Lecture Il
Social Dependency Models in RE

John Mylopoulos
University of Ottawa

Federal University of Pernambuco (UFPE),
Recife, November 18, 2019

UFPE'19 -- 1

Social dependency models

@® Social dependence models assume an ontology of actors
(agents, roles) and social dependencies among them.

® i* pioneered such models with its actor dependency
diagrams [Yu95].

® But there were other proposals in the same period:
Munindar Singh proposed social commitments as fundamental
concepts for multi-agent systems [Singh91], [Singh99], while in
Law, rights and obligations have been acknowledged as
foundational legal (and therefore social) concepts [Hohfeld13].

® We review such concepts and how they have been adopted
and used in RE.

UFPE’19 -- 2

Social dependencies in j*

@ Actor dependence models consist of actors (roles, agents),
and dependencies (goal, softgoal, task, resource) among them.

ContributeToMtg Initiator
softgoal
actor
UsefulMtg L ScheduleMtg
Calendarinfo *
goal

Participant ~—__ g - /Scheduler

Attendl\y
resource

SuitableTime

task

UFPE’19 -- 3

Formalizing social dependencies

® Actor dependencies are formalized in Eric Yu’s PhD thesis

using intentional concepts, such as beliefs, goals and
commitments.

® For example, here are the axioms for committed goal
dependency:

CW(a, b,) = CW(a, ¢) A B(a, CA(b, ¢))

CW(a, ¢) = B(a, dp, ¢ ,(- ¢ =fail(a, p, ¢,)))

CA(a, ¢) = B(a, dp(result(p, ¢) A allDepOK(a, p)))
@ AllIDepOK includes all the constraints that need to apply for
actor a to execute plan p.

® The formalization of CW (Committed Want), CA (Committed
Able) were adopted from Yves Lesperance’s PhD thesis.

UFPE'19 -- 4

The delegation problem

® The delegation problem takes as input a collection of actors
and their goals, and selects a suitable network of
dependencies for fulfilling all actor goals, given constraints on
what dependencies are allowed.

A, A, Ai A, will fulfill

G on her
own
@ G
® e \
G1 GQ # 1 /‘G\\ A2

G. G

UFPE’19 -- 5

Solving the delegation problem

® The delegation problem can be solved with an Al planner.

® But we need to specify more details for any one problem:
v Type(g : goal; gt : gtype) — goals can have a type

Order(gl : goal; g2 : goal) — fulfill g1, then g2

CanSat(a : actor; g : goal) —a can solve g

CanSatT(a : actor; gt : gtype) — a can solve gt goals

Wants(a : actor; g : goal) —awants g

CanDep(al : actor; a2 : actor) — al can depend on a2

SN X X X X

CanDep4gt(al: actor; a2 : actor; gt : gtype) — al can
depend on a2 for goals of type gt

N

CanDep4g(al: actor; a2: actor; g: goal) -- al can depend
on a2 for g.

UFPE’19 -- 6

Experimental evaluation

@ Bryl used three criteria for selecting the best plan:
v" Number of actions in a plan
v Overall plan cost
v Degree of satisfaction of quality requirements
® The LPG-td planner was used in her experiments [LPG].

® The planner can solve problems involving <10 actors and up
to 25 goal graphs of modest size.

UFPE’19 -- 7

Social commitments

® A commitment C(debtor, creditor, antecedent, consequent)
is a promise from a debtor to a creditor to achieve the
consequent if the antecedent holds.

® The debtor and creditor are actors, antecedent, consequent
are propositions describing states-of-affairs.

® Examples:
v C(Ebook, Alice, S12payment, BraveNewWorld)
v' C(Amit, John, vacation, lecture-on-commitments)
v C(Alice, Barbara, goodWeather, goOnTrip)
v' C(UniTN, Fabiano, passExams, getDegree)

[Credits for these notes on commitments: Amit Chopra] UFPE'19 -- 8

Commitments are everywhere *--

® Examples:

v A book loan
An airline ticket
A flier announcing a concert
Discount flier at the supermarket
All-you-can-eat ad

SN N X X

Money-back warranty
v Contracts!

® Why? Because they make the world more predictable by
imposing minimal constraints on actors” behaviour, while
respecting their autonomy.

