

GO2S: a systematic process to derive the behavior of context-sensitive systems from requirements models

Tese de Jéssyka Flavyanne Ferreira Vilela

Advisor: Jaelson Castro

Mediador:Reinaldo Antônio

26/10/2016

Outline

- Introduction
 - □ Context
 - □ Motivation and Rationale
 - **□** Objectives
- Proposal
- Evaluation
- Contributions and Future works
- References

Why use context?

Context in "Person-Person" Interactions

- It improves the quality of conversations and interactions.
 - ✓ It helps to solve ambiguities and conflicts.

- ➤ It helps to understand situations, actions and events.
 - > Ex: "Close the window"

- Drives actions and behaviors.
 - > Ex: Movies x Football Stadium.

Why use context?

Context in "Human-Computer" Interactions

- > Expanded form of communication.
 - ✓ Without the need for explicit user intervention.
- It allows system adaptation:
 - ✓ Enables / disables functionalities;
 - ✓ Provides services and information relevant to the situation.

Why use context?

- Context in "Computer-Computer" Interactions
- It helps the communication between devices.
 - > Ex: Smart Homes.

Context-sensitive systems (CSS)

- GORE Definition (ALI; DALPIAZ; GIORGINI, 2010)
 - "Context is a partial state of the world that is relevant to an actor's goals."
- Applications that use context to provide services and relevant information.
- CSS must have the following characteristics:
 - Monitoring
 - Awareness
 - Adaptability
- CSS are flexible, able to act autonomously on behalf of users and dynamically adapt their behavior.

Motivation and Rationale

- Challenge: to enable computer systems to change their behavior according to the analysis of contextual information.
- Benefits (CLEMENTS et al., 2002):
 - □ the models can be used as a communication channel among stakeholders during system-development activities;
 - □ they improve the confidence that the context-sensitive system will be able to achieve its goals;
 - □ reasoning can be supported allowing the analysis of properties:
 - system's completeness;
 - correctness;
 - other quality attribute.

Motivation and Rationale

- Software-development organizations frequently begin their activities with one of these alternative starting points:
 - requirements or architectures often adopting a waterfall like development process.

Non-Functional Requirements (NFRs) affect both the structural and behavioral aspects of the system (architecture).

Objectives

Research question:

How can we obtain the behavior of context-sensitive systems from requirements goal models considering their non-functional requirements?

Objectives

- Goal 1: Systematic process for deriving the behavior of context-sensitive systems from requirements models;
- Goal 2: systematic approach for the specification of monitoring and adaptation tasks;
- Goal 3: metamodel to relate the requirements, architectural design, context and behavior in a unified approach;
- Goal 4: Illustration of the applicability;
- Goal 5: Empirical evaluation of the process through a controlled experiment.

GOals to Statecharts (GO2S) Process

Figure 3.1: The GO2S process for deriving the behavior of context-sensitive systems.

Construction of Design Goal Model (DGM) (PIMENTEL, 2014)

- Goal: Refine a goal model with new design elements
- Input: A goal model
- Steps:
 - □ 1: Identify design tasks and constraints
 - □ 2: Perform the NFR analysis
 - □ 3: Include the design tasks that operationalizes the NFRs in the goal model
- 4: Assign Tasks

Construction of Design Goal Model (DGM) (PIMENTEL, 2014)

Figure 3.2: Steps of Construction of Design goal model activity.

Meeting

- Goal: Refine a design goal model with contextual variation points
- Input: A design goal model
- Steps:
 - □ 1: Identify and specify the contextual variation points
 - □ 2: Refine contexts
- Outputs:
 - □ Contextual design goal model
 - □ Contexts refinements

Specification of contextual variation points (ALI, 2010)

Specification of adaptation and monitoring

- Goal: Refine the contextual DGM with elements necessary for the specification of
- adaptation DTs as well as the monitoring
- Input: Contextual design goal model
- Steps:
 - □ 1: Define the critical requirements that requires adaptation
 - □ 2: Represent the adaptation management
 - 2.1: Add a new design task in the root node for adaptation management
 - 2.2: Add design tasks in the parent node previously created for the management of each requirement that must be monitored and adapted
 - 2.3: Add design tasks to represent the adaptation strategies for each monitored

- 3: Associate each adaptation design task with a context label
- 4: Refine each context
- 5: Identify the dynamic contextual elements
- 6: Represent the context monitoring
 - □ 6.1: Add a new design task in the root node
 - □ 6.2: Add design tasks to monitor each dynamic contextual element
- 7: Specify the equipments/technology necessary to monitor the contexts
- Outputs:
 - Contextual design goal model refined
 - Contexts Refinements

Specification of adaptation and monitoring

Manage adaptation Monitor context ĀNŌ Performance Manage C6 Monitor Manage performance) \ response time Response 1111 schedule \ adaptation Manage < 2 min adaptation, Acess Monitor meeting Meetina date C10 Schedule characterized Security defined Monitor Monitor ✓Delegate \ number of) Participants Update (Software) <econfigure conflicts / Define topics \ <u>aqenda</u> meetina Schedule Architect) / / Monitor · Add new 、 Define Date Define Fimetables Schedule Timetables > Step Back Range participan 📈 collected manually responses Schedule C5 Usability 4 automatically Collect by Collect automatically Characterization Collect by ∕Brute Force\ time < 5 min phone / Heuristics Associate each √Input participants\ Contact algorithm design task with availability Participants a context label Secretary, Meeting Organizer Design Identify the Quality Constraint elements Legend

Meeting scheduled

Figure 3.6: Steps of Specification of adaptation and monitoring activity.

