340

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

Success and Failure Factors in Software Reuse

Maurizio Morisio, Member, IEEE Computer Society, Michel Ezran, and Colin Tully, Member, IEEE

Abstract—This paper aims at identifying some of the key factors in adopting or running a company-wide software reuse program. Key
factors are derived from empirical evidence of reuse practices, as emerged from a survey of projects for the introduction of reuse in
European companies: 24 such projects performed from 1994 to 1997 were analyzed using structured interviews. The projects were
undertaken in both large and small companies, working in a variety of business domains, and using both object-oriented and
procedural development approaches. Most of them produce software with high commonality between applications, and have at least
reasonably mature processes. Despite that apparent potential for success, around one-third of the projects failed. Three main causes
of failure were not introducing reuse-specific processes, not modifying nonreuse processes, and not considering human factors. The
root cause was a lack of commitment by top management, or nonawareness of the importance of those factors, often coupled with the
belief that using the object-oriented approach or setting up a repository seamlessly is all that is necessary to achieve success in reuse.
Conversely, successes were achieved when, given a potential for reuse because of commonality among applications, management
committed to introducing reuse processes, modifying nonreuse processes, and addressing human factors. While addressing those
three issues turned out to be essential, the lower-level details of how to address them varied greatly: for instance, companies produced
large-grained or small-grained reusable assets, did or did not perform domain analysis, did or did not use dedicated reuse groups, used
specific tools for the repository or no tools. As far as these choices are concerned, the key point seems to be the sustainability of the

approach and its suitability to the context of the company.

Index Terms—Survey, software reuse, empirical study.

1 INTRODUCTION

SYSTEMATIC reuse is generally recognized as a key
technology for improving software productivity and
quality [24], possibly with a higher payoff than process
improvement or process automation [3]. In many cases,
object-oriented technology (OOT) is seen as an essential
enabler for reuse [19] while others argue that OOT alone
does not guarantee successful reuse [15].

Software reuse can take many different forms, from ad
hoc to systematic; it can be based on composition or
generation of code and it can involve only code or all
artifacts ([25], [22]).

The reuse community initially concentrated its research
on technical issues, such as repositories, tools for the search
and retrieval of reusable artifacts, and programming
language support. As more experience became available
from industrial studies, nontechnical factors, such as
organization, processes, business drivers, and human
involvement, appeared to be at least as important.

Factual evidence to support the impact of these factors is
still scarce or contradictory [12]. The purpose of the work
reported in this paper (carried out as part of ESPRIT/ESSI
project 23960 Surprise) was to survey industrial projects for
the introduction of reuse and to analyze, compare, and

e M. Morisio is with the Politecnico di Torino, Dip. Automatica e
Informatica, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
E-mail: morisio@polito.it.

o M. Ezran is with Valtech S.A., Immeuble Lavoisier, 4 Place des Vosges,
92400 Courbevoie, France. E-mail: me@ualtech.fr.

o C. Tully is with the School of Computing Science, Middlesex University,
The Burroughs, London NW4 4BT, UK. E-mail: colin-tully@fsmail.net.

Manuscript received 1 Mar. 2000; revised 23 Feb. 2001; accepted 24 Apr.
2001.

Recommended for acceptance by S. Pfleeger.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 111612.

aggregate the survey data in order to derive empirical
evidence of key factors for success or failure. As far as we
know, this is the only survey on reuse based on structured
interviews with industrial projects.

The paper is organized as follows: Section 2 describes the
methodological approach used for the study. Section 3
presents the questionnaire used in the structured interviews,
while Section 4 presents the coded results. Section 5 analyzes
the data set and Section 6 suggests a reuse introduction path.
Section 7 summarizes related work and contrasts our results
with it. Finally, in Sections 8 and 9 the validity of the study is
discussed and conclusions are drawn. An appendix presents
a formal analysis of the data set.

2 RESEARCH APPROACH

The main data source for this survey is a set of interviews
with industrial projects involved in the introduction of
reuse. In detail the steps followed are the following:

1. Identification and selection of projects. The Eur-
opean Commission has funded 288 Process Im-
provement Experiments (PIEs). Each PIE is a
technology transfer project in which a specific
software technology is applied in a company. From
an empirical research point of view each project can
be considered as a case study. For each PIE, a
summary, a list of keywords, and a report (15 to
20 pages) are publicly available [5], [6]. Out of those
288 PIEs, 62 were short-listed on the basis of
keywords and summary. That subset was analyzed
in more detail, resulting in a final set of 32 PIEs that
were judged to be really dealing with reuse. Most of
the PIEs discarded were only introducing object-
oriented techniques and claiming therefore to be
doing reuse.

0098-5589/02/$17.00 © 2002 IEEE

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

2. Development of the questionnaire. The question-
naire, described in more detail in a later section, was
developed through several iterations. The later
versions of the questionnaire were tested by means
of dry runs and modified according to the feedback
received.

3. Reading of reports and interview. The 32 selected
PIEs were contacted to schedule an interview at their
premises. Before the interview, the interviewer(s)
thoroughly read the project report and any other
information available. The interview was usually
with the PIE project manager, was performed by one
or two interviewers, and lasted between two and
three hours. The interviewee was given a copy of the
questionnaire, the interviewer read questions, and
took notes of answers. The interviewee was guaran-
teed anonymity of the data provided. It should be
noted that PIEs have a contractual obligation to
collaborate with other European projects, such as the
Surprise project. Nevertheless, the collaboration
with the interviewers was always warm and rarely
seemed to be felt as a burden. In total, 19 interviews
were carried out, covering 19 companies and
24 projects. The missing interviews were not
performed for a number of reasons: the PIEs had
only just started and had no useful results, or it was
not possible to contact them, or it was impossible to
arrange the interview in a convenient time frame.

4. Validation of the interview report. The interviewer
produced an interview report and sent it to the
interviewee for approval.

5. Coding and consistency check. The interview report
was coded on the basis of a number of variables.
Some of the variables had predetermined codes, so
that coding was in fact performed directly during
the interviews. In other cases, the variables and
codes were reorganized and changed after the
interviews (postformed codes). Codes were assigned
on the basis of discussion and agreement between
members of the Surprise team. The resulting data set
is shown in Tables 1, 2, and 3.

6. Data analysis. The data set was analyzed to extract
findings and trends.

3 THE QUESTIONNAIRE

Here, we briefly describe the questionnaire used to guide
structured interviews and the reading of documents. The
questionnaire was influenced by [21], [16], [30]. The main
way in which the questionnaire departs from the viewpoint
of those sources is that it does not endorse a specific reuse
model (for instance, generative reuse instead of composi-
tional), but tries to accept and characterize a wide variety of
approaches. After the interviews, this turned out to be a
good decision, as organizations used hybrid and original
approaches. The definition of reuse underlying the ques-
tionnaire is:

Software reuse is the systematic practice of developing
software from a stock of building blocks, so that similarities
in requirements and/or architecture between applications
can be exploited to achieve substantial benefits in produc-
tivity, quality and business performance.

341

Building block is purposely a loose term, to encompass a
variety of software artifacts, such as code, design, require-
ments, test cases, code generators, etc. However, it excludes
the reuse of experience or know-how. We believe this
broader approach to reuse requires such a different level of
infrastructure that it would require a different analysis.

Systematic practice implies a commitment and will on the
part of the organization to develop the building blocks and
reuse them across multiple applications. In particular, it
excludes internal reuse (artifacts reused only within a
project), a practice that we consider good design but not
systematic reuse. It also excludes ad hoc reuse, practiced
sporadically across applications, but due solely to the good
practice of individual programmers.

This definition was especially used in deciding whether
to include or exclude PIEs from further analysis in phase 1
of the research. Most of the PIEs excluded, while using
“reuse” as a positive buzzword, did not offer any evidence
of a systematic approach, and limited reuse to mean just the
internal reuse of classes and objects within a single
application.

The questionnaire used closed questions, except for a
few open-ended ones added to collect important informa-
tion which might otherwise have been overlooked. We
designed it to be completed in less than two hours, to limit
as much as possible the time required from busy project
leaders. Actually we gained good collaboration, and most
interviews lasted longer.

The questions were organized into the following
sections:

e General information about the company: location,
business domain, number of employees, general
organization.

e Nonreuse information about the organizational unit
and the baseline project. In this context, a baseline
project, according to ESSI terminology, is a typical
project run by the company in which reuse is
applied. The baseline project is performed by an
organizational unit (specific team, group, or divi-
sion). Questions in this section are aimed at
characterizing the software process employed by
the unit (roles, documents, phases, result of assess-
ments, certifications, etc.) and at characterizing the
project (effort, duration, staff size, staff experience,
size and type of software developed, languages and
operating system used, analysis and design techni-
ques used, etc).

e Reuse information. This part addresses reuse issues
at company level (reuse introduction) and at
organizational unit level (application of the reuse
program on a specific project). Issues are grouped
under the following five subsections:

1. Organization. Motivation for reuse at the com-
pany level. Rationales, expectations, and goals
of the reuse program. Management vision and
commitment as regards reuse. Human factors
and reuse introduction process. Training, aware-
ness, and motivation actions performed. Barriers
to change encountered.

