-31 12:29:38 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 12:29:38 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 223

B.3 Log of the third adaptation scenario

Complete execution log of the third adaptation scenario of the ATM adaptation simula-
tion, described on Section 6.1.1.4 (Step 4). This log shows all information logged by Zanshin’s
component when performing the third adaptation scenario, related to AR4 — NeverFail(Confirm

Transaction).

B.3. LOG OF THE THIRD ADAPTATION SCENARIO

224

2015-01-31 12:38:44 [zanshin.controller] INFO: Successfully created a new user session for
target system atm: 1.422.718.724.215

2015-01-31 12:38:44 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement started: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@e8fb6l (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement started: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:44 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL (
2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@e8fb6l (refinementType: and) (time: null,
state: started) (startTime: null)

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@e8fb6l (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null)

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:38:44 [zanshin.monitoring

2015-01-31 12:38:44 [zanshin.monitoring

2015-01-31 12:38:44 [zanshin.monitoring

2015-01-31 12:38:44 [zanshin.monitoring

INFO: Processing method call: start / GConfirmTrans
INFO: Processing method call: start / GConductTrans
INFO: Processing method call: start / GServeCust
INFO: Processing method call: start / GProvideATM
2015-01-31 12:38:44 [zanshin.monitoring INFO: Processing method call: fail / GConfirmTrans
2015-01-31 12:38:44 [zanshin.monitoring INFO: Requirement GConfirmTrans has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:38:44 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:38:44 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Created new session for AR4

2015-01-31 12:38:44 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:44 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is applicable.

2015-01-31 12:38:44 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266)
Selected adaptation strategy: RetryStrategy

2015-01-31 12:38:44 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Applying strategy RetryStrategy(true; 2000)...

2015-01-31 12:38:44 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iGConfirmTrans, iGConfirmTrans

2015-01-31 12:38:44 [zanshin.core] DEBUG: Replacing requirement instances of class

GConfirmTrans (it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@e8fb6l (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@2d5b6f (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:44 [zanshin.core] DEBUG: The status of GConductTrans has been reset to
undefined

2015-01-31 12:38:44 [zanshin.core] DEBUG: The status of GServeCust has been reset to
undefined

2015-01-31 12:38:44 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: terminate (iGConfirmTrans

2015-01-31 12:38:44 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: rollback(iGConfirmTrans)

2015-01-31 12:38:44 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait(2.000

2015-01-31 12:38:44 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iGConfirmTrans)

2015-01-31 12:38:44 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:44 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@lae2e31l (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@6cdOe8
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 12:38:44 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 225

2015-01-31 12:38:44 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:38:44 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: fail / GConductTrans

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: end / GConductTrans

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: fail / GServeCust

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: end / GServeCust

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: fail / GProvideATM

2015-01-31 12:38:44 [zanshin.monitoring] INFO: Processing method call: end / GProvideATM

2015-01-31 12:38:51 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()

2015-01-31 12:38:51 [zanshin.core DEBUG: Requirement started: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@2d5b6f (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null)

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement started: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:51 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL(
2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@2d5b6f (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@2d5b6f (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:38:51 [zanshin.monitoring

2015-01-31 12:38:51 [zanshin.monitoring

2015-01-31 12:38:51 [zanshin.monitoring

2015-01-31 12:38:51 [zanshin.monitoring

[

INFO: Processing method call: start / GConfirmTrans
INFO: Processing method call: start / GConductTrans
INFO: Processing method call: start / GServeCust
INFO: Processing method call: start / GProvideATM
2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: fail / GConfirmTrans
2015-01-31 12:38:51 [zanshin.monitoring INFO: Requirement GConfirmTrans has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

1
]
]
]
]
]

2015-01-31 12:38:51 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:38:51 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Retrieved existing session for AR4, one event already in the timeline

2015-01-31 12:38:51 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:51 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is applicable.

2015-01-31 12:38:51 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Selected adaptation strategy: RetryStrategy

2015-01-31 12:38:51 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Applying strategy RetryStrategy(true; 2000)...

