
Using intentional actor modeling
to support the evolution ofto support the evolution of
enterprise software architectures
in organizationsin organizations

iStar’10 workshop @ CAiSE 2010iStar’10 workshop @ CAiSE 2010
Hammamet, Tunisia
June 2010June 2010

Daniel Gross & Eric YuDaniel Gross & Eric Yu

1
Daniel Gross & Eric Yu © 2010 – Research in progress, please don’t distribute

HighlightsHighlights

• An exploration of applying i* in enterprise
software architecture reasoningg
– A pilot case study

• A small extension to i*• A small extension to i*
– Concept of an “intentional viewpoint”

2

From business goals to software architecture

• Business goals justify design
goals which in turn guide

Business goals
goals, which in turn guide
design decision-making [3,4]

• Architectural design as an System design goals

organizationally distributed
decision-making process

Solution Alternatives

[] () f f
[4] Tyree, J., & Akerman, A. (2005). Architecture decisions: demystifying architecture. IEEE Software, 22(2), 19-27.
[3] Kazman, R., & Bass, L. (2005). Categorizing Business Goals for Software Architecture: SEI.

3

Nature of decision-making in software development
i iorganizations e.g., [Curtis], [Herbsleb], [Grinter]

• Organizational decision behavior is g
inherently distributed,
heterogeneous, and contingent on
many (changing) factors

• Stakeholders and designers at
different levels in the organizationdifferent levels in the organization
pursue goals, make and delegate
decisions

• Stakeholders and designers goals
are heterogeneous, situated inare heterogeneous, situated in
different domains, which often lead
to conflicting choices

• Decision making
(authority/autonomy) is distributed
“ ti ll ” d “h i t ll ”“vertically” and “horizontally”

• Decisions are made locally, but are
interdependent, and often have
systemic consequences

• “Linking” between decision making• Linking between decision-making
behavior is social, requires the
identification and negotiation of
shared interests

[2] Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the
S ft D i P f L S t C i ti f th

4

Software Design Process for Large Systems. Communications of the
ACM, 31(11), 1268-1287.

Research question

• Given that architectural decision making occurs in a larger
context of organizationally distributed decision making thatcontext of organizationally distributed decision-making that
involves business and system stakeholders and designers …

• can such decision making benefit from using social• … can such decision making benefit from using social
modeling such as provided by i* framework?

• More specific questions:
– Is distributed reasoning and decision-making a problem in enterpriseg g p p

architecture evolution projects?
– Does intentional agent modeling help in representing and

communicating distributed decision making amongst stakeholdercommunicating distributed decision-making amongst stakeholder
and designers?

– Does the inclusion of higher (management) level organizational
participants and their goals into a model provide any value?

5

Typical Software Architecture Reasoning

[1]

But choosing alternatives in a business setting
requires knowledge of business intents/goals

6[1] Garlan, D., & Shaw, M. (1994). An Introduction to Software Architecture (No. CMU-CS-94-166): Carnegie Mellon University.

Consider Enterprise Application Landscapes
 Enterprise applications are interconnected via shared databases and/or interfaces

An Enterprise Application
Landscape

f h h lof high complexity

 Interesting to study because:
 Multiple stakeholders and designers concurrently develop and evolve enterprise

applications
 No single point of authority possible -- inherently distributed and autonomous decision-

makingmaking

 Evolution towards enterprise architecture approach requires dealing with
distribution of authority and decision making

7

Why evolve towards an Enterprise Architecture

• Application landscapes have become increasingly
complex, hard to understand and costly to maintain and p , y
evolve, e.g.,
– Many different and incompatible design approaches

/– Unclear separation of business and/or technical concerns
– Extensive use of Point to Point integrations across enterprise

applications
– Heterogeneous infrastructures
– Multiple infrastructure suppliers/providers

• However, there are reasons for the current architectural
structures!structures!
– Current enterprise applications are designed to support current

business operations and do meet (more or less) current
organizational goals e g profitability market shareorganizational goals, e.g., profitability, market share, …

8

Tradeoffs in enterprise application evolution
• Focusing on operational business needs only (here and now)

–  leads long term to an un-maintainable application landscape
• Focusing on strategic goals only (enterprise as a whole, future-directed)

–  usually too costly
• Need to find balance• Need to find balance

– Business requirements and IT requirements
– Long-term and short-term

Evolution steps

IBM’s SOMA and Cap
Gemini/SD&M Quasar
Enterprise methods,
informally introduce goals
to guide EA evolution

9
Engels, Hess, et. al (2008) “Quasar Enterprise: Anwendungslandschaften service-orientiert gestalten”, dpunkt.verlag, Heidelberg

to guide EA evolution

Analyzing an evolution step using agents and goals
New interconnection
requirement

