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The	requirements	problem	(RP)	
  The	 requirements	 elicited	 from	 the	 stakeholders	 are	

statements	 of	 need.	 As	 indicated	 earlier,	 they	 are	 invariably	
informal,	 conflicting,	 ambiguous,	 unattainable,	 unsound	
(unnecessary)	and	incomplete	.	
  The	 requirements	 problem	 consists	 of	 transforming	 these	

needs	 through	 a	 systematic	 process	 into	 a	 sound,	 complete,	
consistent	 (and	 possibly	 formal)	 specification,	 consisting	 of	
functions,	quality	constraints,	and	domain	assumptions.		
  I’ll	 go	 over	 a	 series	 of	 formulations	 of	 this	 problem	 and	

discuss	 the	 scalability	 of	 algorithms	 for	 finding	 solutions,	 as	
proposed	in	the	literature.	
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Tackling	the	requirements	problem	
  RP	 is	 addressed	by	building	models	 of	 problem	 spaces	 and	

then	conducting	satisfiability/optimization	reasoning	over	such	
spaces.	
  This	sounds	somewhat	exotic	for	Software	Engineering!	
  …	But	it	shouldn’t	be	for	AI	...	
  Herb	Simon’s	Sciences	of	the	Artificial	[Simon69]	proposed	a	

framework	 for	 a	 Science	 of	 Design	 that	 included	 all	 the	 key	
ingredients	we	are	using	in	RE:	

ü  Goals	–	what	is	the	purpose	of	the	artifact-to-be?	
ü  A	space	of	alternatives	for	meeting	these	goals?	
ü  Search	among,	and	evaluation	of	alternatives;	
ü  …	
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Jackson	and	Zave	formulation	(J&Z)	
  In	 its	 original	 formulation	 [Jackson95],	 a	 requirements	

problem	consists	of	finding	a	specification	S	for	a	given	set	
of	requirements	R	and	indicative	environment	properties	E	
such	that	

	 	 	E,	S	|-	R	
meaning:	 “…	 satisfaction	 of	 the	 requirements	 can	 be	
deduced	 from	 satisfaction	 of	 the	 specification,	 together	
with	the	environment	properties…”	[Jackson95]	
  	Solution	through	refinement	(as	in	program	refinement):	

Start	 with	 requirements	 and	 keep	 refining	 them	 to	
eliminate	mention	of	non-implementable	elements. 	
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Problem	refinement	
  (Akin	 to	program	refinement)	 Start	with	 requirements	and	

keep	refining	them	to	eliminate	non-executable	elements.	
  For	instance,	(with	tm	≡	timeslot)	

			∀mtg[Scheduled(mtg)] 	 	 	 	(Req1)	
			∀mtg∃tm,	rm[FdSlot(tm,	partL(mtg))	∧	FdFree(rm,	tm)	
											∧	Booked(rm,	tm,	mtg)	 	 	 	(Spec)	
			∀mtg∃tm,	rm[FdSlot(tm,	partL(mtg))	∧	FdFree(rm,	tm)	
										∧	Booked(rm,	tm,	mtg)	⟹	Scheduled(mtg)] 	(DA0)	
			Spec		|=	Req1 		
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Requirements	as	goals	(GORE)	
  Requirements	are	now	goals	and	(requirements)	problem	

analysis	amounts	to	incremental	goal	refinement.	
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Requirements	as	goals	
  Here,	 specifications	 consist	 of	 functions,	 domain	

assumptions	 and	 quality	 constraints	 that	 together	 satisfy	
root-level	 requirements,	 e.g.,	 for	 G:ScheduleMtg,	 one	
specification	 is	 {F:Collect,	 F;Schedule,	 DA:RoomsAv,	 QC:	
‘>70%	participation’}			
  Unlike	J&Z,	goal	refinement	generates	a	space	of	possible	

specifications	 and	 the	 requirements	 problem	 amounts	 to	
finding	those	that	satisfy	R.	
  Finding	solutions	to	GORE	problems	can	be	reduced	to	SAT	

solving	[Sebastiani04],	scales	for	goal	models	of	size	O(1K).	
  A	much	more	 expressive	 language	 (KAOS)	 was	 proposed	

for	GORE	in	[Dardenne93],	subsuming	FOL	and	LTL.	
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Formalizing	goal	models	[Sebastinani04]	
  To	reason	with	goal	models,	we	first	need	to	formalize	the	

possible	 truth	 values	 of	 goals	 and	 the	 meaning	 of	
relationships:	
  Goals	 can	 have	 one	 or	 more	 of	 the	 following	 values	

