Goal Modeling Education with GRL: Experience Report

Daniel Amyot, University of Ottawa damyot@uottawa.ca iStar'15, Ottawa, Canada

- Goal-oriented Requirement Language (GRL)
- Courses
- Teaching and Learning GRL Modeling
- Teaching and Learning GRL Analysis
- Observations
- Conclusions and Future Work

Bird's Eye View of the User Requirements Notation

Major Differences between GRL and i*

What i* has that GRL does not

- Types of actors (e.g., role, agent, position)
- Types of relationships between actors (e.g., ISA, IsPartOf, Plays, Covers, Occupies, InstanceOf-INS)
- Different types of diagrams (Strategic Dependency and Strategic Rationale)
- Many constraints on what can be linked to what

What GRL has that i* does not

- Indicators
- · Importance level of an intentional element to an actor
- Evaluation strategies
- Contribution overrides
- URN links and metadata
- Integration with Use Case Maps as part of URN
- International standard (ITU-T Rec. Z.151, 2012)
- GRL can be profiled to support *i** concepts

Courses Taught

Introduction to Software Engineering (2003-2004)

- Undergraduate, 3rd-year, computer science program
- Without tool support or labs.

• Software Requirements Analysis (2005-2014)

- Undergraduate, 3rd-year, software engineering program
- With tool support and labs.

• Software Engineering (10 times during 2004-2015)

- Graduate, masters and Ph.D., computer science program
- With tool support but no labs.
- Total audience of well over 1,000 students over the years.
- 3-hour lecture, plus 3-hour lab when available.

Teaching and Learning GRL Modeling

- From rationales to decision making to social modeling
- Rationale documentation: limitations of tables
- GRL syntax with an example
- GRL pattern leading to trade-offs
- Use of qualitative and quantitative scales
- Indicators to better root models in reality
- Connection to business process modeling
- Use of views (diagrams) to manage the complexity of large models
- Aspect-modeling and cross-cutting concerns at the goal level also covered at the graduate level

Teaching and Learning GRL Analysis

- What-If analysis with GRL strategies
- "Best" strategies... for whom (which actor)?
- Trade-off analysis with multiple strategies and means of comparing them
 - Strategy Diff; export to Excel
 - Strategy creation akin to test creation
 - Strategy inference (e.g. through constraint solving) not covered
- Semantics of links more precisely defined and illustrated
- OCL constraints and OCL-based metrics on goal models (for well-formedness and for result analysis) also covered in the graduate course

GRL Modeling: Rationale Documentation (1)

Question: Alternative Authentication Mechanisms?

References: Service: Authenticate

Decision: Smart Card + PIN

	Criteria 1: ATM Unit Cost	Criteria 2: Privacy
Option 1: Account number	+	—
Option 2: Fingerprint reader	—	+
Option 3: Smart Card + PIN	+	+

Qualitative version

GRL Modeling: Rationale Documentation (2)

Question: Alternative Authentication Mechanisms?

References: Service: Authenticate

Decision: Smart Card + PIN

	Criteria 1: ATM Unit Cost	Criteria 2: Privacy
Option 1: Account number	1	20
Option 2: Fingerprint reader	4	30
Option 3: Smart Card + PIN	2	40

Quantitative version Questions: Relationships between criteria? Scalability? Stakeholders?... Can we do better than a simple table?

GRL Modeling: Notation

GRL Modeling: Recurring Pattern in GRL

Typical GRP pattern:

- The system (actor) has several functional goals, with various alternative ways of performing them (shown with tasks)
- There are several stakeholders (actors) involved, with their own concerns, often non-functional (captured with softgoals)
- There are side-effects from the potential solutions to the softgoals

Observations about Students (1)

- Students generally understand that a qualitative scale ({Break, ..., Make}, {Denied, ..., Satisfied} is used in the early modeling steps, when little information is available, and that a quantitative scale (e.g., [0..100]) can be used later as we gain better information and understanding.
- The pattern highlights the fact that most decisions involve **trade-offs**, and that there is value in making them explicit.
- Students understand the limitations of common tables for decision making and rationales
- Little attention is paid in class and in models to some details (contribution vs correlation, goal vs softgoal...) or concepts (beliefs and resources)
- More emphasis on strategic rationale (SR) type of models (easier to sell) than a strategic dependency (SD) view
- Little interest in learning more than one goal language

GRL Modeling: jUCMNav (Eclipse Plug-in)

Features for GRL

- 7 GRL evaluation algorithms, with color highlight
- One model, multiple diagrams
- Various import/export mechanisms
- OCL constraints/metrics
- DOORS integration

•

. . .

GRL Analysis: Strategies in jUCMNav

A star (*) indicates an initial value part of a given strategy (element also shown in dashed lines).

