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1. Introduction 
Many great engineering and scientific 

advances of recent decades would not have been 
possible without the floating-point capabilities of 
digital computers [Bush, 1996]. Still, some results 
of floating-point calculations look strange, even 
to people with years of mathematical and 
scientific computation experience. 

 A great problem faced by the actual 
computational model is the numeric 
representation, due to the density of real numbers. 
These numbers can not be entirely discretely 
represented, so they are represented as floating-
point numbers which can express a range of 
values exactly. 

The computer floating-point unit works 
internally in base 2, binary. For example, the 
decimal fraction 0.1 cannot be precisely 
represented in binary. It is a repeater fraction 
0.00011001100110... It is like the repeater 
fraction 1/3 = 0.33333… in base 10. When you 
add 0.333333... to 0.666666... you get 0.999999... 
rather than 1.0, even though you just added 1/3 + 
2/3 to get 1. Yet, with floating-point binary 
representation, when you add 0.1 + 0.1 you will 
probably get something other than 0.2.  

A crucial conclusion is that floating point is 
by nature inexact [Green, 2005], because no 
digital number representation system can handle 
every real number, since real numbers are 
continuous and machines use discrete data. It is 
very important to realize that any binary floating-
point system can represent only a finite number of 
floating-point values in exact form. All other 
values must be approximated by the closest 
representable value [Microsoft, 2003] [IEEE, 
1985]. 

The objective of this project is to implement 
the Interval type and interval operations in Java to 
develop a library with unary and binary interval 
functions and to compare results from this work 
with others from MapleInt. 

This paper is organized as follows: Section 2 
provides a broad outline of the floating-point in 

Java; Section 3 describes the interval type and the 
interval operations in Java and results from Java-
XSC and MapleInt. Finally, conclusion follows in 
Section 4. 

2. Floating-point in Java 
Java has gained enormous popularity since it 

first appeared. Its rapid ascension and wide 
acceptance can be traced to its design and 
programming features, particularly in its promise 
that you can write a program once, and run it 
anywhere. As stated in Java language white paper 
by Sun Microsystems: "Java is a simple, object-
oriented, distributed, interpreted, robust, secure, 
architecture neutral, portable, multithreaded, and 
dynamic" [Choudhari, 2001] [Sun Microsystems, 
2005]. 

Java offers simple inheritance with the use of 
interfaces when compared to C++ and has 
eliminated the use of pointers. Another main 
advantage to Java programmers, is that Java 
automatically manages memory allocation and 
garbage collection. Java is designed to make 
distributed computing easy with the networking 
capability that is inherently integrated into it. 
Writing network programs in Java is like sending 
and receiving data to and from a file. Due to all 
that Java, nowadays, is the most popular 
programming language in the world.  

2.1. Floating-point errors 
For representing floating-point numbers, the 

Java programming language offers two primitive 
types, float and double and the wrapper classes 
Float and Double from the java.lang package 
[Sun Microsystems, 2005]. The double primitive 
type supports 16 decimal digits but it only offers 
correctness for the 14 most significant digits 
[Gosling, Joy, Steele, 1996]. 
Example 1:  This example intends to perform a 
simple subtraction between two floating-point 
numbers, then compare the result of the 
performed operation with the expected result and 
print the result of the comparison. 
 



  

double d = 0.0; 

for(int i = 0; i < 10; i++){ 

d += 0.4; 

} 

System.out.println(d); 

double d = 3.9-3.8; 

if(d==0.1) 
System.out.println("equals")
; 

else  

System.out.println("not 
equals");

 
 

Picture l: Example of source code  

 
The example should clearly output equals at 
stdout (standard output), but instead of that, it 
outputs not equals because d was equal to 
0.10000000000000009 showing that 
subtraction returned an incorrect value. 
Example 2:  This example intends to perform a 
sequence of ten additions, and finally print the 
aggregated result. 

 Picture 2: Example of source code 

 
The example makes a loop that adds 0.4 ten times 
to the variable d, so it should output 10 x 0.4 that 
is obviously 4.0, but the number outputted at 
stdout was 3.9999999999999996. 