2. Processes. Reuse roles and processes added.
Nonreuse roles and processes modified.

342 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

TABLE 1
The Data Set, State Variables

=) % “5 2] 8 g s ‘? .§ = ‘05) G O % 45 8
5 |[S¢ |2 S5 |23 3 55 = = E28 |u 5§
2 |28 |3 |23 |E® |E O |2E |BE (3% |5z 2%
A L L product- | product high TLC Technical L 00 high
family
B L L product- | product high TLC Technical M 00 high
family
D L L isolated alone middle | SE-Tools | Technical M 00 middle
18 IL L isolated alone middle TLC | Technical M (0]0) middle
F L L isolated alone middle TLC Technical M 00 middle
G L X product- | process low Bank Business L 00 middle
family
H M M product- | product high Engine |Embedded- L 00 middle
family Controller| RT
I M X product- | product | middle FMS Technical M 00 high
family
J M X product- | product | middle FMS Technical M 00 middle
family
K M X product- | product | middle ATC Non- L proc high
family Embedded-
RT
L M X product- | product high TS Technical M proc high
family
M M X product- | product high | SE-Tools | Technical L proc middle
family
X product- | product | middle TTC Non- M proc middle
family Embedded-
RT
(@) S L product- | product | middle Space [Embedded- M 00 middle
family RT
P S M product- | product | middle |Manufact |Embedded- M proc middle
family uring RT
Q S M product- | product | middle |Manufact | Technical M proc middle
family uring
R S M product- | product | middle TLC |Embedded- L proc high
family RT
S S S product- | product low |Measure | Technical M 00 middle
family ment
T S X product- | product | middle FMS [Embedded- M 00 high
family RT
U S X product- | process low Finance | Business L 00 low
family
\Y S X product- | product low TLC Technical S 00 middle
family
W M L product- alone middle |Manufact | Business L 00 middle
family uring
X S S product- NA low Book- Business S proc middle
family keeping
Y M M isolated | product high FMS |Embedded- not not not
RT available |available | available
3. Assets. Reuse approach (compositional versus 4. Repository. Presence and type of repository.
generative approach, white box versus black Supporting tools and procedures. Number of

box, ...). Type of assets reused, size, functions. assets contained.

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

343

TABLE 2
The Data Set, High-Level Control Variables

Project Top Key reuse Reuse Non-reuse | Repository Human
id management roles processes | processes factors
commitment | introduced | introduced | modified
A yes yes yes yes yes yes
B yes yes yes yes yes yes
D yes yes no no yes no
E yes yes no no yes no
F yes yes no no yes no
G yes yes yes yes yes yes
H yes yes yes yes yes yes
1 no no no yes yes no
J no no no yes yes no
K yes yes yes yes yes yes
L yes yes yes yes yes yes
M yes yes yes yes yes yes
N yes yes yes yes yes yes
(¢} yes no no no yes no
P yes yes yes yes yes yes
Q yes yes yes yes yes yes
R yes yes yes yes yes yes
S yes yes yes yes yes yes
T no yes yes no yes no
U yes yes no yes yes yes
\Y% yes yes yes yes yes yes
4 yes no yes no yes yes
X yes NA NA NA NA no
Y no yes no no yes yes

5. Metrics. Metrics and cost models used.

4 THE DATA SET

After the interviews were performed, the Surprise team
members coded the interview results to form a data set
(phase 5 of the research) presented in Tables 1, 2, and 3.

In this section, we define the meaning of variables and
comment on their values.

Each data point (a row in the table) corresponds to one
project. When a PIE was performed in a company, reuse
might have been experimentally adopted on one or more
projects. Therefore, in the table there are 24 projects, or data
points, for 19 PIEs in 19 different companies. In each table,
shaded rows depict projects that failed, while unshaded
rows correspond to successful projects. The definition of
failure and success will be presented later.

Each data point has several attributes, or variables. They
are further divided between state variables' (attributes over
which a company has no control, such as size and
application domain) (Table 1) and control variables (attri-
butes a company can control, such as commitment of

1. One can argue that, for some state variables such as staff size and staff
experience, a company actually has control and can change them. In these
cases we use time as a discriminant: if a variable requires more than a few
days or weeks to be changed it is considered as a state variable.

management, modifications to the process, reuse approach,
etc.) (Tables 2 and 3).

The meanings of the state variables (Table 1) are given
below.

Project id: identifier of the project.

Software staff: S (small)—from 1 to 50 people; M (med-
ium)—from 51 to 200; L (large) more than 201. Note that
only staff involved in software development are
considered.

Owerall staff: S (small)}—from 1 to 50 people; M (medium)—
from 51 to 200; L (large) from 201 to 500; X (extra large)
more than 501. Here, all staff are considered.

Software production: isolated—the company develops pro-
jects that have little or nothing in common; product
family—the company develops a software product that
evolves over time, and/or is more or less adapted for
each customer.

Software and product: product—the software is embedded in
a product; alone—the software constitutes a standalone
product; process—the software is embedded in a
process.

SP (software process) maturity: high—CMM level 3 or higher
(actual or estimated); middle—ISO 9001 certification or

344

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 28, NO. 4, APRIL 2002

TABLE 3
The Data Set, Low-Level Control Variables

= S 3 (=] g % S 5 § % 4 2]

e 22|28 |2% |5 52 5% |2 22 (82 |8

& 8 = < k) 5] = S = ~ 3+

= = & S E

A tight D+C yes €X-Novo yes before yes yes no 51-100
B tight D+C yes €X-novo yes before yes yes no 51-100
D loose C no as-is no before no no yes 21-50
E loose C no as-is no before no no yes 21-50
F loose C no as-is no before no no yes 21-50
G loose C no reeng no justintime yes yes no 51-100
H tight R+D+C no reeng no justintime no yes no 51-100
I loose D+C no reeng no justintime no no no 51-100
J loose D+C no reeng no justintime no no no 51-100
K tight R+D+C yes reeng no justintime yes yes no 100+
L tight R+D+C yes reeng no justintime yes yes no 51-100
M tight R+D+C yes reeng no justintime yes yes no 100+
N tight R+D+C yes reeng no justintime yes yes no 51-100
(0) loose | R+D+C no €X-Novo no before yes yes no 1-20
P loose | R+D+C yes reeng no justintime yes yes no 100+
Q loose | R+D+C yes reeng no justintime yes yes no 100+
R loose C no reeng no justintime yes yes no 1-20
S tight C no €X-Nnovo no justintime yes yes no 100+
T loose @ no reeng no justintime yes yes no 1-20
U tight R+D+C no reeng no justintime no yes no 100+
A% tight C no reeng no justintime yes yes no 1-20
\\ tight C yes reeng no justintime no no no 1-20
X NA NA NA NA NA NA NA NA no NA
W loose C no as-is no before no no no 100+

CMM level 2 (actual or estimated); low—no ISO9001
certification or CMM level 1 (actual or estimated).

Application domain: TLC—telecommunications; FMS—flight
management systems; ATC—air traffic control; TS—train
simulation; TTC—train traffic control; Bank; Book-keep-
ing; Measurement—management and control of mea-
surement environment; Space—aerospace applications;
Manufacturing; SE-Tools—software tools.

Type of software: Embedded-RT—embedded, real-time; Non-
Embedded-RT—nonembedded, real-time; Technical—
nonembedded, nonreal-time, small DBMS, important
control part; Business—nonembedded, nonreal-time,
important DBMS, limited control part.

Size of baseline (size of the software project on which reuse
was applied): S (small)—<10KLOC and 10 person-
months effort; M (medium)—10-100 KLOC and 10-100
person-months; L (large)—100-500 KLOC, more than
100 person months.

Development approach (analysis and design approach used in
the project): OO—object oriented; proc—procedural.

Staff experience: high—on average > five years; middle—two
to four years; low—one year or less.

Note: “NA” (project X) stands for “not applicable.” The
same abbreviation is also used in Tables 2 and 3.

The projects in the data set represent a large variety of
situations.

Software staff ranges from small to large. Overall staff
ranges from small to very large. Very small, small, and
medium companies are fairly represented, the smallest
being a 10-person software house. As far as we know, small
companies have never reported their reuse experience in
the literature. It is reasonable to suppose that this was due
not to their absence from the arena, but to not having the
resources to publish.

If we consider the variable software production, “product
family” outnumbers “isolated” by 20 to 4. “Product family”
means that the company produces applications that
resemble one to another, either a product that evolves over
time, or an application customized for different customers,
or both. “Product family” does not mean that the company
is using a domain engineering or product line approach. It
is apparent that the majority of companies recognize the
commonality in their products and explore reuse as a
consequence.

In software and product, only four cases out of 24 deal with
software not embedded in products or processes. This could

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

be interpreted as consistent with the growing diffusion of
embedded software in products and processes. Or it could
depend on the fact that, compared to standalone software,
software embedded in a range of products or processes
tends to require an appropriate balance between funda-
mental commonality and detailed variability, thus creating
favorable conditions for reuse.

Considering software production and software and product
together, 20 out of the 24 cases are product family, and 17
are product-embedded. The straightforward conclusion is
that organizations tend to identify product families where
they produce product-embedded software and, that, the
combination of these two related characteristics seems to
offer natural conditions for reuse.

As far as software process maturity is concerned, only five
projects out of 24 were developed in organizational units
with a low maturity.

Application domain covers a wide variety of domains,
with a prevalence of telecommunications (six cases).

Type of software focuses on the characteristics of the
software developed and ranges from embedded real time
to database intensive. Here, the prevalence (half the cases)
is in “technical” applications, i.e., nonembedded, nonreal-
time, with limited or no database and an important
algorithmic or control part. Overall, 20 of the 24 projects
are what could be described as of a software engineering
nature, with only four of an information systems nature.
The cause of this bias could be intrinsic to the nature of
the software in the two domains, or intrinsic to the
differing software development cultures, or a combination
of the two.

Size of baseline, i.e., the size of the project where assets are
reused contains a large majority of “medium” and “large”
projects, where medium is defined as more than 10KLOC
size and/or more than 10 person-months effort. No “very
large” (more than 500KLOC) projects appear. Companies
have judiciously applied reuse initially on real-life projects,
excluding both toy projects and very large ones.

