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ABSTRACT product requirements’{Bro87]. In her study of software

Requirements engineering (RE) is concerned with the iden- €70rS in NASASs Voyager and Galileo programs, Lutz
tification of the goals to be achieved by the envisioned sys- '€Ported that the primary cause of safety-related faults was
tem, the operationalization of such goals into services and €770rS in functional and interface requirements [Lut93].
constraints, and the assignment of responsibilities for the Recent studies have confirmed the requirements problem on
resulting requirements to agents such as humans, devices,a much larger scale. A survey over 8000 projects under-
and software. The processes involved in RE include taken by 350 US companies revealed that one third of the
domain analysis, elicitation, specification, assessment, projects were never completed and one half succeeded only
negotiation, documentation, and evolution. Getting high- partially, that is, with partial functionalities, major cost
quality requirements is difficult and critical. Recent surveys overruns, and significant delays [Sta95]. When asked about
have confirmed the growing recognition of RE as an area of the causes of such failure executive managers identifed poor
utmost importance in software engineering research and requirements as the major source of problems (about half of
practice. the responses) - more specifically, the lack of user involve-
ment (13%), requirements incompleteness (12%), changing
requirements (11%), unrealistic expectations (6%), and
unclear objectives (5%). On the European side, a recent sur-
vey over 3800 organizations in 17 countries similarly con-

The paper presents a brief history of the main concepts and
techniques developed to date to support the RE task, with a
special focus on modeling as a common denominator to all

RE processes. The initial description of a complex safety- cluded that most of the perceived software problems are in

critical iytsterg 1S u;eEd to |[prstrate a nurr1nber of Icur.rentt dthe area of requirements specification (>50%) and require-
research trends in RE-specific areas such as goal-oriented, o s management (50%) [ESI6].

requirements elaboration, conflict management, and the . . ] . . ]
handling of abnormal agent behaviors. Opportunities for mproving the quality of requirements is thus crucial. But it
goal-based architecture derivation are also discussed IS @ difficult objective to achieve. To understand the reason

together with research directions to let the field move ©ne should first define what requirements engineering is

towards more disciplined habits. really about.
The oldest definition already had the main ingredients. In
1. INTRODUCTION their seminal paper, Ross and Schoman statedrénguire-

) . ments definition is a careful assessment of the needs that a
Software requirements have been repeatedly recognizedsystem is to fulfill. It must say why a system is needed, based
during the past 25 years to be a real problem. In their early o cyrrent or foreseen conditions, which may be internal
empirical study, Bell and Thayer observed that inadequate, operations or an external market. It must say what system
inconsistent, incomplete, or ambiguous requirements are featyres will serve and satisfy this context. And it must say
numerous and have a crltlcal_lmpa_ct on t_he quallt_y of the how the system is to be constructefRos77b]. In other
resgltmg software [Bel76]. Noting th!s for different kinds of words, requirements engineering must address the contex-
projects, they concluded thiahe requirements for a system ;5] goals why a software is needed, the functionalities the
do not arise naturally; instead, they need to be engineered software has to accomplish to achieve those goals, and the
and have continuing review and revisianBoehm esti-  constraints restricting how the software accomplishing
mated that the late correction of requirements errors could {hose functions is to be designed and implemented. Such
cost up to 200 times as much as correction during such go4is, functions and constraints have to be mapped to pre-
requirements engineering [Boe81]. In his classic paper on cise specifications of software behavior; their evolution

the essence and accidents of software engineering, Brooksyyer time and across software families has to be coped with
stated thatthe hardest single part of building a sofware 5 \wyell [ZavT7h].

system is deciding precisely what to build... Therefore, the
most important function that the software builder performs
for the client is the iterative extraction and refinement of the

This definition suggests why the process of engineering
requirements is so complex.

* The scope is fairly broad as it ranges from a world of
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but also comprises thenvironmenthat will surround it;  Given such complexity of the requirements engineering pro-
the latter is made of humans, devices, and/or other softeess, rigorous techniques are needed to provide effective
ware. The whole system has to be considered under margupport. The objective of this paper is to provide: a brief his-
facets, e.g., socio-economic, physical, technical, operaory of 25 years of research efforts along that way; a concrete
tional, evolutionary, and so forth. illustration of what kind of techniques are available today;
ind directions to be explored for requirements engineering

There are multiple concerns to be addressed beside fun U
0 become a mature discipline.