Most of the people will not be affected by 
precision errors. No one would complain if their 
cabinet maker made a desk 2.000000000001 
meters long, but for scientific computation, which 
needs high precision, this error margin is most of 
the times not acceptable, for it can cause wrong 
results, as seen [Ferreira, Fernandes, Campos, 
2004].  

2.2. Java floating-point implementation 
The Java floating point implementation 

follows partially the IEEE 754 (1985) standard for 
floating point arithmetic [The Macaulay Institute, 
2004]. As said previously, the floating-point types 
are float and double, representing the single-
precision 32-bit and double-precision 64-bit 
format IEEE 754 values and operations as 
specified in IEEE Standard for Binary Floating-

Point Arithmetic, ANSI/IEEE Standard 754-1985 
(IEEE, New York). The bit representation for float 
goes as  

1 bit 8 bits  23 bits  

sign exponent significand 

Picture 3: Float bit representation 
 

and for double type  
 
 

1 bit 11 bits 52 bits  

sign exponent significand 

Picture 4: Float bit representation 
 

The float representation gives 6 to 9 digits of 
decimal precision while double gives 15 to 17 
digits of decimal precision. 

Java requires that floating-point arithmetic 
behave as if every floating-point operator rounded 
its floating-point result to the result precision. 
Inexact results must be rounded to the 
representable value nearest to the infinitely 
precise result; if the two nearest representable 
values are equally near, the one with its least 
significant bit zero is chosen. This is the IEEE 
754 standard’s default rounding mode known as 
round to nearest [Gosling, Joy, Steele, 1996]. 

Java uses round toward zero when 
converting a floating value to an integer, which 
acts, in this case, as though the number were 
truncated, discarding the mantissa bits. Rounding 
toward zero chooses at its result the format’s 
value closest to and no greater in magnitude than 
the infinitely precise result [Gosling, Joy, Steele, 
1996]. 

Java floating-point operators produce no 
exceptions. An operation that overflows produces 
a signed infinity, an operation that underflows 
produces a signed zero, and an operation that has 
no mathematically definite result produces NaN 
(Not a Number). 

The inadequacies of Java floating-point 
implementation are that it fails to fully implement 
the requirements of IEEE 754 standard. Including 
three main problems which are: (i) Do not support 
IEEE 754 sticky bit exception flags; (ii) Do not 
provide support for IEEE 754 directed roundings; 
(iii) Do not provide a machine interval arithmetic 
datatype.  

The exception flags are Invalid Operation, 
Overflow, Division-by-Zero, Underflow, Inexact 
Result, and without handling with these flags and 
support directed rounding it is impossible to 



  

conform to IEEE 754 [The Macaulay Institute, 
2004]. 

3. Java-XSC 
According to Donald Knuth in volume 2 of 

The Art of Computer Programming, p. 241, 
“Interval arithmetic provides truly reliable error 
estimates. Since the intermediate values in a 
calculation often depend on each other, the final 
estimates obtained with interval arithmetic will 
tend to be pessimistic. However, the prospects for 
effective use of interval arithmetic look very 
good, so efforts should be made to increase its 
availability.” [Knuth, 1997] 

Regarding all that, the motivation of this 
project is to build an API (Application 
Programming Interface) called Java-XSC to 
provide automatic floating point error control, 
implementing directed rounding modes and the 
interval type and interval arithmetic in Java, 
working towards to build a calculator to intervals. 

Instead of approximating a real number x to 
a floating point machine number, the real is 
approximated to an interval X that contains x, X 
has an upper bound and a lower bound 
represented as floating pointing machine 
numbers. Calculations are done using intervals, so 
we substitute arithmetic operations for interval 
operations, which guarantee results [Moore,  
1996][Campos, 1997].  

The Interval type, that we built, in Java, has 
two properties which are the lower bound and the 
upper bound, both of them are represented by the 
double primitive type. 

The library was modeled using the Rational 
Rose Enterprise Edition [IBM Rational Software, 
2002] and implemented using the Eclipse IDE 
(Integrated Development Environment) 
[Eclipse.org, 2005] versions 2.1, 3.0 and 3.1. Java 
version used was 1.4.2 and 5.0. 

