
UFPE’19 -- 1

Lecture	III		
Social	Dependency	Models	in	RE	
	
John	Mylopoulos	
University	of	Ottawa	
	
	
Federal	University	of	Pernambuco	(UFPE),	
Recife,	November	18,	2019	

UFPE’19 -- 2

Social	dependency	models		
  Social	 dependence	 models	 assume	 an	 ontology	 of	 actors	

(agents,	roles)	and	social	dependencies	among	them.	
i*	 pioneered	 such	 models	 with	 its	 actor	 dependency	

diagrams	[Yu95].		
  But	 there	 were	 other	 proposals	 in	 the	 same	 period:	

Munindar	Singh	proposed	social	commitments	as	fundamental	
concepts	for	multi-agent	systems	[Singh91],	[Singh99],	while	in	
Law,	 rights	 and	 obligations	 have	 been	 acknowledged	 as	
foundational	legal	(and	therefore	social)	concepts	[Hohfeld13].	
  We	review	such	concepts	and	how	they	have	been	adopted	

and	used	in	RE.	

UFPE’19 -- 3

Social	dependencies	in	i*		
  Actor	 dependence	models	 consist	 of	 actors	 (roles,	 agents),	

and	dependencies	(goal,	softgoal,	task,	resource)	among	them.		

ContributeToMtg	

AttendMtg	

UsefulMtg	

CalendarInfo	

SuitableTime	

Scheduler	Participant	

ScheduleMtg	

resource	task	

actor	

Initiator	

goal	

softgoal	

UFPE’19 -- 4

Formalizing	social	dependencies			
  Actor	 dependencies	 are	 formalized	 in	 Eric	 Yu’s	 PhD	 thesis	

using	 intentional	 concepts,	 such	 as	 beliefs,	 goals	 and	
commitments.		
  For	 example,	 here	 are	 the	 axioms	 for	 committed	 goal	

dependency:	
	CW(a,	b, φ)	≡ CW(a,	φ)	∧	B(a,	CA(b,	φ))	
	CW(a,	φ)	⇒	B(a,	∃p,	∃	φ	0(¬	φ ⇒	fail(a,	p,	φ	0)))	
	CA(a, φ)	⇒ B(a,	∃p(result(p,	φ)	∧	allDepOK(a,	p)))	

AllDepOK	includes	all	the	constraints	that	need	to	apply	for	
actor	a	to	execute	plan	p.	
  The	formalization	of	CW	(Committed	Want),	CA	(Committed	

Able)	were	adopted	from	Yves	Lesperance’s	PhD	thesis.	

UFPE’19 -- 5

The	delegation	problem		
  The	delegation	problem	takes	as	input	a	collection	of	actors	

and	 their	 goals,	 and	 selects	 a	 suitable	 network	 of	
dependencies	for	fulfilling	all	actor	goals,	given	constraints	on	
what	dependencies	are	allowed.	

G

G1 G2

A1 A2 A1

G

A1 A2

G1

G2

G2

A1 will fulfill
G on her

own

UFPE’19 -- 6

Solving	the	delegation	problem		
  The	delegation	problem	can	be	solved	with	an	AI	planner.	
  But	we	need	to	specify	more	details	for	any	one	problem:	

ü  Type(g	:	goal;	gt	:	gtype)	–	goals	can	have	a	type	
ü  Order(g1	:	goal;	g2	:	goal)	–	fulfill	g1,	then	g2	
ü  CanSat(a	:	actor;	g	:	goal)	–	a	can	solve	g	
ü  CanSatT(a	:	actor;	gt	:	gtype)	–	a	can	solve	gt	goals	
ü  Wants(a	:	actor;	g	:	goal)	–	a	wants	g	
ü  CanDep(a1	:	actor;	a2	:	actor)	–	a1	can	depend	on	a2	
ü  CanDep4gt(a1:	 actor;	 a2	 :	 actor;	 gt	 :	 gtype)	 –	 a1	 can	

depend	on	a2	for	goals	of	type	gt	
ü  CanDep4g(a1:	actor;	a2:	actor;	g:	goal)	--	a1	can	depend	

on	a2	for	g.	