S(atisfied),	D(enied),	PS,	PD	(for	partially	satisfied/denied).	
  Goal	 relationships	 are	 formalized	 in	 terms	 of	 axiom	

patterns,	e.g.,		
				AND(G,	{G1,…,	Gn})	∧	S(G1)	∧	… ∧	S(Gn)	⟹	S(G)	
				OR(G,	{G1,…,	Gn})	∧	(S(G1)	∨	… ∨	S(Gn))	⟹	S(G)	
				AND(G,	{G1,…,	Gn})	∧	(D(G1)	∨	… ∨	S(Gn))	⟹	D(G)	

	…	
				+(G,	G’)	∧	S(G)	⟹	PS(G’)	
				-(G,	G’)	∧	S(G)	⟹	PD(G’)	

	…	
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Reasoning	with	goal	models	
  Given	 a	 goal	 model,	 we	 can	 generate	 axioms	 using	 the	

axiom	patterns	shown	earlier.	
  For	 example,	 for	 the	 ScheduleMtg	 (SM)	 goal	 model	 we	

generate	axioms	such	as		
					AND(SM,	{CT,	FFR,	CS,	GQS}	∧	S(CT)	∧	S(FFR)	∧	S(CS)	∧		

	 	 	 	S(GQS)	⟹	S(SM)	
				+(BP,	GQS)	∧	S(BP)	⟹	PS(GQS)	
  Reasoning	 bottom	 up.	 Given	 truth	 values	 for	 some	 leaf	

goals,	are	root	goals	satisfied?	Use	axioms	to	propagate	truth	
values	towards	goal	model	roots.	
  Reasoning	top	down.	Is	there	a	set	of	assignments	to	leaf	

goals	 that	makes	 root	goals	S(atisfied)?	Use	a	SAT	solver	 to	
answer	this	question,	with	input	the	axioms	generated	for	a	
particular	goal	model.		
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Off-the-shelf	reasoners		
  When	you	 come	up	with	 a	new	 type	of	model,	 e.g.,	 goal	

model,	 entity-relationship	 model,	 business	 process	 model,	
you	 need	 to	 propose	 a	 reasoning	 (aka	 analysis)	 technique	
otherwise	 your	 models	 won’t	 be	 useful	 for	 real	 world	
applications.	
  To	 do	 so,	 you	 need	 to	 formalize	 the	 elements	 of	 your	

models,	see	earlier	slides,	but	also	to	map	the	reasoning	you	
want	to	do	to	a	problem	an	off-the-shelf	reasoner	can	solve.	
  Off-the-shelf	reasoners	have	been	developed	over	decades	

of	 research,	 they	 do	 a	 lot	 better	 than	 anything	 an	 RE	
researcher	can	design	and	implement.		
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Solvers	and	checkers		
  Solvers	 solve	 satisfiability	 (SAT)	 problems	 for	 near-

propositional	logics	such	as:	
ü  SAT	solvers	solve	SAT	problems	for	propositional	logic;	
ü  SMT	 (Satisfiability	 Modulo	 Theories)	 solvers	 solve	 SAT	

problems	for	a	decidable	FOL	theory	(e.g.,	arithmetic	over	
rational	numbers)	

ü  OMT	 (Optimization	 Modulo	 Theories)	 solvers	 solve	
optimization	problems	over	a	decidable	FOL	theory.	

  	Model	 checkers	 find	 counter-examples	 to	 a	 theory.	 For	
example,	 you	 have	 a	 model	 of	 insurance	 claim	 processing	
and	you	claim	that	no	insurance	claim	can	be	claimed	twice.	
You	formalize	your	model	and	the	claim	as	a	theory	and	you	
feed	 it	 to	 a	 model	 checker	 who	 finds	 a	 counter-example	
where	a	claim	is	claimed	twice	with	two	different	 insurance	
companies.	
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Expressiveness	vs	scalability	
  Research	 on	 Description	 Logics	 (such	 as	 OWL)	 in	

Knowledge	 Representation	 (AI)	 developed	 a	 rich	 theory	 on	
Expressiveness	 vs	 Tractability	 for	 description	 logics	
[Brachman84],	[Borgida96].	
  In	RE,	tractability	is	not	an	issue,	all	the	variants	of	the	RP	

considered	 in	 this	 presentation	 are	 intractable;	 rather,	 the	
scalability	of	solvers	is	important:	solvers	need	to	“scale”	to	
real	world-size	requirements	problems.		
  For	 the	 requirements	 problem,	 this	 means	 problems	 of	

size	O(1K).		
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Preferences	and	priorities	(P&P)	
  Preferences	 are	 “nice-to-have”	 requirements.	 Among	

them,	there	can	be	binary	priority	relationships.	

