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Abstract. Requirements engineering and architectural design are key ac-

tivities for successful development of software systems. Both activities are 

strongly intertwined and interrelated, but many steps toward generating 

architecture models from requirements models are driven by intuition and 

architectural knowledge. Thus, systematic approaches that integrate re-

quirements engineering and architectural design activities are needed. This 

paper presents an approach based on model transformations to generate 

architectural models from requirements models. The source and target 

languages are respectively the i* modeling language and Acme architec-

tural description language (ADL). A real web-based recommendation sys-

tem is used as case study to illustrate our approach. 

Keywords: Requirements engineering, Architectural design, Models 

Transformation 

1   Introduction 

The Requirements Engineering (RE) [12] and Software Architecture (SA) [8] are 

initial activities of software systems development that have been emerging both 

in research as in practice. Currently, software systems present characteristics 

such as increased size, complexity, diversity and longevity. Thus, their develop-

ment must consider proper requirements elicitation and modeling approaches, as 

well as use systematic architectural design methods. A great challenge is the 

development of systematic methods for building architectural design that satis-

fies the requirements specification. Some efforts have been made to understand 

the interaction between RE and SA activities [3], [1]. Therefore, many approach-

es claim that there is a semantic gap between these two activities. However, with 

the widely use of iterative and incremental software development process as the 

de facto standard, a strong integration between requirements and architectural 

design activities can facilitate traceability and the propagations of changes be-

tween these models efficiently [15]. In this context, we can highlight the twin 

peaks model [14], which emphasizes the co-development of requirements and 

architectures, incrementally elaborating details.  



Recognizing the close relation between architectural design and requirements 

specification [5], the Model-driven Development (MDD) [11] appears as an 

effective way to generate architectural models from requirements models by 

using model transformations rules, in which the correlation between require-

ments and architectural models can be specified accurately. Thus, in this paper, 

we show an approach to generate architectural models from requirements model 

that includes horizontal and vertical transformations rules. The horizontal trans-

formations are applied to requirements models and results in other requirements 

models closer to architectural model. While the vertical transformations map 

these resulting requirement models in architectural models. The main contribu-

tion is on the vertical transformation rules that complement the horizontal trans-

formation rules presented in [13]. In our approach, architectural models are de-

scribed using Acme ADL [6], which provides a simple structural framework for 

representing architectures, whereas requirements models are described using the 

modeling language offered by the i* [18], a goal-oriented approach to describe 

both the system and its environment in terms of strategic actors and social de-

pendencies among them.  

This paper is organized as follows. Section 2 introduces our case study and 

overviews the main concepts of the i* and Acme languages. Section 3 presents 

our approach based on model transformation rules. Section 4 describes related 

works. Finally, Section 5 summarizes our work and points out open issues.  

2   Background 

This section presents our case study and briefly reviews the requirements model-

ing and architectural description languages used in our approach. 

 

 
Fig. 1 Partial BTW Strategic Rationale Model 

2.1   BTW Project 

The BTW-UFPE project [2], presented in the SCORE contest held at ICSE 2009 

[16], is used to illustrate our approach. BTW consists in a route-planning system 

that helps users through the recommendation of advices about a specific route 

searched by the user. This information is posted by other users and might be 



filtered to provide the user only with relevant information about the place that 

he/she intends to visit.  

The BTW-UFPE team generated artifacts that include i* requirement models. 

We chose this project by two reasons: it is a real case study that resulted in a 

software system; and the produced i* models are not large but have enough 

complexity to illustrate the benefits of our approach. Fig. 1 shows a partial SR 

model for BTW. Its complete models can be found in [2].  

2.2   The Source: i* Requirements Goal Model 

i* defines models to describe both the system and its environment in terms of 

intentional dependencies among strategic actors [18].There are two different 

models: the Strategic Dependency (SD) describes information about dependen-

cies and the Strategic Rationale (SR) describes details about each actor.  

