
UFPE’19 -- 1

A Refinement Calculus for Requirements
Engineering (CaRE)

John Mylopoulos
University of Ottawa

Centro de Informática, FUPE
Recife, November 13, 2019

UFPE’19 -- 2

Abstract

The requirements problem consists of transforming stakeholder
requirements - however informal, ambiguous, conflicting, unattainable,
imprecise and incomplete – into a consistent, complete and realizable
specification through a systematic process. We propose a refinement
calculus for requirements engineering (CaRE) for solving this problem,
which takes into account the typically dialectical nature of requirements
activities. The calculus casts the requirement problem as an iterative
argument between stakeholders and requirements engineers, where
posited requirements are attacked for being ambiguous, incomplete, etc.
and refined into new requirements that address the defect pointed out by
the attack. Refinements are carried out by operators provided by CaRE that
refine (e.g., strengthen, weaken, decompose) existing requirements, to
build a refinement graph. The semantics of the operators is provided by
using the notion of acceptable arguments in Dung’s argumentation theory.

This is joint work with Yehia ElRakaiby, Alessio Ferrari and Alex

Borgida.

UFPE’19 -- 3

The requirements problem
In its original formulation [Jackson95], a requirements

problem consists of finding a specification S for a given set
of requirements R and indicative environment properties E
such that

E, S |- R

meaning: “… satisfaction of the requirements can be
deduced from satisfaction of the specification, together
with the environment properties…” [Jackson95]

Solution through refinement (as in program refinement):
Start with requirements and keep refining them to
eliminate mention of non-executable elements.

UFPE’19 -- 4

Access
Agenda

Requirements as goals
Requirements are now goals and (requirements) problem

solving amounts to incremental AND/OR goal refinement
(Axel van Lamsweerde, c.1993).

Achieve
[ParticipantConstraintsKnown]

Achieve
[ConstraintsRequested]

AgendaAccessible

AgendaUpdated

Achieve
[ConstraintsAccessed]Achieve

[ConstraintsProvided]

OR node refinementAND node

Agenda
Handler

operationalization

goal

constraint

assumption

action
agent

Constraint
Handler

Send
Constraint Request

Minimize
[ParticipantInteraction]

UFPE’19 -- 5

Interesting ideas in RE ...
Requirements derived via refinement from models of the

domain (Ross, c.1977).

Stakeholder requirements and specifications are different
things, though logically related (Jackson&Zave, c.1995).

Requirements are stakeholder goals (vanLamsweerde,
c.1993).

The requirements problem is a social problem, calls for
social solutions (Yu, c.1993).

The requirements problem is solved through problem
refinement (all), and this refinement has many forms: activity
decomposition (Ross), abductive inference (Jackson), goal
refinement (vanLamsweerde), social delegation (Yu).

With goal models and refinement, you are not exploring a
design, but rather a design space (GORE).

UFPE’19 -- 6

Goal models circa 2018
Goals can be mandatory/nice-to-have, can have priorities

[Liaskos10], probabilities [Letier04], utilities, …

Schedule
meeting

Choose
schedule

By
person

Collect
timetables

By system

By person

OR

By
system

Collect
Rooms

available

Good
quality

schedule

>70%
participation

Find free
room

OR

OR

OR

AND
AND AND

+
-

OR

OR

Softgoal

Goal

AND

Schedule
Task

Domain
assumption

Quality
constraint

Choice
points

cp1
cp2

cp3

X

Get free
room

Low cost
scheduling

AND

X

op

op

op

UFPE’19 -- 7

What do these models tell us?
They allow us to derive alternative specifications (solutions)

– each consisting of functions/tasks/actions, quality
constraints and assumptions for fulfilling requirements.

These models are founded on two important concepts of
Science and Engineering: refinement and operationalization.

UFPE’19 -- 8

Refinement
Literally means “the process of removing

impurities/defects/unwanted elements”, as with oil or sugar
refineries.

Refinement has an illustrious history in Computer Science,
specifically in programming methodology (Abrial, Hoare et al),
used to remove non-executability defects.

In GORE, refinement has been used to iteratively reduce a
goal G to specification S (collections of tasks, quality
constraints) and assumptions such that A, S |- G

Goal refinements come in two flavours, AND/alternative:
G ➔AND G1, G2, … , Gn

G ➔ G1, G ➔ G2, … , G ➔ Gn

Refinements decompose or reduce a goal into subgoals., the
defect being non-atomicity.

UFPE’19 -- 9

Operationalization
In spoken English, operationalization means “to make

something operational/working” [Spoken]

Operationalizing a goal in terms of a task/action uses this
[Spoken] sense.

In the Sciences (Natural, Life and Social), operationalization
means “defining a concept that is not directly observable
through the operations by which we measure it” [Sciences]
[Bridgeman27].
e.g., ‘mass’ can be operationalized inertially or gravitationally.

Operationalizing a non-functional requirement in terms of
quality constraints/metrics uses that [Sciences] sense.