Enterprise
id

Enterprise
id q

Enterprise
Application/Component

-wide
Architect

-wide
Architect

Current operational business
and IT goals Strategic business

and IT goals

To Be IdealTo-BeiAs-Is
Evolution

step evaluation

Application
Architect

Application
Architect

Enterprise Architect
and Application architect

think differently

10

about each evolution step

Case study
• Study site:

– The Phoenix Insurance – a major insurer in Israel
– enterprise systems evolving towards a service-oriented enterprise architecture

• Study objective:
– Application of agent and goal modeling to enterprise architecture evolution
– Utility of agent and goal-modeling for practitioners in their daily work

St d h• Study approach:
– Interview stakeholders
– Analyze and model reported architectural evolution discussionsAnalyze and model reported architectural evolution discussions
– Identify linking of architectural decision making across organizational

stakeholders to higher level system and business goals
P t t d l d l t t k h ld f f db k– Present agent and goal models to stakeholders for feedback

11

Argumentation about Messaging Approach
between Consumer and Provider Components

Consumer Component design
argumentation viewpoint:

U S h M i !

Enterprise Architect design
argumentation viewpoint:

Use Synchronous Messaging!

• Simplifying Consumer component: Synchronous
messaging simplifies the Consumer component design

Use Asynchronous Messaging!
• Resource efficiency: Asynchronously messaging

requires less SOA infrastructure resources.
messaging simplifies the Consumer component design
and code. It simplifies sending the new policy request to
a specific Provider, and also simplifies handling the
response received from the Provider. Simplifying is
important since it make code more understandable

hi h t ib t t d th t’

• Improved extensibility: Asynchronous messaging
supports forwarding policy data to other relevant
Providers, without needing the Consumer to know a-
priori about additional destinations.

• Simplify Exception handling: H h ld th which contributes to reduce the component’s
maintenance cost.

• Simple is cost efficient: Simpler design is easier and
faster to write, which reduces development cost.

S h i f t S h i

• Simplify Exception handling: How should the
Consumer behave when one or more Providers return
error codes while others complete processing
successfully? Dealing with such cases is not obvious and
complicates the design of the Consumer component.

• Synchronous is fast: Synchronous messaging returns
an immediate response. The ESB works to immediately
fulfill a synchronous request. This improves response
time for the Consumer component and contributes to
the customer’s quality of service perception.

Asynchronous messaging delegates dealing with such
issues to the ESB and simplifying the Consumer
component.

• Simplify processing of multiple Provider
f db k

q y p p

• Improved design accountability: Having a
response returned immediately, improves the control
the Consumer component designer has over the overall
policy submission process. Using synchronous

feedback: Asynchronous messaging also simplifies
support for multiple feedback messages returned by one
or more Providers, and routing feedback messages to
several interested Consumers. Asynchronous messaging
directly supports such decoupling while synchronous

messaging allows the Consumer component designer to
directly design for failure contingencies.

y pp p g y
messaging requires more design work for and across
Consumer components.

12

Enterprise Architect design
argumentation viewpoint:

Use Asynchronous Messaging!
• Resource efficiency: Asynchronously messaging

requires less SOA infrastructure resources.
• Improved extensibility: Asynchronous

messaging supports forwarding policy data to
other relevant Providers, without needing the
Consumer to know a-priori about additional
destinations.

• Simplify Exception handling: How should the
Consumer behave when one or more Providers
return error codes while others complete p
processing successfully? Dealing with such cases
is not obvious and complicates the design of the
Consumer component. Asynchronous messaging
delegates dealing with such issues to the ESB g g
and simplifying the Consumer component.

• Simplify processing of multiple Provider
feedback: Asynchronous messaging also
simplifies support for multiple feedbacksimplifies support for multiple feedback
messages returned by one or more Providers,
and routing feedback messages to several
interested Consumers. Asynchronous messaging
directly supports such decoupling whiledirectly supports such decoupling while
synchronous messaging requires more design
work for and across Consumer components.

Consumer Component design
argumentation viewpoint:

Use Synchronous Messaging!Use Synchronous Messaging!
• Simplifying Consumer component: Synchronous

messaging simplifies the Consumer component design
d d It i lifi di th li t tand code. It simplifies sending the new policy request to

a specific Provider, and also simplifies handling the
response received from the Provider. Simplifying is
important since it make code more understandable
which contributes to reduce the component’s
maintenance cost.

• Simple is cost efficient: Simpler design is easier and
faster to write, which reduces development cost.

