

# Sistemas Operacionais Arquivos

Carlos Ferraz (cagf@cin.ufpe.br)

Jorge Cavalcanti Fonsêca (jcbf@cin.ufpe.br)

## Copyright



Carlos Ferraz – Cin/UFPE



### Armazenamento da Informação a Longo Prazo

- Deve ser possível armazenar uma quantidade muito grande de informação
- A informação deve sobreviver ao término do processo que a usa – persistência
- Múltiplos processos devem ser capazes de acessar a informação concorrentemente compartilhamento



### Armazenamento da Informação a Longo Prazo

- De maneira geral, duas operações são necessárias:
  - Ler e escrever em determinado bloco do disco (sequências lineares de blocos).
- Porém...
  - Como encontrar a informação?
  - Como impedir que um usuário tenha acesso a informações de outro usuário?
  - Como saber quais blocos estão livres?

Arquivos – abstração





## S.O. (Conceitos)

- "Juntas, as abstrações de processos (e threads), espaços de endereçamento e arquivos são os conceitos mais importantes relacionados aos sistemas operacionais."
- "Se de fato você compreender esses três conceitos do começo ao fim, você estará no caminho certo para se tornar um especialista em sistemas operacionais."

#### Tanenbaum





#### Infra-estrutura de Software

#### Orientada a computação/processamento → processo

- Escalonamento e concorrência processador
- Memória virtual
- Paginação
- Segmentação

- Armazenamento persistente sistema de arquivos disco

memória

- Apresentação saída periféricos
- Processamento distribuído rede



#### Infra-estrutura de Software

#### Orientada a computação/processamento → processo

- ✓ Escalonamento e concorrência processador
- ✓ Memória virtual
- ✓ Paginação
- ✓ Segmentação

memória

- Captura de dados entrada periféricos
- Armazenamento persistente sistema de arquivos disco
- Apresentação saída periféricos
- Processamento distribuído rede

E/S



#### Infra-estrutura de Software

#### Orientada a computação/processamento → processo

- ✓ Escalonamento e concorrência processador
- ✓ Memória virtual
- ✓ Paginação
- ✓ Segmentação

- memória
- Armazenamento persistente sistema de arquivos disco
- Apresentação saída periféricos
- Processamento distribuído rede



### Introdução

- Os arquivos são gerenciados pelo sistema operacional e é mediante a implementação de arquivos que o sistema operacional estrutura e organiza as informações
- A parte do sistema responsável pela gerência é denominada sistema de arquivo, que é a parte mais visível do sistema operacional, pois é uma atividade freqüentemente realizada pelos usuários
- Deve ocorrer de maneira uniforme, independente dos diferentes dispositivos de armazenamento



### Arquivo

- É um conjunto de registros definidos pelo sistema de arquivos e podem ser armazenados em diferentes dispositivos físicos
- É constituído de informações logicamente relacionadas, podendo representar programas ou dados

- São unidades lógicas de informação criadas por processos.
  - Uma espécie de espaço de endereçamento para modelar o disco





#### Idéias Básicas

- A representação da informação dentro de um computador é feita na forma de números
- No Linux ou no Windows, arquivos são concebidos e tratados como STREAMS de BYTES



## Decifrando os números: o código

A: 65

a: 97

0:48

B: 66

b: 98

1:49

. . .