The SR model complements the information provided by the SD model by 

adding internal details for each strategic actor to describe how the dependencies 

are accomplished. In i* models, a depending actor is called a depender, and an 

actor that is depended upon is a dependee. Fig. 1 presents dependencies between 

Advice Giver and BTW actors. Considering the Advice be Published goal de-

pendency, the BTW actor is the depender actor whereas the Advice Giver actor 

is the dependee actor of this dependency. BTW represents the software system to 

be developed. Thus, an actor can depend upon another one to achieve a goal, 

execute a task, provide a resource or satisfy a softgoal. Softgoals are associated 

to non-functional requirements, while goals, tasks and resources are associated to 

system functionalities [19]. Actor’s internal details also include tasks, goals, 

resources and softgoals, which are further refined using task-decomposition, 

means-end and contribution links. The task-decomposition links describe what 

should be done to perform a certain task (e.g., the relationship between the Filter 

Advices for a route task and the Access Maps database task). The means-end 

links suggest that one intentional element can be offered as a means to achieve 

another intentional element (e.g., relationship between the Select Advice by User 

History task and the Relevant Advice be chose goal). Finally, the contributions 

links suggest how a task can contribute (positively or negatively) to satisfy a 

softgoal (e.g., the relationship between the Write information about a point task 

and the Precise Advices softgoal).  

In this paper, we are concerned with how to manage the internal complexity 

of the software actor (BTW) and how to produce architectural models from it.  

2.3   The target: ACME architecture models 

A set of elements are important when describing instances of architectural de-

signs. According to [17], these elements include Components, Connectors, Inter-

faces, Configurations and Rationale. Acme ADL [6] supports each of these con-

cepts but also adds ports, roles, properties, and representations. Besides, Acme 

has a textual and a graphical language. Acme Components represent computa-

tional units of a system. Connectors represent and mediate interactions between 

components. Ports correspond to external interfaces of components. Roles 

represent external interfaces of connectors. Ports and roles (interface) are points 



of interaction, respectively, between components and connectors. Systems (Con-

figurations) are collections of components, connectors and a description of the 

topology of the components and connectors. Systems are captured via graphs 

whose nodes represent components and connector and whose edges represent 

their interconnectivity. Properties are annotations that save additional informa-

tion about elements (components, connectors, ports, roles, and systems). Repre-

sentations allow a component, connector, port, and role to describe its design in 

detail by specifying a sub-architecture that refines the parent element. Properties 

and representations could be associated to the rationale of the architecture, i.e., 

information that explains why particular architectural decisions were made, and 

for what purpose various elements serve [17]. 

Architectural design is not a trivial task, even using specific concepts to de-

scribe architecture. It depends on the expertise of the architects and on how they 

understand the requirements. To make this task more systematic, we propose a 

MDD approach to derivate an early architectural design from requirements mod-

els.  

3   Architectural Design by using Model Transformations 

To generate Acme architectural models from i* models, we propose a process 

composed of three major activities: (i) analysis of internal elements, (ii) applica-

tion of horizontal rules and (iii) application of vertical rules. This process recog-

nizes that i* models are intrinsically complex and this complexity need to be 

managed. The first two activities are concerned to this while the last activity is 

concerned with the development of architectural design. To perform these activi-

ties, it is required to use, respectively: (i) conditions to guide the software actor’s 

decomposition, (ii) model transformation rules to generate modular i* models, 

and (iii) model transformation rules to generate Acme architectural models. This 

process is semi-automatic, since interventions of the requirements engineer are 

likely to be necessary to take some decisions. The activity (i), in particular, uses 

some conditions to assist the requirements engineer to choose elements that can 

be moved to another software actor to balance the responsibilities of an actor. 

The other activities can be developed with few interventions.  

In this paper, we concentrate on the activity (iii), as the activities (i) and (ii) 

have already been presented in [13]. We only present them briefly in the Section 

3.1 and 3.2, respectively.  

3.1   Analysis of Internal Elements 

The decomposition criterion is based on the separation and modularization of 

elements that are not strongly related to the application domain. For example, in 

the BTW SR model (Fig 1), which captures the web recommendation system 

requirements [2], we can identify those elements that are not fully related to the 

application domain (recommendation). At this point, a requirements engineer 

must perform the analysis. Some sub-graphs internal to the BTW actor are con-

sidered independent from the recommendation application domain and, there-

fore, can be moved to new software actors. Thus, sorting out the independent 

elements into other actors can improve reusability and maintainability of system 



specification at the requirements level. In fact, considering the BTW SR model, 

the following elements could be used as part of a system of a different applica-

tion domain: Map to be Handled, User Access and Information to be published. 