3.1. Directed Rounding 
Before defining the Interval type, we 

implemented the Rounding type which contains 
two operations (methods) to do the directed 
rounding, the rounding up and the rounding down 
which round a given double with a specified 
precision. 

 
public static double roundDown(double d, int 
dec); 
Method that rounds down the number d to a 
specified number of decimal digits. 
 

public static double roundUp(double d, int 
dec); 
Method that rounds up the number d to a 
specified number of decimal digits. 
 
3.2. Interval Type 
3.2.1. Unary Operations 
public boolean equals(Object arg0); 
Method which overrides the equals method from 
java.lang.Object and compares two intervals [x1, 
x2], [x3, x4] and returns true if x1 = x3 and x2 = 
x4, this comparison tolerates precision errors. 
 
public double width(); 
Method that calculates the width of the Interval. 
For a given interval X = [x1,x2], the width is 
defined as x2-x1. 
 
public boolean isEmpty(); 
Method that verifies if the Interval is empty. 
 
public boolean pertains(double arg0); 
Method that verifies if a machine floating point 
number is contained in the Interval. For a given 
interval X = [x1,x2], d pertains to X if d >=x1 and 
d <=x2. 
 
public Interval symmetric(); 
Method that returns the symmetric interval. The 
symmetric of an interval  X = [x1, x2] is Y = [-x2, 
-x1] 
 
public Interval reciprocal(); 
Method that returns the reciprocal interval. The 
reciprocal of an interval X = [x1, x2] is Y = [1/x2, 
1/x1] 
 
3.2.2. Binary Operations 
public static Interval add(Interval arg0, 
Interval arg1); 
Method that returns an interval that is equal to 
arg0 + arg1. The addition is defined as [x1, x2] + 
[x3, x4] = [x1 + x3, x2 + x4] 
 
public static Interval sub(Interval arg0, 
Interval arg1); 
Method that returns an interval that is equal to 
arg0 - arg1. The subtraction is defined as [x1, x2] 
- [x3, x4] = [x1 - x3, x2 - x4] 
 
public static Interval mult(Interval arg0, 
Interval arg1); 
Method that returns an interval that is equal to 
arg0 * arg1. Multiplication is defined as [x1, x2] 



  

* [x3, x4] = [min(x1*x3, x1*x4,  x2*x3, x2*x4), 
max(x1*x3, x1*x4, x2*x3, x2*x4)] 
 
public static Interval div(Interval arg0, 
Interval arg1); 
Method that returns an interval that is equal to 
arg0 / arg1; Division is defined as [x1, x2] / [x3, 
x4] = [x1, x2] * [1/x4, 1/x3] 
 
public static Interval intersection(Interval 
arg0, Interval arg1) ; 
Method that returns the intersection between the 
intervals received as parameters. 
public static Interval union(Interval arg0, 
Interval arg1); 
Method that returns the union between the 
intervals received as parameters. 
 
public static double abs(Interval arg0); 
Method that returns the absolute value of an 
interval. 
 
public static double distance(Interval arg0, 
Interval arg1); 
Method that returns the distance between the 
intervals received as parameters. 
 
public static boolean isIn(Interval arg0, 
Interval arg1); 
Method that returns true if the interval arg0 is 
contained in the interval arg1. 
 
3.3. Results 
 

Java - XSC MapleInt 
Round down: 2.0. 10-9 Precision 

1.999999999 1.999999999 
Round down: 3.88888888899. 10-9 Precision 
3.888888888 3.888888888 

Round down: -1.6564564876648. 10-9 Precision 
-1.656456488 -1.656456489 

Round up: 2.0. 10-9 Precision 
2.000000001 2.000000001 
Round up: 3.88888888899. 10-9 Precision 
3.888888890 3.888888890 