UFPE’19 -- 7

Experimental	evaluation			
Bryl	used	three	criteria	for	selecting	the	best	plan:	
ü  Number	of	actions	in	a	plan	
ü  Overall	plan	cost	
ü  Degree	of	satisfaction	of	quality	requirements	
The	LPG-td	planner	was	used	in	her	experiments	[LPG].	
The	planner	can	solve	problems	involving	<10	actors	and	up	

to	25	goal	graphs	of	modest	size.	

UFPE’19 -- 8

Social	commitments			
  A	commitment	C(debtor,	creditor,	antecedent,	consequent)	

is	 a	 promise	 from	 a	 debtor	 to	 a	 creditor	 to	 achieve	 the	
consequent	if	the	antecedent	holds.		
  The	debtor	and	creditor	are	actors,	antecedent,	consequent	

are	propositions	describing	states-of-affairs.	
  Examples:	

ü  C(Ebook,	Alice,	$12payment,	BraveNewWorld)	
ü  C(Amit,	John,	vacation,	lecture-on-commitments)	
ü  C(Alice,	Barbara,		goodWeather,	goOnTrip)	
ü  C(UniTN,	Fabiano,	passExams,	getDegree)	

[Credits for these notes on commitments: Amit Chopra]

UFPE’19 -- 9

Commitments	are	everywhere	…	

  Examples:	
ü  A	book	loan	
ü  An	airline	ticket	
ü  A	flier	announcing	a	concert	
ü  Discount	flier	at	the	supermarket	
ü  All-you-can-eat	ad	
ü  Money-back	warranty	
ü  Contracts!	

  Why?	 Because	 they	 make	 the	 world	 more	 predictable	 by	
imposing	 minimal	 constraints	 on	 actors’	 behaviour,	 while	
respecting	their	autonomy.	

UFPE’19 -- 10

Reasoning	with	commitments	
  Detach:	makes	a	conditional	commitment	unconditional		

			C(EBook,	Alice,	$12payment,	BNW)	∧	$12payment	⟹	

	 	 	C(EBook,	Alice,		⊤,	BNW)		
  Discharge:	u	⟹	¬C(x,	y,	r,	u)	
  For	example,	

	BNW	⟹	¬C(EBook,	Alice,	$12payment,	BNW)	
	BNW	⟹	¬C(EBook,	Alice,	⊤,	BNW)	

UFPE’19 -- 11

Operations	on	commitments	
  CREATE(C(x,	y,	r,	u)):	performer	x,	effect	C(x,	y,	r,	u)	
  CANCEL(C(x,	y,	r,	u)):	performer	x,	effect	¬C(x,	y,	r,	u)	
  RELEASE(C(x,	y,	r,	u)):	performer	y,	effect	¬C(x,	y,	r,	u)	
  ASSIGN(C(x,	y,	r,	u),	z):	performer	x,	effect		

	 	 	 	¬C(x,	y,	r,	u)	∧	C(x,	z,	r,	u)		
  DELEGATE(C(x,	y,	r,	u),	z):	performer	x,	effect		

	 	 	 	¬C(x,	y,	r,	u)	∧	C(z,	y,	r,	u)		
  For	example,	

	DELEGATE(C(EBook,Alice,	$12payment,BNW),Charlie)	⇒	
	 	 	 	C(Charlie,Alice,	$12payment,BNW)	
	ASSIGN(C(EBook,	Alice,	$12payment,BNW),Bob)	⇒	
	 	 	 	C(EBook,Bob,	$12payment,BNW)	

UFPE’19 -- 12

Commitments	come	and	go	via	events	
  CB	:=	C(EBook,	Alice,	$12payment,	BNW))	

  CUB	:=	C(EBook,	Alice,	⊤,	BNW))	

	
	
	

											Events	 															Meaning	

UFPE’19 -- 13

  A	 protocol	 consists	 of	 a	 sequence	 of	 events	 that	 create/
discharge	commitments	among	roles.	
  For	 example,	 a	 buyer-seller	 protocol	 creates	 a	 ‘sell’	

commitment	 upon	 an	 offer,	 which	 becomes	 unconditional	
when	 a	 payment	 is	 made,	 and	 then	 is	 discharged	 when	 the	
book	is	delivered.	
  Protocols	 have	 been	 traditionally	 modelled	 as	 state	

machines/Petri	nets,	etc.	

