
UFPE’19 -- 1

A	Short	Graduate-Level	Course	on	
Requirements	Engineering	(RE)	
	
John	Mylopoulos	
University	of	Ottawa	
	
	
Federal	University	of	Pernambuco	(UFPE),	
Recife,	November	11-20,	2019	

UFPE’19 -- 2

Acknowledgements	
  This	 short	 graduate-level	 course	 touches	 on	 research	

conducted	 over	 the	 past	 45	 years	 at	 the	 Universities	 of	
Toronto	and	Trento	with	colleagues	and	students,	 including	
Sol	 Greenspan	 (NSF),	 Alex	 Borgida	 (Rutgers),	 Eric	 Yu	
(UToronto),	Lawrence	Chung	(UTexas,	Dallas),	Jaelson	Castro	
(UFPE),	 Manuel	 Kolp	 (UNamur),	 Neil	 Ernst	 (UVic,	 Canada),		
Ivan	Jureta	 (UNamur,	Belgium),	Vitor	Souza	 (UFES),	Roberto	
Sebastiani,	 Paolo	 Giorgini,	 Kostas	 Angelopoulos,	 Fatma	
Aydemir,	Mai	Chi	Nguyen	(Trento,	Italy);	also,	most	recently,	
Yehia	ElRakaiby	(LERO)	and	Alessio	Ferrari	(CNR).		

UFPE’19 -- 3

Course	objectives	
  The	course	consists	of	two	1hr	and	three	2hr	lectures;	it	is	

intended	to	introduce	the	topic	of	Requirements	Engineering	
(RE),	 focusing	 on	 Goal-Oriented	 RE	 (GORE),	 discuss	 its	
importance	and	history.		
  It	also	covers	three	research	threads	each	of	which	spans	

more	than	a	decade	of	research.	The	topics	are:	
ü  The	requirements	problem	(Jackson&Zave,	GORE);	
ü  Modelling	and	analyzing	requirements	(NFR,	i*);	
ü  A	 requirements-based	 software	 development	

methodology	for	multi-agent	systems	(Tropos).	

UFPE’19 -- 4

Lecture	I	
Requirements	Engineering:	
Motivation,	Definitions	and	History	
	
John	Mylopoulos	
University	of	Ottawa	
	
	
Federal	University	of	Pernambuco	(UFPE),	
Recife,	November	11,	2019	

UFPE’19 -- 5

Requirements	Engineering	(RE)	
  Concerned	with	 the	elicitation,	analysis	and	refinement	of	

stakeholder	requirements	in	order	to	produce	a	specification	
for	a	system-to-be.	
  Founded	 on	 seminal	 works	 by	 Douglas	 Ross,	 Michael	

Jackson	and	others	in	the	mid-70s.	
  Unique	research	area	within	Computer	Science	because	its	

task	is	to	define	software	engineering	problems	(in	terms	of	a	
specification),	rather	than	solve	ones.	
  Interesting	 area,	 because	 stakeholder	 (“early”)	

requirements	are	almost	always	vague,	 informal,	conflicting,	
unattainable,	 and	 more	 (...	 in	 short,	 "scruffy"),	 but	 they	
constitute	the	input	to	the	RE	process	none-the-less.		
	

UFPE’19 -- 6

RE	is	both	hard	and	expensive		
  Major	cause	of	project	failure:	Survey	of	US	software	projects	by	
the	Standish	group	

				(for	a	more	recent	survey,	see	http://calleam.com/WTPF/?page_id=1445)	
  Cost	of	fixing	errors:	A	requirements	error	found	during	testing	
costs	 100	 times	 more	 to	 fix	 than	 a	 programming	 error	 found	
during	testing.	

1994 1998
Successful 16% 26%
Challenged 53% 46%
Cancelled 31% 28%

Top	3	success	factors:	
1)  User	involvement	
2)  Executive	management	support	
3)  Clear	statement	of	requirements	
Top	3	factors	leading	to	failure:	
1)  Lack	of	user	input	
2)  Incomplete	requirements	&	specs	
3)  Changing	requirements	&	specs	

