Automated Generation of Attack Routes for Service Security Analysis – A Preliminary Report

Tong Li

Lin Liu

Golnaz Elahi

Eric Yu

Tsinghua University

University of Toronto

iStar 2010 - The 4th international i* workshop Hammamet, Tunisia. June 7-8, 2010

ဥတ္တေ

Motivation & Approach

In a service-oriented computing environment ...

- Services are constructed through composition and delegation
- Risks arise due to compositions and delegations
- Attackers can also use service composition and delegation

Approach

- Use agent-oriented modeling to represent the service environment, including attackers
- Automatically generate all possible attack routes using a Knowledge Base and Rule Set
- Prune attack routes space by
 - Evaluating their feasibility
 - Assessing attack costs, probability
- Generate counter-measures to defend high-risk attack routes (future work)

Outline

- Motivations and Approach
- Service Security Modeling Framework
- Analysis Method
- Example
- Related Work
- Conclusion and Future Work

Service Security Modeling Framework (SSMF)

Service Security extension of the i* framework

Security Related Concepts in SSMF

- A = set of actors
- S = set of services

- $MA = \{m_1, ..., m_n\}$ is a set of Malicious Actors.
- $AT \subseteq MA \times S \times A$, is a set of Attack relations.
- $OB \subseteq S \times S$, is a set of **Obstruct** relations.

Analysis Process

- Service environment modeling
- Attack goal identification
- Reasoning from attacker's viewpoint *¹
- Attack identification and assessment

We focus on this step !!

Focusing on Availability only

Rule Set

MActor(m) /Service(s) /Service(anti-s) /Service(os) /
require(m, anti-s) / know(m, obstruct(s, os))
=> or-decomposition(anti-s, os) / add(know(m, obstruct(s,
os)), set)

Rule I: Attack Strategy Identification

• If the malicious actor knows about a service, like os, which can obstruct the service s, then os is a concrete way to accomplish "anti-s".

Rule 2: Attack Decomposition

• if his anti-service is not satisfied, he may decompose the anti-service into finer grained antiservices in the same way that the target actor decomposes the target service.

Rule 3: Attack Delegation

If the attacker discovers that an actor in the service environment provides the required services that meet the attackers' requirements, he can delegate those services to the actors.

Rule 4: Satisfaction Propagation

- For or-decomposition: if one of the subservices has been satisfied, then the parent-service would be satisfied as well.
- For and-decomposition, if all of the sub-services have been satisfied, then the parent-service would be satisfied.

A Web Attack Example

Now consider the Attacker

Attack Goal Identification

Reasoning from Attacker's Viewpoint

Step2. Goal refinement on attacker side

Apply Rule 2: Attack Decomposition

Decompose attacker goals until they can be met

Step3. Relate anti-goals to attack tasks through knowledge in KB

Apply Rule I:Attack Strategy Identification

Attacker got knowledge from domain experts or other sources, stored in KB

Step 4. Delegate and evaluate the attack tasks

Apply Rule 4: Satisfaction Propagation

Evaluation is through binary logic in AND/OR tree

Step 5: Repeat on all alternative attack routes ...

Are the risks high enough to take defensive measures? Do attack cost and probability assessment

|6

Related Work

- A. van Lamsweerde, and E. Letier, Handling Obstacles in Goal-Oriented Requirements Engineering. IEEE Transactions on Software Engineering, Special Issue on Exception Handling, 2000. 26(10): p. 978-1005.
 - goals and goal refinements within one jurisdiction
- L. Liu, E. Yu, and J. Mylopoulos Security and privacy requirements analysis within a social setting. RE'03.
 - Only considers stakeholders' malicious effects to the specific project, but has left out other agents in the environment.
- J.D. Meier, Carlos Farre, Jason Taylor, Prashant Bansode, Steve Gregersen, Madhu Sundararajan, Rob Boucher.
 Improving Web Service Security. Microsoft .
- OASIS. WS-Security standard.

Conclusion

- Security analysis is more complicated in the service environment due to service compositions and delegations.
 - Focusing on goals and goal refinements within a single actor is not enough
- We use Service Security Modeling Framework (SSMF, an i* extension) to model services, attackers, and attack routes.
- We automatically generate the attack routes using rules and KB.

Limitations and Future Work

- Develop rules to automatically discover countermeasures
- Include non-security goals; trade-offs with countermeasures.
- Include integrity and confidentiality goals, and define related rules.
- Show how automation greatly reduces analysis effort when services change.

Thank you !

Tong Li
<u>litong08@mails.tsinghua.edu.cn</u>
Lin Liu
Linliu@tsinghua.edu.cn

•Golnaz Elahi

gelahi@cs.toronto.edu

http://www.cs.toronto.edu/~gelahi

•Eric Yu

http://www3.ischool.utoronto.ca/~yu