• • •

• •

Z: 90

z: 122

9:57

#### Caracteres especiais:

0 : NULO

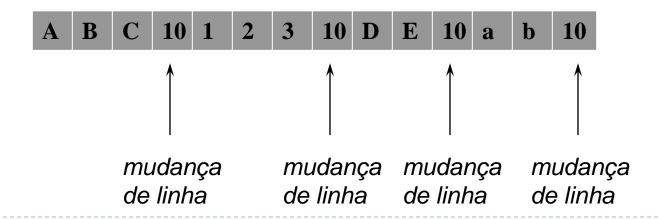
8 : BACKSPACE

9 : TAB

10 : mudança de linha

12 : mudança de página

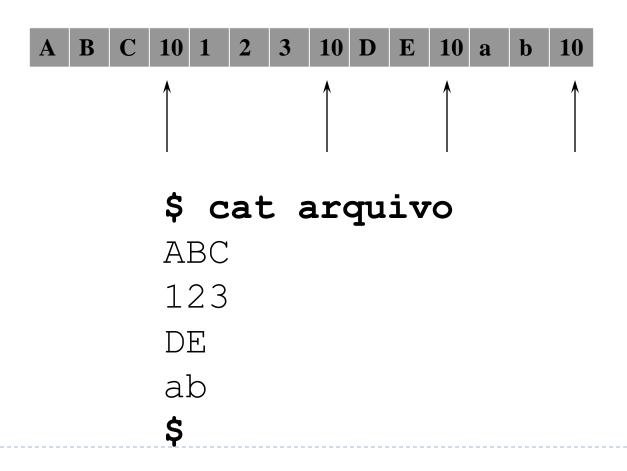
13 : ENTER




### Representação de um arquivo

Representação interna do conteúdo de um arquivo




Convertendo a representação interna de um arquivo em um arquivo texto:





### Representação de um arquivo

Visualizando o arquivo no **Terminal de Vídeo**:





## Arquivo (Identificação)

- É identificado por meio de um nome, formado por uma seqüência de caracteres
- Em alguns sistemas operacionais, a identificação de um arquivo é composta por duas partes separadas por um ponto
  - a parte após o ponto é chamada extensão do arquivo e serve para identificar o conteúdo
  - ► Ex. <nome\_arquivo>.<extensão> → Aula.ppt





## Arquivo (Identificação)

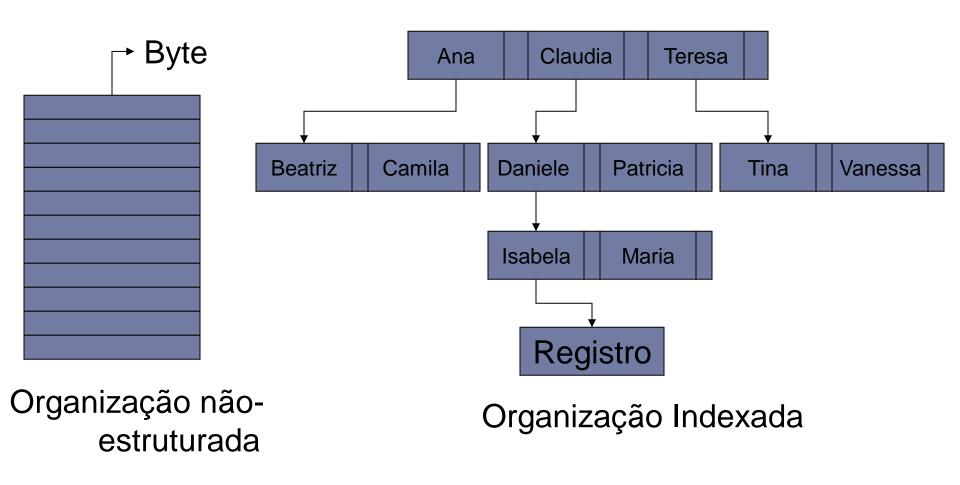
| Extensão | Significado                                              |  |
|----------|----------------------------------------------------------|--|
| .bak     | Cópia de segurança                                       |  |
| .c       | Código-fonte de programa em C                            |  |
| .gif     | Imagem no formato Graphical Interchange Format           |  |
| .hlp     | Arquivo de ajuda                                         |  |
| .html    | Documento em HTML                                        |  |
| .jpg     | Imagem codificada segundo padrões JPEG                   |  |
| .mp3     | Música codificada no formato MPEG (camada 3)             |  |
| .mpg     | Filme codificado no padrão MPEG                          |  |
| .0       | Arquivo objeto (gerado por compilador, ainda não ligado) |  |
| .pdf     | Arquivo no formato PDF (Portable Document File)          |  |
| .ps      | Arquivo PostScript                                       |  |
| .tex     | Entrada para o programa de formatação TEX                |  |
| .txt     | Arquivo de texto                                         |  |
| .zip     | Arquivo compactado                                       |  |

Tabela 4.1 Algumas extensões comuns de arquivos.