UFPE’19 -- 7

RE	example			
  Suppose	 we	 are	 asked	 to	 specify	 requirements	 for	 a	 meeting	
scheduler	 running	 in	 a	 university	 department	 and	 serving	 its	
members.	
  Here	our	top	stakeholder	requirement	for	the	system-to-be	is	

						r0	:=	“System	shall	schedule	meetings”	
  We	ask	 the	 department	 head	 if	 there	 are	 other	 requirements,	
and	she	proposes	

						r1	:=	“Timetable	information	shall	remain	confidential”	
						r2	:=	“System	shall	schedule	good	meetings”	
  We	also	ask	potential	users,	and	they	add	another	requirement	

						r3	:=	“Selection	of	a	time	slot	shall	be	done	by	an	administrator”	

				(for	a	more	recent	survey,	see	http://calleam.com/WTPF/?page_id=1445)	
  Cost	of	fixing	errors:	A	requirements	error	found	during	testing	
costs	 100	 times	 more	 to	 fix	 than	 a	 programming	 error	 found	
during	testing.	

UFPE’19 -- 8

RE	example	(cont’d)			
  r0	 is	 a	 stakeholder	 requirement.	 To	address	 it,	we	decide	 that	
there	are	two	functions	needed	

						r4:=	“Collect	timetable	constraints	from	participants	for	the		
	 	 	 	preferred	period	of	the	meeting”	

						r5	:=	“Select	a	time	slot”	
  We	also	decide	that	r4	will	be	done	by	the	system,	so	we	now	
have	a	functional	requirement	

						r6	:=	“System	shall	collect	timetables”	
  However,	r5	should	not	be	the	system’s	responsibility,	according	
to	 r3.	 So,	 we	 introduce	 new	 functional	 requirements	 for	 the	
system	

					r7	:=	“System	shall	display	timetable	details	for	administrator”	
					r8	:=	“System	shall	record	administrator’s	decision”	
	

UFPE’19 -- 9

RE	example	(cont’d)			
  But	what	about	 r1	and	r2?	These	are	quality	 requirements.	To	
deal	with	them,	we	decide	that	

						r9	:=	“Users	shall	only	have	access	to	their	personal	schedule”	
,	leading	to	
						r10	:=	“Access	to	meeting	database	is	limited	to	personal	data”	
,	while	r2	leads	to	
						r11	:=	“80%	of	meetings	shall	have	>70%	participation”	
,	a	quality	requirement,	but	also	a	functional	requirement	
						r12	:=	“Systems	shall	send	reminders	for	all	meetings”	
		

UFPE’19 -- 10

RE	example	(final)			
  A	(requirements)	specification	consists	of	functional	and	quality	
requirements	for	a	system-to-be.	
  For	our	example,	the	specification	has	as	follows	

						spec	:=	{r6,	r7,	r8,	r10,	r11,	r12}	
  More	terminology:	
ü Functional	 and	 quality	 requirements	 operationalize	
stakeholder	requirements.	

ü Stakeholder	 requirements	 are	 refined	 into	other	 stakeholder	
requirements	 until	 they	 are	 simple	 enough	 to	 be	
operationalized.	

  You	 can	 think	 of	 stakeholder	 requirements	 as	 defining	 a	
requirements	problem,	while	 a	 specification	defines	 a	 solution	
thereof.	

	
			

UFPE’19 -- 11

…	Once	upon	a	time	…	
²  In	 the	 early	 days	 of	 Computer	 Science,	 people	 didn't	

develop	software;	they	simply	programmed	…	
² Software	Engineering	(SE)	was	born	in	1968	and	promised	

to	 turn	 software	 development	 into	 an	 engineering	
discipline.	

² But	 unlike	 other	 engineering	 disciplines,	 research	 and	
practice	on	 software	development	 remained	oblivious	 to	
all	activities	but	one:	programming.	

² Then	 Doug	 Ross	 came	 along	 in	 the	 mid-70s	 as	 a	 SE	
researcher	and	practitioner	…!	

UFPE’19 -- 12

Structured	Analysis	and	Design	Technique	
--	SADT	(~1975)	

Buy
Supplies

Cultivate

Extract
Seeds

Seed & Vegie
Prices

Plan &
Budget Weather

Plan
Budget

Fertilizer

Seeds

Plants

Vegetables

Pick
Produce Vegetables

Grow Vegetables

Money

[Ross77]

UFPE’19 -- 13

SADT:	Novel	ideas	and	impact	

² SADT	 models	 consist	 of	 activity	 and	 data/entity	 boxes,	
interconnected	through	input/output/control	arrows.	

² Models	 represent	 the	operational	environment	of	a	system,	
and	how	the	system’s	functions	fit	in	that	environment.	

