

Interval Computation with Java-XSC

Renato V. Ferreira1, Bruno J. T. Fernandes1, Edmo S. R. Bezerra1, Marcília A.
Campos1

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brazil

{rvf,bjtf,ersb,mac}@cin.ufpe.br

1. Introduction
Many great engineering and scientific

advances of recent decades would not have been
possible without the floating-point capabilities of
digital computers [Bush, 1996]. Still, some results
of floating-point calculations look strange, even
to people with years of mathematical and
scientific computation experience.

 A great problem faced by the actual
computational model is the numeric
representation, due to the density of real numbers.
These numbers can not be entirely discretely
represented, so they are represented as floating-
point numbers which can express a range of
values exactly.

The computer floating-point unit works
internally in base 2, binary. For example, the
decimal fraction 0.1 cannot be precisely
represented in binary. It is a repeater fraction
0.00011001100110... It is like the repeater
fraction 1/3 = 0.33333… in base 10. When you
add 0.333333... to 0.666666... you get 0.999999...
rather than 1.0, even though you just added 1/3 +
2/3 to get 1. Yet, with floating-point binary
representation, when you add 0.1 + 0.1 you will
probably get something other than 0.2.

A crucial conclusion is that floating point is
by nature inexact [Green, 2005], because no
digital number representation system can handle
every real number, since real numbers are
continuous and machines use discrete data. It is
very important to realize that any binary floating-
point system can represent only a finite number of
floating-point values in exact form. All other
values must be approximated by the closest
representable value [Microsoft, 2003] [IEEE,
1985].

The objective of this project is to implement
the Interval type and interval operations in Java to
develop a library with unary and binary interval
functions and to compare results from this work
with others from MapleInt.

This paper is organized as follows: Section 2
provides a broad outline of the floating-point in

Java; Section 3 describes the interval type and the
interval operations in Java and results from Java-
XSC and MapleInt. Finally, conclusion follows in
Section 4.

2. Floating-point in Java
Java has gained enormous popularity since it

first appeared. Its rapid ascension and wide
acceptance can be traced to its design and
programming features, particularly in its promise
that you can write a program once, and run it
anywhere. As stated in Java language white paper
by Sun Microsystems: "Java is a simple, object-
oriented, distributed, interpreted, robust, secure,
architecture neutral, portable, multithreaded, and
dynamic" [Choudhari, 2001] [Sun Microsystems,
2005].

Java offers simple inheritance with the use of
interfaces when compared to C++ and has
eliminated the use of pointers. Another main
advantage to Java programmers, is that Java
automatically manages memory allocation and
garbage collection. Java is designed to make
distributed computing easy with the networking
capability that is inherently integrated into it.
Writing network programs in Java is like sending
and receiving data to and from a file. Due to all
that Java, nowadays, is the most popular
programming language in the world.

2.1. Floating-point errors
For representing floating-point numbers, the

Java programming language offers two primitive
types, float and double and the wrapper classes
Float and Double from the java.lang package
[Sun Microsystems, 2005]. The double primitive
type supports 16 decimal digits but it only offers
correctness for the 14 most significant digits
[Gosling, Joy, Steele, 1996].
Example 1: This example intends to perform a
simple subtraction between two floating-point
numbers, then compare the result of the
performed operation with the expected result and
print the result of the comparison.

double d = 0.0;

for(int i = 0; i < 10; i++){

d += 0.4;

}

System.out.println(d);

double d = 3.9-3.8;

if(d==0.1)
System.out.println("equals")
;

else

System.out.println("not
equals");

Picture l: Example of source code

The example should clearly output equals at
stdout (standard output), but instead of that, it
outputs not equals because d was equal to
0.10000000000000009 showing that
subtraction returned an incorrect value.
Example 2: This example intends to perform a
sequence of ten additions, and finally print the
aggregated result.

 Picture 2: Example of source code

The example makes a loop that adds 0.4 ten times
to the variable d, so it should output 10 x 0.4 that
is obviously 4.0, but the number outputted at
stdout was 3.9999999999999996.

Most of the people will not be affected by
precision errors. No one would complain if their
cabinet maker made a desk 2.000000000001
meters long, but for scientific computation, which
needs high precision, this error margin is most of
the times not acceptable, for it can cause wrong
results, as seen [Ferreira, Fernandes, Campos,
2004].