  Low	cost	>>	Find	free	room	 	(priorities)	
  Low	cost	>>	Good	quality	schedule	
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P&P	problems	
  Now	a	solution	consists	of	a	specification	that	satisfies	all	

mandatory	 goals	 and	 a	 maximal	 consistent	 subset	 of	
preferred	ones,	with	no	better	solution	wrt	priorities.	
  The	 requirements	 problem	 is	 now	 an	 optimization	

problem,	rather	than	merely	a	satisfaction	one.		
  Note:	 The	 semantics	 of	 preferred	 requirements	 is	

adopted	 from	 AI	 planning	 and	 is	 different	 from	 that	 of	
optional	 requirements.	 For	 example,	 if	 I	 have	 a	 problem	
consisting	 of	 two	 consistent	 requirements	 {R1,	 R2}	 each	
admitting	 a	 single	 solution,	 there	 is	 one	 solution	 if	 R1,	 R2	
are	 preferences	 (namely,	 {R1,	 R2},	 but	 4	 solutions	 if	 they	
are	optional	(namely	{},	{R1},	{R2},	{R1,	R2}) 	.	
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Solving	P&P	problems		
  	 One	 way	 to	 tackle	 this	 version	 of	 the	 requirements	

problem	is	to	adopt	AI	planners	(another	class	of	solvers!).	
However,	several	features	of	planners	are	best	used	during	
design,	rather	than	RE	[Liaskos10].	
 	 Another	way	 is	 to	 develop	 search	 algorithms	 from	 first	

principles	[Jureta10].	
  In	either	case,	 intractability	 is	a	given,	while	scalability	 is	

an	open	question.	
  [Ernst10]	 uses	 local	 search	 techniques	 with	 good	

performance	results	that	improve	over	naïve	search.		
  Local	 search	 techniques	 constitute	 another	 class	 of	 off-

the-shelf	heuristic	solvers	that	find	satisficing	solutions.	
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Evolving	requirements	problem	(ERP)	
  Suppose	now	we	have	an	architecture	that	implements	several	

specifications	 and	 a	 running	 (=old)	 solution,	 and	 a	 requirement	
changes	…	
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Solving	the	IRP	
  All	we	need	to	do	is	run	our	GORE/P&P/…	search	algorithm	
for	solving	the	new	requirements	problem,	right?	…	

  Not	quite,	if	we	want	to:	
ü  Maximize	 familiarity	 –	 use	 as	much	 as	 possible	 the	

old	solution	(user	perspective)	
ü  Minimize	 effort	 –	 minimize	 the	 number	 of	 new	

functions	 that	 need	 to	 be	 implemented	 (vendor	
perspective)	

  We	need	algorithms	here	that	search	for	repairs	when	the	
requirements	problem	“breaks”	due	to	new	requirements.	
  [Ernst11]	 studies	 a	 class	 of	 such	 algorithms	 using	 Truth	

Maintenance	Systems	(ATMS)	with	not-so-positive	results.	
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RP	cum	optimization	(RPO)	
  Suppose	now	we	further	extend	our	goal	 language	to	allow	

associated	 cost,	 customer	 value	 and	 other	 attributes	 to	 each	
goal,	and	also	allow	optimization	(min/max)	for	goals	
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Solving	RPO	
  We	need	now	solvers	with	richer	native	languages	than	SAT	

solvers.	
  Chi	 Mai	 Nguyen	 [Nguyen15]	 used	 Optimization	 Modulo	

Theories/Satisfiability	 Modulo	 Theories	 (aka	 OMT/SMT)	
solvers	for	solving	such	problems.		
  In	 particular,	 she	 used	 OptiMathSAT	 [Sebastiani15]	 which	

supports	 linear	 arithmetic	 over	 rationals,	 as	 well	 as	
optimization	 over	 multiple	 objective	 functions,	 either	
singularly	or	lexicographically.	
  Our	experiments	 suggest	 that	OMT/SMT	 solvers	 scale	well,	

but	 are	 very	 sensitive	 to	 the	 objective	 functions	 over	 which	
they	optimize.	
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The	next	release	problem	(NPR)	
  This	 is	 a	 variant	 of	 the	 evolving	 requirements	 problem:	

Given	an	existing	system	and	a	set	of	new	mandatory	and/or	
preferred	 requirements,	 you	 want	 to	 find	 a	 specification	 for	
the	next	release	of	the	system	that	optimizes	several	objective	
functions,	such	as	value-to-customer,	cost-to-implement,	etc.	
  	Fatma	Başak	Aydemir	[Aydemir18]	formulated	NPR	in	terms	

of	 extended	 goal	 models,	 using	 the	 OptiMathSAT	 OMT/SMT	
solver	as	search	backend.	
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The	adaptation	problem	
A	 specification	 fulfill	 its	 requirements	 depending	 on	 control	
variables	and	indicators	that	determine	respectively	resource	
allocation,	quality	of	output,	etc.	
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The	adaptation	problem	
  To	define	the	adaptation	problem,	we	also	need	to	define	

how	indicators	depend	on	control	variables,		
	e.g.,	 	F(FhM,RfM,SuccessRate,CostPerMtg)	=	0	
	 	G(FhM,RfM,SuccessRate,CostPerMtg)	≥	0	