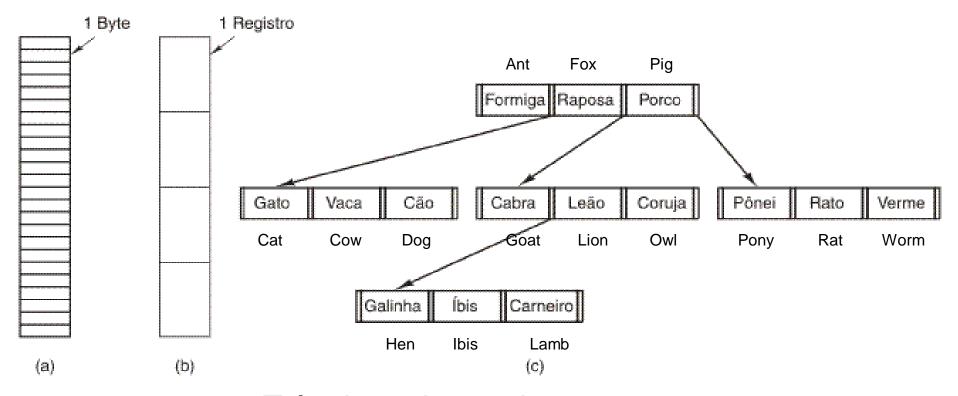


### Organização de Arquivos

- Consiste no modo como seus dados estão internamente armazenados
- A forma mais simples de organização de arquivos é através de uma seqüência não-estruturada de bytes, onde o sistema de arquivos não impõe qualquer estrutura lógica para os dados – a aplicação deve definir toda a organização




## Organização de Arquivos

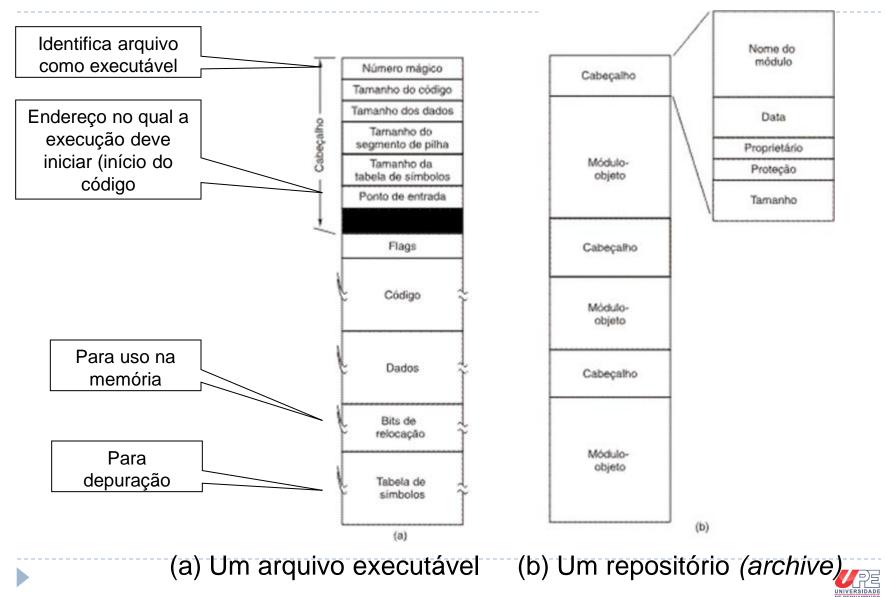

- A grande vantagem deste modelo é a flexibilidade para criar estruturas de dados, porém todo o controle de dados é de responsabilidade da aplicação
- Alguns sistemas operacionais estabelecem diferentes organizações de arquivos e cada um deve seguir um modelo suportado pelo sistema de arquivos
- As organizações mais conhecidas e implementadas são: seqüencial, relativa e indexada



