
UFPE’19 -- 1 

Lecture	V		
Agent-Oriented	Software	Engineering	
	
John	Mylopoulos	
University	of	Ottawa	
	
	
Federal	University	of	Pernambuco	(UFPE),	
Recife,	November	20,	2019	



UFPE’19 -- 2 

…An	Idea...	
  Software	Engineering	methodologies	have	traditionally	come	
about	 in	 a	 “late-to-early”	 phase	 (or,	 “downstream-to-
upstream”)	fashion.	

  In	 particular,	 Structured	 Programming	 preceded	 (and	
influenced!)	 Structured	 Analysis	 and	 Design;	 likewise,	
Object-Oriented	 Programming	 preceded	 Object-Oriented	
Design	and	Analysis.	

  In	 both	 cases,	 programming	 concepts	 were	 projected	
upstream	to	dictate	how	designs	and	requirements	are	to	be	
conceived.	
What	would	happen	if	we	projected	requirements	concepts	

downstream	to	define	software	designs	and	even	
implementations?	



UFPE’19 -- 3 

What	is	software?	
An	 engineering	 artifact,	 designed,	 tested	 and	 deployed	
using	 engineering	methods;	 rely	 heavily	 on	 testing	 and	
inspection	for	validation	(Engineering	perspective)		
A	 mathematical	 abstraction,	 a	 theory,	 which	 can	 be	
analyzed	for	consistency	and	can	be	refined	into	a	more	
specialized	theory	(Mathematical	perspective)	
A	 non-human	 agent,	 with	 its	 own	 personality	 and	
behavior,	 defined	 by	 its	 past	 history	 and	 structural	
makeup	(CogSci	perspective)	
A	social	structure	of	software	agents,	who	communicate,	
negotiate,	collaborate	and	cooperate	to	fulfil	their	goals	
(Social	perspective)	



UFPE’19 -- 4 

Why	agent-oriented	software?	
  Next	 generation	 software	 engineering	 will	 have	 to	 support	
open,	 dynamic	 architectures	 where	 	 components	 can	
accomplish	tasks	in	a	variety	of	operating	environments.	

  Consider	 application	 areas	 such	 as	 eBusiness,	web	 services,	
pervasive	and/or	P2P	computing.	

  These	 all	 call	 for	 software	 components	 that	 find	 and	
compose	 services	 dynamically,	 establish/drop	 partnerships	
with	other	components	and	operate	under	a	broad	range	of	
conditions.	

  Learning,	 planning,	 communication,	 negotiation,	 and	
exception	 handling	 become	 essential	 features	 for	 such	
software	components.	

☛ ... agents!	



UFPE’19 -- 5 

Agent-oriented	software	engineering	
  Many	researchers	have	been	working	on	it	for	~20	years.	
  Research	on	the	topic	:	

  Extend	 UML	 to	 support	 agent	 communication,	
negotiation	etc.	(e.g.,	[Bauer99,	Odell00]);	
  Extend	 current	 agent	 programming	 platforms	 (e.g.,	
JACK)	 to	 support	 not	 just	 programming	but	 also	design	
activities	[Jennings00].	

  We	proposed	 the	 Tropos	methodology	 for	 building	 agent-
oriented	software;	the	methodology	supports	requirements	
analysis,	as	well	as	design.	



UFPE’19 -- 6 

What	is	an	agent?	

  A	person,	an	organization,	certain	kinds	of	software.	
  A	 software	 agent	 has	 beliefs,	 goals	 (desires),	 intentions,	
hence	they	have	a	BDI	architecture.	

  Agents	are	situated,	autonomous,	flexible,	and	social.	
  But	note:	human/organizational	agents	can’t	be	prescribed,	
they	can	only	be	partially	described.	

  Software	agents,	on	 the	other	hand,	have	 to	be	completely	
prescribed	during	implementation.	

  Beliefs	 correspond	 to	 (object)	 state,	 intentions	 constitute	 a	
run-time	 concept	 (an	 agent’s	 agenda).	 For	 design-time,	 the	
interesting	new	concept	agents	have	that	objects	don’t	have	
is	that	of	‘goal’.	