Development approach. The object-oriented approach
covers the majority of cases, but the procedural approach
is well represented (eight out of 24).

Staff experience. Only one project was performed by a
group of beginners (average experience below one year).
Companies generally assigned projects involving reuse to
their more experienced staff.

In summary, the data set contains large and small
companies, working in a variety of domains. Most of them
produce software applications embedded in products or
processes, with high commonality between applications.
Most of them have reasonably mature processes and
assign experienced staff to reuse projects. Both procedural
and object-oriented development approaches are well
represented.

The state variables of this data set satisfy, in theory,
many of the prerequisites for successful reuse. In practice,
however, nearly 40 percent of the projects (the shaded rows
in Table 1) were judged to have resulted in failure.

To understand why this happened we analyzed the
control variables—those characteristics that are under the
influence of a company’s own decision processes.

345

We divide control variables into two categories: high-
level and low-level. High-level control variables correspond
to decisions that (whether taken explicitly or by default)
subsequently influence low-level control variables. They are
shown below in Table 2 and subsequently defined. As
before, shaded rows represent projects that are judged to
have failed.

Project Id: identifier of the project.

Top management commitment: yes—top management of the
company had a clear commitment to introducing and
sustaining reuse; no—top management did not show
that commitment, so that reuse was initiated bottom-up
from middle managers or technical staff.

Key reuse roles introduced: yes—at least one reuse role (such
as reuse program manager, asset owner, library man-
ager, asset producer) was introduced; no—no reuse roles
were introduced.

Reuse processes introduced: yes—at least one reuse-specific
process (such as domain analysis, qualification, classifi-
cation) was introduced; no—mno reuse process was
introduced.

Nonreuse processes modified: yes—at least one nonreuse-
specific process (such as requirements analysis, design,
testing.) was modified; no—no nonreuse-specific pro-
cesses were modified.

Repository: yes—assets were stored in an asset repository,
supported by a tool (not necessarily a dedicated reuse
repository tool); no—no asset repository was established.

Human factors: yes—human factors were considered and
dealt with via (for instance) awareness, training, and
motivation actions; no—human factors were not
considered.

Values of the high-level control variables represent the
combination of key high-level management decisions about
a reuse program. For instance, in case A it was a top
management decision to embark on reuse; a reuse group
was set up, both to produce reusable assets and to support
reusers; the software development process was modified
appropriately; a repository for assets was set up; and
training and awareness actions were started to support the
transition.

In case T, in contrast, the reuse program started as an
initiative by middle-level managers. A repository was set
up, a library manager was appointed and legacy work
products were placed in the repository. However, no
modifications were made to preexisting processes and no
actions were taken to advertize the reuse program.

We emphasize that “Top management commitment = no”
means that the change initiative came from some combina-
tion of individuals at middle management and practitioner
levels. As will be shown in more detail later, in these cases
middle management and practitioners on their own are not
able to support and enforce all the changes necessary for
success.

While a “no” on a high-level control variable means no
action (whether by explicit decision or by default), a “yes”
may represent a whole range of possible actions or choices.
Low-level control variables represent some of them, or

346 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

decisions at a lower level of detail on how to implement a
reuse initiative. The low-level variables defined here do not
cover all possible approaches, but cover the cases we
analyzed.

These variables are shown in Table 3 and are defined
subsequently.

Project Id: identifier of the project.

Reuse approach: loose—reusable work products are loosely
coupled and can be reused in isolation; tight—reusable
work products are tightly coupled, a group of them is
reused at each time.

Work-products (type of reused assets): C—code, D—design,
R—requirements, C+D code and design, etc.

Domain analysis: yes—domain analysis was performed;
no—no domain analysis was performed.

Origin: ex-novo—assets are developed from scratch;
reeng—assets are developed by reengineering existing
work-products; as-is—assets are existing work-products,
reused without modification.

Independent team: yes—a team, independent from develop-
ment projects, develops reusable assets; no—develop-
ment projects both develop and reuse assets.

When assets developed: before—assets are developed before a
reusing project needs them; just-in-time—assets are
developed just before a reusing project needs them.

Qualification: yes—assets undergo a defined qualification
process to be declared reusable; no—no defined quali-
fication process.

Configuration management: yes—reusable assets are under
configuration management and change control; no—no
configuration management and change control for assets.

Rewards policy: yes—a rewards policy to promote reuse is in
place; no—rewards policy not in place.

assets: number of reusable assets in the repository.

The combination of values for these low-level control
variables represents a certain approach to the implementa-
tion of reuse. For instance, in case A a dedicated group
produces object-oriented frameworks with their documen-
ted designs. These assets are produced from scratch, some
time before projects need them. Work-products are sub-
jected to a qualification process and are under configuration
control (configuration management = “yes”).

Case R works quite differently. When a project develop-
ing an application identifies a legacy subprogram that could
be reused by the same project and by others, it reengineers
it for reusability and quality.

The reuse approach variable requires further elaboration.

All projects have used a compositional approach, with a
variety of choices of which work products should be
reusable and what mechanisms to use in assembling them.
However, we can make a distinction between tight and
loose approaches as far as the relationship among reused
work products is concerned.

e Loose. Reusable work products are independent and
can be reused in isolation. No common architecture
is defined.

e Tight. Reusable work products are designed to be
closely related; reuse of a single work product
involves reusing a wider set of work products. This
approach is normally associated with object-oriented
and framework technology, but some companies
used it with traditional procedural technology also.

The tight approach consists in engineering a generic
product that mirrors the specific business of the company.
The generic product is then instantiated and customized for
each different customer or application. Reusing a generic
product means that a standard architecture is defined and
its use enforced. The tight approach does not exclude the
loose approach, which can also be used when suitable. We
found several different forms of tight approach.

e Domain analysis, frameworks (projects A, B, W).
After a domain analysis effort, one or more frame-
works are built (A, B) or reengineered from legacy
(W) and maintained. The reusable asset unit is the
framework, with the related documentation. Object-
oriented technology is used extensively.

e Product baseline (projects H, K, L, M, N, U). The
generic product is built with procedural technology,
and maintained over time as a sequence of versions
in a configuration management system. Specific
instances for customers are derived from the
product baseline, by additions, deletions, and
modifications. The product baseline is built using
domain analysis (K, L, M, N) or less formally using
the know-how of senior designers (H, U). The
reusable asset is the product baseline, and the
related documentation.

e Composition language (project S). One company has
defined source-code work products and a language
for assembling them, which could be called a hybrid
generative and compositional approach. The reusa-
ble asset is the subset of work products selected by
the directives of the composition language.

The dependent variable for this study is the success of
the PIE. The dependent variable does not appear as a
column in the tables. Instead, rows with failed projects are
shaded and rows with successful projects are not shaded.

Success is judged according to three criteria: the
continuation of the reuse program after the PIE is over,
the soundness of the approach, and the fact that assets were
actually reused. Initially, we tried to use a more quantitative
measure of success or failure. However, it turned out that
only one company was collecting such measures, such as
the return on investment for the reuse program. On the
other hand, in most projects listed as failures, the failure
itself was evident to the interviewees and openly admitted
and discussed. It should be noted that, for the ESSI
initiative, a successful project is a project that reports
clearly on its results; these are equally well received,
irrespective of whether they are positive or negative.

5 ANALYSIS OF THE DATA SET

The analysis of the data set built up from the questionnaires
must take into account two important constraints: the
number of data points is very limited for significant

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

statistical results and the attributes collected all have
categorical scales (nominal or ordinal).

On the other hand, this study is a mixed qualitative and
quantitative study. According to Seaman [33], qualitative
information is expressed using pictures and words,
quantitative information with numbers and symbols.
Although the misconception qualitative is subjective, quanti-
tative is objective is common, the subjectivity or objectivity of
information is orthogonal to its qualitative or quantitative
status. Qualitative information is richer, but requires
suitable techniques for its analysis.

The interviews yielded deep knowledge on the reuse
initiatives and provided interview notes and answers to the
questionnaire (mostly qualitative information). The coding
process produced the data set as already shown in Tables 1,
2, and 3 (quantitative information). We will use both types
of information to perform an exploratory analysis and to
find relationships in the data set that can be used as
research hypothesis in further studies.

We organize our analysis in three steps.

1. Successes and Failures. We looked for a correlation
between the independent variables and the depen-
dent variable (success/failure).

Given the limited number of cases, it is not
possible to consider all independent variables in the
analysis. We focused our attention on control
variables. While all of them represent a decision,
some of those decisions temporally and/or logically
precede others. For instance, a decision to introduce
reuse processes both logically and temporally pre-
cedes a decision about whether to perform domain
analysis and about when to develop assets. Accord-
ingly, we partition control variables between high-
level and low-level, according to the temporal/
logical order of the corresponding decisions.

The analysis here is limited to state and high-level
control variables. The analysis shows that not
addressing two or more high-level control variables
led to failure. Of the state variables, only Type of
software production has an impact.

2. Failures. In most cases, failure in the reuse program
was clear to the interviewees, who openly discussed
the causes. These discussions went way beyond the
points in the questionnaire and could, in most cases,
identify the root causes of failure. We present a root
cause analysis for each failure and derive two
common failure scenarios.

3. Successes, State, and Low-Level Control Variables.
The analysis at point 1 above shows that all
successes address similarly a number of common
issues (high-level control variables), while all state
variables except one have no influence. However, as
we know from qualitative data from interviews,
successful projects solved the reuse equation in a
variety of ways. This is captured by the variety of
values taken by the low-level control variables. Is
there a regularity in the diversity of approaches to
reuse? Do state variables influence the approach to
reuse? Here, we restrict the analysis to successful
cases, state variables, and low-level control variables.