UFPE’19 -- 9

Reasoning with commitments
@® Detach: makes a conditional commitment unconditional
C(EBook, Alice, S12payment, BNW) A S12payment =
C(EBook, Alice, T, BNW)
@ Discharge: u = -C(x, vy, r, u)
® For example,

BNW = -~C(EBook, Alice, S12payment, BNW)
BNW = -C(EBook, Alice, T, BNW)

UFPE’19 -- 10

Operations on commitments

® CREATE(C(x, v, r, u)): performer x, effect C(x, y, r, u)
® CANCEL(C(x, v, r, u)): performer x, effect -C(x, vy, r, u)
® RELEASE(C(x, vy, r, u)): performery, effect -C(x, vy, r, u)

@® ASSIGN(C(x, v, r, u), z): performer x, effect
-C(x,y, r,u) A C(x, z, 1, u)

® DELEGATE(C(x, vy, r, u), z): performer x, effect
-=C(x,y, r,u) A C(z,y,r, u)

® For example,

DELEGATE(C(EBook,Alice, S12payment,BNW),Charlie) =
C(Charlie,Alice, S12payment,BNW)

ASSIGN(C(EBook, Alice, $12payment,BNW),Bob) =
C(EBook,Bob, S12payment,BNW)

UFPE'19 -- 11

Commitments come and go via events
® C; := C(EBook, Alice, S12payment, BNW))
® C,g := C(EBook, Alice, T, BNW))

EBook Alice EBook Alice
Offer(s ca—Creay
2R W‘
\NW)- ce
] ek%« 2\]
—Pay($12)— ol D822
Degjj VGI‘(B N W) “Cp Decla,-e (BN W)
i
“Ce

Events Meaning

UFPE'19 -- 12

Protocols

® A protocol consists of a sequence of events that create/
discharge commitments among roles.

® For example, a buyer-seller protocol creates a ‘sell’
commitment upon an offer, which becomes unconditional
when a payment is made, and then is discharged when the
book is delivered.

® Protocols have been traditionally modelled as state
machines/Petri nets, etc.
Off e, cus;

er(price, item)

e

. Cus
T Re;, ,
s, MeH e Jner:
cutkpﬂce iter™) Hprice, i
pcce? o) A

mer, s

Deas; Us:
*eritor, '@
i
cusS m.e
Pav“’“‘:e‘

UFPE’19 -- 13

Challenge: flexible protocols/processes

@ It is well-known that Petri net/state machine models were
intended for system processes not business processes as they
are not flexible enough and are often violated.

o e ! s.

r Price, jte m)

C

. u,
mer R’Ej@ ct (S’ m er:

Cuss) .. m) .
31\'(.3 pﬁce .
n:’Er! Cu .
. mer @ Can we do better?

gia{w‘"@

UFPE’19 -- 14

How to model business processes?

@ Right now they modelled as activities and control flows, see

tf/ _'\}' ----- Sta Event . -
o |’ Rejected
—
Record Loan Check Intorm =
Application Applicants 0 Loan Study ‘ _\ND’ Customer of --- End Event
| Intommaton Irtorrnation : ’ Rejection
Check Resuit? Applig-ation —
i : Approved?
| i ——
@ivity Gateway)
= S ;'fes—’ Disbursement
W www.hbizagi.com
@ Process execution: Workflow engine assigns activities to

performers

® Exception handling by changing assignments, follow
alternative flow paths.

Can we do better?

UFPE’19 -- 15

A specification language for business
processes (Azzurra)

@ A business process is specified as a collection of commitments
[Dalpiaz15].

@® Consider doctor Maria and her commitments:

v C1 to head clinician: “Make the daily rounds”

v' C2 to nurse Zena: “Visit patient Tom by noon”

v C3 to secretary Jane: “Fill weekly report by 4pm”
@ Here, there are no activities to be performed only outcomes
that have to become true, because that's what commitments
are all about!

UFPE’19 -- 16

Azzurra concepts

® Agents: Paolo, Vitor
® Roles: Professor, PhDStudent, Postdoc

® Commitment C(x,y,r,u): promise by debtor x to creditor y to
make consequent u true if antecedent r becomes true.