## Organização de Arquivos



### Estrutura de Arquivos




### Três tipos de arquivos

- a) seqüência de bytes
- seqüência de registros
- c) árvore



### Tipos de Arquivos





#### Métodos de Acesso

- Em função de como o arquivo está organizado, o sistema de arquivos pode recuperar registros de diferentes maneiras:
  - Acesso seqüencial: arquivos armazenados em fitas magnéticas
    - o acesso era restrito à leitura na ordem em que eram gravados, sendo a gravação de arquivos possível apenas no final (APPEND)
    - Não é possível "saltar" e ler fora da ordem





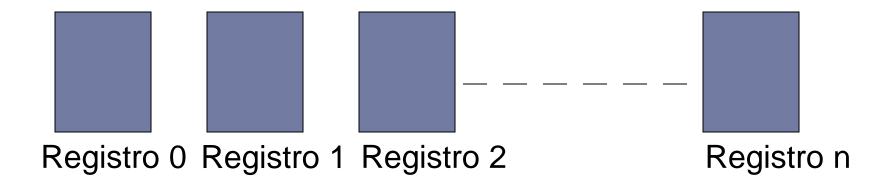
#### Métodos de Acesso

- Acesso direto: permite a leitura/gravação de um registro diretamente na sua posição
  - É realizado através do número de registro
  - Não existe restrição à ordem em que os registros são lidos ou gravados
  - Somente é possível quando é definido com registros de tamanho fixo
- Pode-se combinar o acesso sequencial com o direto:
  - Acessar diretamente um arquivo e em seguida em forma sequencial





#### Métodos de Acesso


Acesso indexado ou por chave: o arquivo deve possuir uma área de índice onde existam ponteiros para os diversos registros e a partir desta informação realiza-se um acesso direto

- Arquivo cujo bytes podem ser lidos em qualquer ordem são chamados de <u>arquivos de acesso aleatório</u> (necessários para muitas aplicações).
  - Ex. Banco de Dados
  - Read and Seek





### Acesso Direto





## Operações de Entrada / Saída

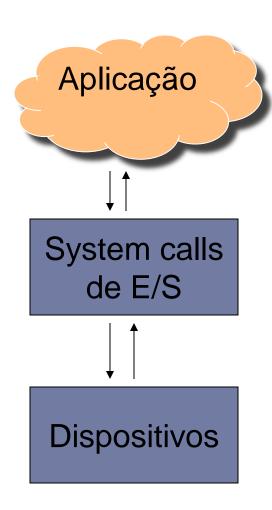
- O sistema de arquivos oferece um conjunto de system calls que permite às aplicações realizar operações de E/S, como tradução de nomes em endereços, leitura e gravação de dados e criação/eliminação de arquivos
- As system calls de E/S têm como função oferecer uma interface simples e uniforme entre a aplicação e os diversos dispositivos





## S.O. como uma máquina estendida

#### I/O de disco


 Movimentação do braço do disco, formatação das trilhas, inicialização, sinalização, reinicialização e recalibração do controlador do disco.