UFPE’19 -- 7 

The	Tropos	Methodology	
  We	 propose	 a	 set	 of	 primitive	 concepts,	 as	 in	 i*,	 and	 a	
methodology	for	agent-oriented	requirements	analysis	and	
design.		

  We	want	to	cover	four	phases	of	software	development:	
ü  Early	 requirements	 --	 identifies	 stakeholders	 and	 their	
goals;	

ü  Late	requirements	--	introduce	system	as	another	actor	
which	can	accommodate	some	of	these	goals;	

ü  Architectural	 design	 --	 more	 system	 actors	 are	 added	
and	are	assigned	responsibilities;	

ü  Detailed	design	--	completes	the	specification	of	system	
actors.	



UFPE’19 -- 8 

Early	req’nts:	Stakeholder	and	their	goals	

A	social	setting	consists	of	actors,	each	having	goals	(and/or	
softgoals)	to	be	fulfilled.	

Participant Manager

Schedule
meeting

Productive
meetings

Schedule
meeting

Low cost
scheduling

Good 
meeting



UFPE’19 -- 9 

Late	Requirements	with	i*	

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

SchedulerParticipant

ScheduleMtg
System

Timetable
manager

Reporter

Manage
CalendarInfo

MtgInfo

ContributeToMtg Initiator



UFPE’19 -- 10 

Software	architectures	with	i*	

CalendarInfo

Timetable
manager

Reporter

Collect
CalendarInfo

Retrieve
MtgInfo

Update
MtgInfo

Process
query

Updater

Retriever

InfoGatherer

System

Participant



UFPE’19 -- 11 

The	Tropos	development	process	
  Initialization:	 Identify	 stakeholder	 actors	 and	 their	 goals,	
place	them	in	S	and	G	respectively;	

  Step:	For	each	goal	g	in	G	wanted	by	a	in	S:		
ü  Actor	a	adopts	g;		
ü  Actor	a	delegates	g	to	an	existing	actor	in	S;		
ü  Actor	a	delegates	it	to	a	new	actor	a’;	a’	is	added	to	S;		
ü  Refine	g	into	new	subgoals	g1,	…,	gn;	add	these	to	G;	
ü  Declare	goal	g	“denied”.	

  Termination	condition:	All	initial	goals	have	been	fulfilled,	
assuming	all	actors	deliver	on	their	commitments.		



UFPE’19 -- 12 

Tropos	compared	to	OO	techniques	
  Goal	 refinement	 extends	 functional	 decomposition	
techniques,	in	the	sense	that	it	explores	alternatives.	

  Actor	 dependency	 graphs	 extend	 object	 interaction	
diagrams	 in	that	a	dependency	 is	 intentional,	needs	to	be	
monitored,	 may	 be	 discarded,	 and	 can	 be	 established	 at	
design-	or	run-time.	

  In	 general,	 an	 actor	 architecture	 is	 open	 and	 dynamic;	
evolves	through	negotiation,	matchmaking	and	like-minded	
mechanisms.	

  The	distinction	between	design	and	run-time	is	blurred.	
  So	is	the	boundary	between	a	system	and	its	environment	
(software	or	otherwise.)	



UFPE’19 -- 13 

Why	is	this	better	(…	sometimes	…)	
  Traditionally,	 goals	 (and	 softgoals)	 are	 operationalized	
and/or	metricized	before	late	requirements.	

  This	 means	 that	 a	 solution	 to	 a	 goal	 is	 frozen	 into	 a	
software	 design	 early	 on	 and	 the	 designer	 has	 to	 work	
within	the	confines	of	that	solution.	

  This	 won’t	 do	 in	 situations	 where	 the	 operational	
environment	of	a	system,	including	its	stakeholders,	keeps	
changing.	

  This	 won’t	 do	 either	 for	 software	 that	 needs	 to	
accommodate	 a	 broad	 range	 of	 users,	 with	 different	
cultural,	 educational	 and	 linguistic	 backgrounds,	 or	 users	
with	special	needs	leading	to	ever-changing	requirements.	