Specification of adaptation and monitoring

Adaptação

- Specification of flow expressions (DALPIAZ, 2013)
- Goal: Refine the contextual design goal model with flow expressions that represent the execution order of elements in the model
- Input: Contextual design goal model refined
- Steps:
 - 1: Assign an identification (ID) for each goal and task in the goal model
 - □ 2: Determine the flow expressions
 - □ 3: Specify idle states
- Output: Behavioral contextual design goal model

Specification of flow expressions (DALPIAZ, 2013)

Specification of

Statechart

derivation and

design goal

Specification of

flow expression

Specification of

adaptation and

Priorization of

- Statechart derivation and refinement (PIMENTEL, 2014)
- Goal: Obtain the statechart and perform the refinements
- Input: Behavioral contextual design goal model
- Steps:
- 1: Generate the statechart using the derivation patterns:
 - □ 1.1: Create a state for each goal and task following the hierarchy of the design goal model
 - □ 1.2: If necessary, create idle states to model situations where the system is waiting for user interaction or for a given context to hold.
- 2: Specify transitions in the statechart

Output: Statechart

Statechart derivation and refinement (PIMENTEL, 2014)

Figure 3.10: Steps of Statechart derivation and refinement activity.

Figure 3.11: Statechart Derivation Patterns.

Zero or more executions: (AB)*

One or more

executions:

(AB)+

Optional execution: (AB)?

Statechart derivation and refinement

Figure 3.18: Statechart of meeting scheduler example.

- Goal: When more than one context holds prioritize variants
- Input: Behavioral contextual design goal model
- Steps:
 - □ 1: Define the preferences for variants over each NFR
 - □ 2: Determine the weights of each NFR
 - ☐ 3: Synthesize the results
 - ☐ 4: Verify the consistence
- Output: Vector of variants priorities

Figure 3.19: Steps of Prioritization of variants activity.

Prioritization of variants (SANTOS, 2013)

Figure 3.19: Steps of Prioritization of variants activity.

Variants and their contribution for the NFRs.

Alternatives/Criteria	Usability	Security	Performance
var3=Collect by phone	=	-	+
var4=Collect by email	+	+	-
var5=Collect automatically	++	++	++

Mapping from NFRs Contributions to AHP values (SANTOS, 2013).

	++	+	=	-	
++	1	3	5	7	9
+	0,33	1	3	5	7
=	0,20	0,33	1	3	5
-	0,14	0,20	0,33	1	3
	0,11	0,14	0,20	0,3	1

Final Ranking (synthesis).

V/	0.4.4	0.40	0.07
Variant priority	0.14	0.19	0.67
variant priority	V. I T	0.10	0.01

Evaluation

Evaluation

- In order to evaluate our proposal we designed a controlled experiment.
 - □ We conducted a multi-test within an object study since we examined a single object (the GO2S process) across a set of subjects.
- We followed the framework proposed by WOHLIN et al. (2012) for performing experiments in software engineering.

Evaluation – Scoping

Goal of the experiment.

Analyze	the GO2S process for deriving statecharts from goal models of context-sensitive systems.
For the purpose of	evaluation.
With respect to	the time to implement, syntactic correctness, structural complexity, behavioral similarity and cognitive complexity (DIJKMAN et al., 2011) (MIRANDA; GENERO; PIATTINI, 2005).
From the point of view of	undergraduate, master's and doctoral students.
In the context of	students of a requirements engineering undergraduate and graduate course, with some industry expertise, implementing the GO2S process in an example.

Evaluation – Operation

- The time spent to execute the experiment was 22hrs.
 - Classes about goal model, statecharts theory and tool: 8hrs
 - □ Oral argumentation: 3hrs
 - Training about the process: 4hrs
 - □ Dry run: 4hrs
 - Experiment: 3hrs
- The total time was approximately 132 hours:
 - □ time spent in meetings for decision-making
 - the preparation of the project
 - Answering questions of students and correcting all projects
 - □ the time spent on preparing slides, the material used in the experiment and the time required to analyze the results.

Figure 5.1: Subject's Profile.

Figure 5.2: Experience in behavior modeling.

Figure 5.4: Syntactic correctness.