² The	 purpose	 of	 SADT	 models	 is	 to	 describe	 the	 functional	
requirements	of	a	system.	

² SADT	was	used	in	practice	since	the	mid-seventies.	
²  It	 led	 to	 Data	 Flow	 Diagrams	 (DFDs)	 that	 were	 taught	 in	

universities	 around	 the	 world	 since	 the	 late	 70s	 under	 the	
label	“Systems	Analysis	and	Design”,	e.g.,	[Kendall88].	

² As	 with	 other	 structured	 techniques,	 SADT	 assumed	 a	
hierarchically	structured	problem	domain.	

UFPE’19 -- 14

Formal	requirements	modelling	languages	

²  In	 the	 ‘80s	 there	were	 several	 research	 threads	 focusing	on	
formalizing	requirements	modelling	languages,	such	as	SADT	
and	DFDs.	

² Among	these	projects	we	note:	
ü Janis	Bubenko,	Royal	Institute	of	Technology	[Bubenko80]	
ü Eric	Dubois	et	al,	University	of	Namur	[Dubois86]	
ü Sol	Greenspan	et	al,	University	of	Toronto	[Greenspan82]	

UFPE’19 -- 15

Requirements	modelling	language	(RML)	

EntityClass Patients with
 necessary, unique, part

 record: MedicalRecords
 association

 location: NursingHomes; room: Rooms;
producer
 register: AdmitPatients(per<-this)

 modifier
 assessment: Assess(patient<-this)

 consumer
 release: Discharge(patient<-this) ...

 initially
 rightPlace?: record.place = location
 startClean?: paymentDue = 0

end Patients

ActivityClass AdmitPatients with
 input
 per: Persons
 control
 home: NursingHome
 doc: Doctors
 output
 pat: Patients
 initially
 alreadyIn?: not(p in Patients)
 finally

 ...
 part
 getBasicInfo: Interview(whom<-per)
 place: AssignRoom(...)

 ...
end AdmitPatients

UFPE’19 -- 16

Remarks	on	RML		
•  RML	 was	 formalized	 by	 using	 ideas	 from	 semantic	

networks	and	(early)	description	logics.	
•  Both	 entity	 and	 activity	 classes	 were	 organized	 into	

taxonomies	of	generalization	hierarchies.	
•  Our	 attempt	 to	 formalize	 a	 structured	 analysis	 notation	

ended	up	with	us	stumbling	on	an	object-oriented	analysis	
one	[Booch94]!	

•  The	 RML	 paper	 presented	 at	 ICSE	 1982	 won	 the	 most	
influential	 paper	 award	 10	 ICSEs	 later	 precisely	 for	 this	
reason.	

UFPE’19 -- 17

Requirements	as	goals		
² Goal-oriented	analysis	focuses	on	early		(aka	stakeholder)	

requirements,	when	a	problem	(=	stakeholder	needs)	are	
identified,	 and	 alternative	 solutions	 are	 explored	 and	
evaluated.	

² During	 goal-oriented	 analysis,	 we	 start	 with	 initial	
stakeholder	goals	such	as	“Fulfill	every	book	request”,	or	
“Schedule	 meetings” and	 keep	 refining	 them	 until	 we	
have	reduced	them	to	alternative	collections	of	functional	
and	quality	requirements	that	each	satisfy	initial	goals.	

²  Initial	 goals	 may	 be	 conflicting,	 ambiguous,	 incomplete,	
invalid	(don’t	represent	a	stakeholder	need)	and	more.	

UFPE’19 -- 18

Goals	in	KAOS	[Dardenne93]		
•  (Organizational)	goals	lead	to	requirements.	
•  Goals	 justify	 and	 explain	 the	 presence	 of	 requirements	

that	are	not	necessarily	comprehensible	by	stakeholders.	
•  Goals	 provide	 basic	 information	 for	 detecting	 and	

resolving	 conflicts	 that	 arise	 from	 multiple	 viewpoints	
[Dardenne93].	