2.2. Java floating-point implementation
The Java floating point implementation

follows partially the IEEE 754 (1985) standard for
floating point arithmetic [The Macaulay Institute,
2004]. As said previously, the floating-point types
are float and double, representing the single-
precision 32-bit and double-precision 64-bit
format IEEE 754 values and operations as
specified in IEEE Standard for Binary Floating-

Point Arithmetic, ANSI/IEEE Standard 754-1985
(IEEE, New York). The bit representation for float
goes as

1 bit 8 bits 23 bits

sign exponent significand

Picture 3: Float bit representation

and for double type

1 bit 11 bits 52 bits

sign exponent significand

Picture 4: Float bit representation

The float representation gives 6 to 9 digits of
decimal precision while double gives 15 to 17
digits of decimal precision.

Java requires that floating-point arithmetic
behave as if every floating-point operator rounded
its floating-point result to the result precision.
Inexact results must be rounded to the
representable value nearest to the infinitely
precise result; if the two nearest representable
values are equally near, the one with its least
significant bit zero is chosen. This is the IEEE
754 standard’s default rounding mode known as
round to nearest [Gosling, Joy, Steele, 1996].

Java uses round toward zero when
converting a floating value to an integer, which
acts, in this case, as though the number were
truncated, discarding the mantissa bits. Rounding
toward zero chooses at its result the format’s
value closest to and no greater in magnitude than
the infinitely precise result [Gosling, Joy, Steele,
1996].

Java floating-point operators produce no
exceptions. An operation that overflows produces
a signed infinity, an operation that underflows
produces a signed zero, and an operation that has
no mathematically definite result produces NaN
(Not a Number).

The inadequacies of Java floating-point
implementation are that it fails to fully implement
the requirements of IEEE 754 standard. Including
three main problems which are: (i) Do not support
IEEE 754 sticky bit exception flags; (ii) Do not
provide support for IEEE 754 directed roundings;
(iii) Do not provide a machine interval arithmetic
datatype.

The exception flags are Invalid Operation,
Overflow, Division-by-Zero, Underflow, Inexact
Result, and without handling with these flags and
support directed rounding it is impossible to

conform to IEEE 754 [The Macaulay Institute,
2004].

3. Java-XSC
According to Donald Knuth in volume 2 of

The Art of Computer Programming, p. 241,
“Interval arithmetic provides truly reliable error
estimates. Since the intermediate values in a
calculation often depend on each other, the final
estimates obtained with interval arithmetic will
tend to be pessimistic. However, the prospects for
effective use of interval arithmetic look very
good, so efforts should be made to increase its
availability.” [Knuth, 1997]

Regarding all that, the motivation of this
project is to build an API (Application
Programming Interface) called Java-XSC to
provide automatic floating point error control,
implementing directed rounding modes and the
interval type and interval arithmetic in Java,
working towards to build a calculator to intervals.

Instead of approximating a real number x to
a floating point machine number, the real is
approximated to an interval X that contains x, X
has an upper bound and a lower bound
represented as floating pointing machine
numbers. Calculations are done using intervals, so
we substitute arithmetic operations for interval
operations, which guarantee results [Moore,
1996][Campos, 1997].

The Interval type, that we built, in Java, has
two properties which are the lower bound and the
upper bound, both of them are represented by the
double primitive type.

The library was modeled using the Rational
Rose Enterprise Edition [IBM Rational Software,
2002] and implemented using the Eclipse IDE
(Integrated Development Environment)
[Eclipse.org, 2005] versions 2.1, 3.0 and 3.1. Java
version used was 1.4.2 and 5.0.

3.1. Directed Rounding
Before defining the Interval type, we

implemented the Rounding type which contains
two operations (methods) to do the directed
rounding, the rounding up and the rounding down
which round a given double with a specified
precision.

public static double roundDown(double d, int
dec);
Method that rounds down the number d to a
specified number of decimal digits.

public static double roundUp(double d, int
dec);
Method that rounds up the number d to a
specified number of decimal digits.