All the others are evaluated through a propagation algorithm. Dashed red lines are overridden values (could be computed)

uOttawa

🟛 u Ottawa

Observations about Students (2)

- Students learn to have models on which stakeholders disagree sooner than with verbose text.
- Better understanding of how propagation algorithms work leads to a better and more consistent selection of GRL relationships (e.g., decomposition versus contributions) by students.
- Students in these courses enjoy automated analysis with immediate feedback and have little interest in manual or interactive propagation.
- Students realize the challenge in choosing appropriate contribution weights

Inclusion of Measures in Goal Models

- Need to better relate observations about the real world to the goal model, with domain-specific units such as:
 - Currencies (e.g., revenues in \$)
 - Durations (e.g., waiting time in a hospital, in hours)
 - Counts (e.g., number of new students admitted in SEG)
- GRL supports this kind of information, and integrates it in the rest of the goal model
 - Key Performance Indicator (KPI)

- KPIs help measure goals and NFRs with quantifiable metrics
- GRL KPIs can also be fed from external sources (monitoring)

Indicators: From Current to Satisfaction Value

Attribute	Value	GRL Satisfaction
Target	\$1000	100
Threshold	\$1500	0
Worst-case	\$2500	-100
Current	\$1300	???

Indicators: From Current to Satisfaction Value

Attribute	Value	GRL Satisfaction
Target	\$1000	100
Threshold	\$1500	0
Worst-case	\$2500	-100
Current	\$1300	40

Integration with UCM for BPM

KPIs: Commuting Example (from G. Mussbacher)

Example: Commuting

From Real World Values to Model Values

Strategy Execution with KPIs (1/2)

Strategy "Regular Bus":

Example: Commuting

🖶 Preferences		<u>_ 0 ×</u>
type filter text	Static Semantics Checking Preferences	$\leftarrow \star \Rightarrow \star \star$
⊕- General ⊕- Ant ⊕- ATL ⊕- CDO	Show rule description in the rule violation report OCL Constraints (Rules defined:	Graduate)
⊞- CDO ⊞- Ecore Diagram	🚝 Edit a rule 🔰	<u>د</u> ا
Ecore Tools Diagram		
EMF Compare	Rule Name:	
		1
🗄 Install/Update	Castante	
itava		-
JET Transformations	gri::Decomposition	Id not be the dest
En jUCMNav	OCL query expression for collecting all objects to be checked:	position links shoul
Color Preferences	getAllDecompositions()	composition (mean
GRI Strategy Evaluation		ssociation should
- KPI Monitoring Preferen		rams should be ta
Metrics Preferences	OCL constraint expression:	y links in an SR mo
Outline Preferences	(self.src.oclIsTypeOf(grl::IntentionalElement) and self.dest.oclIsTypeOf(grl::IntentionalElement))	 ks that cross actor
Reference/Definition Pre	implies	
Report Generation Prefe	((celf_dest_ocl@sType(gd::Intentione ['] Element)) decompositionType—DecompositionType::And	
Scenario Export Prefere	implies	
Static Semantics Checkir	(self.src.oclAsType(grl::IntentionalElement)).type=IntentionalElementType::Task	tion of a Contribu
UCM Scenario Traversal	Description:	ion links must not
Model Validation Plus is Development	AND decomposition links should only have tasks as destinations	lion links must not
⊞- Plug-in Development	Example of a	a silization) must be
m - KunyDebug 重- Tasks	Constraint	sociation must be fr
H. Team	definition	s accoriation must
Teneo		ciation must only
⊡ · UML2 Diagrams		v links must never
吏 Usage Data Collector	New Edit Delete	v links in an SD mo
···· Validation		
	OK Cancel	
H- Xtext		
I I I I I I I I I I I I I I I I I I I	Restr	ore <u>D</u> efaults <u>A</u> pply
?		OK Cancel

Observations about Students (3)

- Students learn that by combining GRL with UCM, they can provide a rationale for the structure of business processes (the why aspect, added to the what/where/when/who)
- A dual view (goal/scenarios) also enable
 - Dealing with different types of stakeholders (goals for managers, scenarios for people in the trenches) during RE activities
 - Consistency and completeness analysis
- They also learn that indicators can help make models more precise and falsifiable
- Graduate students learn that OCL constraints can be used to enforce a specific style of modeling and detect customized categories of issues

Conclusions and Future Work

- Brief overview of my experience teaching GRL in various courses
- In addition to an assignment, undergrad students have an additional 3-hour tutorial/lab that contributes positively to the learning.
- Undergrad students have a semester-long project where many teams choose to use GRL to model goals and stakeholders, with traceability to scenarios and requirements via IBM DOORS
- Graduate students have a project in teams of 2 people on a tool comparison, and several express their goals and do their evaluation with GRL (nobody used indicators so far...)
- Need to introduce goal modeling with language subsets first
- What would help is a set on online/YouTube lectures and tutorials, with online exercises.