•  Example	goal:	
SystemGoal	Achieve[BookRequestSatisfied]	
InstanceOf	SatisfactionGoal	
Concerns		Borrower,	Book,	Borrowing,	...	
Definition	(∀bor:	Borrower,	b:	Book,	lib:	Library)	
(Requesting(bor,	b)	∧	b.subject	∈	lib.coverageArea	⇒						
			♢[(∃bc:	BookCopy)	(Copy(bc,	b)	∧	Borrowing(bor,	bc)))]	

UFPE’19 -- 19

Goal	analysis	leads	to	alternatives	

Schedule
meeting

Choose
schedule

By
Person

Collect
timetables

Automatically
Manually Collect from

users Collect from
agents

Receive
request

Send
request

AND AND

AND AND

OR OR

OR OR
By

System

OR OR

(Functional/hard)
goals

UFPE’19 -- 20

Schedule
meeting

Choose
schedule

By
Person

Collect
timetables

Automatically
Manually Collect from

users Collect from
agents

Receive
response

Send
request

AND AND

AND AND

OR OR

OR OR
By

System

OR OR

Collect Schedule

Tasks

Alternatives	lead	to	designs/plans	

UFPE’19 -- 21

Softgoals	
  Functional	 goals,	 such	 as	 “Schedule	 meeting”	 are	 well	

defined	in	the	sense	that	they	admit	a	formal	definition.	
  Quality	(aka	non-functional)	goals,	e.g.,	“higher	profits”,	

“satisfied	 customers”	 or	 “easily	 maintainable	 system”,	
specify	qualities	a	system-to-be	should	adhere	to.	
  Such	 qualities	 usually	 admit	 no	 generally	 agreed	 upon	

definition,	are	inter-related	and	often	conflicting.	
  Such	qualities	are	represented	as	softgoals.	
Softgoals	can	be	thought	as	undefined	concepts,	with	no	

clear-cut	 criteria	 for	 satisfaction;	 hence	 softgoals	 are	
satisficed,	 rather	 than	 satisfied	 (NFR	 framework,	
[Mylopoulos92],	[Chung93]).	

UFPE’19 -- 22

Usability	as	a	softgoal	

Programmability

+

+

+ + Support
Change of

Colours
Support

Change of
State

Support
Change of
Language

Error
Avoidance

Information
Sharing

Ease of
Learning

User
Tailorability

Usability

 Allow User-
Defined

Writing Tool

Modularity

Use
Components

User
Flexibility

Allow
Change of
Settings

+
+

+

AND AND AND AND

AND AND

Change
colour Change

state
Change

language

UFPE’19 -- 23

Schedule
meeting

Collect
timetables

Choose
schedule

By Person By System

Manually Automatically

Minimal
effort

Collection
effort

Matching
effort

Good quality
schedule

Minimal
conflicts

Good
participation

Send
Request

Receive
Response

OR
OR

OROR

AND
AND

AND
AND

AND AND

AND
AND

+

-

- +
++-

-

Collect from
Users

Collect from
Agents

OROR

Accurate
Constraints

Minimal
Disturbances

+ -

+-

Evaluating	alternatives	with	softgoals		

UFPE’19 -- 24

Stakeholders	and	their	goals	
  In	KAOS,	goals	are	global	objectives	for	the	system-to-be.	
  In	i*	[Yu93],	goals	are	desired	by	actors	and	are	delegated	

to	other	actors	for	fulfillment.	
  According	 to	 i*,	 early	 requirements	 analysis	 involves	

identifying	 stakeholders	 and	 their	 goals,	 analyzing	 these	
goals,	delegating	them	to	other	actors	etc.	
  The	 result	 of	 this	 process	 consists	 of	 actor	 dependency	

and	actor	rationale	models.	

UFPE’19 -- 25

An	Actor	Dependency	Model	

Initiator ContributeToMtg

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

Scheduler Participant

ScheduleMtg

resource task

actor

UFPE’19 -- 26

An	actor	rationale	model	

Through
personal
 contact

By
email

Schedule
Meeting
goal tree

Reception

Actor	 dependencies	 are	 intentional:	 One	 actor	 wants	
something,	 another	 is	 willing	 and	 able	 to	 deliver	 on	 that	
something.	

By Person

UFPE’19 -- 27

Goals	in	requirements	analysis	
  KAOS,	the	NFR	proposal,	as	well	as	i*	advocate	the	use	of	
goals	in	RE.	

  KAOS	 uses	 goals	 to	 go	 from	 stakeholder	 needs	 to	
functional	specifications.	

  NFR	 uses	 them	 to	 represent	 and	 analyze	 quality	
requirements.	 Quality	 requirements	 lead	 to	 criteria	 for	
evaluate	functional	alternatives	(…	and	specifications).	
i*	 relates	 goals	 to	 the	actors	who	want	 them	and	keeps	
track	of	delegations.	