3.2   Application of Transformation Rules  

In this activity, an appropriate horizontal transformation rule must be applied. 

The rule to be applied depends on the type of relationship between the elements 

to be moved and the elements that will remain in the original system actor. The 

general purpose of the horizontal rules is to delegate internal elements from the 

system actor to other actors [13]. This delegation establishes a dependence rela-

tionship between the new actors and the original actor, maintaining the semantics 

of the original model in the resulting model. These horizontal rules will be brief-

ly presented in this section (for more details see [13]). 

 
Fig. 2 Modular SR i* model 

HTR1 is a transformation rule that moves a sub-element present in a task-

decomposition to another actor. HTR2 considers the situation where the sub-

graph to be moved has the root element as a “means” in a means-end relation-

ship. After applying rules HTR1 and HTR2, the resulting model may not be in 

conformity with the i* notation. In this case, we need to use a corrective rule, 

such as HTR3. This rule was defined to preserve the information about contribu-

tion links and maintain the information about contribution links and coherence of 

i* models as it is proposed in [9]. And HTR4 is applied when the sub-graph to be 

moved out has a sub-element shared with other sub-graphs.  

After applying the horizontal rules to the selected elements in Analysis activi-

ty, three new actors are created related to sub-graphs of Map be Handled, User 

Access be Controlled and Information be published in Map goals (Fig. 2). As 

these new actors receive the name of their elements (goal or task), we suggest to 

use a specific noun related to the domain of these elements. Thus, we have re-

spectively Mapping Handler, User Access Controller, and Map Information 

Publisher. In this activity, the main rules used were HTR3 and HTR4. 

As the horizontal rules are applied, the i* model is transformed into an i* 

model closer to an early architectural design. This modularized i* model is an 

entry to the activity of vertical rules application. All new created actors, the main 

software actor and their dependencies among each other will be used in the ver-

tical transformation rules. Next section presents the rationale behind the vertical 

transformation rules to produce Acme architectural models from i* requirements 

models. 



3.3   Generating architectural models 

The models associated with different activities of the software development 

process are created using specific model description language. Therefore, how 

models will be generated from a stage to another depend on how the transforma-

tion rules are defined considering the main elements of each involved modeling 

language. We start to establish the vertical transformation rules considering only 

actors and dependencies to map i* elements to Acme elements, as it is presented 

in [4]. Fig. 3 shows a generic mapping without considering the type of depen-

dency between actors and dependencies, in i*, to components and connectors in 

Acme graphical and textual language.  

 

I* Model 
 

Acme Model 

1 System ClientServer = { 

2    Component DependerActor  = { 

3        Port port1  = { 

4            Property Required : boolean = true;        }  } 

5    Component DependeeActor  = { 

6        Port port2  = { 

7            Property Provided : boolean = true;        }   } 

8    Connector ConnDependency  = { 

9        Role depender  = {    } 

10       Role dependee  = {    }    } 

11     Attachment DependerActor.port1 to connDependency.depender; 

12    Attachment DependeeActor.port2 to ConnDependency.dependee;} 

Fig. 3 Mapping a generic dependency between i* actors to ACME  

A component in software architecture is a unit of computation or a data store 

having a set of interaction points (ports) to interact with external world [17]. An 

actor in i* is an active entity that carries out actions to achieve goals by exercis-

ing its knowhow [18]. The actor representing the software establishes a corres-

pondence with modules or components [7]. In addition, an actor may have as 

many interactions points as needed. Hence, an actor in i* can be represented in 

terms of a component in Acme (Fig. 3). 

Connectors are architectural building blocks that regulate interactions among 

components [17]. In Acme, connectors mediate the communication and coordi-

nation activities among components. In i*, a dependency describes an agreement 

between two actors playing the roles of depender and dependee, respectively [4]. 