Protocols	

UFPE’19 -- 14

  It	 is	well-known	 that	 Petri	 net/state	machine	models	were	
intended	for	system	processes	not	business	processes	as	they	
are	not	flexible	enough	and	are	often	violated.	

Challenge:	flexible	protocols/processes	

Can we do better?

UFPE’19 -- 15

How	to	model	business	processes?		
  Right	now	they	modelled	as	activities	and	control	flows,	see	
BPMN.	

  Process	 execution:	 Workflow	 engine	 assigns	 activities	 to	
performers	
  Exception	 handling	 by	 changing	 assignments,	 follow	
alternative	flow	paths.	

Can we do better?

UFPE’19 -- 16

A	specification	language	for	business	
processes	(Azzurra)	
 A	business	process	is	specified	as	a	collection	of	commitments	

[Dalpiaz15].	
  Consider	doctor	Maria	and	her	commitments:	

ü  C1	to	head	clinician:	“Make	the	daily	rounds”	
ü  C2	to	nurse	Zena:	“Visit	patient	Tom	by	noon”	
ü  C3	to	secretary	Jane:	“Fill	weekly	report	by	4pm”	

 Here,	 there	are	no	activities	 to	be	performed	only	outcomes	
that	 have	 to	 become	 true,	 because	 that’s	 what	 commitments	
are	all	about!	

UFPE’19 -- 17

Azzurra	concepts	
 Agents:	Paolo,	Vitor	
  Roles:	Professor,	PhDStudent,	Postdoc	
  Commitment	 C(x,y,r,u):	 promise	 by	 debtor	 x	 to	 creditor	 y	 to	

make	consequent	u	true	if	antecedent	r	becomes	true.	
  Strong	 commitment	 C*(x,y,r,u):	 promise	 by	 debtor	 x	 to	

creditor	 y	 to	 make	 consequent	 u	 true	 after	 antecedent	 r	
becomes	true.	
  Conditional	commitment	is	a	commitment	that	becomes	true	

when	a	condition	holds		COND	à	C(x,y,r,u)	
 A	protocol	declares	commitments	between	roles,	as	in	

		C(SeminarOrg,	Presenter,	TalkDetailsSent,	TalkAnnounced)	

UFPE’19 -- 18

Example:	Fracture	treatment	protocol	

UFPE’19 -- 19

Graphical	syntax	by	example	

Nurse

Speci
alist

Patient

Rehab
Centre

Orthopedist

C2:=C(T,
SlingApplied)

C5:=C(T,((Fixated•Plastered)∨
fulfill(C6)∨SlingApplied))
Fracture
assessed

C7:=C(T,
RcChosen(rc))

C8:=C(T,
MedApplied(m))

Surgeon
C6:=C*(SurgeryRequested,

Operated)

C9:=C(T,
Rehabed)

C3:=C(T,
XRayPerformed)

Radiologist

C1:=C(T, Examined•
Diagnosed)

C4:=C*(XRayPerformed,
 FractAssessed)

UFPE’19 -- 20

Reasoning	with	Azzurra	specifications	
  Given	a	sequence	of	input	events	such	as	

	instantiated(Treatment(RGH,	John,	Maria)),	
	instantiated(C1(…),	Examined(Maria,	John),	
	Diagnosed(John),	noXRayNeeded,	…	

determine	if	this	is	compliant	with	the	specification,	and	if	so,	
what	is	the	final	state	of	the	protocol	execution.	
	

UFPE’19 -- 21

Smart	contracts	
•	These	are	software	IoT	systems	that	monitor	executions	of	
a	 contract	 to	 ensure	 that	 terms	 are	 complied	 with,	 detect	
violations	and	assign	blame.		

•	You	can	 think	of	 them	as	 legal	processes,	where	contract	
participants	are	legally	bound	to	do	as	the	contract	says.	

•	Example:	Importing	meat	from	Brazil,	a	contract	between	a	
Canadian	 supermarket	 chain,	 a	 Brazilian	 meat	 producer,	
trucking	companies	 in	Brazil	and	Canada	respectively,	and	a	
shipping	company.		