	

UFPE’19 -- 28

Lecture	II	
KAOS:	Keep	All	Objectives	Satisfied	
	
John	Mylopoulos	
University	of	Ottawa	
	
	
Federal	University	of	Pernambuco	(UFPE),	
Recife,	November	11,	2019	

UFPE’19 -- 29

KAOS:	Why	goals?	
  (Organizational)	goals	lead	to	requirements.	
  Goals	 justify	 and	 explain	 requirements	 which	 are	 not	
necessarily	comprehensible	by	stakeholders.	

  Goals	 can	 be	 used	 to	 assign	 responsibilities	 to	 agents	 so	
that	prescribed	constraints	can	be	met.	

  Goals	provide	basic	information	for	detecting	and	resolving	
conflicts	that	arise	from	multiple	viewpoints	

[Dardenne93]	

UFPE’19 -- 30

The	meta,	domain	and	token	levels		

Agent	 Action	

Relationship	

Entity	

Borrower	

Checkout	

BookCopy	 Book	

Copy	

performs	

performs	

input	

link	

master	copyOf		input	

Steve	

checkout	
12/12/93	

War&Peace.c.4	 War&	Peace	

Copy4	

performs	 master	copyOf		input	

instanceOf	
link	

Metaclasses	

Classes	

Tokens	

UFPE’19 -- 31

Entities	and	relationships		
	
Entity	Library	
Has	collection,	available,	checkedOut,	lost:	setOf[BookCopy]	

coverageArea:	setOf[Subject]	
Invariant		collection	=	available	∪	checkedOut	∪	lost	
		∧		available	∩ checkedOut	=	∅ ∧	available	∩ lost	=	∅ 	
 ∧	checkedOut	∩ lost	=	∅)	...	
end	Library	
Relationship	Borrowing	
Links		 	Borrower	[Role	Borrows,	Card	0::N]	
	 	BookCopy	[Role	Borrowed,	Card	0::1]	

Invariant	(∀lib:	Library,	bor:	Borrower,	b:Book,	bc:	BookCopy)	
	[Borrowing(bor,bc)	∧	bc	∈	lib.collection	⇒		
		bc	∈	lib.checkedOut	∧ 	♦︎	Requesting(bor,b)	∧ Copy(bc,b)]	...	

end	Borrowing	

UFPE’19 -- 32

Events		
	   An	event	represents	an	instantaneous	happening.	
  Occurs(e)	==	e.exists	=	true	
  Here	is	an	example	of	an	event:	
Event	ReminderIssued	
			Has	toWhom:Bor,	what:BookCopy,	mes:	text;	
			Invariant		(∀rm:	ReminderIssued)	

		(Occurs(rm(toWhom,what,mes))	⇒		
	(∃p:	Staff)(Performs(p,IssueReminder(what,toWhom)))	

										…	
					end	ReminderIssued	

UFPE’19 -- 33

Actions		
	Action	CheckOut	
Input	BookCopy	[Arg:	bc],	Library	[Arg:	lib],	Borrower	[Arg:	bor]	
Output	Library	[Res:	lib],	Borrowing	
Precondition	bc	∈	lib.available	
Postcondition	¬(bc	∈	lib.available)	∧	bc	∈	lib.checkedOut	∧

Borrowing(bor,bc)		
Action	IssueReminder	
Input	BookCopy	[Arg:	bc],	Borrower	[Arg:	bor]	
Output	Reminder	
Triggercondition		
 ♦︎>2wks	Borrowing(bor,bc)	∧		
	 	¬(♦︎≤1wk	∃rm:	IssueReminder	Occurs(rm(bc,bor)))	
	/*	bc	has	been	borrowed	by	bor	for	at	least	2wks	and	there	
hasn’t	been	a	reminder	within	the	last	week			*/	

UFPE’19 -- 34

Representing	time	in	KAOS		
	
○φ	 	-	φ	is	true	in	the	next	state	
	●φ	 	-	φ is	true	in	the	previous	state	
	♢≤xφ	-	φ	will	be	true	sometime	(within	x)	
	◆≤xφ		-	φ	was	true	sometime	(within	x)	
	□≤xφ	-	φ	will	be	always	true	(until	some	time)	
	■≤xφ	-	φ	was	always	true	(before	some	time)	
	φ	U	ψ	-	φ	is	true	until	ψ	becomes	true	
	φ	S	ψ	-	φ	has	been	true	since	ψ	became	true	