2015-01-31 12:38:51 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iGConfirmTrans, iGConfirmTrans

2015-01-31 12:38:51 [zanshin.core] DEBUG: Replacing requirement instances of class

GConfirmTrans (it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@2d5b6f (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lce21d8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:51 [zanshin.core] DEBUG: The status of GConductTrans has been reset to
undefined

2015-01-31 12:38:51 [zanshin.core] DEBUG: The status of GServeCust has been reset to
undefined

2015-01-31 12:38:51 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: terminate (iGConfirmTrans

2015-01-31 12:38:51 [zanshin.controller] DEBUG: RMI Target System Controller forwarding

instruction: rollback(iGConfirmTrans)

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 226

2015-01-31 12:38:51 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (2.000

2015-01-31 12:38:51 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate(iGConfirmTrans)

2015-01-31 12:38:51 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:51 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@6cdOe8 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@ld57e48
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 12:38:51 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:38:51 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:38:51 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:38:51 [zanshin.monitoring] INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: fail / GConductTrans

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: end / GConductTrans

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: fail / GServeCust

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: end / GServeCust

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 12:38:51 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

2015-01-31 12:38:58 [zanshin.controller DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement started: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lce21d8 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:38:58 [zanshin.monitoring] INFO: Processing method call: start / GConfirmTrans
2015-01-31 12:38:58 [zanshin.monitoring] INFO: Processing method call: start / GConductTrans
2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement started: GServeCust

(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null))
2015-01-31 12:38:58 [zanshin.monitoring] INFO: Processing method call: start / GServeCust
2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:58 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:38:58 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL (

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lce21d8 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lce21d8 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:38:58 [zanshin.monitoring] INFO: Processing method call: fail / GConfirmTrans

2015-01-31 12:38:58 [zanshin.monitoring] INFO: Requirement GConfirmTrans has 1 AwRegs
referring to it. Assuming all AwRegs are NeverFail and reporting AwReg state change: fail

2015-01-31 12:38:58 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:38:58 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Retrieved existing session for AR4, 2 events already in the timeline

2015-01-31 12:38:58 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:58 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is applicable.

2015-01-31 12:38:58 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Selected adaptation strategy: RetryStrategy

2015-01-31 12:38:58 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Applying strategy RetryStrategy(true; 2000)...

2015-01-31 12:38:58 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iGConfirmTrans, iGConfirmTrans)

2015-01-31 12:38:58 [zanshin.core] DEBUG: Replacing requirement instances of class

GConfirmTrans (it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lce21d8 (refinementType:

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 227

and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@6717c8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:38:58 [zanshin.core] DEBUG: The status of GConductTrans has been reset to
undefined

2015-01-31 12:38:58 [zanshin.core] DEBUG: The status of GServeCust has been reset to
undefined

2015-01-31 12:38:58 [zanshin.controller] DEBUG: RMI Target System Controller forwarding

instruction: terminate (1GConfirmTrans)
2015-01-31 12:38:58 [zanshin.controller
instruction: rollback (iGConfirmTrans)

DEBUG: RMI Target System Controller forwarding

2015-01-31 12:38:58 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait(2.000)

2015-01-31 12:38:58 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate (iGConfirmTrans)

2015-01-31 12:38:58 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:38:58 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@1ld57e48 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@lf2a26d
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 12:38:58 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:38:58 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:38:58 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: fail / GConductTrans

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: end / GConductTrans

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: fail / GServeCust

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: end / GServeCust

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 12:38:58 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

[

2015-01-31 12:39:05 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()
2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement started: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@6717c8 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement started: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:05 [zanshin.monitoring

2015-01-31 12:39:05 [zanshin.monitoring

[INFO: Processing method call: start GConfirmTrans
[
2015-01-31 12:39:05 [zanshin.monitoring
[
[

/
INFO: Processing method call: start / GConductTrans
INFO: Processing method call: start / GServeCust

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: start / GProvideATM

2015-01-31 12:39:05 [zanshin.controller DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL (
2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@6717c8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@6717c8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:39:05 [zanshin.monitoring] INFO: Processing method call: fail / GConfirmTrans

2015-01-31 12:39:05 [zanshin.monitoring] INFO: Requirement GConfirmTrans has 1 AwReqgs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:39:05 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:39:05 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266

Retrieved existing session for AR4, 3 events already in the timeline

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 228

2015-01-31 12:39:05 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:39:05 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is applicable.

2015-01-31 12:39:05 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Selected adaptation strategy: RetryStrategy

2015-01-31 12:39:05 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266)
Applying strategy RetryStrategy(true; 2000)...

