Using intentional actor modeling
to support the evolution of
enterprise software architectures
In organizations

iStar’10 workshop @ CAISE 2010
Hammamet, Tunisia
June 2010

Daniel Gross & Eric Yu

&

e

UNIVERSITY OF TORONTO
FACULTY or INFORMATION

Daniel Gross & Eric Yu © 2010 — Research in progress, please don’t distribute

LiI':~chliach+e
RIgNIEgNTS

* An exploration of applying i* in enterprise
software architecture reasoning

— A pilot case study
e A small extension toi*

— Concept of an “intentional viewpoint”

From business goals to software architecture

'\ﬂ* ’, e Business goals justify design
goals, which in turn guide
t design decision-making (34

e Architectural design as an
organizationally distributed
decision-making process

[3] Kazman, R., & Bass, L. (2005). Categorizing Business Goals for Software Architecture: SEI.
[4] Tyree, J., & Akerman, A. (2005). Architecture decisions: demystifying architecture. IEEE Software, 22(2), 19-27.

Nature of decision-making in software development
organizations e.g., [Curtis], [Herbsleb], [Grinter]

Businass Millau

N, v\, ! gt

Cunteni of analysis =@ Cognlilon & Group Organlzaiionsl
Motivation Dynamics Behavior

[2] Curtis, B., Krasner, H., & Iscoe, N. (1988). A Field Study of the
Software Design Process for Large Systems. Communications of the
ACM, 31(11), 1268-1287.

Organizational decision behavior is
inherently distributed,
heterogeneous, and contingent on
many (changing) factors

Stakeholders and designers at
different levels in the organization
pursue goals, make and delegate
decisions

Stakeholders and designers goals
are heterogeneous, situated in
different domains, which often lead
to conflicting choices

Decision making
Sauth_ority/autonomy) is distributed
‘vertically” and “horizontally”

Decisions are made locally, but are
interdependent, and often have
systemic consequences

“Linking” between decision-making
behavior is social, requires the
identification and negotiation of
shared interests

Research question

e Given that architectural decision making occurs in a larger
context of organizationally distributed decision-making that
involves business and system stakeholders and designers ...

e ...can such decision making benefit from using social
modeling such as provided by i* framework?

 More specific questions:

— Is distributed reasoning and decision-making a problem in enterprise
architecture evolution projects?

— Does intentional agent modeling help in representing and
communicating distributed decision-making amongst stakeholder
and designers?

— Does the inclusion of higher (management) level organizational
participants and their goals into a model provide any value?

Typical Software Architecture Reasoning

Master
Control

Circular

Master
Control

Input ‘ ‘ Shift ‘ ‘Alphabetizer ‘ Output
T N — o S—— 7 7 Input Qutput
B B s L ! .I \
\ Charactersw Index ‘ﬂlpl’;:g:;lzed i !
' L L 1 = 5
| S =
! -
| Characters Circular Shift |

1J
Alphabetic
Shifts

| 1
Input Qutput
Medium Medium

Input Qutput
Medium Medium

IShared DataIPros and Cons ADTJPros and Cons
+ Efficiency + Intuitive structure
> shared data + Changeability

— efficient data representation

, — data format abstracted away inside ADTs
— sequential data access

— modification of the processing algorithm isolated to individual

+ Intuitive structure modules
= Changeability *+ Support for reuse
> data format not abstracted away — fewer assumptions about the rest of the system

— functional elements dependent on data representation

= Expansion of functionality [1]
= Support for reuse

— sacrifice either conceptual simplicity or performance

But choosing alternatives in a business setting
requires knowledge of business intents/goals

[1] Garlan, D., & Shaw, M. (1994). An Introduction to Software Architecture (No. CMU-CS-94-166): Carnegie Mellon University.

Consider Enterprise Application Landscapes

» Enterprise applications are interconnected via shared databases and/or interfaces

An Enterprise Application
Landscape

» Interesting to study because:
» Multiple stakeholders and designers concurrently develop and evolve enterprise
applications
» No single point of authority possible -- inherently distributed and autonomous decision-
making

> Evolution towards enterprise architecture approach requires dealing with
distribution of authority and decision making

Why evolve towards an Enterprise Architecture

Application landscapes have become increasingly
complex, hard to understand and costly to maintain and
evolve, e.g.,

Many different and incompatible design approaches
Unclear separation of business and/or technical concerns

Extensive use of Point to Point integrations across enterprise
applications

Heterogeneous infrastructures
Multiple infrastructure suppliers/providers

However, there are reasons for the current architectural
structures!