3.2. Interval Type
3.2.1. Unary Operations
public boolean equals(Object arg0);
Method which overrides the equals method from
java.lang.Object and compares two intervals [x1,
x2], [x3, x4] and returns true if x1 = x3 and x2 =
x4, this comparison tolerates precision errors.

public double width();
Method that calculates the width of the Interval.
For a given interval X = [x1,x2], the width is
defined as x2-x1.

public boolean isEmpty();
Method that verifies if the Interval is empty.

public boolean pertains(double arg0);
Method that verifies if a machine floating point
number is contained in the Interval. For a given
interval X = [x1,x2], d pertains to X if d >=x1 and
d <=x2.

public Interval symmetric();
Method that returns the symmetric interval. The
symmetric of an interval X = [x1, x2] is Y = [-x2,
-x1]

public Interval reciprocal();
Method that returns the reciprocal interval. The
reciprocal of an interval X = [x1, x2] is Y = [1/x2,
1/x1]

3.2.2. Binary Operations
public static Interval add(Interval arg0,
Interval arg1);
Method that returns an interval that is equal to
arg0 + arg1. The addition is defined as [x1, x2] +
[x3, x4] = [x1 + x3, x2 + x4]

public static Interval sub(Interval arg0,
Interval arg1);
Method that returns an interval that is equal to
arg0 - arg1. The subtraction is defined as [x1, x2]
- [x3, x4] = [x1 - x3, x2 - x4]

public static Interval mult(Interval arg0,
Interval arg1);
Method that returns an interval that is equal to
arg0 * arg1. Multiplication is defined as [x1, x2]

* [x3, x4] = [min(x1*x3, x1*x4, x2*x3, x2*x4),
max(x1*x3, x1*x4, x2*x3, x2*x4)]

public static Interval div(Interval arg0,
Interval arg1);
Method that returns an interval that is equal to
arg0 / arg1; Division is defined as [x1, x2] / [x3,
x4] = [x1, x2] * [1/x4, 1/x3]

public static Interval intersection(Interval
arg0, Interval arg1) ;
Method that returns the intersection between the
intervals received as parameters.
public static Interval union(Interval arg0,
Interval arg1);
Method that returns the union between the
intervals received as parameters.

public static double abs(Interval arg0);
Method that returns the absolute value of an
interval.

public static double distance(Interval arg0,
Interval arg1);
Method that returns the distance between the
intervals received as parameters.

public static boolean isIn(Interval arg0,
Interval arg1);
Method that returns true if the interval arg0 is
contained in the interval arg1.

3.3. Results

Java - XSC MapleInt
Round down: 2.0. 10-9 Precision

1.999999999 1.999999999
Round down: 3.88888888899. 10-9 Precision
3.888888888 3.888888888

Round down: -1.6564564876648. 10-9 Precision
-1.656456488 -1.656456489

Round up: 2.0. 10-9 Precision
2.000000001 2.000000001
Round up: 3.88888888899. 10-9 Precision
3.888888890 3.888888890

Round up: -1.6564564876648. 10-9 Precision
-1.656456486 -1.656456487

Width of [1.0, 2.5]
1.5 1.5

Width of [0.0, 8.9]
8.9 8.9

Width of [-5.6, 4.9]
10.5 10.5

Reciprocal of [-3.0, 8.4] 10-9 Precision
[-Infinity, [-Infinity,

Infinity] Infinity]
Reciprocal of [-5.0, -2.0] 10-9 Precision

[-0.500000001,
-0.199999999]

[-0.500000001,
-0.199999999]

Reciprocal of [1.0, 4.0] 10-9 Precision
[0.249999999,
1.000000001]

[0.249999999,
1.000000001]

0.0 pertains [-0.1, 0.1]
true true

0.2 pertains [-0.1, 0.1]
false false

0.1 pertains [-0.1, 0.1]
true true

Add: [1.0, 2.5] + [0.0, 8.9] 10-9 Precision
[0.999999999,
11.400000001]

[0.999999999,
11.400000001]

Add: [-8.9, 0.0] + [0.0, 8.9] 10-9 Precision
[-8.900000001,
8.900000001]

[-8.900000001,
8.900000001]

Sub: [-8.9, 0.0] - [0.0, 8.9] 10-9 Precision
[-0.000000001,
17.800000001]

[0.000000000,
17.800000001]

Sub: [1.0, 3.0] - [4.0, 5.0] 10-9 Precision
[-4.000000001,
-0.999999999]

[-4.000000001,
-0.999999999]

Mult: [1.0, 3.0] * [4.0, 5.0] 10-9 Precision
[3.999999999,
15.000000001]

[3.999999999,
15.000000001]

Mult: [-8.9, 0.0] * [1.0, 2.5] 10-9 Precision
[-22.250000001,
0.000000001]

[-22.250000001,
0.000000000]

Div: [-8.9, 0.0] / [1.0, 2.5] 10-9 Precision
[-Infinity,
Infinity]

[-Infinity,
Infinity]