347

5.1 Successes and Failures

We look for a correlation between independent variables
(restricted to state variables and high-level control vari-
ables, see Tables 1 and 2) and the dependent variable
(success or failure). We recall that failures are highlighted,
in Tables 1, 2, and 3, with shaded rows.

An examination of Table 2 shows that successful projects
have a “yes” value for all high-level control variables, the
only exceptions being projects U and W. Projects that failed
have three or more “no” values.

In the appendix, a formal tool, correlation tree analysis, is
used to analyze the data. The result is similar: high-level
control variables appear to have more predictive impor-
tance than the rest. Classification trees also point out that
one state variable, Type of software production, has predictive
importance.

By combining the results from classification tree analysis,
the analysis of failures, and further insight gained from the
interviews, we argue that all high-level control variables are
important for a successful reuse program. Introducing reuse
processes and Modifying nonreuse processes are the key points
for successfully producing and consuming assets.
Top management commitment is the prerequisite for success-
fully designing and enacting process change. At the other
end of the spectrum, Human factors must be addressed to
sustain process change from the bottom up.

Introducing key reuse roles and setting up a repository are
not sufficient for successful reuse. This is not to say that
they are unimportant. The key point is that both represent
relatively minor changes in a company, which can be
accomplished with partial management support. As a
result, they are done in most projects, but cannot, by
themselves alone, induce the major changes needed.

Of the state variables, only Type of software production has
an effect. Most of the cases with value “product family,” in
contrast with none of the cases with value “isolated,” were
successful. We do not think this is enough to state that
“isolated” cases are not suitable for reuse, however, since
there are only four “isolated” cases in the sample and none
of them took enough account of the issues addressed by the
high-level control variables. In fact, “isolated” cases could
probably achieve success; but, because they have a lower
reuse potential, they should take even more careful account
of the high-level control variables.

Size of the company, as measured by both Software staff
and Owerall staff, does not appear to be a conditioning factor.
However, size impacts indirectly on two things.

e The ease or difficulty for achieving commitment of
top management, and its propagation to lower
hierarchical levels. Successful smaller companies
(projects P, Q, R, S) have the advantage of easier
communication of information (for instance, infor-
mation about reusable assets, domains, and projects
is more easily shared among the staff) and easier
building of consensus for the reuse program (the
program is initiated when the occupier of a promi-
nent role in the company—owner, director, technical
lead—decides accordingly). Failure in two projects
(O, T) happened in two small software organizations
belonging to large nonsoftware companies. In those

348 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

Root causes of Misconceptions (reuse = repository, reuse = OO)

failure
Secondary causes No non-reuse-specific processes modified (except
of failure rewards)

No reuse-specific processes installed
No training/awareness actions

Fig. 1. Failure scenarios for projects D, E, and F.

cases, commitment from management of the small
software organization was not sufficient to remove
obstacles at the upper level.

e The reuse organization. Successful smaller compa-
nies (projects P, Q, R, S) find leaner organizations are
adequate to support reuse processes (generation of
assets, qualification, maintenance, domain analysis).
Roles dedicated to reuse have necessarily to be part-
time. The production of assets is made on demand.
Failure in a small company (project X) was due to
defining a reuse infrastructure that was too complex,
with complex procedures and full-time roles.

Other state variables that do not appear to be predicting
factors nevertheless merit some discussion.

Software process maturity: As already discussed, the
companies considered have reasonably mature processes.
We may assume that process maturity is a useful but not
sufficient factor in achieving success.

Type of software: In two cases (O, T), embedded-RT
software (and, specifically, sudden changes to hardware
and performance constraints) was related to failure. Con-
versely, there are three successful cases (H, P, R) with
embedded-RT software. We tend to believe that the
distinguishing factors here are hardware changes and
performance constraints, which, in many cases, are asso-
ciated with embedded-RT software.

Development approach: The misconception that object-
orientation on its own is enough to guarantee successful
reuse appears in some of the failure scenarios. Further, we
recall that many other projects (30 out of 62) shared this
misconception and were therefore not included in the
analysis.

5.2 Failures

Now, we analyze the projects that failed. We derive two
failure scenarios (Figs. 4 and 5) and we present the
qualitative evidence supporting them (Figs. 1, 2, and 3).

5.2.1 Projects D, E, F

These projects introduced reuse with two changes to the
current process and organization.

First, they introduced a company-wide, intranet-based
repository, along with a role to manage the repository
responsible for documentation and version control of assets.

Root causes of No deep management commitment

failure Misconceptions (reuse = repository)
Secondary causes No non-reuse-specific processes modified
of failure No production of assets

No awareness actions

Fig. 2. Failure scenarios for projects I, J, and Y.

Root causes of
failure

Embedded RT system context (memory and speed
constraints)

Multi-contractor / multi-company project (no
ownership of choices in hardware and
requirements)

Reusable assets produced but then not used

Secondary cause of
failure

Fig. 3. Failure scenarios for projects O and T.

Second, they introduced a complex policy to reward both
producers and consumers of assets. An asset is placed in the
repository without quality checks and the producer is
rewarded for each actual reuse. The rationale behind this
approach is to disturb as little as possible the ongoing
business, while trying to initiate an internal market of
assets. No mandatory process changes are made, either for
the consumers or the producers of assets. Also, this
approach assumes that object-orientation in itself leads to
effective reuse. In fact, however, few assets are produced
and few, if any, are reused. Most of them are for small
functions. The lesson from these projects is that installing a
repository and a rewards policy alone are not enough to
achieve systematic reuse.

522 Projects I, J, Y

In case Y, the company set up an automated repository and
filled it with legacy assets (mostly small-grained functions
not specific to a domain) from past projects. In cases I and J,
a loosely formalized repository was set up to contain a
limited number of purpose-built assets. No modification of
nonreuse processes took place and no systematic produc-
tion of assets was initiated. This was perhaps a partial
improvement since the repository in case Y was paper-
based. However, the net result was that no assets were ever
reused.

Not modifying nonreuse processes, and insufficiently
publicizing the repository and the reuse initiative, were the
immediate causes of failure.

The root cause could be a weak involvement of top
management in the reuse initiative. Hence, a missing will
and power to change existing processes.

5.2.3 Projects O, T

These two projects, although in different companies, share
several common characteristics that appear to be in both
cases major causes of failure. They produce embedded real-
time software and they are subcontractors in bigger projects
(Fig. 3).

Both projects tried to address changes to reuse processes
and the introduction of nonreuse processes. However, they
were not able to achieve these changes since they were
subcontractors and they did not own all the processes.
Moreover, because of performance constraints imposed on
the embedded real-time software, they could not use the
well-known technique of decoupling software from hard-
ware using layers. As a result, reusable assets were
produced, but could never be reused because of changes
to requirements, both in functionality and hardware.
Finally, the reuse initiatives were abandoned. Both projects
agreed reuse could have been achieved in their context, but
only if started at the level of the main contractor.

The lesson here is that a subcontractor can rarely decide
to go for reuse independently of the main contractor,

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

349

Root causes ot
failure

Secondary causes
of tailure

Misconceptions (reuse = repository. reuse = 0o)

No non reuse processes modified
No reuse processes installed
No training awareness

Root causes of
failure

Embedded RT system context (memory and speed
constraints)

Multi-contractor / multi-company project (no
ownership of choices in hardware and
requirements)

Fig. 4. Failure scenario 1.

especially in the delicate case of embedded real-time
software. Embedded real-time software is not a cause of
failure per se, however, as demonstrated by other successful
cases (projects H, P, and R).

5.2.4 Project X
The reuse initiative was interrupted before completion
because the company recognized it could not achieve the
objectives set. On the one hand, the objectives were too
ambitious, especially for a very small company like the one
where the project was performed. On the other hand,
factors extraneous to the reuse initiative intervened, such as
key personnel turnover and crises in project management.
Project X is listed in the data set for completeness, but it
is not used in the data set analysis since several fields are
incomplete due to its interruption.

Failure Scenarios. Among the failures that we have
analyzed above, we can recognize two similar sets of
projects. Projects D, E, F, I, J, and Y failed because of
misconceptions (Fig. 4). Projects O and T failed because of
the context—embedded real-time software and a multi-
company/multicontractor environment (Fig. 5). We sum-
marize those two sets by hypothesizing two failure
scenarios. We do not believe that they are exhaustive: more
could be proposed by observing other projects. Project X is
not considered in these scenarios. Project X is an example of
failure with no specific reuse-related causes.

e Failure Scenario 1 (supported by cases D, E, F, 1,],
and Y).

All these failures are, in some way, related to the
misconception that installing a repository is the key point in
a reuse program, and/or that object-orientation automati-
cally leads to successful reuse.

Sometimes management did not support fully the reuse
initiative (I, J). These points are related, setting up a
repository is a relatively easy and nonintrusive task that
can be performed offline without interfering deeply with
everyday processes. On the contrary, serious changes
require top management commitment. However, top
management commitment exists on half the failure cases
and is absent in the other half. So, we can’t conclude that its
absence on its own inevitably leads to failure.

e Failure Scenario 2 (supported by cases O and T).

This scenario corresponds directly to the description
already given for projects O and T.

5.3 Successes, State, and Low-Level Control
Variables

All the successful reuse initiatives addressed a common set

of issues, as captured by the high-level control variables,

and that was a key element of their success. But, the precise

Secondary cause No reusable assets available

Fig. 5. Failure scenario 2.

way of addressing that set of issues, as captured by low-
level control variables, was quite diverse.

The first question is whether some recurring pattern can
be recognized among low-level control variables. If yes, is
this pattern related to the state variables? For instance, do
all small companies use pattern X, while large companies
use pattern Y?