Current enterprise applications are designed to support current
business operations and do meet (more or less) current
organizational goals, e.g., profitability, market share, ...

Tradeoffs in enterprise application evolution

Focusing on operational business needs only (here and now)

— -2 leads long term to an un-maintainable application landscape

Focusing on strategic goals only (enterprise as a whole, future-directed)

— =2 usually too costly
Need to find balance

— Business requirements and IT requirements

— Long-term and short-term

Operational Eolrrldorof
Developmen alance
(meeting 7‘---'
current ‘---‘,»’ wF= /
- - o’
operational A //
oa's !
g | {I?)—ﬁe'\ ion of
——
o 1.';""7 Application
\-;)i a‘ Landscape

Strategic Development
(meeting future goals)

Engels, Hess, et. al (2008) “Quasar Enterprise: Anwendungslandschaften service-orientiert gestalten”,

Evolution steps

IBM’s SOMA and Cap
Gemini/SD&M Quasar
Enterprise methods,
informally introduce goals
to guide EA evolution

dpunkt.verlag, Heidelberg

Analyzing an evolution step using agents and goals

Enterprise New interconnection
p — requirement
-wide _
Enterprise

chitect wa | Application/Component

Current operational business

and IT goals Strategic business

and IT goals

nterprise Architect

and Application architect
think differently

about each evolution st

10

Case study

Study site:

The Phoenix Insurance —a major insurer in Israel
enterprise systems evolving towards a service-oriented enterprise architecture

Study objective:

Application of agent and goal modeling to enterprise architecture evolution
Utility of agent and goal-modeling for practitioners in their daily work

Study approach:

Interview stakeholders
Analyze and model reported architectural evolution discussions

Identify linking of architectural decision making across organizational
stakeholders to higher level system and business goals

Present agent and goal models to stakeholders for feedback

Argumentation about Messaging Approach
between Consumer and Provider Components

Enterprise Architect design

argumentation viewpoint:

Use Asynchronous Messaging!

Resource efficiency: Asynchronously messaging
requires less SOA infrastructure resources.

Improved extensibility: Asynchronous messaging
supports forwarding policy data to other relevant
Providers, without needing the Consumer to know a-
priori about additional destinations.

Simplify Exception handling: How should the
Consumer behave when one or more Providers return
error codes while others complete processing
successfully? Dealing with such cases is not obvious and
complicates the design of the Consumer component.
Asynchronous messaging delegates dealing with such
issues to the ESB and simplifying the Consumer
component.

Simplify processing of multiple Provider

feedback: Asynchronous messaging also simplifies
support for multiple feedback messages returned by one
or more Providers, and routing feedback messages to
several interested Consumers. Asynchronous messaging
directly supports such decoupling while synchronous
messaging requires more design work for and across
Consumer components.

Consumer Component design

argumentation viewpoint:

Use Synchronous Messaging!

* Simplifying Consumer component: Synchronous
messaging simplifies the Consumer component design
and code. It simplifies sending the new policy request to
a specific Provider, and also simplifies handling the
response received from the Provider. Simplifying is
important since it make code more understandable
which contributes to reduce the component’s
maintenance cost.

e Simple is cost efficient: Simpler design is easier and
faster to write, which reduces development cost.

e Synchronous is fast: Synchronous messaging returns
an immediate response. The ESB works to immediately
fulfill a synchronous request. This improves response
time for the Consumer component and contributes to
the customer’s quality of service perception.

 Improved design accountability: Havinga
response returned immediately, improves the control
the Consumer component designer has over the overall
policy submission process. Using synchronous
messaging allows the Consumer component designer to
directly design for failure contingencies.

Enterprise Architect design

Use Asynchronous Messaging!

argumentation viewpoint:

Resource efficiency: Asynchronously messaging
requires less SOA infrastructure resources.

Improved extensibility: Asynchronous
messaging supports forwarding policy data to
other relevant Providers, without needing the ’
Consumer to know a-priori about additional R4
destinations. .