2015-01-31 12:39:05 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iGConfirmTrans, iGConfirmTrans

2015-01-31 12:39:05 [zanshin.core] DEBUG: Replacing requirement instances of class

GConfirmTrans (it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@6717c8 (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@621e69 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:05 [zanshin.core] DEBUG: The status of GConductTrans has been reset to
undefined

2015-01-31 12:39:05 [zanshin.core] DEBUG: The status of GServeCust has been reset to
undefined

2015-01-31 12:39:05 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: terminate (iGConfirmTrans

2015-01-31 12:39:05 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: rollback(iGConfirmTrans)

2015-01-31 12:39:05 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: wait (2.000

2015-01-31 12:39:05 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: initiate(iGConfirmTrans)

2015-01-31 12:39:05 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:39:05 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@lf2a26d (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@a43578
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 12:39:05 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:39:05 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:39:05 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:39:05 [zanshin.monitoring] INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: fail / GConductTrans

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: end / GConductTrans

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: fail / GServeCust

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: end / GServeCust

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 12:39:05 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

2015-01-31 12:39:12 [zanshin.controller DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement started: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@621e69 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: start / GConfirmTrans
2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: start / GConductTrans
2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement started: GServeCust

(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null))
2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: start / GServeCust
2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null)

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:39:12 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL(

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@621e69 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@621e69 (refinementType: and) (time: null,
state: failed) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null)

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 229

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: fail / GConfirmTrans

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Requirement GConfirmTrans has 1 AwRegs
referring to it. Assuming all AwReqgs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:39:12 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:39:12 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Retrieved existing session for AR4, 4 events already in the timeline

2015-01-31 12:39:12 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:39:12 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is applicable.

2015-01-31 12:39:12 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Selected adaptation strategy: RetryStrategy

2015-01-31 12:39:12 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Applying strategy RetryStrategy(true; 2000)...

2015-01-31 12:39:12 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: copy-data (iGConfirmTrans, iGConfirmTrans

2015-01-31 12:39:12 [zanshin.core] DEBUG: Replacing requirement instances of class

GConfirmTrans (it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@621e69 (refinementType:
and) (time: null, state: failed) (startTime: null) ->
it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lc7alef (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:12 [zanshin.core] DEBUG: The status of GConductTrans has been reset to
undefined

2015-01-31 12:39:12 [zanshin.core] DEBUG: The status of GServeCust has been reset to
undefined

2015-01-31 12:39:12 [zanshin.controller
instruction: terminate (iGConfirmTrans

2015-01-31 12:39:12 [zanshin.controller
instruction: rollback(iGConfirmTrans)

2015-01-31 12:39:12 [zanshin.controller
instruction: wait(2.000

2015-01-31 12:39:12 [zanshin.controller
instruction: initiate(iGConfirmTrans)

DEBUG: RMI Target System Controller forwarding

DEBUG: RMI Target System Controller forwarding

DEBUG: RMI Target System Controller forwarding

DEBUG: RMI Target System Controller forwarding

2015-01-31 12:39:12 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...
2015-01-31 12:39:12 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@ad43578 (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@75c03b
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0))

2015-01-31 12:39:12 [zanshin.core] DEBUG: The status of GProvideATM has been reset to
undefined
2015-01-31 12:39:12 [zanshin.core] DEBUG: Method

AdaptationStrategyImpl.updateReferences() has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:39:12 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: fail / GConductTrans

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: end / GConductTrans

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: fail / GServeCust

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: end / GServeCust

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: fail / GProvideATM

2015-01-31 12:39:12 [zanshin.monitoring] INFO: Processing method call: end / GProvideATM

2015-01-31 12:39:19 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.START ()

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement started: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lc7alef (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement started: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: undefined) (startTime: null))

2015-01-31 12:39:19 [zanshin.monitoring] INFO: Processing method call: start / GConfirmTrans
2015-01-31 12:39:19 [zanshin.monitoring] INFO: Processing method call: start / GConductTrans
2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement started: GServeCust

(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: undefined) (startTime: null))
2015-01-31 12:39:19 [zanshin.monitoring] INFO: Processing method call: start / GServeCust
2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement started: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: undefined) (startTime: null))