To explore this, we analyzed a reduced version of the
data set. We limited our analysis to successful projects and
tried to find relationships between state variables and low-
level control variables. We exclude high-level control
variables from the analysis because they were addressed
substantially in the same way by all the successful projects.

Further, we exclude Type of software production and
Rewards policy (all successful projects have the same value
for these variables) and also exclude Application type and
Size of baseline.

Table 4 shows the reduced data set. The thick vertical
line divides state variables (on the left) and low-level
control variables (on the right).

Visual analysis of the data set is now more complex. We
will also use cluster analysis (see the appendix for details) as
an analysis tool. Cluster analysis applied to low-level control
variables discriminates a cluster comprising cases A and B
from the data set, and another group comprising the rest. A
and B are discriminated by the values for the variables
Origin, When asset developed, and Independent team. They are
the only cases featuring an independent group to develop
reusable assets, starting from scratch, with a tight approach.
These two cases, both from the same company, represent a
sophisticated approach to reuse, requiring more reorganiza-
tion and investment. We could name this approach
“sophisticated.”

The other cases (we could call them “pragmatic”) have
no independent team and develop assets just in time in
most cases by reengineering.

From the data, we have it is not possible to evaluate
which approach produced better results. One can argue that
this may not be important since each approach was adapted
to the context and produced positive results.

Digging more into the “pragmatic” cases, G and R share
a loose reuse approach, limit themselves to code work products
and do not use domain analysis. However, there is a lot of
variation in values on these three variables and it is hard to
identify meaningful patterns.

Overall, merging this analysis of data and insight from
interviews, we argue that companies had two approaches to
implementing reuse, a more sophisticated and a more
pragmatic one. Inside the pragmatic approach, many
choices are possible. All approaches can work, provided
they are adapted to the context.

As far as state variables are concerned, it is hard to find
meaningful patterns. This result is confirmed by cluster

350 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002
TABLE 4
State and Low-Level Control Variables, Success Cases
EERE 5 t s £ |Ex
2 (¢ |2 e, Lo s £5| & €| 2 J|ee 2|48 |3 |EE|,
EZ|8]32 |5£% (2% RE|ZE |28 |22 |RE|S |2&|E3 |5 |8E|S
A |L |L |product |high technical OO0 |high [tight [D+C [yes |ex- yes |before |yes |yes [51-100
novo
B |L |L |product lhigh |technical OO |high [itight |D+C |yes |ex- yes |before |yes |yes |51-100
novo
G |L |X [process [low business OO0 |middleffloose |C no |[reeng [no |justin |yes [yes |51-100
time
H |[M [M [|product fhigh embedded- |OO |middleftight [R+D+C|[no [reeng |no |justin |no [yes |51-100
RT time
K X |product |middle |non- proc |high [itight |R+D+C|yes |reeng |no |justin |yes |yes |100+
embedded- time
RT
L X |product |high technical proc |high [itight |[R+D+C|yes |reeng |no |justin [yes |yes [51-100
time
M M |X |product high |technical |proc |middleftight [R+D+C|yes |reeng |no |justin |yes [yes [100+
time
N |M |X |product |middle [non- proc |middleftight |[R+D-+C |yes |reeng |no |justin [yes |yes [51-100
embedded- time
RT
P |S |M |product imiddle |embedded- [proc|middlefloose |[R+D+C |yes |reeng [no [justin |yes [yes |100+
RT time
Q |S |M [|product imiddle |technical proc |middleffloose |R+D+C |yes |reeng |no |justin [yes |yes [100+
time
R |S |M [product middle |embedded- |proc|high [lloose |C no |[reeng [no |justin |yes [yes |1-20
RT time
S |S |S |product [low technical 00 |middleftight |C no |ex- no |justin |yes |yes |100+
novo time
U |S [|X [process [low business OO0 |low [tight |[R+D+C|no |reeng [no [justin |no [yes |100+
time
V S |X |product |low technical 00 |middleftight |C no |[reeng |no |justin |yes [yes |1-20
time
W |[M |L |alone |middle |business OO0 |middleftight (C yes [reeng [no |justin |no |[no |1-20
time

analysis (see appendix). So, we cannot find any correspon-
dence between groups identified by state variables, and
groups (sophisticated and pragmatic) identified by low-
level control variables.

A likely explanation is that the data set is too limited to
find any correspondence. The variables in the data set do
not capture information that might be necessary to establish
correspondences. Going back to direct experience from the
interviews, we argue that a relationship could exist, but it is
not captured by the variables in the data set. Cases A and B
chose the sophisticated approach because management
decided to invest deeply in reuse as one of the key
technologies for the success of the company. As a result,
more resources were available and the sophisticated
approach became feasible. More resources could be
allocated also because of the large size of the company.

As for the other cases, the pragmatic approach was
chosen because of a more prudent approach to reuse. Here,

size is a factor. Smaller companies face real constraints in
allocating resources that force them to find leaner organiza-
tions, with part-time reuse roles, and production of assets
on demand.

6 A REUSE INTRODUCTION DECISION SEQUENCE

We summarize the results of the previous analysis by
presenting a decision sequence. The decision sequence
merely tries to explain the cases in the data set and does not
claim scientific validity as a prediction tool for new cases.
However, it highlights issues that should be considered
when starting a reuse program. The reader can find in [25] a
more detailed analysis of four successful cases.

1. Reuse potential. Evaluate the reuse potential, which
is much higher when similar software products are
produced over time (Type of software production =

product family). In practice, this is not an easy task,

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

as it involves identifying the functions likely to be
reused and the number of times they could be
reused within a given time period. Several techni-
ques under the heading of domain analysis and
product lines [35], [1] have been proposed to guide
this task.

2. Reuse capability. Get commitment of top manage-
ment to obtain resources and power to:

Change nonreuse-specific processes.
Add reuse-specific processes.
Address human factors.

Set up a repository.

The points above are not in a significant order; they
should all be addressed. When two or more of them
are not addressed, a failure is likely. Adding reuse-
specific processes normally implies defining and
assigning key reuse roles, so the latter is an
additional implicit requirement. The factor common
to all of them is change and, so, the prerequisite is
commitment from top management. Another pre-
requisite is knowing what the processes are. Here,
two factors are involved: size of the organizational
unit and process maturity. Small size and high
process maturity clearly help.

Common misconceptions (OO or setting up a
repository automatically means successful reuse)
lead to the likelihood of overlooking the importance
of addressing all the points above.

Check ownership of processes and requirements,
especially in the case of embedded real time
software. Changing nonreuse-specific processes
and adding reuse-specific processes will be much
more difficult when ownership of those processes
lies elsewhere, i.e., when subcontracting is involved.

3. Reuse implementation. Each of the points above has
to be addressed through further lower-level choices.

e Change nonreuse-specific processes. Require-
ments definition and analysis, high-level design,
and testing, all require specific changes to take
into account the availability of assets. Project
management is impacted too, as far as schedul-
ing, costs and productivity are concerned.

e Add reuse-specific processes. Domain analysis
might or might not be used to drive the
identification of reusable assets. Assets could
be smaller or larger in size, including design and
requirements or not. They could be developed
from scratch, or reengineered from legacy. They
could be produced and maintained by a specific
group, or by application projects; before projects
need them, or just in time for the first use.

e Address human factors. One or more techni-
ques (such as training, awareness events, dis-
cussion groups, newsletters) can be used.
Reward systems alone are not sufficient.

e Set up a repository. A specific tool, add-ons to
the configuration management system, or the
plain configuration management, are all possi-
ble options.

351

The availability of resources in the company, usually
related to its size, should be carefully considered in arriving
at decisions that can be sustained. Provided the approach is
sustainable, integrated, and adapted to the context, any
combination of choices is acceptable.

Overall, successful cases always tried to minimize
change. They retained their existing development approach
and chose reuse technology to fit that approach. They often
used their existing configuration management tool for the
repository. The advantage here lies in introducing as few
changes at a time as possible and in building on existing
knowledge, skills, and tools. The central question becomes:
What is worth changing and what is not? Successful cases
teach us that change should focus primarily on processes
and roles. Development technology and supporting tools
can be changed later, if necessary.

Changes to processes and roles should be affordable. The
companies’ choices varied greatly, yet if we relate them to
their size and available resources, a logic appears. For
instance, only bigger companies can sustain a separate
reuse group. The same applies to domain engineering, a
process that only few can afford. Finally, assets are
developed in advance by the bigger companies, while the
others develop assets just in time for the first reuse.

7 CoMPARISON WITH RELATED WORK

We analyze here previous studies published in the
literature about the effects of, or prerequisites for, reuse in
industrial contexts. We group them into two categories:
surveys of multiple companies via mailed questionnaires
and experience reports from individual companies.

7.1 Mail Surveys

Rine and Sonneman [32] did a mail survey in 1995. A
questionnaire was sent out and generated 109 responses,
representing 99 projects in 83 organizations, most of them in
the USA. No information on the size of companies or
projects was reported. Software reuse capability was
measured according to the percentage of components
(bought or developed) reused in a project, and according
to the percentage of components developed in one project
and reused by other projects. The main findings of the
study are that factors like product line practice, standard
data formats, common software architecture, domain
engineering, commitment from management, and stress
on reusing high-level software artifacts versus just code,
positively influence software reuse capability. In turn,
software reuse capability positively influences quality and
productivity.