Thus, we can represent a dependency as an Acme connector. Interfaces are 

points of access among components and connectors. However there are not ports 

in i*, but points where dependencies interact with actors. Depending on role of 

dependency (depender or dependee) we can know when an actor is a depender or 

a depended upon actor. Hence, the roles of depender and dependee are mapped 

to connector roles that are comprised by the connector (Fig. 3). Thus, we can 

distinguish between required ports (where the actor is a depender) and provided 

ports (where actor is a dependee). For instance, Fig. 3 shows the use of property 

Required (line 4) and property Provided (line 7) indicating the direction of com-

munication between the DependerActor and DependeeActor components. There-

fore, in i* a depender actor depends on a dependee actor to accomplish a type of 

dependency. In Acme, a component needs that another component carries out a 

service and the requisition of this service is done by a required port, while the 

result of this service is done by a provided port, thus, a connector allows the 



communication between these ports. A component offers services to another 

component using provided ports and a component require services using its re-

quired port. 

Applying this mapping in BTW project (Fig. 2) we will have four compo-

nents: BTW, Mapping Handler, User Access Controler, and Information map 

Publisher. Each dependency is mapped to a connector and the roles of their con-

nectors will be depender and dependee according the direction of dependency. 

For instance, when an actor has at least one dependency as a dependee, its equiv-

alent component will have at least one provided port (Fig. 3). Therefore, the 

Mapping Handler component will have a provided port considering the Place-

mark resource dependency. Having all components, ports, connectors and roles 

mapped and defined, the next step is analyze each type of dependency. 

 
i* Model 

 
Acme Model 

5    Component DependeeActor  = { 

6        Port port2  = { 

7            Property Provided : boolean = true; 

8            Property goal: boolean;        }   } 

Fig. 4 Mapping a goal dependency to ACME 

In i*, the type of dependency between two actors describes the nature of the 

agreement established between these actors. There are four types of dependency: 

goals, softgoals, tasks and resources. Each type of dependency will define differ-

ent architectural elements in connectors and in ports that play their interfaces. A 

goal dependency is mapped to a Boolean propriety related to a provided port of 

the component that offers this port (Fig. 4, line 8). This property represents a 

goal that this component is responsible to fulfill by using a provided port. 

The type of property is Boolean in order to represent the goal satisfaction 

(true) or no satisfaction (false). Applying this goal dependency mapping in BTW 

case study implies that BTW and Information Publisher components will add 

new Boolean properties in respectively provided ports. 

A task dependency represent that an actor depends on another to execute a 

task [18] and that a task describes or involves processing [7]. Since port in Acme 

port correspond to external interfaces of components and offer services, as it was 

said before. Hence, a task dependency is mapped directly to a provided port of 

component that offers this port (Fig. 5, line 6). In our BTW example we do not 

have task dependencies related to software actors (Fig. 2).  

 
i* Model 

 
Acme Model 

5    Component DependeeActor  = { 

6        Port Task  = { 

7            Property Provided : boolean = true;   }   } 

Fig. 5 Mapping a task dependency to Acme 

In a resource dependency, an actor depends on another actor to provide infor-

mation. Therefore, a resource dependency is mapped to a return type of a proper-

ty of a provided port (Fig. 6, line 8). This return type represents the type of the 

resulting product that an operation related to some service that the component is 

responsible to perform. This mapping is to show that while a task is generate by 

an actor in a component, it is generated by an element inside of port. In Fig. 2, 



there is one case of resource dependency that is placemark resource dependency. 

Thus, the provided port of Mapping Handler component receives a property with 

a method that generates this resource.   

 
i* Model 

 
Acme Model 

4 Property Type Resource; 

5    Component DependeeActor  = { 

6        Port port2  = { 

7            Property Provided : boolean = true; 

8            Property getResource : Resource;   }   } 

Fig. 6 Mapping a resource dependency to Acme 

A softgoal dependency is similar to goal dependency but its fulfillment cannot 

be defined precisely. A softgoal is related to a non-functional requirement that 

will be treated by a task or a softgoal more specific. Hence, a softgoal dependen-

cy is mapped to a property with enumerated type present into the port that plays 

the dependee role of the connector (Fig. 7, line 9). This enumerated type is used 

to describe the degree of satisfaction of the softgoal. For the BTW example, the 

Publisher component has a provided port that interface with Precise Advices 

connector by the dependee role. This provided port will have a property softgoal 

defined as enumeration type. The same mapping is done with the security depen-

dency between BTW and Access User Controller component. 