Figure 5.5: Structural complexity.

Figure 5.6: Behavioral similarity and time spent.

Table 5.2: Statements used to evaluate cognitive complexity.

#	Statement
1	The process for statecharts derivation from goal models is understandable.
2	Step 1 is easy to understand.
3	The notation of goal model is easy to understand.
7	Step 3 is easy to understand.

Table 5.3: Results of cognitive complexity.

#	TD (%)	D (%)	I (%)	A (%)	TA (%)	NA (%)
1				66.67	33.33	
2		11.11		88.89		
3			55.56	44,44		
7	11.11	33.33	22.22	33.33		

Threats to Validity and Ethics

Internal Validity:

- □ We tried to mitigate the selection bias (random assignment).
- □ Both groups received the same goal model and system specification (mitigate unhappiness or discouragement).
- □ We attempted to mitigate the history and maturation effects by making observation at a single time point.

Conclusion Validity

- □ We tried to improve the reliability of treatment implementation (using the same treatment, training, and instructor for all subjects of the process group).
- □ We also attempted to improve the conclusion validity by randomly choosing the subjects of both groups (promoting heterogeneous groups).

Threats to Validity and Ethics

Construct Validity:

- □ We carefully designed our study.
- We chose objective measurements that did not depend on who was administering the test.
- ☐ The subjects performed a dry run.

External Validity:

☐ The limited number of subjects does not allow to generalize outside the scope of the study.

Ethics

- □ We addressed the **ethical principles** that form the core of several research ethics guidelines and codes (VINSON; SINGER, 2008):
 - informed consent
 - beneficence

Contributions

- A systematic process for deriving the behavior of context-sensitive systems, expressed as statechart, from requirements models, specified as goal models.
- Specification of monitoring and adaptation tasks in a contextual design goal model.
- The behavioral contextual design goal model.
- The GO2S metamodel.
- Illustration of use GO2S (ZNN exemplar).
- Evaluation: controlled experiment (Smart Home).

Future Works

- Develop a case tool to implement the process.
- Apply the process in complex systems.
- New controlled experiments.
- Reasoning of context-sensitive systems (statecharts).
- Architectural views in our process.

Summary of publications

- VILELA, J.; CASTRO, J.; PIMENTEL, J.; SOARES, M.; LIMA, P.; LUCENA, M. Deriving the behavior of context-sensitive systems from contextual goal models. 2015. 30th ACM/SIGAPP Symposium On Applied Computing (SAC). April 2015. In press.
- VILELA, J.; CASTRO, J.; PIMENTEL, J.; LIMA, P. On the behavior of context-sensitive systems. 2015. 18 Workshop em Engenharia de Requisitos (WER 2015). April 2015. In press.
- DERMEVAL, D.; VILELA, J.; BITTENCOURT, I.; CASTRO, J.; ISOTANI, S.; BRITO, P.; SILVA, A. Applications of ontologies in requirements engineering: a systematic review of the literature. In: Requirements Engineering Journal, 2015, pp.1-33.
- DERMEVAL, D.; VILELA, J.; BITTENCOURT, I.; CASTRO, J.; ISOTANI, S.; BRITO, P. A Systematic Review on the Use of Ontologies in Requirements Engineering. In: Simpósio Brasileiro de Engenharia de Software (SBES), 2014, pp. 1-10.

References

- ALI, R.; DALPIAZ, F.; GIORGINI, P. A goal-based framework for contextual requirements modeling and analysis. Requirements Engineering, v.15, n.4, p.439–458, 2010.
- BAZIRE, M.; BRÉZILLON, P. Understanding context before using it. In: DEY, A. et al. (Ed.). Modeling and using context. Springer, 2005. p.29–40. (Lecture Notes in Computer Science, v.3554).
- CLEMENTS, P. et al. Documenting software architectures: views and beyond. United States: Pearson Education, 2002.
- DIJKMAN, R. et al. Similarity of Business Process Models: metrics and evaluation. Information Systems,
 v.36, n.2, p.498–516, 2011.
- MIRANDA, D.; GENERO, M.; PIATTINI, M. Empirical Validation of Metrics for UML Statechart Diagrams. In: ENTERPRISE INFORMATION SYSTEMS V. Anais. . . 2005. pp. 101–108.
- PIMENTEL, J. et al. From requirements to statecharts via design refinement. In: ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING: 24-28 MARCH 2014; GYEONGJU, KOREA, 29, 2014. pp. 995–1000.
- SANTOS, E. B. Business Process Configuration with NFRs and Context-Awareness. 2013. Tese (Doutorado em Ciência da Computação) Federal University of Pernambuco, Centers of Informatics.
- VINSON, N. G.; SINGER, J. A Practical Guide to Ethical Research Involving Humans. In: GUIDE TO ADVANCED EMPIRICAL SOFTWARE ENGINEERING. Anais... 2008. p. 229–256.