#### Read:

- 13 parâmetros:
  - Endereço do bloco de dados a ser lido
  - Numero de setores por triilha
  - Modo de gravação usado no meio fisico
  - Espaço livre entre setores
  - Retorno:
    - □ 23 campos de status e de erros
  - Disco fléxivel:
    - □ Motor está ligado? (Ligado muito tempo gerá desgaste no disco)
- Abstração: Read block from file



### Operações de Entrada / Saída





## Operações de Entrada/Saída

| Comando | Descrição                       |
|---------|---------------------------------|
| create  | Criação de um arquivo           |
| open    | Abertura de um arquivo          |
| read    | Leitura de dados de um arquivo  |
| write   | Gravação de dados de um arquivo |
| close   | Fechamento de um arquivo        |
| rename  | Alteração de nome de um arquivo |
| erase   | Eliminação de um arquivo        |



#### Atributos

#### Informações de controle

- variam dependendo do sistema de arquivos
- alguns como tamanho, criador, proteção e data estão presentes em quase todos
- Alguns atributos especificados na criação do arquivo não podem ser mudados e outros são modificados pelo próprio sistema operacional
  - E ainda existem alguns que podem ser alterados pelo usuário tais como proteção, tamanho e senha.



## Atributos de Arquivos

| Atributos   | Descrição                                 |
|-------------|-------------------------------------------|
| Tamanho     | Especifica o tamanho do arquivo           |
| Proteção    | Código de proteção de acesso              |
| Dono        | Identifica o criador do arquivo           |
| Criação     | Data e hora da criação do arquivo         |
| Backup      | Data e hora do último backup realizado    |
| Organização | Indica a organização lógica dos registros |
| Senha       | Senha necessária para acessar o arquivo   |



### Atributos

| Atributo                    | Significado                                                |
|-----------------------------|------------------------------------------------------------|
| Proteção                    | Quem tem acesso ao arquivo e de que modo                   |
| Senha                       | Necessidade de senha para acesso ao arquivo                |
| Criador                     | ID do criador do arquivo                                   |
| Proprietário                | Proprietário atual                                         |
| Flag de somente leitura     | 0 para leitura/escrita; 1 para somente leitura             |
| Flag de oculto              | 0 para normal; 1 para não exibir o arquivo                 |
| Flag de sistema             | 0 para arquivos normais; 1 para arquivos do sistema        |
| Flag de arquivamento        | 0 para arquivos com backup; 1 para arquivos sem backup     |
| Flag de ASCII/binário       | 0 para arquivos ASCII; 1 para arquivos binários            |
| Flag de acesso aleatório    | O para acesso somente sequencial; 1 para acesso aleatório  |
| Flag de temporário          | 0 para normal; 1 para apagar o arquivo ao sair do processo |
| Flag de travamento          | 0 para destravados; diferente de 0 para travados           |
| Tamanho do registro         | Número de bytes em um registro                             |
| Posição da chave            | Posição da chave em cada registro                          |
| Tamanho do campo-chave      | Número de bytes no campo-chave                             |
| Momento de criação          | Data e hora de criação do arquivo                          |
| Momento do último acesso    | Data e hora do último acesso do arquivo                    |
| Momento da última alteração | Data e hora da última modificação do arquivo               |
| Tamanho atual               | Número de bytes no arquivo                                 |
| Tamanho máximo              | Número máximo de bytes no arquivo                          |

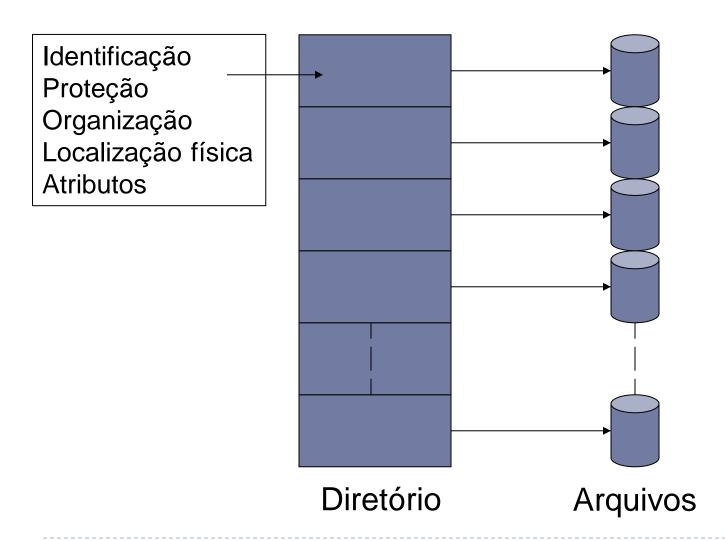
UNIVERSIDAD DE PERNAMBUCI

Tabela 4.2 Alguns atributos possíveis de arquivos.