• Synchronous is fast: Synchronous messaging returns an
i di t Th ESB k t i di t limmediate response. The ESB works to immediately
fulfill a synchronous request. This improves response
time for the Consumer component and contributes to
the customer’s quality of service perception.

• Improved design accountability: Having a response p g y g p
returned immediately, improves the control the
Consumer component designer has over the overall
policy submission process. Using synchronous
messaging allows the Consumer component designer to
directly design for failure contingenciesdirectly design for failure contingencies.

Higher level organizational
reasoning context

Reasoning about the
Consumer and the

Enterprise System as a
whole

Designer

Reasoning about
the Consumer

application and its
components

15

Contrasting argumentation

Broader organizational
reasoning context

16

Product management
interpreting and translating

hi h l l l t l l l

!

higher level goals to lower level
priorities

! !

!

!
!

!

!
!!

!
!! !!

Goal- and goal priority
propagation to lower level

intentional agents/viewpoints

17

Case study results/Contributions
• Is distributed reasoning and decision making a problem in enterprise architecture• Is distributed reasoning and decision-making a problem in enterprise architecture

evolution projects?
– CTO and SOA enterprise-wide architect report struggling to convince other decision-

making stakeholders for the need of adopting SOA design principlesmaking stakeholders for the need of adopting SOA design principles
– Intentional viewpoint was identified as needed to deal with design reasoning amongst

designers with overlapping design responsibilities
• Do intentional viewpoints help in representing and communicating distributedDo intentional viewpoints help in representing and communicating distributed

decision-making in case of overlapping responsibilities
– Feedback indicate intentional viewpoint modeling helps in documenting side-by-side

argumentation of different stakeholders and designers during a design discussion,argumentation of different stakeholders and designers during a design discussion,
providing a useful communication tool

– Simple actor models help provide reminders to relevant stakeholders why SOA principles
were adopted

– Such documentation helps reduce the need for face-to-face discussions between the
SOA architect and enterprise application designers

• Does including higher level organizational participants into a model provide any
value?

– The CTO and SOA architect perceived value in putting design discussions into broader
organizational decision-making context.

– Was also seen as contribution to IT Governance – the need to justify architectural (SOA)
choices in light of organizational strategic goals and directions.

18

Related work
• Architecture decisions as “first class” modeling

elements:
– Jansen & BoschJansen & Bosch,

• work on architecture decision modeling
– Olaf Zimmerman

k SOA hit t d i i d li f

No goals, no organizational concept, no
distributed decision-making

• work on SOA architecture decision modeling for
reuse (SOAD) – approach not SOA specific

• i* applied to Architecture
– Grau, Franch

• i* as architectural description language

No distributed agent-oriented
reasoning (use of global SRs),

p g g
– Kolp, Mylopolous, Castro

• i* architecture as organizational structures

No organizational stakeholders
included in distributed reasoning

Grau, G. and X. Franch, On the Adequacy of i* Models for Representing and Analyzing Software Architectures. Proceedings of the First International
Workshop on Requirements, Intentions and Goals in Conceptual Modeling (RIGiM'07), 2007: p. 296-305.

Kolp M and J Mylopoulos Software Architecture as Organizational Structures in Proceedings ASERC Workshop on "The Role of Software Architectures in the

Castro, J., Kolp, M., & Mylopoulos, J. (2001). A Requirement-Driven Software Development Methodology. Proc of the 13th International Conference on Advanced
Information Systems Engineering CAiSE 01.

19Zimmermann, O., et al., Reusable Architectural Decision Models for Enterprise Application Development, in Software Architectures, Components, and Applications. 2008, Springer Berlin
/Heidelberg. p. 15-32.

Jansen, A., Bosch, J., 2005. Software architecture as a set of architectural design decisions. In: Proceedings of the Fifth Working IEEE/IFIP Conference on Software
Architecture, November 2005. IEEE Computer Society, Washington, DC, pp. 109–1

Kolp, M. and J. Mylopoulos. Software Architecture as Organizational Structures. in Proceedings ASERC Workshop on The Role of Software Architectures in the
Construction, Evolution, and Reuse of Software Systems. 2001. Edmonton, Canada.

Future work

• Additional Phoenix study data analysis

• Simplify models, adapted to different types of stakeholders and designers
(maintainers, designers, reuse managers, middle and upper management, etc.)(, g , g , pp g ,)

• Systematic comparing and contrasting of intentional viewpoint reasoning, while
dealing with different decision scopes and levels of abstractiondealing with different decision scopes and levels of abstraction

• Larger scale documentation and analysis of enterprise architecture decision
ki b f d i h i i i imaking, by use of agent types, and inheritance, instantiations, etc.

• Integration with enterprise architecture modeling approaches

• Tool support in enterprise setting

20