Simplify Exception handling: How should the
Consumer behave when one or more Providery
return error codes while others complete _r
processing successfully? Dealing with such cades
is not obvious and complicates the design of the
Consumer component. Asynchronous messaging
delegates dealing with such issues to the ESB y
and simplifying the Consumer component. "-t

Simplify processing of multiple Provider \
feedback: Asynchronous messaging also \
simplifies support for multiple feedback .
messages returned by one or more Providers, -\
and routing feedback messages to several \
interested Consumers. Asynchronous messaging N, i date K;’ub'ish datav>

’a

ESE Messaging
infraskructure

sahilty of critical

real time
CONSUMErs

F%e_scnurce
Efficiency of

syskem

Publish data
mediated by ESE

Maximize
processes per unit
of infrastructure

“lin,
change For
additional data
requirernents

Maximize
concurrent
consumer request
per infrastruckurg

Flaximize response
time For time
critical requests

Reduce allocation
time of resource
per requeskt

Reduce resouces
per infrastructure

request

b
asvnchronousl whchronous!

directly supports such decoupling while .
synchronous messaging requires more design "
work for and across Consumer components. See _er’

~ -
~aa -

4

-
i B i

Consumer Component design
argumentation viewpoint:

Use Synchronous Messaging!

Simplifying Consumer component: Synchronous
messaging simplifies the Consumer component design
and code. It simplifies sending the new policy request to
a specific Provider, and also simplifies handling the
response received from the Provider. Simplifying is
important since it make code more understandable
. which contributes to reduce the component’s

E maintenance cost.

Publish data
asynchronously

 Reduce
raintenance cask

Publish data
mediated by ESE

Maintainability of
consumer

\ . Simple is cost efficient: Simpler design is easier and

Usability of 1 faster to write, which reduces development cost.
Syskern . . .
Ve Synchronous is fast: Synchronous messaging returns an
]
nder skandability H H H :
e 1 immediate response. The ESB works to immediately
I fulfill a synchronous request. This improves response
; time for the Consumer component and contributes to
Reduce . . .
Complexity of . the customer’s quality of service perception.
consumer code]
Design sgainist : Improved design accountability: Having a response
reguirements / returned immediately, improves the control the
- . ! Consumer component designer has over the overall
inplify publish f !) o)
response handing ’ policy submission process. Using synchronous
’ messaging allows the Consumer component designer to
Publish data Puhblish data ’
asynchronaushy fsynchranously Ry directly design for failure contingencies.

Higher level organizational
reasoning context

Praduct
managernent

Reduce
development cost,

development
funding

Reduce

maintenance cos!

Consumer
Designer

Funding For S04
initiatives

architectural
enforement

Usability of
Swskerm

Scalability of
System

Aqgility of System

Zornponent
development:

154

Wiegupoink

Vi Publish data
* mediated by ESE

Reasoning about
the Consumer
application and its
components

Publish data to
provider

Usability of
Swskerm

Reduce
development cost

 Reduce
maintenance coskt

Maintainabilicy of
consumer

. Publish data
A Y asynchronously Avnchronously

Publish data

Design against
operational
rEquiremnents

Reduce

nderstandability
of consumer cods;

Complexity of
consumer code

S0 Architect

Publish data
asvnchronously

. Reduce
maintenance cost

zability of critical
2y real time

5-Part-of

CONSUMErS

Scalability of ES

-
- a
- Enterprise System as a
’ -
P whole
ESE Messaging r
infrastructure ~
Scalability of ESB
P Reduce
rd maintenance cost
- Vigwpoink
SEOUrCe i i
Publish data E&iciency of + -+ sabrlgl?:ifn.lcentlcal
mediated by ESE syskem * COMNEUMErs
e Extensibility of
inimize Resource @
bottlenecks onsumer
IMaximize
rocesses per unik
of infrastruckure
-!- :
in. p CO0EWin, publish code
T change For change For adding
Mazirize additional de":ta targets -
concurrent =+ (=G ENEES aximize respons:
ConsUmer Fequest 2 tirme For time

per infrastructur

educe resouces | B educe allocation
per infrastructure B time of resource
request pet requesk