2015-01-31 12:39:19 [zanshin.monitoring] INFO: Processing method call: start / GProvideATM

2015-01-31 12:39:19 [zanshin.controller] DEBUG: Received log for life-cycle method call in
session atm/1.422.718.724.215: GConfirmTrans.FAIL(

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement failed: GConfirmTrans

(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lc7a0ef (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement ended: GConfirmTrans
(it.unitn.disi.zanshin.model.atm.impl.GConfirmTransImpl@lc7alef (refinementType: and) (time:
null, state: failed) (startTime: null)

B.3. LOG OF THE THIRD ADAPTATION SCENARIO 230

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement failed: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: started) (startTime: null))

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement ended: GConductTrans
(it.unitn.disi.zanshin.model.atm.impl.GConductTransImpl@1108e32 (refinementType: and) (time:
null, state: failed) (startTime: null)

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement failed: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement ended: GServeCust
(it.unitn.disi.zanshin.model.atm.impl.GServeCustImpl@le792e9 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement failed: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: started) (startTime: null))

2015-01-31 12:39:19 [zanshin.core] DEBUG: Requirement ended: GProvideATM
(it.unitn.disi.zanshin.model.atm.impl.GProvideATMImpl@5eldb8 (refinementType: and) (time: null,
state: failed) (startTime: null)

2015-01-31 12:39:19 [zanshin.monitoring] INFO: Processing method call: fail / GConfirmTrans

2015-01-31 12:39:19 [zanshin.monitoring] INFO: Requirement GConfirmTrans has 1 AwRegs
referring to it. Assuming all AwRegs are NeverFail and reporting AwReq state change: fail

2015-01-31 12:39:19 [zanshin.adaptation] INFO: Processing state change: AR4 (ref.
GConfirmTrans) -> failed

2015-01-31 12:39:19 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Retrieved existing session for AR4, 5 events already in the timeline

2015-01-31 12:39:19 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has not yet been solved...

2015-01-31 12:39:19 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy RetryStrategy is not applicable because it has been applied at least 5 time(s) this
session.

2015-01-31 12:39:19 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Strategy AbortStrategy is applicable.

2015-01-31 12:39:19 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Selected adaptation strategy: AbortStrategy

2015-01-31 12:39:19 [zanshin.core] INFO: (Session: AR4 / 2015-01-31 12:38:44.266
Applying strategy AbortStrategy...

2015-01-31 12:39:19 [zanshin.controller] DEBUG: RMI Target System Controller forwarding
instruction: abort (1AR4)

2015-01-31 12:39:19 [zanshin.adaptation] INFO: (Session: AR4 / 2015-01-31 12:38:44.266) The
problem has been solved or there is nothing else to try. Adaptation session will be terminated.

2015-01-31 12:39:19 [zanshin.core] DEBUG: Replacing requirement instances of class AR4

(it.unitn.disi.zanshin.model.atm.impl.AR4Impl@75c03b (refinementType: and) (time: null, state:
failed) (incrementCoefficient: 1.0) -> it.unitn.disi.zanshin.model.atm.impl.AR4Impl@ldclfdb
(refinementType: and) (time: null, state: undefined) (incrementCoefficient: 1.0)

2015-01-31 12:39:19 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass RetryStrategy. Make sure this is on purpose...

2015-01-31 12:39:19 [zanshin.core] DEBUG: Method
AdaptationStrategyImpl.updateReferences () has been called, indicating it has not been overridden
by the subclass AbortStrategy. Make sure this is on purpose...

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: end / GConfirmTrans

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: fail / GConductTrans

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: end / GConductTrans

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: fail / GServeCust

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: end / GServeCust

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: fail / GProvideATM

2015-01-31 12:39:19 [zanshin.monitoring INFO: Processing method call: end / GProvideATM

231

Experiment Instruments

This appendix contains the instruments used during the empirical study described in
Section 7.2: pre-experiment questionnaire, experiment tasks, and post experiment question-

naire. These instruments are a translated copy of their original versions in Portuguese.

C.1. PRE-EXPERIMENT QUESTIONNAIRE 232

C.1 Pre-experiment questionnaire

This appendix presents a questionnaire appplied to all subjects before the experiment.
The goal of this questionnaire was to obtain basic information about the background of subjects,

for characterization purposes.