•	Here	the	focus	of	smart	contract	software	is	on	compliance	
and	control.	

UFPE’19 -- 22

Smart	contract	for	meat	importing	
  Receives	event	logs	when	meat	has	been	transferred	from	
the	producer	to	the	truck	company	(Brazil),	truck	company	
to	shipping	company	etc.		

  Receives	 log	 when	 the	 quality	 of	 the	 meat	 has	 been	
checked,	e.g.,	“should	be	AAA”,	either	through	sensors	or	
by	relying	on	a	human	agent.	

  Receives	 logs	sent	by	temperature	sensors	to	ensure	that	
the	meat	remains	refrigerated	throughout	the	trip,	except	
for	<2hr	periods.		

  Checks	that	no	parts	of	the	shipment	are	substituted	with	
inferior	or	harmful	alternatives.	

	

UFPE’19 -- 23

Smart	contracts	and	blockchains		
  For	a	smart	contract	to	have	legal	status,	the	integrity	of	its	
data	must	be	guaranteed.		
  That’s	 where	 blockchain	 technology	 comes	 in!	 This	
technology	ensures	that	the	logs	of	events	recorded	in	the	
blockchain	 ledger	 (and	 checked	 for	 compliance	 by	 smart	
contract)	can’t	be	tampered	with.	

  Many	 software	 companies	 are	 selling	 smart	 contract	
systems	to	supermarket	chains,	banks,	governments,	etc.	

  What	they	are	actually	selling	is	IoT	programs	implemented	
on	a	blockchain	platform.	

UFPE’19 -- 24

(SE)	Research	questions		
•	Traditionally,	software	requirements	were	about	functions	
and	 quality	 constraints	 for	 a	 system-to-be;	 but	 smart	
contracts	are	about	obligations	and	powers	on	social	agents	
(aka	parties)	and	constraints	thereof.		
•	 A	 (formal)	 specification	 for	 a	 smart	 contract	 consists	 of	
bilateral	 obligations	 and	 powers	 with	 constraints,	 very	
different	from	a	specification	for	vanilla	software.	
•	 How	 do	we	 generate	 semi-automatically	 blockchain	 code	
from	formal	specifications?	
•	 Analyzing	 smart	 contract	 specifications	 using	 model	
checkers,	SMT	solvers,	etc.		
•	 How	 to	 generate	 semi-automatically	 smart	 contract	
specifications	from	natural	language?		

UFPE’19 -- 25

Symbolaio:	Specifications	for	contracts		
  Defined	a	formal	contract	specification	language		
ü  Primitive	concepts	include	obligation,	power,	role,	time	

point/interval;	
ü  Lifetime	semantics	for	obligations,	powers;	
ü  Limited	expressively	to	Propositional	Logic+;	

  Working	 on	 an	 analyzer	 for	 contract	 specifications	 that	
takes	as	input	a	tagged	sequence	of	events	

	e1,	e2,	…,	en 	 	compliant	
	e1’,	e2’,	…,	em’ 	non-compliant	

and	returns	CORRECT/INCORRECT,	depending	on	whether	the	
tag	is	correct	or	not.	

UFPE’19 -- 26

Interesting	features		
  Powers:	these	are	rights	that	parties	have	to	change	other	
obligations	and	powers.	

  For	example,	
ü  “Seller	has	the	power	to	charge	1.10%	the	sales	price	if	

Buyer	is	late	in	paying”	
ü  “Money	 back	 warranty”:	 “Buyer	 has	 the	 right	 to	 get	

money	back	if	not	happy	with	the	purchased	goods”		
  Surviving	 obligations	 continue	 to	 apply	 after	 contract	
execution	terminates.	

  Sub-contracting,	can	be	done	at	contract	execution	time.	
		