UFPE’19 -- 14 

The	tale	of	two	designs	

Controller

Interface

Display(“Please see
 Smith tomorrow 
morning at 9am”) 

Communicate
(mtg062)

Interface

Controller



UFPE’19 -- 15 

Formal	Tropos	

  Each	concept	in	a	Tropos	diagram	can	be	defined	formally,	
in	terms	of	a	temporal	logic	inspired	by	KAOS.	

  Actors,	 goals,	 actions,	 entities,	 relationships	 are	described	
statically		and	dynamically.	

Customer

Insurance
CompanyPremium

payment

Repairs
covered

Claims
payout



UFPE’19 -- 16 

A	Formal	Tropos	example	

Entity	Claim	
Has	claimId:	Number,	insP:	InsPolicy,	claimDate,	date:	Date,	
details:	Text	

Necessary	date	before	insP.expDate		
Necessary	(∀x)(Claim(x)	∧	●¬Claim(x)	⟹	¬RunsOK(x.insP.car))										
end	Claim	

Action	MakeRepair	
Performed	by	BodyShop	
Refines	RepairCar	
Input	cl	:	Claim	
Pre	¬RunsOK(cl.insP.car)	
Post	RunsOK(cl.insP.car)...	



UFPE’19 -- 17 

A	goal	dependency	example	

GoalDependency	CoverRepairs	
	Mode		Fulfill	
	Depender	Customer	
	Dependee	InsuranceCo	
	Has	cl:	Claim	
	Defined	/*	the	amount	paid	out	by	the	insurance	company	

covers	repair	costs	*/		
	end	CoverRepairs	

	



UFPE’19 -- 18 

Analysing	Tropos	models	
  Models	in	SE	are	used	for	analysis	human	communication;	
  But,	 this	 is	 not	 enough!	 Large	 models	 can	 be	 hard	 to	
understand,	or	take	seriously!	

  We	 need	 analysis	 techniques	which	 offer	 evidence	 that	 a	
model	makes	sense:	
ü  Simulation	 through	 model	 checking,	 to	 explore	 the	
properties	of	goals,	entities,	etc.	over	their	lifetime;	

ü  Goal	analysis	which	determine	the	fulfillment	of	a	goal,	
given	information	about	related	goals;	

ü  Social	analysis	which	looks	at	viability,	workability,…	for	
a	configuration	of	social	dependencies.	



UFPE’19 -- 19 

Model	checking	for	Tropos	
  Define	 an	 automatic	 translation	 from	 Formal	 Tropos	
specifications	to	the	 input	 language	of	the	nuSMV	model	
checker	[Cimatti99].	

  Veri f icat ion	 of	 temporal	 propert ies	 of	 state	
representations	of	finite	Tropos	models.	

  Discovery	 of	 interesting	 scenarios	 that	 represent	
counterexamples	 to	 properties	 not	 satisfied	 by	 the	
specifications.	

  Model	simulation.	



UFPE’19 -- 20 

Mapping	Tropos	to	nuSMV	
  The	 language	 supported	 by	 a	 model	 checker	 includes	
variables	 that	 can	 take	one	of	 a	 finite	number	of	 values.	
Also,	 constraints	 on	 the	 allowable	 transitions	 from	 one	
value	to	another.	

  How	do	we	map	Formal	Tropos	to	nuSMV?	
ü  Each	goal	instance	is	represented	by	a	variable	that	can	
take	 values	 “no”,	 “created”,	 “fulfilled”;	 these	
represent	the	possible	states	of	a	goal	instance.	

ü  Each	action	is	represented	by	a	Boolean	variable	that	is	
true	only	at	the	time	instance	when	the	action	occurs.	



UFPE’19 -- 21 

Translation	for	CoverRepairs	
VAR		CoverRepairs	:	{no,	created,	fulfilled}	
INIT		CoverRepairs	=	no	
TRANS			CoverRepairs	=	no	->	(next(CoverRepairs)	=	no	|	

next(CoverRepairs)	=	created)	
TRANS			CoverRepairs	=	created	->	(next(CoverRepairs)	=	

created	|	next(CoverRepairs)	=	fulfilled)	
TRANS			CoverRepairs	=	fulfilled	->	next(CoverRepairs)	=	fulfilled	
TRANS				CoverRepairs	=	no	->	next(CoverRepairs	=	created	->		
	!RunOK)	