@® Strong commitment C*(x,y,r,u): promise by debtor x to
creditor y to make consequent u true after antecedent r
becomes true.

® Conditional commitment is a commitment that becomes true
when a condition holds COND = C(x,y,r,u)

@ A protocol declares commitments between roles, as in
C(SeminarOrg, Presenter, TalkDetailsSent, TalkAnnounced)

UFPE'19 -- 17

Example: Fracture treatment protocol

Protocol parameters: agents that are
bound when the protocol is Instantiated.
Among them, the context agent

l

rotocol Treatment (context h. p : Patient. sp : Specialist
p L (I Pl) { Precedence
ag-variables: rc, ra, or; operator *-*

commitments:
init —; C1:C(sp, p, T, Examined - Diagnosed) /

/ NoXRayNeeded —; Co:C(Orthopedist, sp, T, SlingMade)
XRayRequested —; C3:C(Radiologist, sp, T, bind(deb, ra) - XRayPerformed)

As soon as

the protocol is t

instantiated /
As the LHS happens, The debtor is
the commitment in the bound to agent

RHS shall be created variable “ra”

UFPE’19 -- 18

Graphical syntax by example

C7:=C(T,

RcChosen(rc)) \

C8:=C(T, @
MedApplied(m
pplied(m)) C1:=C(T, Examined-

Diagnosed)
5:=C(T,((Fixated-Plastered) V __
fulfill(C6) V SlingApplied)) F({:fr;;gég’)
Fractured C4:=C*(XRayPerformed,
assesse C2:=C(T, FractAssessed)
SlingApplied) Rehab
entre
C3:=C(T,
XRayPerformed)
_alogist
Orthop C6:=C*(SurgeryRequested,
Operated) Surgeon

UFPE'19 -- 19

Reasoning with Azzurra specifications

@ Given a sequence of input events such as
instantiated(Treatment(RGH, John, Maria)),
instantiated(C1(---), Examined(Maria, John),
Diagnosed(John), noXRayNeeded, -

determine if this is compliant with the specification, and if so,
what is the final state of the protocol execution.

UFPE19 --

20

Smart contracts

e These are software loT systems that monitor executions of
a contract to ensure that terms are complied with, detect
violations and assign blame.

e You can think of them as legal processes, where contract
participants are legally bound to do as the contract says.

e Example: Importing meat from Brazil, a contract between a
Canadian supermarket chain, a Brazilian meat producer,
trucking companies in Brazil and Canada respectively, and a
shipping company.

e Here the focus of smart contract software is on compliance
and control.

UFPE'19 -- 21

Smart contract for meat importing

® Receives event logs when meat has been transferred from
the producer to the truck company (Brazil), truck company
to shipping company etc.

® Receives log when the quality of the meat has been
checked, e.g., “should be AAA”, either through sensors or
by relying on a human agent.

® Receives logs sent by temperature sensors to ensure that
the meat remains refrigerated throughout the trip, except
for <2hr periods.

® Checks that no parts of the shipment are substituted with
inferior or harmful alternatives.

UFPE'19 -- 22

Smart contracts and blockchains

@® For a smart contract to have legal status, the integrity of its
data must be guaranteed.

® That’s where blockchain technology comes in! This
technology ensures that the logs of events recorded in the
blockchain ledger (and checked for compliance by smart
contract) can’t be tampered with.

® Many software companies are selling smart contract
systems to supermarket chains, banks, governments, etc.

® What they are actually selling is loT programs implemented
on a blockchain platform.

UFPE’19 -- 23

(SE) Research questions

e Traditionally, software requirements were about functions
and quality constraints for a system-to-be; but smart
contracts are about obligations and powers on social agents
(aka parties) and constraints thereof.

e A (formal) specification for a smart contract consists of
bilateral obligations and powers with constraints, very
different from a specification for vanilla software.

e How do we generate semi-automatically blockchain code
from formal specifications?

e Analyzing smart contract specifications using model
checkers, SMT solvers, etc.

e How to generate semi-automatically smart contract
specifications from natural language?