tional ones - e.g., safety, security, usability, flexibility, per-

formance, robustness, interoperability, cost, The presentation will inevitably be biased by my own work
maintainability, and so on. These non-functional concern@nd background. Although the area is inherently interdisci-
are often conflicting. plinary, | will deliberately assume a computing science

Th itiol ties involved in th . N viewpoint here and leave the socological and psychological
ere are mufliple parties involved In he requirementSy,angions aside (even though they are important). In partic-

engineering process, each having different background, a. | il not cover techniques for ethnographic observation
skills, knowledge, concerns, perceptions, and expressiogs o environments, interviewing, negotiation, and so

means - namely, CUStomers, COMMISSIONers, Users, domafgrth. The interested reader may refer to [Gog93, Gog94] for

experts, re.quir.ements engineers, software developers_, Qrgood account of those dimensions. A comprehensive, up-
system maintainers. Most often those parties have conflict, yate survey on the intersecting area of information model-
ing viewpoints. ing can be found in [Myl98].

Requirement specifications may suffer a great variety of

deficiencies [Mey85]. Some of them are errors that may2. THE FIRST 25 YEARS: A FEW RESEARCH

have disastrous effects on the subsequent development MILESTONES

steps and on the quality of the resulting software product pojirements engineering addresses a wide diversity of

e.g., inadequacies with respect to the real needs, iNCOMy,maing (e.g., banking, transportation, manufacturing), tasks
pletenesses, contradictions, and ambiguities; some othefs o 5 qministrative support, decision support, process con-
are flaws that may yield undesired consequences (SUCh g%y and environments (e.g., human organizations, physical

waste of time or generation Qf new errors). - e, .no'.sesphenomena). A specific domain/task/environment may

forward references, overspecifications, or wishful thinking. e jire some specific focus and dedicated techniques. This is
Requirements engineering covers multiple intertwinedin particular the case for reactive systems as we will see after
activities. reviewing the main stream of research..

— Domain analysisthe existing system in which the soft- Modelingappears to be a core process in requirements engi-
ware should be built is studied. The relevant stakeholdneering. The existing system has to be modelled in some
ers are identified and interviewed. Problems andway or another; the alternative hypothetical systems have to
deficiencies in the existing system are identified; opporbe modelled as well. Such models serve as a basic common
tunities are investigated; general objectives on the targdhterface to the various activities above. On the one hand,
system are identified therefrom. they result from domain analysis, elicitation, specification

— Elicitation: alternative models for the target system are@nalysis, and negotiation. On the other hand, they guide fur-
explored to meet such objectives; requirements andher d_on_‘laln analysis, eI|C|tat|qn, speC|f|ca_t|on analysis, and
assumptions on Components Of SUCh mode|s are identnegouauon. MOdels ?.lSO pI’OVIde the baS!S- fOI’ documenta-
fied, possibly with the help of hypothetical interaction tion and evolution. It is therefore not surprising _that most of
scenarios. Alternative models generally define differenthe research to date has been devoted to techniques for mod-
boundaries between the software-to-be and its environeling and specification.
ment. The basic questions that have been addressed over the years

— Negotiation and agreementthe alternative require- are:

ments/assumptions are evaluated; risks are analyzed,what aspects to model in tidhy-whathowrange,
"best” tradeoffs that receive agreement from all parties how to model such aspects

are selected. » how to define the model precisely,

- Spemﬁca}nonthe rgquwements and assumptions are for-, how to reason about the model.
mulated in a precise way.

— Specification analysisthe specifications are checked The answer to the first question determines ahtology of

for deficiencies (such as inadequacy, incompleteness cg:onceptual units in terms of which models will be built - e.g.,

inconsistency) and for feasibility (in terms of resourcesggg'le?pt%riﬂcemzéfgﬁgts’uggt‘;’gi’ ggti?:sfnggdthséo sft?LrJt(t]t.urTr?e
required, development costs, and so forth). a 9

i ] o ] relationships in terms of which such units will be composed

— Documentationthe various decisions made during the anq jinked together - e.g., input/output, trigger, generaliza-
process are documented together with their underlyingjon, refinement, responsibility assignment, and so forth. The
rationale and assumptions. answer to the third question determines the informal, semi-

— Evolution: the requirements are modified to accommo-formal, or formal specification technique used to define the
date corrections, environmental changes, or new objeaequired properties of model components precisely. The
tives. answer to the fourth question determines the kind of reason-



ing technigue available for the purpose of elicitation, specifi{Abr80] started penetrating our field. RML was also proba-

cation, and analysis. bly the first requirements modeling language to have a for-
mal semantics, defined in terms of mappings to first-order
The early days predicate logic [Gre86].