	
					Notation:	
	circle	-	previous/next	state	
	diamond	-	sometime	in	the	past/future	
	square	-	always	in	the	past/future	

UFPE’19 -- 35

Agents	
Agent	Staff 		
Has	competenceAreas:	setof[Competence]	
Invariant	(∀st:Staff)	
	InstanceOf(st,LibrarianStaff)	∨	InstanceOf(st,	ClerkStaff)	

Load	….							/*	describes	the	agent’s	work	load	*/	
CapableOf	CheckIn,	CheckOut,	IssueReminder,	Reference,	

Cataloguing	
Performs		Checkout	
Knows	Borrowing	[Interface:	BorrowingDB]	
  Agents	may	be	humans,	organizational	units,	or	software.	
  Agents	 may	 be	 composed	 from	 other	 agents	 through	 a	
Cartesian	product	construction.	

  An	agent	performs	only	actions	she	is	capable	of.	
  Knows(ag,obj)	means	 that	 ag	 can	observe	 the	 state	of	obj	
through	some	interface.	

UFPE’19 -- 36

Goals	
SystemGoal	Achieve[BookRequestSatisfied]	
InstanceOf	SatisfactionGoal	
Concerns		Borrower,	Book,	Borrowing,...	
Definition	(∀bor:	Borrower,	b:	Book,	lib:	Library)	
				(Requesting(bor,b)	∧	b.subject	∈	lib.coverageArea		
									⇒	♢ (∃bc:	BookCopy)	(Copy(bc,b)	∧	Borrowing(bor,bc)))	

ReducedTo	EnoughCopies,	RegularAvailability,	
AvailabilityNotified	

ReducedTo	AsManyCopiesAsNeeded	
	
SystemGoal	Maintain[SafeTrasportation]	
InstanceOf	SafetyGoal	
Concerns		Passenger	
InformalDef	...	

UFPE’19 -- 37

Goal	patterns	
  A	 goal	 is	 a	 non-operational	 objective	 in	 that	 there	 is	 no	
single	action	that	an	agent	can	perform	to	achieve	it.	

  Patterns	identify	what	can	be	done	with	a	goal:		
Achieve	– achieve	a	goal	at	some	point	in	the	future	

	P	⇒	 ♢Q	
Cease	--	undo	a	goal	at	some	point	in	the	future	

		P	⇒ 	♢¬Q	
Maintain	--	maintain	a	goal	for	some	time	

	P	⇒	□Q	
Prevent	--	prevent	a	goal	from	becoming	true	

	 				P	⇒	□¬Q	
Optimize	--	maximize	or	minimize	some	measure	

	 				max(fcn)	or	min(fcn)	

UFPE’19 -- 38

Goal	metaclasses	

  Goals	 also	 have	 associated	 categories	 defined	 by	
metaclasses,	such	as:		
ü SatisfactionGoal	--	satisfying	agent	needs	
ü InformationGoal	--	informing	agents	
ü RobustnessGoal	--	recovering	from	failures	
ü ConsistencyGoal	--	maintaining	consistency	
ü SafetyGoal,	 PrivacyGoal,	 maintain	 agents	 in	 states	 that	
are	safe	and	observable	under	restricted	conditions.	

  These	 categories	 are	 useful	 because	 each	 one	 has	 its	 own	
heuristics	 for	 decomposition	 and	 operationalization	
(satisfaction).	

UFPE’19 -- 39

Subgoals	
SystemGoal	Maintain[RegularAvailability]	
InstanceOf	SatisfactionGoal	
Concerns		Library	
Definition	(∀bor:	Borrower,	b:	Book,	bc:	BookCopy,	lib:	Library)	
(bc	∈	lib	⇒	□[¬(bc	∈	lib.available)	⇒	(≤2wks	bc	∈	lib.available)])	
SystemGoal	Achieve[AvailabilityNotified]	
InstanceOf	InformationGoal	
Concerns		Borrower,	Library	
Definition	(∀bor:	Borrower,	b:	Book,	bc:	BookCopy,	lib:	Library)	
(Requesting(bor,b)	∧	●(¬∃bc:BookCopy	(Copy(bc,b)	∧	bc	∈	

lib.available))	∧	(∃bc:BookCopy	(Copy(bc,b)	∧	bc	∈	
lib.available))	⇒	 ♢Knows(bor,	lib.available))	