Operationalization marks the boundary between problem
and solution space.

UFPE’19 -- 10

But, many things can’t be told in GORE …
Stakeholder requirements are often:

✓Redundant/not needed so they can be dropped

“Highly secure system”→ X (forget it, not needed!)

✓ Unattainable, so they need to be weakened,

“7/24 availability”→ “office hour availability”

✓Conflicting, so they need to be weakened

“Low cost” & “High security”→ “modest cost” &
“secure from DoS attacks”

Refinements provided by GORE can’t address problems of
unattainability, conflict, ambiguity, incompleteness, etc.

… we need a new calculus!

UFPE’19 -- 11

A calculus for RE (CaRE)
Consists of refinement operators that operate on

requirements and derive other requirements.

Through this calculus we propose to solve the requirements
problem incrementally by applying refinement operators until
we can derive specifications/solutions from the refinement
graph that address all their attacks.

Incremental refinement is cast in the form of a Hegelian
dialectical argument between stakeholders (including
requirements engineers) where posited requirements are
attacked for being
ambiguous/incomplete/conflicting/unattainable/non-atomic/…
etc., and refinements are proposed that eliminate requirements
under attack.

UFPE’19 -- 12

Examples
r1:= “System shall schedule meetings upon request”

r2:= “Meeting schedules shall be of good quality”

Non-atomic(r1) “No single function for r1” (reduce)➔

r3:= “Collect timetables”,r4:= “Generate a schedule”

Incomplete(r3) “No privacy requirement” (add)➔

r5:= “timetable data shall be confidential”

Ambiguous(r2) (strengthen)➔ r6:=“≥70% participation rate”

Rejected(r6)

Ambiguous(r2) (strengthen)➔ r7:=“≥80% participation rate”

…

UFPE’19 -- 13

Refinement graph

r1 r2

r3 r4

Non-atomic

r5

Incomplete

Ambiguous

r6 r7

add

reduce

strengthen

X

strengthen

r1:= “System shall schedule meetings upon request”

r2:= “Meeting schedules shall be of good quality”

r3:= “Collect timetables”, r4:= “Generate a schedule”

r5:= “timetable data are confidential”

r6:=“≥70% participation”

r7:=“≥80% participation”

UFPE’19 -- 14

Hegelian dialectics
For Hegel, dialectics is a form of argument where a thesis is
attacked with an antithesis, leading to a synthesis.

This is a different form of dialectic than the original version
presented by Plato (and practiced by Socrates).

For our purposes, a thesis is a requirement (or set thereof),
an antithesis is a attack that points to a defect of the
requirement(s), and a synthesis is the result of a refinement
that refines attacked requirement(s) into new ones that
don’t have the defect.

Hegel calls refinement a sublation (from German verb
“aufheben”, to sublate) meaning that a refinement at the
same time cancels (or negates) and preserves what it refines
[SEP16].

UFPE’19 -- 15

Refinement operators
CaRE operators are as follows:
✓ Strengthen(r): refines r into r’ such that r’⇒ r.
✓ Weaken(r): refines r into r’ such that r⇒ r’.
✓ Reduce(r): refines r into r1, …, rn such that r1 ∧ … ∧ rn⇒ r
✓ Add(r): refines r into r’ such that requirement r has not been

dealt with until r’ has.
✓ Resolve({r1,…,rn}): refines r1,…,rn into r1’,…,rm’ such that

each ri’ i=1,…m there is some rj, j=1…n such that rj⇒ ri’.

The semantics of ‘dealt with’ is analogous to that for
acceptability in argumentation logic: a requirement is dealt with if
all attacks against it have been dealt with.

This means that leaf nodes of an argumentation graph not
under attack have been dealt with; moreover, they are atomic,
unambiguous, attainable, non-conflicting etc.

UFPE’19 -- 16

Attack types
Attack types are inspired by the IEEE 1998 standard on

requirements specifications [IEEE98]:
✓ Non-atomic(r): there is no function that fulfills r.
✓ Ambiguous(r): r has multiple interpretations
✓ Unattainable(r): r can’t be fulfilled.
✓ Unjustified(r): unclear why is r needed.
✓ TooStrong/TooWeak(r)
✓ Rejected(r)
✓ Conflicting({r1,…rn})
✓ Incomplete(r)

For each of these attack types, there is at least one operator
that can be applied to eliminate the defect pointed out by the
attack, with the exception of ‘Rejected’.

UFPE’19 -- 17

Refinement graphs
Refinement graphs are labelled hyper-graphs, with nodes

representing requirements, hyper-edges representing
refinements each taking one or more inputs and having one or
more nodes as outputs. Edge labels represent attack types and
operators.

Note that such graphs may have cycles:

Unjustified(r:=“Collect timetables”) (add)➔r’:=“Schedule mtg”

Non-atomic(r’) (reduce)➔r, r2:=…

UFPE’19 -- 18

The requirements problem, revisited
Given a refinement hyper-graph, the requirements
problem can be recast in two ways:

✓ (RP-x) Is there a specification that deals with all root-level
requirements?