C.1. PRE-EXPERIMENT QUESTIONNAIRE 233

Statechart Derivation with Adaptation
Experiment

Date:

Student:

Group:__ (_)MULAS () Control

Pre-experiment Questionnaire

The aim of this questionnaire is to obtain information about your
background on systems modeling and software engineering. Your answers do
not affect the other activities of this experiment, they simple provide us a
context for the interpretation of results. Feel free to write beyond the designated
lines in order to explain or detail your answers, if needed be.

1) On which academic level are you enrolled?

() Undergraduation () Master () Doctoral

2) What is/was your undergraduation course?

3) Do you have professional experience on software engineering?
()No ()Yes, for howlong?

If yes, which activities have you performed professionally?

4) Have you ever used a modeling language for describing systems behaviour
before this training?

5) Vocé ja utilizou alguma linguagem para modelagem do comportamento de
sistemas antes desta disciplina?
()No ()State machines ()Petri nets ()Statechart
()Class diagram ()Activity diagram ()Use cases
()Goal models ()Process diagrams
()Other: which one (s)?

6) Choose one of the alternatives with respect to the following statement: “I am
proficient in a systems modeling language other than statecharts or other
kinds of state diagrams”

O O O O O

strongl . strongl
. gty disagree neutral agree gly
disagree agree

C.2. OBJECT - MULAS GROUP 234

C.2 Object - MULAS group

This appendix shows a translated version of the main artifact that was handed to partici-
pants in the MULAS group uring the experiment reported on Section 7.2. This artifact describes

the set of tasks that the subjects had to perform during the experiment.

C.2. OBJECT - MULAS GROUP 235

Statechart Derivation with Adaptation
Experiment

Group: MULAS Date:
Student:

1) Write in the goal model below the flow expressions for an e-commerce system,
according to the behaviour described in the following text.

Sell Books

Choose a Book

Provide
Personal Data
Conf irm Order
Cak:ulate
- Quallty Constraint Shlpplng Costy

=

—>
AND

—_—
OR

Domain Assumption

Description of the expected behaviour:

The Sarava Bookstore intends to develop a web-based e-commerce system, where it can
sell the books in its inventory. Accessing the website, users will see a listing of available books.
If the user finds the desired book in the listing, she will be able to view the book details directly
from the listing. If the book was not found on the listing, the user can use a search mechanism,
as many times as warranted, until the book is found — then, the book details can be viewed.

Once the desired book is found and its details are viewed, the user has 3 options: either
she buy the book, send a book recommendation, or write a book review.

In order to perform the purchase, the user must follow the following procedure: first it is
required to provide personal data, then calculate shipping costs, confirm order, and lastly
perform the payment. However, the shipping costs calculation is not always performed, as the
user may choose to have the book delivered on a physical store. To make a purchase, no kind
of registering or login is required.

Regardless of user interaction, the system shall send e-mails at 12-hours intervals for
those users whose payment have not been approved yet.

C.2. OBJECT - MULAS GROUP 236

2) Based on the flow expressions you wrote in the previous question, create a statechart
that represents the expected behaviour of the system. This statechart should not contain
anything less nor beyond what is specified by those expressions - if needed be, update
the expressions in the previous question, but remember to always follow the behaviour
described in question 1.

3) Include on your statechart the events for every one of its transitions.

In order to answer the following questions, consider the indicators included to the goal model
below.

Sell Books

Send Payment
o Reminder

Q Indicator2: SuccessRate(88%)

S
Write Review
~ (=)

° List Books
ésea rch for Book > éiew Book Details>
16 15

() -~

—

@' erform Payment
0 Confirm Order

O Indicator1: NeverFail

Provide

@ Personal Data
Calculate

@ Shipping Costs

Indicator Adaptation Strategies
Indicatorl: NeverFail Retry(t11, 5s);
Indicator2: SuccessRate(88%) Notify("SysAdmin");

4) Write in the table below the monitoring points for this system (start and end),
considering its indicators and its behaviour.

Indicator Monitoring Points
Start End

Indicatorl: NeverFail
Indicator2: SuccessRate(88%)

5) Using pencil or pen with a different colour, include in your statechart the necessary
monitoring actions.

6) Based on the adaptation strategies specified in the first table on this page, include in
your statechart the elements required in order to enact these strategies. Then again,
use pencil or pen with a different colour.