UFPE’19 -- 27

Ontology	for	contracts		

UFPE’19 -- 28

Semantics	for	obligations		

  Semantics	 consists	 of	 defining	 axioms	 that	 specify	 when	
do	transition	events	occur;	for	example	“’activated’	occurs	
when	the	antecedent	of	an	obligation	becomes	true”	

UFPE’19 -- 29

Semantics	for	powers		

UFPE’19 -- 30

Meat	purchase	and	sale	agreement	
Between	 Seller	 and	Buyer:	 This	 agreement	 is	 entered	 into	 as	 of	 the	 date	
<eDate>,	 between	 <party1>	 as	 Seller	 with	 the	 address	 <retAdd>,	 and	
<party2>	as	Buyer	with	the	address	<delAdd>.	
Terms	and	Conditions	
1. 	Payment	&	Delivery:	(a)	Seller	shall	sell	an	amount	of	<qnt>	meat	with	
<qlt>	quality	(“goods")	to	the	Buyer;	(b)	Title	in	the	goods	shall	not	pass	on	
to	 the	 Buyer	 until	 payment	 of	 the	 price	 has	 been	made	 in	 full;	 (c	 o	 The	
Seller	shall	deliver	the	order	in	one	delivery	within	<delDueDateDays>	days	
to	the	Buyer	at	 its	warehouse;	 (d)	 	The	Buyer	shall	pay	<amt>	 (\price")	 in	
<curr>	to	the	Seller	before	<payDueDate>;	(e)	In	the	event	of	late	payment	
of	price	due,	the	Buyer	shall	pay	interests	equal	to	<intRate>%	of	the	price.	
2.	Assignment:		The	rights	and	obligations	are	not	assignable	by	Buyer.	
3.	Termination:	(a)	Any	delay	in	delivery	of	the	goods	will	entitle	the	Buyer	
to	terminate	the	Contract	if	it	exceeds	10	Business	Days.	
4.	Confidentiality:	(a)	Both	Seller	and	Buyer	must	keep	the	contents	of	this	
contract	 confidential	 during	 the	 execution	 of	 the	 contract	 and	 for	 six	
months	after	the	termination	of	the	contract.	

UFPE’19 -- 31

Contract	domain

ü  Seller	isA	Role	with	returnAddress	:	String;	
ü  Buyer	isA	Role	with	warehouse	:	String;	
ü  Meat	isA	PerishableGood	isA	Asset	with	quantity	:	Integer,		

	quality	:	MeatQuality;	
ü  Delivered	isA	Event	with	item:	Meat,	deliveryAddress	:		

	String,	delDueDate	:	Date;	
ü  Paid	isA	Event	with	amount	:	Integer,	currency	:	Currency,		

	from	:	Buyer,	to:	Seller,	payDueDate:	Date;	
ü  Currency	isA	Enumeration(`CAD',	`USD',	`EUR');	
ü  MeatQuality	isA	Enumeration(`PRIME',	`AAA',	`AA',	`A');	
ü  …	

UFPE’19 -- 32

Contract	declarations	and	conditions
Contract	meatSaleC(buyer:	Buyer,	seller:	Seller,	qnt:	Int,	qlt:	
MeatQuality,	amt:	Int,	cur:	Currency,	payDueDate:	Date,	
delAdd:	String,	eDate:	Date,	del#Days:	Int,	intRate	:	Int)	
Declarations	
goods:	Meat	with	quantity	:=	qnt,	quality	:=	qlt;		
delivered:	Delivered	with	item	:	goods,	deliveryAddress	:=		
			delAdd,	delDueDate	:=	eDate	+	delDueDatedays;	
paid	:	Paid	with	amount	:=	amt,	currency	:=	curr,	from	:=		
			buyer,	to	:=	seller,	dueD	:=	payDueDate;	
paidLate:	Paid	with	amount	:=	(1	+	intRate)*amt,			
			currency	:=	curr,	from	:=	buyer,	to	:=	seller;	
Precondition	isOwner(goods,	seller);	
Postcondition		
isOwner(goods,	buyer)	AND	not(isOwner(goods,	seller));	

UFPE’19 -- 33

Contract	obligations	
Obligations	
o1	:	O(seller,	buyer,	true,	happenBefore(delivered,		

	 	 	 	 	delivered.delDueDate));	
o2	:	O(buyer,	seller,	true,	happensBefore(paid,		

	 	 	 	 		paid.payDueDate));	
o3	:	violates(o2)	→	O(buyer,	seller,	true,		

	 	 	 	 	happens(paidLate,));	
SurvivingObligations	
so1:	SO(seller,	buyer,	true,	keepConfidential);	
so2:	SO(buyer,	seller,	true,	keepConfidential);		
	

keepConfidential	is	defined	as	“There	is	no	third	party	that	
knows	the	terms	of	this	contract	during	the	execution	of	
the	contract	and	6mo	after”.	