TRANS			CoverRepairs	=	created	->	next(CoverRepairs	=	fulfilled			
->	DamageCosts	=	fulfilled)	

TRANS			CoverRepairs	=	created	->	next(CoverRepairs	=	fulfilled	
<->	RunsOK)	



UFPE’19 -- 22 

From	nuSMV	specs	to	FSMs	
  Finite	State	Machine	for	CoverRepairs(cl)	

no	 created	 fulfilled	

!RunsOK(cl.insP.car)	DamageCosts(cl)	=	fulfilled	

RunsOK(cl.insP.car)	Necessary	condition	
	for	transition	 Necessary	and	

sufficient	
condition	
	for	transition	



UFPE’19 -- 23 

Model	checking	
  A	model	consists	of	a	finite	set	of	FSMs,	each	representing	
an	 instance	 of	 a	 class	 in	 the	 Tropos	 model	 (goal,	
dependency,	 entity,	 …),	 or	 a	 propositional	 variable	 (e.g.,	
RunsOK(cl.insP.car)).	

  A	 simulation	 considers	 all	 possible	 simulations	 of	 these	
FSMs,	taking	into	account	inter-FSM	constraints.	

  Even	 though	 the	 space	 of	 possible	 simulations	 is	 infinite,	
only	a	finite	(but	usually	large!)	number	of	these	matters.	



UFPE’19 -- 24 

An	Interesting	property	
LTLSPEC	F[CoverRepairs(cl)	=	fulfilled	->	MakeRepair(cl.insP.car)]	
“If/when	sometime	in	the	future	CoverRepairs(cl)	is	fulfilled,	

then	(at	that	time)	MakeRepairs(cl.insP.car)	is	true”	
	
This	property	does	not	hold	for	the	model.	A	counterexample	is:	
 

Variable t1 t2 t3 t4
RunsO K false false tr ue tr ue

DamageCosts no no created fulf i l led

Cover Repair s no cr eated created fulf i l led

M akeRepair false false false false



UFPE’19 -- 25 

A	fix	
Add	to	the	definition	of	the	entity	class	Car	
…	
Necessary	
¬RunsOK(self)	∧	¬MakeRepair(self)	⇒	❍¬RunsOK(self)	
...	



UFPE’19 -- 26 

Experiments	with	the	T-Tool	
Tropos	 models	 can	 have	 an	 unbounded	 number	 of	
instances;	 to	 make	 model	 checking	 work,	 we	 pick	
increasingly	larger	models	(e.g.,	1,	2,...	instances	per	class)	
and	check	whether	a	property	we	want	to	prove	leads	to	
counter-examples.	

  How	do	we	pick	models?	How	do	we	know	when	to	stop?	
  Experiments	 to	 demonstrate	 the	 scalability	 of	 the	
approach.	



UFPE’19 -- 27 

Other	threads	of	research	
  [Security]	 Extend	 Tropos	 to	 support	 ‘ownership’,	
‘permission’	 and	 ‘trust’;	 this	 leads	 to	models	 where	 you	
can	check	that	every	actor	has	the	permissions	she	needs	
to	carry	out	her	obligations	[Zannone05]	è	PhD	thesis	by	
Nicola	Zannone	(Trento,	2007).	

  [Risk	 Management]	 Extend	 the	 risk	 management	
framework	 [Feather05]	 to	 allow	 goal-based	 risk	 analysis	
è	PhD	thesis	by	Yudis	Asnar	(Trento,	2009).	



UFPE’19 -- 28 

UML,	Catalysis	&	Co.	

Related	work	

KAOS	
Z	

AUML	

TROPOS	
GAIA	

!!	The	GAP	!!	

i*	 JACK	



UFPE’19 -- 29 

Conclusions	
  We	 have	 proposed	 a	 set	 of	 concepts	 and	 sketched	 a	
methodology	 that	 together	 support	 Agent-Oriented	
Software	Development.		

  Agent-Oriented	 Software	 Development	 has	 been	 an	 up-
and-coming	 paradigm	 for	 more	 than	 20	 years,	 thanks	 to	
the	rise	and	ever-growing	demand	for	social	software.	

  This	is	a	long-term	project,	and	much	remains	to	be	done.	