UFPE’19 -- 24

Symbolaio: Specifications for contracts

® Defined a formal contract specification language

v Primitive concepts include obligation, power, role, time
point/interval,

v Lifetime semantics for obligations, powers;
v Limited expressively to Propositional Logic+;

® Working on an analyzer for contract specifications that

takes as input a tagged sequence of events
el, e2, -+, en compliant

el’, e2’, -=-, em non-compliant

and returns CORRECT/INCORRECT, depending on whether the
tag is correct or not.

UFPE’19 -- 25

Interesting features

® Powers: these are rights that parties have to change other
obligations and powers.

® For example,
v “Seller has the power to charge 1.10% the sales price if
Buyer is late in paying”
v “Money back warranty”: “Buyer has the right to get
money back if not happy with the purchased goods”

@® Surviving obligations continue to apply after contract
execution terminates.

@® Sub-contracting, can be done at contract execution time.

UFPE’19 -- 26

Ontology for contracts

subcontract 1
| |‘ Event —time-m={ Point(Time)
Contract]2.x
0.1 . Asset pre-state | post-state start| end
terminated i 1 1 |
/suspended Party [ownership . :
» * | - quantity Situation |—Ume| Interval(Time)
- quality
0.1 A
0.1
1-.* 2..*
1 0.* 0..* | antecedent
N 2.* :
termination ‘ subject | . 0..* 1 Legal
/suspension Role 1 0.* Legal Position 1 Situation
object 0.* A l 0..* consequent }
: 0.1
change state trigger
| lerminator Power Obligation
/suspender g_»

UFPE'19 -- 27

Semantics for obligations

Contract.InEffect

Obligation
c}‘-l Discharee
e Unsuccessful] O
Expired [nscharzed l'ermmnaton
Termmated
Active :

Fulfilled |
F[Fulﬁllmem‘}—ﬂ
Resumed | Suspende
Violated
[Suﬁmﬂsinn] \(Violation I—-p()
~ A

= (Successful Te -

Activated

InEffect

Create

Power

A

® Semantics consists of defining axioms that specify when
do transition events occur; for example “activated’ occurs
when the antecedent of an obligation becomes true”

UFPE’19 -- 28

Semantics for powers
L LJUBIIT“&“."'J

J

—L ¥ HRATIom J—’U

Power

' .
Active

uccessfulTe
rmination Exerted

Triggered Activated

O

Exparad

Terminated

ﬁ InEffect J
Suapended ¢ t}t’cm“mﬂ

(

' Unsuccessful
~ Termination

Sus cnsinn]
lk L

b

o

UFPE’19 -- 29

Meat purchase and sale agreement

Between Seller and Buyer: This agreement is entered into as of the date
<eDate>, between <partyl> as Seller with the address <retAdd>, and
<party2> as Buyer with the address <delAdd>.

Terms and Conditions

1. Payment & Delivery: (a) Seller shall sell an amount of <gnt> meat with
<qlt> quality (“goods") to the Buyer; (b) Title in the goods shall not pass on
to the Buyer until payment of the price has been made in full; (c o The
Seller shall deliver the order in one delivery within <delDueDateDays> days
to the Buyer at its warehouse; (d) The Buyer shall pay <amt> (\price") in
<curr> to the Seller before <payDueDate>; (e) In the event of late payment
of price due, the Buyer shall pay interests equal to <intRate>% of the price.

2. Assignment: The rights and obligations are not assignable by Buyer.

3. Termination: (a) Any delay in delivery of the goods will entitle the Buyer
to terminate the Contract if it exceeds 10 Business Days.

4. Confidentiality: (a) Both Seller and Buyer must keep the contents of this
contract confidential during the execution of the contract and for six
months after the termination of the contract.