  Now	 suppose	 that	 the	 system	 is	 monitoring	 its	
performance	 and	 some	 requirements	 are	 failing	 (or,	
equivalently,	some	indicators	are	out	of	bounds).	
  We	need	 to	 find	a	new	set	of	 values	 for	 control	 variables	

that	“restores”	failed	requirements	in	an	optimal	way.	
  Again,	 this	 is	 a	 search	 problem	 that	 can	 be	 solved	with	 a	

OMT/SMT	solver.		
  Kostas	Angelopoulos	has	addressed	this	problem,	using	an	

OptiMathSAT-based	tool	[Angelopoulos16].	
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	A	more	careful	look	at	refinement	
  All	the	variants	of	the	requirements	problem	presented	here	

(…	 or	 elsewhere)	 use	 the	 notion	 of	 refinement	 to	 derive	
incrementally	a	specification	from	stakeholder	requirements.	
  According	to	the	dictionary,	‘refinement’	means	‘the	process	

of	 removing	 impurities,	 defects	 or	 unwanted	 elements	 from	
something’.	
  In	 the	 case	 of	 goal	 models,	 the	 defect	 removed	 is	 that	 a	

requirement	is	not	operationalizable	(aka	non-atomic).	
  But	 there	 are	 other	 kinds	 of	 defects,	 just	 look	 at	 the	 IEEE	

standard	 [ IEEE98],	 including:	 ambiguity,	 confl ict ,	
unattainability,	 incompleteness,	 too	 strong/too	 weak,	
unnecessary,	…	
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	A	refinement	calculus	for	requirements		
  Now	 we	 introduce	 a	 larger	 set	 of	 refinements,	 including	

those	in	goal	analysis:	
ü  Strengthen(r):	refines	r	into	r’	such	that	r’	⇒	r.	
ü  Weaken(r):	refines	r	into	r’	such	that	r	⇒	r’.	
ü  Reduce(r):	refines	r	 into	r1,	…,	 rn	such	that	r1	∧	… ∧	 rn	

⇒	r	
ü  Add(r):	 refines	 r	 into	 r’	 such	 that	 requirement	 r	 has	 not	

been	dealt	with	until	r’	has.		
ü  Resolve({r1,…,rn}):	 refines	 r1,…,rn	 into	 r1’,…,rm’	 such	

that	each	ri’	 i=1,…,m	there	is	some	rj,	 j=1…n	such	that	rj	
⇒	ri’.	

  This	is	work-in-progress	[ElRakaiby19]	
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	Defect	types	
  Attacks	 on	 a	 requirement	 point	 to	 defects,	 and	 justify		

refinements.		
  Our	 proposal	 supports	 several	 types,	 inspired	 by	 the	 IEEE		

standards	on	requirements	specifications	[IEEE93]:	
ü  Non-atomic(r):	there	is	no	function	that	operationalizes	r.	
ü  Ambiguous(r):	r	has	multiple	interpretations.	
ü  Unattainable(r):	r	can’t	be	fulfilled.	
ü  Unjustified(r):	unclear	why	is	r	needed.	
ü  TooStrong/TooWeak(r)	
ü  Rejected(r)	
ü  Conflicting({r1,…rn})	
ü  Incomplete({r1,…rn})	
  For	each	attack	type,	there	is	at	least	one	operator	that	can	

be	applied	to	eliminate	the	defect	pointed	out	by	the	attack.	
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Refinement	graphs	
A	 refinement	 graph	 consists	 of	 nodes	 (requirements)	 and	
hyper-edges	(refinements)	
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r5 

Incomplete 
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r6 r7 

add 
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X 
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  r1:=	“System	shall	schedule	meetings	upon	request”	
  r2:=	“Meeting	schedules	shall	be	of	good	quality”		
  r3:=	“Collect	timetables”,	r4:=	“Generate	a	schedule”	
  r5:=	“timetable	data	are	confidential”		
  r6:=“≥70%	participation	rate”	

  r7:=“≥80%	participation	rate”	
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Towards	a	theory	of	RE	
  The	RP	manifests	itself	in	many	forms	and	variants	thereof.		
  We	 envision	 a	 theory	 of	 RE	 that	 consists	 of	 alternative	

formulations	 of	 the	 RP	 adopting	 languages	 with	 different	
levels	of	expressiveness	and	includes	results	on	the	scalability	
of	tools	that	find	solutions.		
  Such	 a	 theory	 is	 to	 be	 founded	 on	 satisfiability/

argumentation	 semantics,	 and	 grounded	on	 SAT/SMT/OMT/
ARGT	 solvers	 that	 serve	 as	 back-ends	 to	 the	 search	 for	
solutions.	
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