/*	 If	 a	 borrower	 requests	 a	 book,	 and	 the	 book	 just	 became	
available,	the	borrower	will	be	informed			*/	

UFPE’19 -- 40

Conflicting	goals	
PrivateGoal	Maintain[LongBorrowingPeriod]	
InstanceOf	SatisfactionGoal	
Concerns		Borrower,	Borrowing	
Definition	(∀bor:	Borrower,	b:	Book,	bc:	BookCopy)	
	[Borrowing(bor,	bc)	∧	Copy(bc,	b)	∧	○Need(bor,	b)		
	 	 	 	 	 	⇒	○Borrowing(bor,	bc)]	

/*	If	a	borrower	has	borrowed	a	book	and	she	still	needs	it,	she	
can	continue	to	borrow	it			*/	

Conflicts	with	RegularAvailability	
	
This	 goal	 is	 in	 conflict	 with	 RegularAvailability	 and	 can	 be	

declared	so	explicitly.	

UFPE’19 -- 41

Constraints		
  Constraints	 are	 operational	 objectives	 in	 that	 there	 are	
particular	actions	that	agents	can	perform	to	achieve	them.		

					SoftConstraint	Maintain[LimitedBorrowingPeriod]	
Definition	(∀bor:	Borrower,	bc:	BookCopy)	

	(Borrowing(bor,	bc)	⇒ 	¬	Borrowing(bor,	bc)		
  Constraints	operationalize	goals	
SystemGoal	Maintain[RegularAvailability]	
Concerns			...	
Definition	...	
O p e r a t i o n a l i z e d B y	 L im i t e d Bo r r ow i n g P e r i o d ,	
NoLostCopies,...	

  Constraints	 are	 ensured	 by	 restricting	 existing	 actions	 and	
objects	 (through	 strengthened	 preconditions,	 invariants,	
etc.)	or	through	the	introduction	of	new	actions	and	objects.	

UFPE’19 -- 42

The	Big	Picture	

Achieve	
[ParticipantConstraintsKnown]	

Achieve	
[ConstraintsRequested]	 AgendaAccessible	

AgendaUpdated	

Achieve	
[ConstraintsAccessed]	

Minimize	
[ParticipantInteraction]	

Achieve	
[ConstraintsProvided]	

OR	node	 refinement	AND	node	

Agenda	
Handler	

Access	
Agenda	

operationalization	

Send	
Constraints	Request	

goal	

constraint	

assumption	

action	 agent	

Constraint	
Handler	

UFPE’19 -- 43

…	more	detail	...	

Achieve	
[ConstraintsProvided]	

ReliableComunication	

ResponsiveParticipants	

Achieve	
[ConstraintsCollected]	

Collect	
Responses	

Send	
Reminder	

Constraint	
Handler	

CorrectResponse	

UFPE’19 -- 44

The	KAOS	modeling	philosophy	
  Modeling	 a	 social	 setting	 involves	 a	 variety	 of	 concepts,	
including	 	 goals,	 agents,	 concerned	 objects,	 actions,	
constraints	and	responsibilities.		

  Goals	lead	to	assignments	of	responsibilities	and	designs	of	
actions	and	artifacts	

  Uses	 a	 metamodel	 to	 support	 reuse	 of	 generic	 domain	
modeling	patterns	[Dardenne93]	

  For	 example,	 the	 library	 domain	 is	 an	 instance	 of	 the	
“resource	allocation”	meta-domain,	which	also	covers	car/
room/dwelling	 rental	 and	 is	 similar	 to	 airline/hotel	
reservation,	class	registration	etc.	

UFPE’19 -- 45

The	KAOS	requirements	analysis	process	

  Identify	goals,	and	their	concerned	objects.	
  Identify	potential	agents	and	their	capabilities.	
  Operationalize	goals	into	constraints.	
  Refine	objects	and	actions.	
  Derive	 strengthened	 objects	 and	 actions	 to	 ensure	
constraints.	

  Identify	alternative	responsibilities.	
  Assign	actions	to	responsible	agents.	

  All	this	could	be	just	as	useful	for	organizational	design	as	it	is	
for	software	development!	