Round up: -1.6564564876648. 10-9 Precision 
-1.656456486 -1.656456487 

Width of [1.0, 2.5] 
1.5 1.5 

Width of [0.0, 8.9] 
8.9 8.9 

Width of [-5.6, 4.9] 
10.5 10.5 

Reciprocal of [-3.0, 8.4] 10-9 Precision 
[-Infinity, [-Infinity, 

Infinity] Infinity] 
Reciprocal of [-5.0, -2.0] 10-9 Precision 

[-0.500000001, 
-0.199999999] 

[-0.500000001, 
-0.199999999] 

Reciprocal of [1.0, 4.0] 10-9 Precision 
[0.249999999, 
1.000000001] 

[0.249999999, 
1.000000001] 

0.0 pertains [-0.1, 0.1] 
true true 

0.2 pertains [-0.1, 0.1] 
false false 

0.1 pertains [-0.1, 0.1] 
true true 

Add: [1.0, 2.5] + [0.0, 8.9] 10-9 Precision 
[0.999999999, 
11.400000001] 

[0.999999999, 
11.400000001] 

Add: [-8.9, 0.0] + [0.0, 8.9] 10-9 Precision 
[-8.900000001, 
8.900000001] 

[-8.900000001, 
8.900000001] 

Sub: [-8.9, 0.0] - [0.0, 8.9] 10-9 Precision 
[-0.000000001, 
17.800000001] 

[0.000000000, 
17.800000001] 

Sub: [1.0, 3.0] - [4.0, 5.0] 10-9 Precision 
[-4.000000001, 
-0.999999999] 

[-4.000000001, 
-0.999999999] 

Mult: [1.0, 3.0] * [4.0, 5.0] 10-9 Precision 
[3.999999999, 
15.000000001] 

[3.999999999, 
15.000000001] 

Mult: [-8.9, 0.0] * [1.0, 2.5] 10-9 Precision 
[-22.250000001, 
0.000000001] 

[-22.250000001, 
0.000000000] 

Div: [-8.9, 0.0] / [1.0, 2.5] 10-9 Precision 
[-Infinity, 
Infinity] 

[-Infinity, 
Infinity] 

Div: [4.0, 5.0] / [1.0, 2.5] 10-9 Precision 
[1.599999999, 
5.000000001] 

[1.599999999, 
5.000000006] 

Intersection: [1.23,1.89]∩[1.1,1.29] 
[1.23,1.29] [1.23,1.29] 

Intersection: [1.23,1.89]∩ [1.5,1.6] 
[1.5,1.6] [1.5,1.6] 

Union: [1.23,1.89]∪ [1.1,1.29] 
[1.0, 1.89] [1.0, 1.89] 

Union: [1.23,1.89] ∪  [1.5,1.6] 
[1.23, 1.89] [1.23, 1.89] 

Is in: [1.23,1.89] ⊇  [1.1,1.29] 
false false 

Is in: [1.23,1.89] ⊇  [1.5,1.6] 
true true 
Distance: [1.23,1.89], [1.5,1.6] 
0.27 Method not 

found in 
MapleInt 

Absolute: |[1.23,1.89]| 
1.89 Method not 

found in 
MapleInt 



  

 
Tabela l: Comparação dos resultados Java-XSC  x 

MapleInt, intpakX 

4. Conclusion 
 Computational systems are incapable of 

representing all real numbers, because of their 
density. Digital representation is discrete and only 
covers a range of real numbers. Java, being a 
programming language, suffers from this fact, 
together with that, Java implementation has 
ignored important aspects of IEEE specification. 
Because of all that, Java presents errors when 
dealing with floating point numbers. 

 Since Java is, nowadays, the most popular 
programming language in the world, due to a 
range of advantages offered, it tends to be used for 
scientific applications. Regarding to minimize and 
control floating-point errors, a library called Java-
XSC(eXtension for Scientific Computation) was 
developed, using interval methods. 

Comparing with the Maple interval 
extension, the intpakX, MapleInt [Wuppertal, 
2004], the Java-XSC has presented similar outputs 
in the majority of the test cases, and presented 
better results in some operations. 

The library will be extended to contain not 
only arithmetic and logical operations, but also 
logarithmic, trigonometric and statistic 
operations. 
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