Lee and Litecki [24] mailed, before 1993, a questionnaire
on reuse to the Ada community (defined as the subscribers
to three Ada journals) and obtained 75 responses. The paper
does not report how many projects or companies these
answers represent. The dependent variable is reuse rate
(size of reused Ada code/size of all code). The paper does
not clarify if this measure is computed on a sample project,
or is an average across all company projects. Domain
knowledge, reuse experience, maturity of OOD tools,
maturity of repository, executive directors’ concern, level
of reuse program, number of reuse engineers, and size of

352 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

repository are identified as positive influences on the
dependent variable. Both Ada experience and maturity of
Ada tools negatively influence the dependent variable.

Frakes and Fox [10] mailed a questionnaire in 1991-
1992. They obtained 113 responses from 23 companies and
six universities, representing 28 US organizations, from
small to very large. The dependent variable is the average
level of reuse of code in the organization. The results are
that the dependent variable is not affected by program-
ming language, CASE tools, “not invented here” syndrome
(or the fact that people prefer to redo from scratch instead
of reusing), experience, rewards, legal problems, reposi-
tories, organizational size, quality concerns, or reuse
measurement. On the other hand, the dependent variable
is affected by reuse education, type of industry (telecom,
aerospace, etc.), perceived economic feasibility, and avail-
ability of high quality assets.

In the same questionnaire, Frakes and Fox [11] asked
respondents to identify the most common problems
encountered in reusing assets. The question assumes a
component-based approach to reuse and a working reuse
program. The resulting ranking is: no attempt to reuse
(32 percent); components do not integrate (22 percent);
component not understood (21 percent); component not
valid (19 percent); component does not exist (18 percent);
component not found (12 percent); component not available
(7 percent).

7.1.1 Comparison

All the above studies use some variation of the “reuse level”
measure in evaluating the success of a reuse program.
Reuse level has the advantage of being easy to calculate or
estimate, especially in the context of a mailed questionnaire.
However, it can be unfair in some cases and too generous in
others, depending on the reuse approach. A 70 percent
reuse level could be a bad result in the case of a product line
approach, while a 30 percent level could be a remarkable
success for an approach based on a library of small assets.
Further, reuse level migth or might not take account of
internal reuse. Finally, even when formally measured, reuse
level is far from being a standard measure and results in
very different counting in different companies, or even
different projects in the same company [30].

For those reasons, we have considered reuse level as one
of the indicators of success for a reuse program, but we
have combined it with others. Further, the above studies
only consider reuse programs when they are up and
running. In our case, we also study the previous phase,
the introduction of reuse. Frakes and Fox [10] consider
failures, but in the sense of inability to find a reusable
component.

The other important difference between the above
studies and the study we are reporting here is the research
method used. Mail surveys may generate large numbers of
responses, but those responses cannot be controlled and
verified as is possible in structured interviews. Further,
interviews make it possible to dig deep in specific areas and
achieve a fuller understanding of the problem at hand.

Keeping those differences in mind, we now compare the
results of the various studies.

In agreement with Rine and Sonneman [32], we find that
management commitment is a significant factor. We go

further and argue that management commitment is an
essential prerequisite to support the range of changes
needed in implementing a reuse program. They report also
product line practice, common software architecture, and
domain engineering as factors that increase the reuse level
(or reuse capability in their terms). These factors are very
similar to our Reuse approach = “tight” factor. Cases A, B, H,
K, L, and M have a tight reuse approach and report high
reuse levels (50 to 90 percent). Cases P and Q have a loose
approach and report low reuse levels (around 15 percent).
We argue that a high reuse level is in some sense intrinsic to
this approach. An economic analysis (for instance a return
on investment analysis) would be a suitable tool to evaluate
which approach is more suitable in a given context.

Lee and Litecki [24] report domain knowledge and reuse
experience as factors. In our case, all projects were
introducing reuse for the first time, so reuse experience is
presumably low by definition. We observe that Staff
experience (i.e., overall experience excluding reuse) has a
high or medium value in all cases with the exception of one
low value, which suggests that it is often a significant factor.
Size of repository is also a factor in their study. In all our
cases, a repository existed and its size was limited (fewer
than 200 assets). Two companies that failed had among the
largest repositories. We conclude that having a repository is
useful but not itself a guarantee of success and that large
size may be inversely correlated with success.

In agreement with Frakes and Fox [11], we find that
programming language (or Development approach), experi-
ence, rewards, repository, and reuse measurement are not
decisive factors, while reuse education (Human factors) is.
Reuse measurement is not a variable in our data set, but
interviews indicated that very few companies had a reuse
measurement program in place. They report type of
industry as a factor. In our study, we collected this
information but did not use it in analysis, preferring other
variables describing the type of software produced. Our
rationale is that the type of industry is not sufficient to
describe the type of software produced. For instance, a
telecom company can produce MIS-like systems for
customer management and billing, and embedded real-
time systems for switching.

Size of company is not considered by Rine and Sonne-
man, or by Lee and Litecki. Frakes and Fox find it is not a
factor. We also find that size is not a factor, in the sense that
both small and large companies can succeed. However, it is
a factor indirectly, as it influences the ease with which
management commitment is obtained, and the reuse
organization that can be sustained by the company.

7.2 Experience Reports from Companies

Hewlett-Packard was one of the early adopters of reuse. Griss
[13] describes the general approach taken. Fafchamps [8]
discusses organizational issues and choices. Lim [23]
presents measured results from three HP divisions.

A summary of the lessons learnt can be found in [15]. We
quote from this paper. “Technology is neither the major
impediment to effective reuse nor the most critical success
factor.” “Objects and complex technology are not essential;
complicated libraries are not necessary; performance con-
cerns are largely a red herring; and process maturity is not
as important as some would have you to believe.” “Reuse is
a business issue that involves technology transition and

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

organizational change. Instituting a reuse culture, provid-
ing training, adhering to standard, and securing manage-
ment commitment are the key success factors.”

Our study confirms most of those findings. The variables
that chiefly influence success are not technical. Two failures
were related to the performance of embedded real-time
software, but the root cause was not technical. We probably
agree on process maturity, which we do not identify as a
significant factor; since it was above average in almost all
cases, however, we cannot wholly exclude it as a possible
factor. Our study did not address the issue of standards.

Fafchamps [8] reports that the organization that worked
best in HP was the “team producer” (equivalent to our
Independent team) but three others were used, each having
pros and cons. We find that different organizations are
used, while the key issue is adaptation to the context.

Experimentation with reuse at IBM and Loral has been
summarized by Poulin [29] and Tracz [34]. Poulin [31]
describes specifically the lessons learnt about repositories,
use of incentives, and the importance of domain-specific
reuse and domain analysis to achieve higher levels of reuse.
Our study confirms their results about the importance of
management commitment, of small but effective reposi-
tories, and of the nonimportance of tools for classifying and
searching assets.

Joos [18] describes reuse introduction efforts at Motorola.
The paper highlights the highly challenging task of
introducing reuse in a multinational corporation, already
involved in other cultural changes, from hardware-centric
to software-centric, and towards process maturity. The key
issues recognized are acquiring commitment from top-level
management, and providing reuse training and incentives.

Isoda [17] reports on a reuse project at NTT. He stresses
the importance of the selection of a domain with high reuse
potential, the need for domain analysis, and management.
This is confirmed in our study, except that domain analysis
is not identified as a key factor since several successful
projects did not perform it.

Card [4] states that “the most important obstacles to
reuse are economic and cultural, not technological.” A reuse
program is a technology transition problem and should be
market-driven (reusable assets should be produced so that
they are reusable by future projects). Cultural factors hinder
technology transition and should be addressed by training,
incentives, measurement, and management commitment.
Our study confirms the essence of these statements, except
for incentives and measurement. Few companies had a
measurement program in place and even fewer used
incentives.

Fichman and Kemerer [9] describe four longitudinal case
studies in the early adoption of object-oriented techniques
in the 1992-1996 period. Reuse was not achieved in any of
the cases because of the misconception that “object-
orientation = reuse.” They argue that a company should
decide on adopting an object-oriented approach or reuse,
but not both at the same time. Our study confirms
completely this finding.

Paci and Hallsteinsen [27] report on 15 reuse projects in
European companies, most of them influenced by the
REBOOT approach [21]. The book is an excellent source of
information on economic results from long-term application
of reuse and planned evolution and maintenance.

353

8 VALIDITY

We discuss here possible objections to the validity of this
empirical work. We use the definitions of construct, internal
and external validity given by [19].

8.1 Construct Validity

Construct validity considers whether the metrics and
models used in a study are a valid abstraction of the real
world under study. In our case, this applies to the variables
chosen to characterize the data set. Most of those variables
are taken directly, or with little modification, from existing
reuse models.

The dependent variable, success, or failure of a project is
the most sensible one. As already mentioned, quantitative
indicators such as return on investment, were rarely
available. We defined success as a combination of objective
(continuation of the reuse program, actual reuse of assets)
and subjective assessments.

As will be detailed later, all projects received funding
from the European Commission. Continuation of the reuse
program (after the funding is over) is especially meant to
filter any bias from external funding, as unsuccessful reuse
programs are very unlikely to continue after funding is over.

The final value of this variable was further discussed,
case by case, and before data analysis, between the three
authors to avoid bias. In most cases, this was made easier
because failures were openly admitted by the interviewees.

8.2 Internal Validity

Internal validity considers whether the experimental design
is able to support conclusions on causality or correlations.
The size of our data set is too limited to allow meaningful
statistical studies, so our study is exploratory.

On the other hand, our data set is, as far as we know, the
biggest (and the only one) available on industrial reuse
projects. Further, it is based on direct interviews with
participants in the projects, what makes it possible to gain
much better knowledge of the projects as compared with
mailed surveys. In comparison with experience reports
from companies, our interviews reach a lower level of
detail, but consider a variety of companies, including small
and very small ones.