UFPE’19 -- 34

Contract	powers	
Powers
p1:	P(seller,	buyer,	violates(o2	OR	o3),	suspends(o1));	
p2:	P(buyer,	seller,	happensWithin(paidLate,	suspension(o1)),	
resumes(o1));	
p3:	P(buyer,	seller,	not(happensBefore(delivered(goods),	
delivered.delDueDate	+	10days),	discharges(o2	AND	o3)	AND	
terminates(meatSaleC));	
Constraints	
not(buyer	=	seller);	
∀o(CannotBeAssigned(o:	Obligation);		
∀p(CannotBeAssigned(p:	Power);	
	
  Powers	 are	 rights	 that	 parties	 have	 to	 change	 another	
obligation/power,	i.e.,	cancel	it,	suspend	it,	etc.	

UFPE’19 -- 35

Summary	
  Social	 dependency	 models	 are	 useful	 not	 only	 for	

specifying	 requirements	 assignments	 in	 RE,	 but	 also	 for	
specifying	business	and	legal	processes.	
  Commitments	 constitute	 a	 better-developed	 and	

formalized	variant	of	i*	actor	dependencies.	
  Legal	 Obligations/Rights	 are	 variants	 of	 commitments	

that	are	legally	binding,	and	therefore	have	consequences	if	
not	complied	with.	
  The	 notion	 of	 power	 is	 perhaps	 the	 most	 interesting	

variant	 among	 social	 dependencies	 in	 that	 it	 allows	 for	 a	
legal	 process	 to	 change	 completely,	 depending	 on	 what	
happens	with	the	compliance	of	initial	obligations.	

UFPE’19 -- 36

UFPE’19 -- 37

References	
  [Bryl09]	 Bryl	 V.,	 Giorgini	 P.,	 Mylopoulos	 J.,	 “Designing	 Socio-Technical	 Systems:	 From	

Stakeholder	 Goals	 to	 Social	 Networks”,	 Requirements	 Engineering	 Journal	 14(1),	 47-70,	
Springer,	2009.	
  [Dalpiaz15]	 Dalpiaz	 F.,	 Cardoso	 E.,	 Cannobio	 J.,	 GiorginiFa	 P.,	 Mylopoulos	 J.,	 “Social	

Specifications	 of	 Business	 Processes	 with	 Azzurra”,	 9th	 IEEE	 International	 Conference	 on	
Research	Challenges	in	Information	Science	(RCIS’15),	Athens,	May	2015.		
  [Hohfeld13]	 Hohfeld	W.,	 “Some	 Fundamental	 Legal	 Conceptions	 as	 Applied	 in	 Judicial	

Reasoning”,	Yale	Law	Journal	23(16),	1913.	
  [LPG]	LPG	Homepage.	LPG-td	Planner.	http://zeus.ing.unibs.it/lpg/	
  [Sharifi19]	 Sharifi	 S.,	 Parvisi-Mosaed	 A-R.,	 Amyot	 D.,	 Logrippo	 L.,	 Mylopoulos	 J.,	

“Symbolaio:	Contracts	as	Legal	Processes	with	Powers”,	submitted	for	publication.	

  [Singh91]	 Singh	M.,	 “Social	 and	 Psychological	 Commitments	 in	 Multi-Agent	 Systems”,	
AAAI	Fall	Symposium,	1991.		
  [Singh99]	 Singh	M.,	 “An	Ontology	 for	 Commitments	 in	Multi-Agent	 Systems”,	Artificial	

Intelligence	and	Law,	97-113,	Kluwer,	1999.	
  [Yu95]	 Yu	 E.,	Modelling	 Strategic	 Relationships	 for	 Process	 Reengineering,	 PhD	 Thesis,	

University	of	Toronto,	1995.	