UFPE’19 -- 30 



UFPE’19 -- 31 

References	
  [Bauer99]	Bauer,	B.,	Extending	UML	for	the	Specification	of	Agent	Interaction	Protocols.	
OMG	document	ad/99-12-03.		

  [Castro02]	Castro,	J.,	Kolp,	M.,	Mylopoulos,	J.,	“Towards	Requirements-Driven	Software	
Development	Methodology:	The	Tropos	Project,” Information	Systems	27(2),	Pergamon	
Press,	June	2002,	365-389.	

  [Chung00]	Chung,	 L.,	Nixon,	B.,	Yu,	E.,	Mylopoulos,	 J.,	Non-Functional	Requirements	 in	
Software	Engineering,		Kluwer	Publishing,	2000.	

  [Dardenne93]	 Dardenne,	 A.,	 van	 Lamsweerde,	 A.	 and	 Fickas,	 S.,	 “Goal–directed	
Requirements		Acquisition”,	Science	of	Computer	Programming,	20,	1993.	

  [Fuxman01a]	Fuxman,	A.,	Pistore,	M.,	Mylopoulos,	J.	and	Traverso,	P.,	“Model	Checking	
Early	 Requirements	 Specifications	 in	 Tropos”,	 Proceedings	 Fifth	 International	 IEEE	
Symposium	on	Requirements	Engineering,	Toronto,	August	2001.	

  [Fuxman01b]	Fuxman,A.,	Giorgini,	P.,	Kolp,	M.,	Mylopoulos,	J.,	“Information	Systems	as	
Social	Organizations”,	 Proceedings	 International	 Conference	 on	 Formal	Ontologies	 for	
Information	Systems,	Ogunquit	Maine,	October	2001.	

  [Iglesias98]	 Iglesias,	 C.,	 Garrijo,	 M.	 and	 Gonzalez,	 J.,	 “A	 Survey	 of	 Agent-Oriented	
Methodologies”,	Proceedings	of	 the	5th	 International	Workshop	on	 Intelligent	Agents:	
Agent	Theories,	Architectures,	and	Languages	(ATAL-98),	Paris,	France,	July	1998.	



UFPE’19 -- 32 

References	(cont’d)	
  [Jennings00]	Jennings,	N.	“On	Agent-Based	Software	Engineering”,	Artificial	lntelligence	
117,	2000.	

  [Mylopoulos92]	Mylopoulos,	J.,	Chung,	L.	and	Nixon,	B.,	"Representing	and	Using	Non-
Functional	 Requirements:	 A	 Process-Oriented	 Approach,"	 	 IEEE	 Transactions	 on	
Software	Engineering	18(6),	June	1992,	483-497.	

  [Odell00]	 Odell,	 J.,	 Van	 Dyke	 Parunak,	 H.	 and	 Bernhard,	 B.,	 “Representing	 Agent	
Interaction	 Protocols	 in	 UML”,	 Proceedings	 1st	 International	 Workshop	 on	 Agent-
Oriented	Software	Engineering	(AOSE00),	Limerick,	June	2000.		

  [Wooldridge00]	Wooldridge,	 	M.,	 Jennings,	N.,	 and	Kinny,	D.,	“The	Gaia	Methodology	
for	 Agent-Oriented	 Analysis	 and	 Design,” Journal	 of	 Autonomous	 Agents	 and	 Multi-
Agent	Systems,	3(3),	2000,	285–312.	

  [Yu95]	Yu,	E.,	Modelling	Strategic	Relationships	for	Process	Reengineering,	Ph.D.	thesis,	
Department	of	Computer	Science,	University	of	Toronto,	1995.	

  [Zambonelli00]	 Zambonelli,	 F.,	 Jennings,	 N.,	 Omicini,	 A.,	 and	Wooldridge,	M.,	“Agent-
Oriented	Software	Engineering	for	Internet	Applications,”	in	Omicini,	A.,	Zambonelli,	F.,	
Klusch,	 M.,	 and	 Tolks-Dorf	 R.,	 (editors),	 Coordination	 of	 Internet	 Agents:	 Models,	
Technologies,	and	Applications,	Springer-Verlag	LNCS,	2000,	326–346.	