8.3 External Validity

The companies in the data set are all located in Europe.
Nevertheless, we cannot see any influence of this geo-
graphic factor on the attributes that we investigated, either
in terms of the state and or the control variables. Therefore,
we do not think that the validity of the results of this study
could be influenced by this factor.

There is no discrimination between the companies in
terms of size. In the sample, many small and very small
companies, as well as large ones, are represented.

On the other hand, all the companies interviewed won
funding from the European Commission to perform a
technology transfer project. The competition to win funding
is demanding. A detailed proposal has to be written. The
proposals are evaluated and ranked by a panel of senior
industrial and academic experts on technical and manage-
ment criteria. The acceptance ratio is typically 1 to 10. For
these reasons, we believe that the sample of companies does
not represent the average European companies, but are

354 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

probably above average, as far as technical and managerial
skills are concerned. This factor should definitely be kept in
mind when considering external validity. In the data set,
this factor is indirectly confirmed by the above-average
level of process maturity (Software process maturity variable).

9 CONCLUSION

We have presented the results of a survey of European
companies involved in introducing and implementing reuse
programs.

Projects were performed in large and small companies,
working in a variety of business domains. Most of them
produce software with high commonality between applica-
tions, have a good process maturity level, and use an object-
oriented or procedural development approach. Despite this
potential for success, around one-third of projects failed.

Failures were due to not introducing reuse processes, not
modifying nonreuse processes, and not considering human
factors. The root cause was the lack of commitment by top
management, or nonawareness of the importance of these
factors, often coupled with the belief that using the object-
oriented approach or setting up a repository would
automatically lead to success in reuse.

Given a reuse potential due to commonality among
applications, the success of a reuse initiative depends on a
mix of features.

1. Opverall, initiating and succeeding in a reuse initiative
is a technology transfer endeavor, which requires, as
a sine qua non, commitment of management.

2. The approach to designing a reuse program seems to
be standard, or at least requires considering the
same set of elements. Initiating reuse processes,
modifying nonreuse processes, and addressing
human factors.

3. If the approach is standard, the way of deploying it
is not. Each element listed above must be ap-
proached according to the context of the company.

We have modeled these success factors with a decision
sequence.

These results are in conformance with most of the studies
already performed. However, this is the first study, to our
knowledge, to use interviews and, therefore, to have a
higher degree of confidence in the results. Further, small
companies were also involved, in a variety of countries and
cultures.

To advance the state of practice, the results of this study
should be used to eradicate the misunderstandings that are
still popular among practitioners. Unfortunately, reuse is
seldom part of software engineering curricula, so students
do not contribute to advancing the state of knowledge
when they are hired in companies. Overall, it is easy to
forecast there will be a long delay before sensible advances
are made.

From the research point of view, we have remarked on
the difficulty of characterizing reuse in companies using the
conceptual tools currently available. Reuse, for example in
the definition used for this study, is an umbrella concept
capable of encompassing a variety of situations. If we want
more analytic power, we need better analytic tools to

understand the various instantiations of reuse while
keeping a common high-level definition.

Further, we observe a shift from reusable assets based on
code, to reusable components, acquired or developed
internally. Consequently, research on reuse should focus
more on the implications of the component paradigm on
processes, organizations, and tools for reuse.

APPENDIX
Formal Analysis of the Data Set

This appendix contains the details of a formal analysis of
the data set, comprising a classification tree analysis of
successes and failures, and a cluster analysis limited to
successes.

A.1 Successes and Failures

We look for a correlation between independent variables
(restricted to state variables and high-level control vari-
ables, see Tables 1 and 2) and the dependent variable
(success or failure). We consider all cases, except X, which
failed for reasons outside the scope of reuse (project X is
analyzed in the next section).

We use classification trees [2], [28] for the analysis
because they handle variables with nominal and ordinal
scales, they provide results easy to interpret, and they can
handle data sets with few cases. Classification trees are used
to predict membership of cases in the classes of a nominal
dependent variable from their values on one or more
predictor variables. Predictor variables can be nominal or
ordinal. A tree is built using a training set and its predictive
accuracy is evaluated against a test set.

A tree building algorithm selects an independent
variable (e.g., human factors), selects a condition to split
the data set (e.g., human Factors = “no”), and evaluates the
subsets obtained with the split to decide on changing the
split condition or not. The procedure is recursively applied
to each subset. Splitting is stopped when a subset contains
only cases belonging to one class, or when a minimum
number of cases is reached for a subset.

We report in Fig. 6 the classification tree obtained using
the CART algorithm, with the Gini measure of node
impurity as the splitting criterion, and FACT style direct
stopping [2]. CART searches exhaustively the best split
condition among all the possible ones in a certain node of
the tree. The Gini measure evaluates a splitting criterion by
favoring homogeneous subsets. FACT style stops when a
subset contains only cases belonging to one class. In the
figure, the splitting condition is plotted under a node. The
number on an arc is the number of cases in the subset
defined by the split. The number on the left top corner of a
node is the identifier of a node. The label on the top right
corner of each node represents the class of the node as
concerns the dependent variable (for instance node 1 is
tagged with success = “yes”). The tree classifies correctly all
the cases in the training set.

Fig. 7 reports the corresponding importance ranking for
predictor variables. When the tree is built, each available
variable is considered as a candidate for the next split. As
one variable is chosen, surrogate variables are also
considered and ranked. The ranking of surrogate variables
is aggregated for all nodes and its value is plotted, scaled

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

355

1 —yes

HUMAN_FA=no

Fig. 6. Classification tree for state and high-level control variables.

relative to the best predictor variable. The value is a
measure of variable importance [2].

Given the high number of variables and the low number
of cases, we had to exclude two variables from the analysis.
We chose Application domain and Size of baseline. Application
domain gives insight into the business context, but Type of
software production, Software and product, and Type of software
thoroughly describe the technical context. We deemed Size
of baseline not essential for the analysis since it is a low-level
characteristic of a project that we collected mainly to

exclude toy applications of reuse. Repository is also excluded
since it has value “yes” for all cases.

In the tree, the variables Human factors and Type of
software production are able to correctly classify all the cases.
The variable ranking (Fig. 7) gives a more comprehensive
picture, reporting also Top management commitment, Reuse
processes introduced, and Nonreuse processes modified.

Using different classification algorithms, the tree and the
ranking change slightly. However, a result is constant. The
variables Type of software production, Top management
commitment, Reuse processes introduced, Nonreuse processes

100

80

60

Ranking

40

20

0
SOFTWARE TYPE_OF SP_MATUR DEV_APPR TOP_MANA REUSE_PR HUMAN_FA
OVERALL SW_AND P TYPE_OF STAFF_EX KEY_REUS NON_REUS

Predictor variable

Fig. 7. State and high-level control variables predictor importance ranking.

356
Tree Diagram for 15 Cases
Single Linkage
Percent disagreement

A
B
G
R
\
S
H
V)
K
L
M
N
P
Q
w

o
o

0.1 0.2 0.3 0.4 0.5

Linkage Distance

Fig. 8. Low-level control variables, cluster analysis.

modified, and Human factors have in all cases more predictive
importance than the rest.

In other words, of the state variables only Type of software
production has predictive importance; of the high-level
control variables, all have predictive importance except
Repository (excluded from analysis since always “yes”) and
Key reuse roles introduced.

A.2 Successes, State, and Low-Level Control
Variables

The analysis of failures and successes has shown that
successful projects address in substantially the same way a
set of issues, identified by the high-level control variables.
But, at a lower level of detail, as expressed by low-level
control variables, successful projects behaved differently.
So, now we look for recurring patterns at this level.

First, we analyze low-level control variables, then we
analyze state variables. Ideally, we would like to find
patterns in low-level control variables, patterns in state
variables, and a correlation between them.

We use cluster analysis [7] with the goal of grouping
cases in clusters that addressed reuse issues in similar ways.
Cluster analysis is a useful tool in exploratory data analysis.

Cluster analysis proceeds recursively, merging similar
cases in groups, then similar groups in clusters. A measure
of distance is used to evaluate similarity. We use percent
disagreement as a measure of distance between cases.
Percent disagreement can be used on nominal scales and,
computes, for a pair of cases, the normalized number of
variables with different values.

As a measure of distance between groups, we use single
linkage, the distance between the closest pair of cases in the
groups. Figs. 8 and 9 show the resulting clusters. Cases are
on the Y axis and the X axis shows the distance value at
which cases are merged.

Fig. 8 contains the results of cluster analysis on low-level
control variables. Clustering considers all low-level control
variables, except Rewards (= no for all cases), When assets
developed (dependent on Independent team), and Number of
assets (projects did not set goals on the number of assets to
be developed, so this variable is more a dependent variable
than a control).

Projects A and B are in a cluster apart. This depends on
the values of Origin, Independent team, and When developed.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 4, APRIL 2002

Tree Diagram for 15 Cases
Single Linkage
Percent disagreement

A
B

L - = .

I ey

H - - .

K

e . }H——-".

b

o — 1

R—

s

2

G

v
w

0.0 0.1 02 0.3 0.4 0.5

Linkage Distance

Fig. 9. State variables, cluster analysis.

Project W is a case apart, but this is mainly an effect of
the clustering algorithm. The difference is due to the “no”
on Qualification and Configuration management. If we do not
consider these variables, it clusters with G, R, S, and V.

The other cluster contains all cases except A and B. Their
common characteristic is that they do not use the more
sophisticated approach of A and B. Assets are produced by
projects, just in time, in most cases, by reengineering legacy
code. G, R, S, V, and W produce only code assets. K, L, M,
N, P, and Q produce also requirements and design assets.