Div: [4.0, 5.0] / [1.0, 2.5] 10-9 Precision
[1.599999999,
5.000000001]

[1.599999999,
5.000000006]

Intersection: [1.23,1.89]∩[1.1,1.29]
[1.23,1.29] [1.23,1.29]

Intersection: [1.23,1.89]∩ [1.5,1.6]
[1.5,1.6] [1.5,1.6]

Union: [1.23,1.89]∪ [1.1,1.29]
[1.0, 1.89] [1.0, 1.89]

Union: [1.23,1.89] ∪ [1.5,1.6]
[1.23, 1.89] [1.23, 1.89]

Is in: [1.23,1.89] ⊇ [1.1,1.29]
false false

Is in: [1.23,1.89] ⊇ [1.5,1.6]
true true
Distance: [1.23,1.89], [1.5,1.6]
0.27 Method not

found in
MapleInt

Absolute: |[1.23,1.89]|
1.89 Method not

found in
MapleInt

Tabela l: Comparação dos resultados Java-XSC x

MapleInt, intpakX

4. Conclusion
 Computational systems are incapable of

representing all real numbers, because of their
density. Digital representation is discrete and only
covers a range of real numbers. Java, being a
programming language, suffers from this fact,
together with that, Java implementation has
ignored important aspects of IEEE specification.
Because of all that, Java presents errors when
dealing with floating point numbers.

 Since Java is, nowadays, the most popular
programming language in the world, due to a
range of advantages offered, it tends to be used for
scientific applications. Regarding to minimize and
control floating-point errors, a library called Java-
XSC(eXtension for Scientific Computation) was
developed, using interval methods.

Comparing with the Maple interval
extension, the intpakX, MapleInt [Wuppertal,
2004], the Java-XSC has presented similar outputs
in the majority of the test cases, and presented
better results in some operations.

The library will be extended to contain not
only arithmetic and logical operations, but also
logarithmic, trigonometric and statistic
operations.

References
Bush, B.M., (1996), “The Perils of Floating

Point”, http://www.lahey.com/float.htm,
accessed in June 10, 2005.

Green, R., (2005), “Java Glossary: Floating
Point”,
http://mindprod.com/jgloss/floatingpoint.html,
accessed in June 12, 2005.

Microsoft (2003), “Tutorial to Understand IEEE
Floating-Point Errors”,
 http://support.microsoft.com/kb/q42980/,
accessed in January 12, 2005.

IEEE Computer Society (1985), "IEEE Standard
for Binary Floating-Point Arithmetic", IEEE
Std 754-1985.

Choudhari, P., (2001), “Java Advantages &
Disadvantages”,
http://arizonacommunity.com/articles/java_32
001.shtml, accessed in June 12, 2005.

Sun Microsystems, “Java Language Overview”,
Java 2 Platform, Standard Edition, White
Papers,
http://java.sun.com/docs/overviews/java/java-
overview-1.html, accessed in January 13,
2005.

Sun Microsystems, “JavaTM 2 Platform, Standard
Edition, v 1.4.2 API Specification”,

 http://java.sun.com/j2se/1.4.2/docs/api/,
accessed in January 9, 2005.

Gosling, J., Joy, B., Steele G., (1996), “The Java
Language Specification”, Addison Wesley.

Ferreira, R. V., Fernandes, B. T., Campos, M. A.,
(2004), “Evaluating the floating-point in Java
Virtual Machine”, Proceedings ENNEMAC
2004.

The Macaulay Institute, (2004), “Floating Point
Arithmetic and Java”,

 http://www.macaulay.ac.uk/fearlus/floating-
point/javabugs.html, accessed in December 8,
2004.

Knuth, D., (1997) “The Art of Computer
Programming”, Volume 2.

Moore, R. E. (1996), “Interval Analysis”
Englewood Cliffs: Prentice-Hall

Campos, M. A., (1997), “Uma Extensão
Intervalar para a Probabilidade Real”
Departamento de Informática – UFPE

IBM Rational Software, (2002) – Rational Rose
Enterprise Edition,

 http://www306.ibm.com/software/rational/offe
rings/reqanalysis.html, accessed in January 13,
2005

Eclipse.org, (2005),
http://www.eclipse.org/, accessed in June 30,
2005.

MapleSoft.com,
http://www.maplesoft.com/, accessed in
January 22, 2005.

Wuppertal, 2004, �Verified Numerics meets
Computer Algebra�

http://www.math.uni-
wuppertal.de/~xsc/software/intpakX/