C.3. OBJECT - CONTROL GROUP 237

C.3 Object - Control group

This appendix shows a translated version of the main artifact that was handed to partici-
pants in the control group during the experiment reported on Section 7.2. This artifact describes

the set of tasks that the subjects had to perform during the experiment.

C.3. OBJECT - CONTROL GROUP 238

Statechart Derivation with Adaptation
Experiment

Group: Control Date:
Student:

1) Consider the goal model below, representing an e-commerce system, and the
behaviour described in the following text.

Sell Books

Send Payment
Reminder

Recommend Book

Choose a Book

List Books
< Search for Book > <View Book Details>

Perform Purchase

\

Perform Payment

Provide
Personal Data

Quality Constraint

Domain Assumption

Confirm Order

Calculate
Shipping Costs

Task

N
NS

AND

OR

Description of the expected behaviour:

The Sarava Bookstore intends to develop a web-based e-commerce system, where it can
sell the books in its inventory. Accessing the website, users will see a listing of available books.
If the user finds the desired book in the listing, she will be able to view the book details directly
from the listing. If the book was not found on the listing, the user can use a search mechanism,
as many times as warranted, until the book is found — then, the book details can be viewed.

Once the desired book is found and its details are viewed, the user has 3 options: either
she buy the book, send a book recommendation, or write a book review.

In order to perform the purchase, the user must follow the following procedure: first it is
required to provide personal data, then calculate shipping costs, confirm order, and lastly
perform the payment. However, the shipping costs calculation is not always performed, as the
user may choose to have the book delivered on a physical store. To make a purchase, no kind
of registering or login is required.

Regardless of user interaction, the system shall send e-mails at 12-hours intervals for
those users whose payment have not been approved yet

C.3. OBJECT - CONTROL GROUP 239

2) Based on the content of the previous question, create a statechart that represents the
expected behaviour of the system. This statechart should not contain anything less nor
beyond what is specified in the previous question.

When creating this statechart, the use of states, transitions, and events is mandatory. The
use of super-states, orthogonal states, conditions, variables, actions, and default states is

optional.

3) Consider the additional behaviour presented in the following text.

Some tasks of the system are more critical than others. Considering that “Confirm Order” is a
very important task, the stakeholders decided the following: every time a failure occurs during
the confirmation, the system must try to perform the confirmation again, at 5 seconds
intervals, until the confirmation is performed successfully.

Another important task of the system is the sending of payment reminders. The stakeholders
specified that this sending must be performed successfully in at least 88% of the cases —
otherwise, the system administrator must receive a notification e-mail.

4) Using pencil or pen with a different colour from the one you used to draw the
statechart, modify the statechart in order to include the additional behaviour described
in the previous question. If you need to remove any element, scribble over it, instead of

erasing it.

C.4. POST EXPERIMENT QUESTIONNAIRE 240

C.4 Post experiment questionnaire

This appendix presents the post experiment questionnaire that was applied to subjects
in the MULAS group, through which it was possible to obtain subjective feedback about the
MULAS framework.

C.4. POST EXPERIMENT QUESTIONNAIRE 241

Statechart Derivation with Adaptation

Experiment

Group: MULAS Date:

This questionnaire is anonymous — do not write your name

For each one of the statements below, select whether you strongly disagree, disagree, is
neutral, agree, or strongly agree.

a. The mapping from tasks to states facilitates the creation of statecharts

O O O o ©
\ \ \ %

strongl . strongl

. gly disagree neutral agree sy

disagree agree

b. The mapping from goals to super-states improves the organization/structure of

statecharts
e I e
C \ 9 \ 9 \ Y O
sFroneg disagree neutral agree strongly
disagree agree
c. The use of flow expressions facilitates the creation of statecharts
e O O
C \ 9 \ 9 \ O
sFroneg disagree neutral agree strongly
disagree agree
d. The use of goal models facilitates the creation of statecharts
e O O
C \ 9 \ 9 \ O
sFroneg disagree neutral agree strongly
disagree agree
e. The use of flow expressions makes the creation of statecharts more systematic
e e e
C U \ 9 \ O
sFroneg disagree neutral agree strongly
disagree agree

f. The creation of statecharts contributes to a more complete specification of the system