Reasoning about the
Consumer and the

critical requests

Publish data ko
providers

Publish data Publish data
asynchronoustd - synchronously

Mraroe Py .
M-u:;ém Fu%'-'q
gt
nee !B : tenrens
IE::-'M gy o vt
Cualty of
e e
Bl
lch---?ml
ity of
L e
Casaltty of
Tt v
My
T
b
.y
é“ t'l
-]
2 SNy (e
2 ot
Dependums

Dependency link

Broader organizational
reasoning context

Frocdact

Product management
interpreting and translating

oo o N T oA 1 0 e,
hlgher level goals to lower level - - - Funding For S04
L ~ initiatives
prIOFItIES -~ .
h L]
e’ i
7 Architectural
a*
rg

enfarement

Reduce
sofbware cosk

Cuaality af
Producks

Product
managernent

Reduce =
infrastructure
cosk

Cuality of =
Service

Scalabiity of
Svskem

Reduce
mainkenance

Publish data
ediated by ESH

development

Funding
prOCESSES pEr
infraskructire

Cuality of
Setrvice

maintenance
_costaf
infrastruckure

Cansumer
componenk

Goal- and goal priority
propagation to lower level
intentional agents/viewpoints

17

Case study results/Contributions
Is distributed reasoning and decision-making a probiem in enterprise architecture
evolution projects?

— CTO and SOA enterprise-wide architect report struggling to convince other decision-
making stakeholders for the need of adopting SOA design principles

— Intentional viewpoint was identified as needed to deal with design reasoning amongst
designers with overlapping design responsibilities

Do intentional viewpoints help in representing and communicating distributed
decision-making in case of overlapping responsibilities
— Feedback indicate intentional viewpoint modeling helps in documenting side-by-side

argumentation of different stakeholders and designers during a design discussion,
providing a useful communication tool

— Simple actor models help provide reminders to relevant stakeholders why SOA principles
were adopted

— Such documentation helps reduce the need for face-to-face discussions between the
SOA architect and enterprise application designers

Does including higher level organizational participants into a model provide any
value?

— The CTO and SOA architect perceived value in putting design discussions into broader
organizational decision-making context.

— Was also seen as contribution to IT Governance — the need to justify architectural (SOA)
choices in light of organizational strategic goals and directions.

Related work

* Architecture decisions as “first class” modeling
elements:
— Jansen & Bosch,
* work on architecture decision modeling

— Olaf Zimmerman

e work on SOA architecture decision modeling for
reuse (SOAD) — approach not SOA specific =

e i* applied to Architecture ~

— Grau, Franch

e i* as architectural description language —

— Kolp, Mylopolous, Castro
e i* architecture as organizational structures -

No goals, no organizational concept, no
distributed decision-making

No distributed agent-oriented
reasoning (use of global SRs),

No organizational stakeholders
included in distributed reasoning

Castro, J., Kolp, M., & Mylopoulos, J. (2001). A Requirement-Driven Software Development Methodology. Proc of the 13th International Conference on Advanced

Information Systems Engineering CAISE 01.

Grau, G. and X. Franch, On the Adequacy of i* Models for Representing and Analyzing Software Architectures. Proceedings of the First International

Workshop on Requirements, Intentions and Goals in Conceptual Modeling (RIGiM'07), 2007: p. 296-305.

Kolp, M. and J. Mylopoulos. Software Architecture as Organizational Structures. in Proceedings ASERC Workshop on "The Role of Software Architectures in the

Construction, Evolution, and Reuse of Software Systems. 2001. Edmonton, Canada.

Jansen, A., Bosch, J., 2005. Software architecture as a set of architectural design decisions. In: Proceedings of the Fifth Working IEEE/IFIP Conference on Software

Architecture, November 2005. IEEE Computer Society, Washington, DC, pp. 109-1

Zimmermann, O., et al., Reusable Architectural Decision Models for Enterprise Application Development, in Software Architectures, Components, and Applications. 2008, Springer Berlin

/Heidelberg. p. 15-32.

Future work

Additional Phoenix study data analysis

Simplify models, adapted to different types of stakeholders and designers
(maintainers, designers, reuse managers, middle and upper management, etc.)

Systematic comparing and contrasting of intentional viewpoint reasoning, while
dealing with different decision scopes and levels of abstraction

Larger scale documentation and analysis of enterprise architecture decision
making, by use of agent types, and inheritance, instantiations, etc.

Integration with enterprise architecture modeling approaches

Tool support in enterprise setting