#### Diretórios

- Modo como o sistema organiza os diferentes arquivos contidos num disco
- É a estrutura de dados que contém entradas associadas aos arquivos onde estão informações como localização física, nome, organização e demais atributos
- Quando um arquivo é aberto, o sistema operacional procura a sua entrada na estrutura de diretórios, armazenando as informações do arquivo em uma tabela mantida na memória principal
  - Esta tabela contém todos os arquivo abertos, sendo fundamental para aumentar o desempenho das operações com arquivos





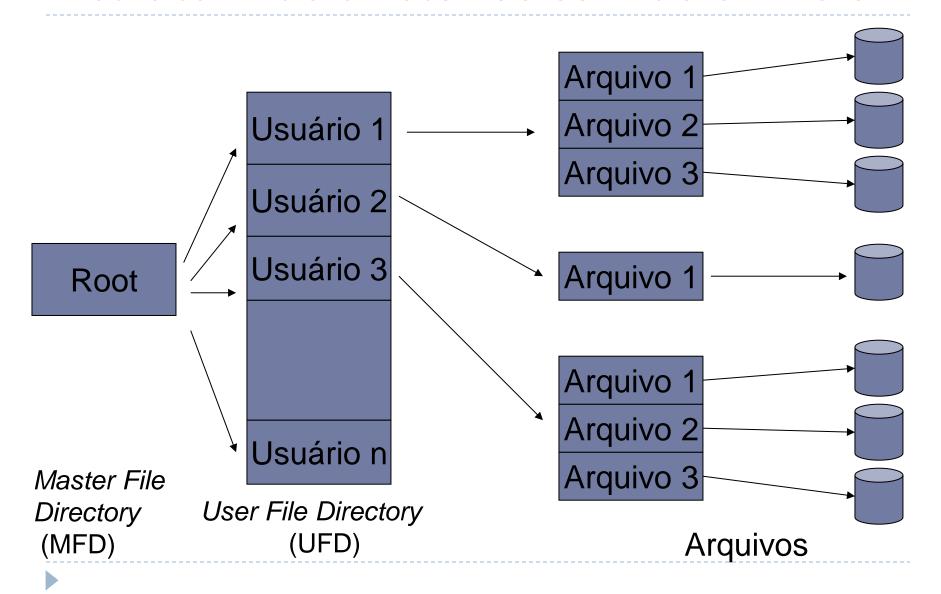

#### Diretórios

- Nível Único (single-level directory): implementação mais simples
  - existe apenas um único diretório contendo todos os arquivos do disco
  - bastante limitado já que não permite que usuários criem arquivos com o mesmo nome, o que ocasionaria um conflito no acesso aos arquivos