UFPE’19 -- 30

Contract domain

N

Seller isA Role with returnAddress : String;

Buyer isA Role with warehouse : String;

Meat isA PerishableGood isA Asset with quantity : Integer,
quality : MeatQuality;

Delivered isA Event with item: Meat, deliveryAddress :
String, delDueDate : Date;

Paid isA Event with amount : Integer, currency : Currency,
from : Buyer, to: Seller, payDueDate: Date;

Currency isA Enumeration('CAD', 'USD', 'EUR’);

MeatQuality isA Enumeration(' PRIME', "AAA', "AA', 'A');

UFPE'19

-- 31

Contract declarations and conditions

Contract meatSaleC(buyer: Buyer, seller: Seller, gnt: Int, glt:

MeatQuality, amt: Int, cur: Currency, payDueDate: Date,

delAdd: String, eDate: Date, del#Days: Int, intRate : Int)

Declarations

goods: Meat with quantity := gnt, quality := qlt;

delivered: Delivered with item : goods, deliveryAddress :=
delAdd, delDueDate := eDate + delDueDatedays;

paid : Paid with amount := amt, currency := curr, from :=
buyer, to :=seller, dueD := payDueDate;

paidLate: Paid with amount := (1 + intRate)*amt,
currency := curr, from := buyer, to :=seller;

Precondition isOwner(goods, seller);

Postcondition

isOwner(goods, buyer) AND not(isOwner(goods, seller));

UFPE'19 -- 32

Contract obligations

Obligations

ol : O(seller, buyer, true, happenBefore(delivered,
delivered.delDueDate));

02 : O(buyer, seller, true, happensBefore(paid,
paid.payDueDate));

03 : violates(o2) - O(buyer, seller, true,
happens(paidlate,));

SurvivingObligations

sol: SO(seller, buyer, true, keepConfidential);

so2: SO(buyer, seller, true, keepConfidential);

® keepConfidential is defined as “There is no third party that
knows the terms of this contract during the execution of
the contract and 6mo after”.

UFPE'19

-- 33

Contract powers

Powers

pl: P(seller, buyer, violates(o2 OR 03), suspends(o1));

p2: P(buyer, seller, happensWithin(paidLate, suspension(o1l)),
resumes(ol));

p3: P(buyer, seller, not(happensBefore(delivered(goods),
delivered.delDueDate + 10days), discharges(o2 AND 03) AND
terminates(meatSaleC));

Constraints

not(buyer = seller);

YV o(CannotBeAssigned(o: Obligation);

Y p(CannotBeAssigned(p: Power);

® Powers are rights that parties have to change another
obligation/power, i.e., cancel it, suspend it, etc.

UFPE’19 -- 34

Summary

@® Social dependency models are useful not only for
specifying requirements assignments in RE, but also for
specifying business and legal processes.

® Commitments constitute a better-developed and
formalized variant of i* actor dependencies.

® Legal Obligations/Rights are variants of commitments
that are legally binding, and therefore have consequences if
not complied with.

® The notion of power is perhaps the most interesting
variant among social dependencies in that it allows for a

legal process to change completely, depending on what
happens with the compliance of initial obligations.

UFPE’19 -- 35

References

@ [Bryl09] Bryl V., Giorgini P., Mylopoulos J., “Designing Socio-Technical Systems: From
Stakeholder Goals to Social Networks”, Requirements Engineering Journal 14(1), 47-70,
Springer, 2009.

@ [Dalpiaz15] Dalpiaz F., Cardoso E., Cannobio J., GiorginiFa P., Mylopoulos J., “Social
Specifications of Business Processes with Azzurra”, 9t |EEE International Conference on
Research Challenges in Information Science (RCIS’15), Athens, May 2015.

@ [Hohfeld13] Hohfeld W., “Some Fundamental Legal Conceptions as Applied in Judicial
Reasoning”, Yale Law Journal 23(16), 1913.

@ [LPG] LPG Homepage. LPG-td Planner. http://zeus.ing.unibs.it/lpg/

@ [Sharifil9] Sharifi S., Parvisi-Mosaed A-R., Amyot D., Logrippo L., Mylopoulos J.,,
“Symbolaio: Contracts as Legal Processes with Powers”, submitted for publication.

@ [Singh91] Singh M., “Social and Psychological Commitments in Multi-Agent Systems”,
AAAI Fall Symposium, 1991.

@ [Singh99] Singh M., “An Ontology for Commitments in Multi-Agent Systems”, Artificial
Intelligence and Law, 97-113, Kluwer, 1999.

@ [Yu95] Yu E., Modelling Strategic Relationships for Process Reengineering, PhD Thesis,
University of Toronto, 1995.

UFPE'19 -- 37