UFPE’19 -- 46

UFPE’19 -- 47

References	for	lectures	I	and	II	
  [Booch94]	Booch,	G.,	Object-Oriented	Analysis	and	Design,	Benjamin-Cummings,	1994.	
  [Bubenko80]	Bubenko	J.,	“Information	modeling	in	the	context	of	system	development”,	
Proceedings	IFIP	Congress	1980.		395-411,	1980.	

  [Chung93]	Chung	L.,	Representing	und	Using	Non-Functional	Requirements:	A	Process-
Oriented	Approach.	PhD.	thesis,	Dept.	of	Computer	Science,	University	of	Toronto,	1993.	

  [Dardenne93]	Dardenne	A.,	van	Lamsweerde	A.,	Fickas	S.,”Goal-Directed	Requirements	
Acquisition”,	in	The	Science	of	Computer	Programming	20,	1993.	

  [Darimond96]	Darimond	R.,	van	Lamsweerde	A.,	“Formal	Refinement	Patterns	for	Goal-
Driven	 Requirements	 Elaboration”,	 4th	 ACM	 Symposium	 on	 Foundations	 of	 Software	
Engineering,	179-190,	San	Francisco,	1996.	

  [Dubois86]	Dubois	E.,	Hagelstein	 J.,	 Lahou	E,	Ponsaert	F.,	and	Rifaut	A.	“	A	knowledge	
representation	language	for	requirements	engineering”,	Proc.	of	the	IEEE,	74(10),	1986.	

  [Greenspan82]	 Greenspan	 S.,	 Mylopoulos	 J.,	 and	 Borgida	 A..	 “Capturing	 more	 world	
knowledge	 in	 the	 requirements	 specification”,	 Proceedings	 6th	 Internationnl	
Conference	on	Software	Engineering,	Tokyo,	1982.	

  [KAOS00]	http://www.ingi.ucl.ac.be/research/projects/AVL/ReqEng.html.	
  [Kendall88]	Kendall	K.,	Kendall	J.,	Systems	Analysis	and	Design,	Prentice	Hall,	1988.	
  [Mylopoulos92]	 Mylopoulos	 J.,	 Chung	 L.,	 Nixon	 B.,	 “Representing	 and	 using	 non-
functional	requirements:	A	process-oriented	approach”,	 IEEE	Transactions	on	Software	
Engineering,	18(6),	1992.	

	

	

UFPE’19 -- 48

References	(cont’d)	
  [Ross77]	 Ross	 D.,	 “Structured	 Analysis:	 A	 Language	 for	 Communicating	 Ideas,” IEEE	
Transactions	 on	 Software	 Engineering	 3(1),	 Special	 Issue	 on	 Requirements	 Analysis,	
January		1977,	16-34.	

  [vanLamsweerde98]	van	Lamsweerde,	A.,	Darimont,	R.,	 Letier,	E.,	“Managing	Conflicts	
in	Goal-Driven	Requirements	Engineering,” IEEE	Transactions	on	Software	Engineering,	
Special	Issue	on	Managing	Inconsistency	in	Software	Development,	IEEE,	Nov.	1998.	

  [vanLamsweerde98a]	 A.	 van	 Lamsweerde,	 A.,	 Willemet,	 L.,	 “Inferring	 Declarative	
Requirements	 Specifications	 from	 Operational	 Scenarios,” IEEE	 Transactions	 on	
Software	Engineering,	Special	Issue	on	Scenario	Management,	IEEE,	December	1998.	

  [vanLamsweerde98b]	A.	van	Lamsweerde,	A.,	Letier,	L.,	“Integrating	Obstacles	in	Goal-
Driven	 Requirements	 Engineering,”	 	 Proceedings	 ICSE'98	 -	 20th	 International	
Conference	on	Software	Engineering,	IEEE-ACM,	Kyoto,	April	98.		

  [vanLamsweerde98c]	 Feather	 M.,	 Fickas	 S.,	 van	 Lamsweerde	 A.,	 Ponsard	 C.,	
“Reconciling	System	Requirements	and	Runtime	Behaviour”,	9th	International	Workshop	
on	Software	Specification	and	Design	(IWSSD'98)	IEEE,	Isobe,	Japan,	April	1998.		

  [Yu93]	 Yu	 E.,	 “Modeling	 organizations	 for	 information	 systems	 requirements	
engineering”,	 lEEE	 International	 Symposium	on	 Requirements	 Engineering,	 34-41,	 San	
Diego,	1993.	

	