In summary, the cluster analysis on low-level control
variables divides cases according to the organization to
produce assets as discriminated by Origin, Independent team,
and When developed.

We now analyze the state variables (Fig. 9).

The two main clusters (G, U, and W, and the rest) are
discriminated by the value of Type of software (= Business for
G, U, and W). This clustering is very sensitive to the linkage
distance used. Using other distance measures, clustering
varies.

Overall, cluster analysis on state variables does not
provide reliable clusters. On low-level control variables,
two clusters are identified, A and B, and the rest. No further
meaningful grouping can be found.

ACKNOWLEDGMENTS

This study has been possible thanks to the support and
collaboration of several people. The authors would like to
thank the European Commission for funding the Surprise
ESPRIT/ESSI project number 23460 and, specifically,
project officers Andrea Di Maio and Gisele Roesems; project
managers and staff of the PIEs for providing their time and
suggestions during the interviews; and Carlo Ghezzi for his
initial encouragement. They are also grateful to Vic Basili,
Davide Brugali, Reidar Conradi, and Sandro Morasca for
reviewing the manuscript and providing constructive
comments. Daniele Romano gave precious hints for the
analysis of the data set. During the data analysis phase,
Maurizio Morisio was visiting the Experimental Software
Engineering Group in the Institute for Advanced Computer
Studies (Umiacs) at the University of Maryland, College
Park, on sabbatical leave from Politecnico di Torino.

MORISIO ET AL.: SUCCESS AND FAILURE FACTORS IN SOFTWARE REUSE

REFERENCES

[1]]. Bayer, O. Flege, and P. Knauber, “PuLSE: A Methodology to
Develop Software Product Lines,” Proc. Symp. Software Reusability
(SSR '99), May 1999.

[2] L.Breiman,]. Friedman, R. Olshen, and C. Stone, Classification and
Regression Trees. Wadsworth, 1984.

[3] B.W.Boehm, “Economic Analysis of Software Technology Invest-
ments,” Analytical Methods in Software Eng. Economics, T. Gulledge
and W. Hutzler eds., 1993.

[4] D.Card, “Why Do So Many Reuse Programs Fail?” IEEE Software,
pp. 114-115, Sept. 1994.

[S] ESIL The Vasie Project, 1998. Available at http://www.esi.es/
VASIE.

[6] ESSI Software Best Practice, Summaries of ESSI Projects, European
Commission Directorate General XIII, 1997. Available at http://
www.cordis.lu/esprit/src/projects.htm.

[71 B. Everitt, Cluster Analysis, third ed. John Wiley, 1993.

[8] D.Fafchamps, “Organizational Factors and Reuse,” IEEE Software,
pp. 31-41, Sept. 1994.

[9] R.G. Fichman and C.K. Kemerer, “Object Technology and Reuse:

Lessons from the Early Adopters,” Computer, vol. 30, no. 10, pp.

47-59, Oct. 1997.

W.B. Frakes and C.J. Fox, “Sixteen Questions about Software

Reuse,” Comm. ACM, vol. 38, no. 6, June 1995.

W.B. Frakes and C.J. Fox, “Quality Improvement Using a Software

Reuse Failures Model,” IEEE Trans. Software Eng., vol. 23, no. 4,

pp- 274-279, Apr. 1996.

(10]
(1]

[12] W.B. Frakes and S. Isoda, “Success Factors of Systematic Reuse,”
IEEE Software, pp. 14-19, Sept. 1994.

[13] M.L. Griss, “Software Reuse: From Library to Factory,” IBM
System ., vol. 32, no. 4, 1993.

[14] M.L. Griss and M. Wosser, “Making Reuse Work at Hewlett-
Packard,” IEEE Software, pp. 105-107, Jan. 1995.

[15] M.L. Griss, “Software Reuse: Objects and Frameworks are not
Enough,” Object Magazine, pp. 77-87, Feb. 1995.

[16] M.L. Griss, P. Jonsson, and I. Jacobson, Software Reuse. Addison-
Wesley, 1997.

[17] S.Isoda, “Experiences of a Software Reuse Project,” J. System and
Software, vol. 30, no. 3, pp. 171-186, Sept. 1995.

[18] R. Joos, “Software Reuse at Motorola,” IEEE Software, pp. 42-47,
Sept. 1994.

[19] C.M.Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, sixth ed. Holt Rinehart and Winston, 1991.

[20] B. Kain, “Pragmatics of Reuse in the Enterprise,” Object Magazine,
pp. 55-58, Feb. 1994.

[21] E.A. Karlsson, Software Reuse. John Wiley & Sons, 1995.

[22] C. Kruger, “Software Reuse,” ACM Computing Surveys, vol. 24,
no. 2, pp. 131-183, 1992.

[23] W.C. Lim, “Effects of Reuse on Quality, Productivity and
Economics,” IEEE Software, pp. 23-30, Sept. 1994.

[24] N.Y.Lee and C.R. Litecky, “An Empirical Study of Software Reuse
with Special Attention to Ada,” IEEE Trans. Software Eng., vol. 23,
no. 9, pp. 537-549, Sept. 1997.

[25] H. Mili, F. Mili, and F.A. Mili, “Reusing Software: Issues and
Research Directions,” IEEE Trans. Software Eng., vol. 21, no. 6,
pp- 528-561, June 1995.

[26] M. Morisio, C. Tully, and M. Ezran, “Diversity in Reuse
Processes,” IEEE Software, pp. 56-63, July/Aug. 2000.

[27] M. Paci and S. Hallsteinsen, Experiences in Software Evolution and
Reuse, 1997.

[28] A. Porter and R.W. Selby, “Empirically Guided Software Devel-
opment Using Metric-Based Classification Trees,” IEEE Software,
pp- 46-54, Mar. 1990.

[29] J. Poulin, “Reuse: Been There, Done That,” Comm. ACM, vol. 42,
no. 5, pp. 98-100, May 1999.

[30] J. Poulin, Measuring Software Reuse. Addison Wesley, 1996.

[31]]J. Poulin, “Populating Software Repositories: Incentives and
Domain-Specific Software,” |. System and Software, vol. 30, no. 3,
pp- 187-199, Sept. 1995.

[32] D.C. Rine and R.M. Sonneman, “Investments in Reusable Soft-
ware: A Study of Software Reuse Investment Success Factors,” .
Systems and Software, vol. 41, pp 17-32, 1998.

[33] B.C. Seaman, “Qualitative Methods in Empirical Studies of
Software Engineering,” IEEE Trans. Software Eng., vol. 25, no. 4,
pp- 557-572, July 1999.

[34] W. Tracz, “Confessions of a Used-Program Salesman: Lessons

Learnt,” Proc. Symp. Software Reliability, (SSR 95), pp. 11-13, 1995.

357

[35] D.M. Weiss and C.T.R. Lai, Software Product-Line Engineering: A
Family-Based Software Development Approach. Addison-Wesley,
1999.

Maurizio Morisio received the MSc degree in
electronic engineering and the PhD degree in
software engineering from Politecnico di Torino,
a; -y Italy. He is a research assistant in the Diparti-
/ mento di Automatica e Informatica, Politecnico di
é; Torino, Turin, ltaly. He recently spent two years
- working with the Experimental Software Engi-
’ fv neering Group at the University of Maryland,
‘ \6 & College Park. During that time he was codirector
: of the Software Engineering Laboratory (SEL), a
consortium of NASA Goddard Space Flight Center, the University of
Maryland, and Computer Science Corporation, which has the mission of
improving software practices at NASA and CSC. The overall goal of
Maurizio’s research and consulting is to understand how software is
produced and maintained, in order to improve software processes and
products in industrial settings. Software production involves three main
dimensions (processes, people and organization, tools and technology)
and his activity has spanned all three, including work on object-oriented
technology (analysis, design, and programming), software product lines,
framework-based development, COTS-based development, processes
and measures for individuals and small teams (PSP, PIPSI), and the
evaluation and selection of tools. His current focus is on open source
development and service engineering for the wireless internet. His
approach to both research and consulting is strongly empirical:
observing and analysing facts rather than trusting claims and hype,
and using empirical methods such as case studies, experiments, and
surveys. He is a member of the IEEE Computer Society.

Michel Ezran is chief knowledge officer at the
Paris office of Valtech, a leading international e-
business consulting firm operating in eight
countries across Europe, North America, and
Asia. As the leader of Valtech’s corporate
knowledge management program, Michel man-
ages a team of knowledge managers, a world-
wide network of experts, and Valtech’s
enterprise portal. He joined Valtech as staff
number 10, and has successively held positions
of senior consultant and research and development manager. As a
consultant, he advised companies in migrating their business informa-
tion systems to new technologies (Java, CORBA, UML, EJB, internet),
including not only the technology aspects but also architecture, process,
organization, and management, and helped software organizations
improve their processes through the adoption of reuse and business
components. He has also acted as a consultant to advanced technology
projects, on the coordination of development teams, on monitoring
development phases (requirements capture, object analysis, architec-
ture definition, object design, coding, and testing), and on managing the
risks arising from migration to new technologies. Prior to Valtech, he
worked for Cap Gemini in France and South America, and for other
software houses, with experience on a variety of software development
projects in the field of business information systems.
?— \ Colin Tully is a professor of business informa-
tion systems in the School of Computing

7 o~ Science at Middlesex University, London, UK.
e Ko 0 The School is oriented strongly toward the
f:_‘;\) applied end of the discipline. Its strengths lie in
e areas such as human-computer interaction

)

\J modeling and design, usability, systems failures,
4 systems and software processes and their
A improvement, development methods, neural
networks, vision and image processing, multi-
media programming, hypermedia authoring, digital libraries, mobile and
personal technologies, medical informatics, and telematics. He is a

member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