C O O O O
U \ J

sFroneg disagree neutral agree strongly

disagree agree

g. Statecharts facilitate system understanding

O O O O o)
\UJ U \

strongl . strongl

) ey disagree neutral agree gly

disagree agree

h. The use of patterns facilitate the reification of the specified adaptations

O O O O O
\J \J \J

strongl . strongl

. gly disagree neutral agree gly

disagree agree

i. Itiseasy to specify sequential behaviour with flow expressions

C.4. POST EXPERIMENT QUESTIONNAIRE 242

C O O e O
\J \J \J

strongl . strongl

. gly disagree neutral agree gy

disagree agree

j. Itis easy to specify alternative behaviour with flow expressions

O O O O O
J U \

strongl : strongl

. ey disagree neutral agree gy

disagree agree

k. Itis easy to specify optionality with flow expressions

O O O
\ % \ % \
stcrongly disagree neutral agree strongly
disagree agree
I. Itis easy to specify repetition with flow expressions
O O O
C \ % \ % \ O
sFroneg disagree neutral agree strongly
disagree agree
m. Itis easy to specify parallelism with flow expressions
)) O
\ % \ % \
Sangly disagree neutral agree strongly
disagree agree
n. Itis easy toinclude idle states with flow expressions
O) O
\ % \ % U
sFroneg disagree neutral agree strongly
disagree agree
0. The pattern to reify the abort adaptation action is easy to understand
O O O
\ % \ % \
sFroneg disagree neutral agree strongly
disagree agree
p. The pattern to reify the notify adaptation action is easy to understand
O O O
C \ % \ % \ O
sFroneg disagree neutral agree strongly
disagree agree

g. The pattern to reify the reconfigure adaptation action is easy to understand

C) e Y O
A4 A4 \J

sFroneg disagree neutral agree strongly

disagree agree

r. The pattern to reify the retry adaptation action is easy to understand

O O O
J U U
strongl . strongl
ey disagree neutral agree ely

disagree agree

	Introduction
	Context and Motivation
	Research Goal
	Methods
	Overview of the Proposed Solution
	Published work
	Thesis Outline

	Baseline
	Requirements Engineering
	Goal Models
	Statecharts
	Flow Expressions
	Control Theory
	Goal Model with Adaptation Elements
	Zanshin Framework
	Summary

	Adaptation on Requirements and Architecture
	Requirements
	Architectural design
	General adaptation
	Adaptation on Statecharts

	Multi-Level Adaptation - the Design Goal Model
	Summary

	From Requirements to Architectural Design
	Requirements for the Meeting Scheduler system
	Architectural Design
	Identify Design Tasks, Constraints and Assumptions
	Example

	Assign Tasks
	Example

	Define Basic Flows
	Example

	Identify indicators, parameters and relations
	Example

	Specify adaptation strategies
	Example

	Generate base statechart
	Example

	Specify transitions
	Example

	Include adaptation elements
	Example

	Summary

	GATO - Goal to Architecture tool
	Overview
	Statechart Derivation
	Integration with Zanshin
	Summary

	Concept Proof
	The ATM system
	Evaluation using the ATM system
	Step 1 - Following the Architectural Design process
	Step 2 - Using a statechart tool
	Step 3 - Integration with Zanshin
	Step 4 - Simulation

	The Environment Monitoring robot
	Requirements and Design
	Adaptation
	Experimentation

	Summary

	Experiments
	Scalability Evaluation
	Process assessment
	Experiment Definition and Planning
	Hypotheses, Variables, and Measures
	Subjects, Treatments, and Instrumentation

	Experiment Preparation and Execution
	Results and Analysis
	Discussion

	Summary

	Conclusion
	Context
	Contributions
	Related Work
	Software Adaptation
	Requirements-centric
	Architecture-centric

	Architectural Design and Derivation
	Derivation of component models
	Derivation of behavioral models

	Summary of related work

	Considerations
	Limitations
	Future Work

	References
	Appendix
	Example of iterative and incremental design with MULAS
	ATM Adaptation Scenarios - Complete Logs
	Log of the first adaptation scenario
	Log of the second adaptation scenario
	Log of the third adaptation scenario

	Experiment Instruments
	Pre-experiment questionnaire
	Object - MULAS group
	Object - Control group
	Post experiment questionnaire