Acme graphical language uses labels to highlight added elements used in tex-

tual part. However, using AcmeStudio tool, information of types of dependency 

only is presented in textual language. Each mapping presented will be formalized 

by vertical transformation rules following the same structure of horizontal trans-

formation rules [13].  

 
i* Model 

 
Acme Model 

4     Property Type SoftgoalType = 

5          enum {make,somePos,help,unkown,break,someNeg,hurt}; 

6    Component DependeeActor  = { 

7        Port port2  = { 

8            Property Provided : boolean = true; 

9         Property softgoal: SoftgoalType;   }   } 

Fig. 7 Mapping a softgoal dependency to Acme 

4   Related Work 

We highlight two goal-oriented approaches [20][21] and a MDD approach [15]. 

The SIRA approach [20] focuses on a systematic way to assist the transition 

from requirements to architecture. It describes a software system from the pers-

pective of an organization in the context of the Tropos methodology. The re-

quirements and r architecture models are described in i*. An organizational arc-

hitectural style is chosen based on the non-functional requirements. Thus, an 

architectural model is created considering similarities of elements of requi-

rements and organizational style. In our proposal, we also use i* goal model as 

input model, but we modularize these models to reach an architectural configura-



tion. Moreover, we also present a systematic way to treat non-functional re-

quirements and we use a target model based on a generic architectural language 

(Acme). In [20] it is not clear how is structured in the architectural model.  

Lamsweerde [21] defines a method to generate architectural models from 

KAOS requirements models. In this approach, specifications are gradually re-

fined to meet specific architectural constraints of the domain and an abstract 

architectural draft is generated from functional specifications. The resulting 

architecture is recursively refined to meet the various non-functional goals ana-

lyzed during the requirements activities. It is used KAOS models, which consist 

of a graphical tree and a formal language. In our approach, we use another goal 

model as input model, the i* models. The relation between i* notation and soft-

ware architecture facilitate the mapping between these models, while this is not 

occur in KAOS models. In contrast, that approach provides guidelines to refine 

an initial architecture applying architectural styles and patterns, while in our 

approach we provide a preliminary architecture.  

In [15] is proposed a set of mapping rules between the AspectualOV-graph 

(AOV-graph) and the AspectualACME, an architecture description language. 

Each element (goal/softgoal/task) present in an AOV-graph is mapped to an 

element of AspectualACME, depending on the position that each element is in 

the graph hierarchy. The information about the source of each element is regis-

tered in the properties of a component or a port. These properties make it possi-

ble to keep traceability and change propagation between AspectualACME to 

AOV-graph models and vice-versa. We also propose a set of mapping rules be-

tween a goals model i*, but considers the non-aspectual version of ACME ADL.  

5   Conclusions and Future Works 

Our approach generates an initial architectural model described in Acme, from i* 

requirements models. To achieve this, it was necessary to balance the responsi-

bilities of a system actor, delegating them to other new system actors. A set of 

horizontal rules proposed in [13] were used to generate modular i*models which 

are closer to architectural design. From the modular i* model we derive an Acme 

model through a set of mappings between the concepts of both languages. These 

mappings were based on [4] which the purpose was to map i* architectural mod-

els to architectural models described using UML-RT, since i* was not conceived 

to be an ADL. Besides, UML-RT is a language specific to Object Orientation 

paradigm. The difference from this work to ours is that we are concerned in 

creating an architectural design from a requirement specification and not just 

mapping between languages for architectural description. Since our mapping 

relates requirements and architectural models, allowing better traceability and 

propagation change. Furthermore, using a more general architectural language 

led us to propose more generic mapping rules, which in turn can serve as a guide 

to derive architectural models in other ADLs. We assessed our approach using a 

web recommendation system (BTW) that is a real system developed for a Soft-

ware Engineering contest at ICSE 2009 [2]. 

An issue that needs to be further explored is the systemic nature of some 

NFRs. Currently we are also defining formally our transformation rules (horizon-

tal and vertical) using Alloy language to ensure that the resulting models will be 



well formed. The use of Alloy will enable us to define the transformation rules 

and verify their soundness. However, in order to implement our proposal we rely 

on a specific model transformation language, namely ATL.  

Other future work includes automating this approach through the implementa-

tion of our transformation rules in the Istar Tool [10], a tool based on MDD and 

Eclipse Platform. This will allow us to investigate the scalability of our approach 

in some real life complex projects.  
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