

Alexei Lapouchnian¹ and Yves Lespérance²

¹University of Toronto, Canada ²York University, Canada

Introduction

- Increase of interest in adaptive systems in the SE community
 - Growing complexity of software-intensive systems
 - Software systems are becoming *ubiquitous*; proliferation of communication technologies; Expectation that systems will integrate seamlessly and collaborate to achieve user goals and adapt to *changing circumstances*
- Adaptive systems
 - Reduce maintenance overhead, improve robustness and security, help with performance optimization, adjust to changing environments and user preferences, self-* properties
 - **Self-Adaptation**: change in behaviour in response to the perception of the environment and of the system itself.

Control loops vs. Agents I

- A number of ways to implement self-adaptation including
 - Control loops
 - Attracting a lot of focus in the SE community; starting to be applied in software
 - Roots in control engineering; control theory provides the formal foundation; huge body of knowledge; lots of practical applications.
 - Separation of functionality and adaptivity (process vs. controller)
 - Various types of control (feedback, feedforward, etc.)
 - Agent technology
 - Originates in AI, lots of formal foundations (KRR, planning, etc.)
 - Strong emphasis on social aspects, agent communication, collaboration
 - Distributed decision making, planning, reasoning
 - Effective in dynamic and incompletely known environments, goals that are unknown at design time.

iStar10, 7.06.2010

Control loops vs. Agents II

- Overlap between the two paradigms
 - Monitoring/sensing of the environment is followed by analysis/reasoning and then by the enactment of the appropriate behaviour.

Autonomic Element

- From the original Autonomic Computing proposal
 - Positions agents as THE technology for adaptive systems design
 - MAPE loop; Autonomic Manager/Managed Element
 - Resulting adaptive system MAS!
 - Powerful and flexible

• <u>PRICE</u>:

- Complexity
- Heavy formalization
- Lack of transparency and predictability

Aim of the Paper

- Motivate the research into the development of new methods for using agent technology in modern adaptive systems
- Can agents be of help in addressing various problems in adaptive systems design? Which ones?
- How can they be integrated with other approaches?
- Which kind of agent technology and what kind of agent architecture should be used in particular circumstances?
- What are the methods for systematically developing agentsbased and hybrid adaptive systems

Where can agents help/hurt?

- Recent work on *dimensions of adaptive systems* may help
 - Goal flexibility [rigid, constrained, unconstrained]: agents can handle situations where goals are not known a priori
 - Anticipation of change [foreseen, planned for, unforeseen]: planned for planning agents, unforeseen social layer
 - Autonomy [degree of outside intervention] both feedback loops and agentbased approaches support some form of it
 - **Organization** [(de)centralized] decentralization is a major problem. Management of conflicts, coordination. Social layer can help.
 - **Predictability of adaptation** [(non)deterministic] can consequences of adaptation be predicted? Control-based predictable. Agents emergent behaviour is difficult to predict
- Depending on where one wants to be w.r.t. the values of these dimensions, can choose agents vs. other approaches

iStar10, 7.06.2010

Which Agent Technology?

- Range of techniques
 - Simple stateless reactive agents (similar to ECA rules)
 - Perception, simple reasoning, action. All analysis/reasoning at design time.
 - Reactive agents with state
 - Model of the state, model of the dynamics of the environment
 - Planning
 - Classical, decision-theoretic. Reasoning at runtime.
 - Belief-desire-intention agents
 - . . .
- Methods do not normally address the problem of the selection of the appropriate agent technology

Methods for systematic development of adaptive systems

- Modeling of dynamic, flexible, reasoning MAS not well supported by notations like *i**, approaches like Tropos
 - Need to avoid overspecification. Need to support "grey" boxes flexible behaviours with constraints
- Requirements-driven approach for adaptive systems design
 - RE for system requirements + RE for adaptation: separation of concerns
 - Meta-requirements for meta-processes (controllers)
 - Including Monitoring, Analysis/Diagnosis, Compensation goals explicitly represented
 - *Explicit* modeling of adaptation situations

Application to Agents

- Will these ideas work for agents?
 - Need to avoid overspecification
 - Little support for reasoning, planning capabilities, incompletely known environments, goals that are unknown at design time
 - Decentralized nature of adaptation in MAS is not wellsupported
 - Need explicit modeling of the complex social behaviour (ideas like commitments may help)
 - Separation of functional behaviour and adaptation can be problematic for agents

The Road Ahead

- We believe that agents and MAS have capabilities that can enhance conventional adaptive systems
 - Combined use of agents and non-agent-based approaches
- Help with deciding whether to use agent technology and which type of agent/MAS to use is needed
- New methods are needed to balance the power of agents with improving predictability, transparency
- Emerging control theory-inspired methods for adaptive systems design can help with integrating of (at least simpler forms of) agent technology into adaptive systems

alexei@cs.toronto.edu

iStar10, 7.06.2010