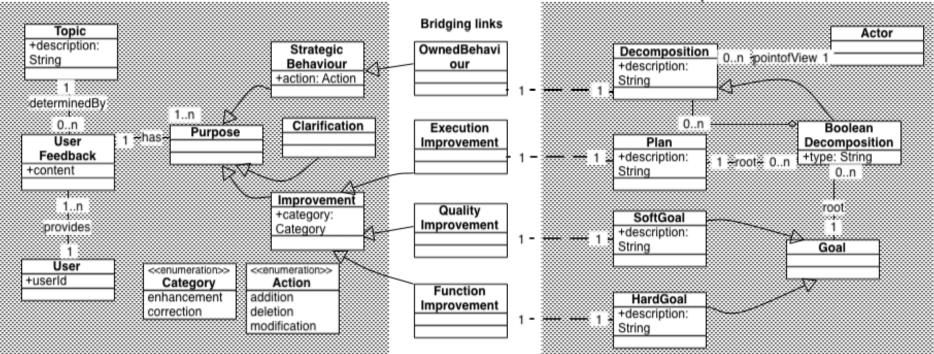

Exploiting Online Discussions in Collaborative Distributed Requirements Engineering

Itzel Morales-Ramirez, Matthieu Vergne, Mirko Morandini, **Anna Perini**, and **Angelo Susi**

Software Engineering Research Unit, Fondazione Bruno Kessler (I) Email: {perini,susi}@fbk.eu


Motivation

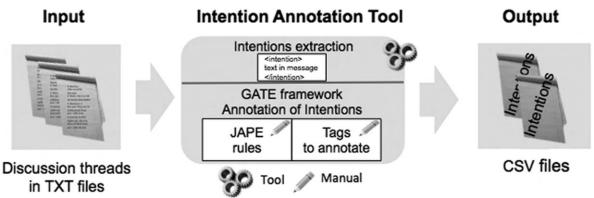
- Context of the work: distributed, collaborative software development, such as in OSS projects
- Mailing list discussions are a typical communication channel in OSS

Motivation

- We believe that "expert user feedback" expressed in online discussions can provide relevant requirements knowledge for evolving a software application [ref. our work presented at iStar13]
- Automated support for extracting relevant information (i.e. indicators of feature requests, or bug) and for identifying and ranking those participants who can contribute key knowledge (i.e. "experts") about a given topic

Approach overview

- Discussants' knowledge: content in messages
- Discussants' intentions: asking, suggesting, stating problems or answering questions
- Our approach consider the content- and intentdimensions


Terms written in messages such as nouns, adj+nouns

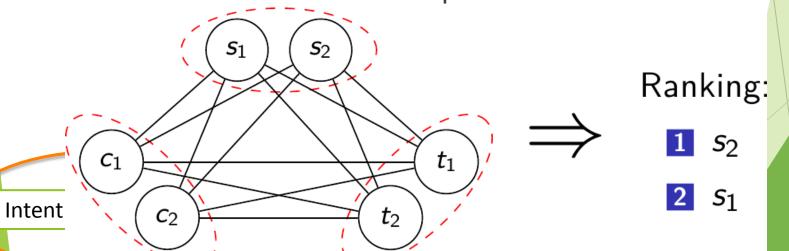
Intention identified by a specific sentence structure

Discovering discussants' intentions

- Online discussions can be considered almost synchronous written conversations that can be described in terms of speech-acts, according to the Speech Act Theory [John Searle]
 - speech acts are classified according to specific performative verbs, such as suggest, recommend, confirm, and advise, etc., which reveal the speakers' intentions, such as that of persuading, inspiring or getting a hearer to do
 - E.g. "Open the door, please!"
- In our approach, we aim at recognizing those fragments of conversation that contain specific speech-acts combinations or patterns (we call this problem requirements knowledge discovery in online discussions)
 - Those that are found to be commonly used for expressing feature requests, bugs or clarification requests

Tool-supported annotation of Discussants' Intentions

- Features to design rules:
 - Length of words
 - Special types of verbs
 - Seed words ...


Category	Tag	Rule
Directives	Questions	< WRB > + < PRP > + < content > +"?"
		< MD > + < PRP > + < content > +"?"
Constantives	Suggestives	< PRP > + (< MD >)* + ("try" "check") < PRP > + (< MD >)* + ("suggest" "recommend")
		$ \langle PRP \rangle + (\langle MD \rangle)^* + (\text{"suggest"} \text{"recommend"})$
	Responsives	$(\langle PRP \rangle)^* + \text{"[Hh]ope"} + \langle content \rangle + \text{"help"}$

The Expert Finding problem

- the problem of expert finding in online discussions can be stated as the problem of ranking the *Participants* in those discussions (users and developers participating to the mailing list) according to their expertise on a topic
- it can be conceived as a problem of Information Extraction

Approach overview: the process

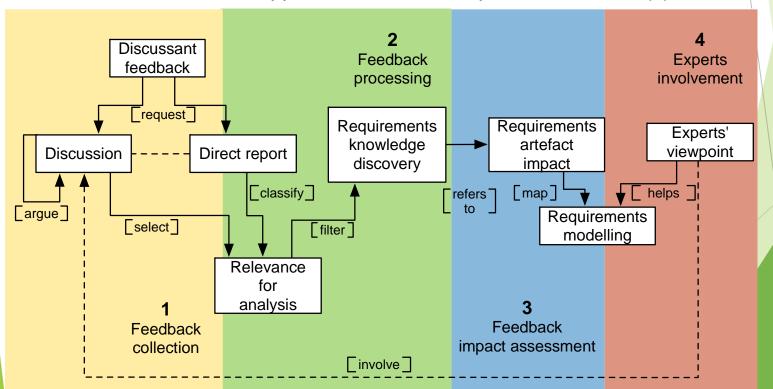
- 1. Extract key elements in messages
- 2. Extract relations between the key elements
- Combine content- and intent-based information to weight the relations
- 4. Use Markov Network (MN) to infer the expert stakeholders for a set of topics

Results so far

- Requirements knowledge discovery
 - Extract Speech-Act classification rules using an NLP-based annotation tool (i.e. Using the GATE tool)
 - Perform automated classification of online discussions into Speech-Act / patterns using the machine learning library WEKA
- Expert finding problem
 - MN techniques have been applied to OSS discussions of hundreds of sentence, and start revealing stability problems for larger discussions
 - Search-based techniques seem promising for larger discussions

Ongoing and Future work

Ongoing


- Consolidation of a conceptual framework to performed a speech-act based analysis of online discussions
- Conceptualisation of expertise's indicators

Future work

Compute similarity between phrases in the selected conversation and requirements descriptions (e.g. goal, task labels, or corresponding textual description) to identify the affected requirements

Conclusion

- online discussions are a source of requirements knowledge (e.g., user's goals and preferences, domain assumptions)
- NLP, ML, MN and search based techniques have been combined to support the identification of "expert" comments that can help evolve existing requirements model
- ... future work: tool-support for Feedback impact assessment (3)

Thank you for your attention!

