Software Engineering in Practice: Building Software
Factories

Jones Albuquerque, DFM - UFRPE. Recife, Brazil. {joa@ufrpe.br}
Silvio Meira, CIn - UFPE / CESAR. Recife, Brazil {silvioQcesar.org.br}

Abstract

Practical issues of real software development have
not been considered in Software Engineering Grad-
uate Programs. Traditionally, the programs only
present to their students some new technology or
recently scientific aspect but do not present real
aspects in practice of software development. This
position paper presents an experimental initiative
on incorporate practical issues of software develop-
ment using Software Factory concepts in a graduate
course. Real Software Factories, with real projects,
with real deliverables are setting up in four months.
Traditionally, the term Software Factory has the
erroneos connotation that software development is
comparable to mass-production of industrial prod-
ucts, and this is not the case. We present a pro-
posal to build real Software Factories and present
and discuss its results.

Keywords: Education, Software Engineering,
Development Process, Software Factories.

1 Introduction

The term “Software Engineering” was originated
in 1965 but first come into currency in 1967 when
study group on Computer Science of the NATO Sci-
ence Committee called for an international confer-
ence on the subject. As Brian Randell and Peter
Naur point out in the introduction to their edition
of the proceedings, ” The phrase ’software engineer-
ing’ was deliberately chosen as being provocative,
in implying the need for software manufacture to
be [based] on the types of theoretical foundations
and practical disciplines[,] that are traditional in
the established branches of engineering.” [3]. This
setence opens several areas of potential disagree-
ment. Just what are the ”types of theoretical foun-

dations and practical disciplines that are traditional
in the established branches of engineering”? What
would their counterparts look like for software engi-
neering? What role does engineering play in man-
ufacture? Could one assign such a role to software
engineering? Can software be manufactured?

That questions had no definitive answers in the
conference proceeedings and among the future Soft-
ware Engineers. If one could not define “Software
Engineering”, how could one point to its practice?
In 1971, at IFIP, F. L. Bauer put in his report on
“Software Engineering”: What have been the com-
plaints? Typically, they were:

1. Existing software production is done by ama-
teurs (regardless whether at universities, soft-
ware houses or manufacturers);

2. Existing software development is done by tin-
kering (at the universities) or by the human
wave ("million monkey”) approach at the man-
ufacturer’s;

3. Existing software is unreliable and needs per-
manent "maintenance”, the word maintenance
being misused to denote fallacies which are ex-
pected from the very beginning by the producer;

4. Existing software is messy, lacks transparency,
prevents improvement or building on (or at
least requires too high a price to be paid for
this);

5. Last, but not least, the common complaint is:
Existing software comes too late and at higher
costs than expected, and does not fulfill the
promises made for it.

In this way, Bauer observed that “Software En-
gineering” seems to be well understood. Tradition-
ally, these had been the concern of engineers, rather

than of scientists [1]. Nowadays, these complaints
are yet present in Software Industry “reports” and
Academic “papers” [2].

2 Practical Results: Building
Software Factories

Building Software Factories courses expose students
to real, team-oriented development in a software
development organization staffed and managed by
students under the guidance of faculty. Several stu-
dents are professional developers, certified program-
mers and work in industry, too. These courses are
hands-on courses that require student participation
in one of software factories defined. The class meet
once each week. One class meeting lasts two hours
and is usually led by the professor.

During these meetings, the professor introduces
concepts that are relevant to the current work being
performed in the factories and addresses problems
faced by the students at the factories. The profes-
sor is a “facilitator” who does not decide right or
wrong, but instead facilitates learning the pitfalls
and peaks in development process. This is not an
innovative initiative as presented in [5]. The inno-
vative aspect is in the time that the factories are
build: four months!

The projects for each software factory is cho-
sen by professors and software factory managers.
The demand are caracterized by RFP - Request
For Proposals and have one client per project.
These projects are in collaboration with CESAR
(HTTP://WWW.CESAR.ORG.BR) which reflect current
trends in industry and makes its professionals
(which are students in the course) motivated [6].

The lastest course edition can be found at
HTTP://WWW.CIN.UFPE.BR/"IN953/. In this site
there are papers, slides, RFP’s, software factories
sites, and experience papers published by students
relating their experiences in the course. A typical
calendar to build the factories is:

1. Concepts and definition - 1 month;
2. RFP to calibrate the factories - 1 month;
3. Real RFP to evaluate the factories - 2 months.

The three lastest software factories which are
hybrid-open source software communities [4] have
their sites published at:

e OpenGadgets
HTTP://WWW.CIN.UFPE.BR/ OPENGADGETS

e Usina
HTTP:/ /USINA.TIGRIS.ORG/

e Engenho de Software
HTTP://WWW.CIN.UFPE.BR/ "ENGENHO/

3 Conclusions

In recent years, there have been a number of expe-
riences with software factories reported in the liter-
ature which, although dense in a number of ways,
have been lacking in what regards the discussion of
the stages of definition and setting up of factories
themselves.

This work discusses a number of issues related to
the conception, implementation and improvement
of real software factories and, as a result of a real
life experiment, also points to a number of lessons
learned, which can very likely be replicated within
similar contexts.

References

[1] I. Aaen, P. Bgtcher, and L. Mathiassen. Soft-
ware factories: Contributions and illusions. In
Twentieth Information Systems Research Semi-
nar, Scandinavia, Oslo, 1997.

[2] J. H. Johnson. Micro projects cause constant
change. Technical report, The Standish Group
International Inc, 2001. CHAOS Report.

[3] M. S. Mahoney. The roots of software engi-
neering. Technical Report CWI Quarterly 3-4,
Princeton University, 1990. pp 325-334.

[4] S.Sharma, V. Sugumaran, and B. Rajagopalan.
A framework for creating hybrid-open source
software communities. Info Systems, 12:7-25,
2002.

[6] J. D. Tvedt, R. Tesoriero, and K. A. Gary.
The software factory: Combining undergradu-
ate computer science and software engineering
education. IEEFE, 2001.

[6] K. Wiegers. Creating a software engineering cul-
ture. In Software Development. Process Impact,
July 1994.