#### Estrutura de diretórios de nível único





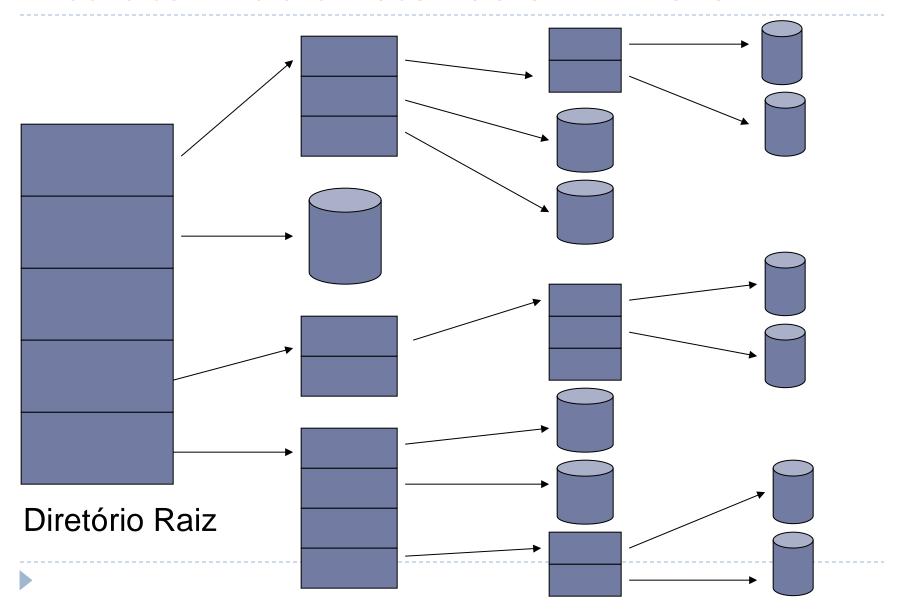

#### Diretórios

- User File Directory (UFD): para cada usuário existe um diretório particular e assim poderia criar arquivos com qualquer nome
- Deve haver um nível de diretório adicional para controle chamado de Master File Directory (MFD) que é indexado pelo nome do usuário e cada entrada aponta para o diretório pessoal
- É análoga a uma estrutura de dados em árvore onde o MFD é a raiz, os galhos são a UFD e os arquivos são as folhas
- Quando se referencia a um arquivo é necessário especificar seu nome e seu diretório – path (caminho)

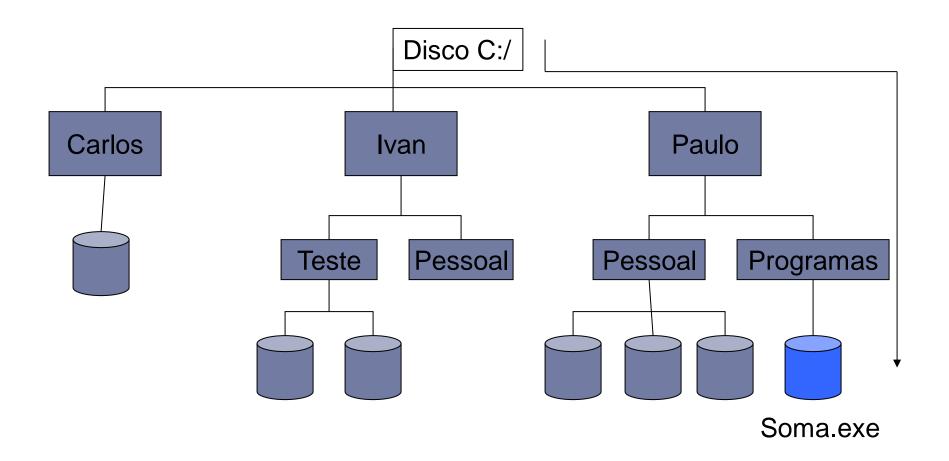


#### Estrutura de diretórios com dois níveis




#### Diretórios

- Estrutura de diretórios em Árvore (Tree Structured Directory)
  - Adotado pela maioria dos sistemas operacionais e é logicamente melhor organizado
- É possível criar quantos diretórios quiser, podendo um diretório conter arquivos e outros diretórios (chamados subdiretórios)
- Cada arquivo possui um path único que descreve todos os diretórios da raiz (MFD) até o diretório onde o arquivo está ligado
  - na maioria dos sistemas, os diretórios são tratados como arquivos tendo atributos e identificação






### Estrutura de diretórios em árvore



### Path de um Arquivo



Path relativo ou absoluto?





# Sistemas Operacionais Arquivos

Carlos Ferraz (cagf@cin.ufpe.br)

Jorge Cavalcanti Fonsêca (jcbf@cin.ufpe.br)