✓ (RP-all) Find all specifications that deal with all root-level
requirements.

For RP-x, we adopt a label-propagation algorithm.

For RP-all there is a combinatorial algorithm, we are looking
for better …

UFPE’19 -- 19

r1 r2

r3 r4

Non-atomic

r7

Incomplete

Ambiguous

r6 r7

add

reduce
strengthen

X

strengthen

Non-atomic

Non-atomic

r8

r7:=“Access to timetables is
only allowed for the scheduler”

r8:=“timetables are collected by
the system”

strengthen

strengthen

Label propagation on refinement graphs

UFPE’19 -- 20

Solving RP-x
✓ Label leaf-level nodes not under attack S (solved).

✓ When all outgoing nodes of a refinement edge are S, this
refinement has been dealt with, label the edge S.

✓ When for every attack on a node there is at least one
refinement edge that is S, label the node S.

Note: RP-x determines if there is a solution to a RP, i.e., an S
labelling of unattacked leaf level nodes that leads to labelling S
all root-level nodes.

UFPE’19 -- 21

Solving RP-all (naïve)
Note that specifications must be minimal solutions, otherwise

we will always have O(2**n) solutions (where n is number of
unattacked leaf nodes) for any refinement graph that has a
solution.

Naïve algorithm:

✓ S := fully labelled refinement graph that has a solution,

✓ Try all combinations of removing one S leaf label and assign all
solutions to S.

✓ Repeat this process until you find solutions that don’t have
any smaller solution; each of these constitutes a specification.

Meta-comment: I’m sure we can do better …

UFPE’19 -- 22

History
We proposed a calculus for RE in the PhD thesis of Feng-Lin
Li (University of Trento, 2016) [FengLinLi16].

The calculus was more elaborate in the refinement
operators it offered than CaRE. For example, a quality goal
could be weakened in a probabilistic, fuzzy or user-oriented
sense.

However, that proposal didn’t come with a semantics of
what does it mean for a specification to “solve” or “deal
with” stakeholder requirements, when in fact these
requirements may have been rejected, weakened or
supplemented during analysis in search of specifications.

UFPE’19 -- 23

Summary
We have proposed a calculus for RE, that supports the

incremental derivation of a specification from stakeholder
requirements.

Our proposal extends GORE techniques by introducing
operators that can add new requirements, or weaken and
even reject stakeholder requirements.

The meaning of the claim “Specification S deals with
requirements R, assuming assumptions A” has been cast in
argumentation logic semantics, instead of GORE semantics.

UFPE’19 -- 24

UFPE’19 -- 25

References
[Bridgeman27] Bridgeman P., The Logic of Modern Physics, 1927.

[Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S.,”Goal-Directed
Requirements Acquisition”, in The Science of Computer Programming 20, 1993.

[ElRakaiby18] ElRakaiby Y., Ferrari A., Mylopoulos J., “A Refinement Calculus
for Requirements Engineering Based on Argumentation Semantics”, submitted for
publication.

[Feng-LinLi16] Feng-Lin Li, A Refinement Calculus for Requirements
Engineering, PhD thesis, Department of Information Engineering and Computer
Science (DISI), University of Trento, January 2016.

[IEEE98] IEEE, Recommended Practice for Software Requirements
Specifications, IEEE Std 830-1998, 1–40, October 1998.

[Jackson95] Jackson M., Zave P., “Deriving Specifications from Requirements:
An Example”, 17th International Conference on Software Engineering (ICSE’95).

[Jureta10] Jureta, I., Borgida, A., Ernst, N., Mylopoulos, J., “Techne: Towards a
New Generation of Requirements Modeling Languages with Goals, Preferences
and Inconsistency Handling”, 19th Int. IEEE Conference on Requirements
Engineering (RE’10), Sydney, Sept. 2010.

UFPE’19 -- 26

References (cont’d)

[Letier04] Letier E., van Lamsweerde A., “Reasoning about Partial Goal
Satisfaction for Requirements and Design Engineering”, 12th Int. Symposium on
Foundation of Software Engineering, 53–62, Newport Beach CA, Nov. 2004.

[Liaskos10] Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J., “Integrating
Preferences into Goal Models for Requirements Engineering”, 19th International
IEEE Conference on Requirements Engineering (RE’10), Sydney Australia,
September 2010.

[Ross77] Ross, D., Schoman T., “Structured Analysis: A Language for
Communicating Ideas,” IEEE Transactions on Software Engineering 3(1), Special
Issue on Requirements Analysis, January 1977, 16-34.

[SEP16] Stanford Encyclopedia of Philosophy, “Hegel’s Dialectics”, June 2016 .

[Yu93] Yu Eric, “Modelling Organizations for Information Systems
Requirements Engineering”, First IEEE International Symposium on Requirements
Engineering (ISRE’93), San Jose, January 1993.