The seminal paper by Ross and Schoman opened the fie|
[Ros97b]. Not only did this paper comprehensively explain
the scope of requirements engineering; it also suggestefl next step was made by realizing that the software-to-be
goals, viewpoints, data, operations, agents, and resources &8d its environment are both made of active components.
potential elements of an ontology for RE. The companionSuch components may restrict their behavior to ensure the
paper introduced SADT as a specific modeling techniqueonstraints they are assigned to. Feather's seminal paper
[Ros97a]. This technique was a precursor in many respectiitroduced a simple formal framework for modeling agents

It supported multiple models linked through consistencyand their interfaces, and for reasoning about individual
rules - a model for data, in which data are defined by producechoice of behavior and responsibility for constraints [Fea87].
ing/consuming operations; a model for operations, in whichAgent-based reasoning is central to requirements engineer-
operations are defined by input/output data; and a data/opeiRg since the assignment of responsibilities for goals and
ation duality principle. The technique was ontologically constraints among agents in the software-to-be and in the
richer than many techniques developed afterwards. In addenvironment is a main outcome of the RE process. Once
tion to data and operations, it supported some rudimentarguch responsibilities are assigned the agents have contractual
representation of events, triggering operations, and ageng@bligations they need to fulfill [Fin87, Jon93, Ken93].
responsible for them. The technique also supported the stef\gents on both sides of the software-environment boundary
wise refinement of global models into more detailed ones nteract through interfaces that may be visualized through
an essential feature for complex models. SADT was a semicontext diagrams [War85].

formal technique in that it could only support the formaliza- .
tion of the declaration part of the system under consideratior?'o"’u'b""S(Ed reasoning

- that is, what data and operations are to be found and howhe research efforts so far were in thrathow range of
they relate to each other; the requirements on the data/opereggquirements engineering. The requirements on data and
tions themselves had to be asserted in natural language. Thperations were just there; one could not captuhg they
semi-formal language, however, was graphical - an essentiatere there and whether they were sufficient for achieving the
feature for model communicability. higher-level objectives that arise naturally in any require-
ments engineering process [Hic74, Mun81, Ber91, Rub92].

Shortly after, Bubenko introduced a modeling technique forYue was probably the first to argue that the integration of

capturing entities and events. Formal assertions could bSxplicit goal representations in requirements models pro-
written to express requirements about them, in particular,

temporal consirans [BubG0). A that time 1 was areacy s © TN SOUeTents o ences e fedure
recognized that such entities and events had to take part P y 9

. mey are refining [Yue87]. Broadly speakinggaal corre-
the real world surrounding the software-to-be [Jac78]. sponds to an objective the system should achieve through

Other semi-formal techniques were developed in the latgooperation of agents in the software-to-be and in the envi-
seventies, notably, entity-relationship diagrams for the modronment.
eling of data [Che76], structured analysis for the stepwisey, ; ;

X . I .~ Two complementary frameworks arose for integrating goals
modeling of operations [DeM78],.and state transition dla'and goalIo refineme):wts in requirements modegfs: agfgrmal
grams for the modeling of user interaction [Was79]. Theframework and a qualitative one. In tfiermal framework

popularity of those techniques came from their SimplicnyéDarQl], goal refinements are captured through AND/OR

Htroducing agents

anq dedicatior] to one specific concern, the price to pay wa raph structures borrowed from problem reduction tech-
their fal_rly limited SCope and_e>_(preSS|venes§, due to poo iques in artificial intelligence [Nil71].AND-refinement
underlying ontologies and limited structuring famhhes.i}?ks relate a goal to a set of subgoals (called refinement);

Moreover they were rather vaguely defined. People at thayq ieans that satisfying all subgoals in the refinement is a
time started advocating the benefits of precise and form

specifications, notably, for checking specification adequacymks relate a goal to an alternative set of refinements; this

through prototyping [Bal82]. means that satisfying one of the refinements is a sufficient
RML brought the SADT line of research significantly further condition for satisfying the goal. In this framework, a con-
by introducing rich structuring mechanisms such as generaliflict link between goals is introduced when the satisfaction
zation, aggregation and classification [Gre82]. In that sensef one of them may preclude the satisfaction of the others.
it was a precursor to object-oriented analysis techniqueOperationalization links are also introduced to relate goals to
Those structuring mechanisms were applicable to threesequirements on operations and objects. In dgo@litative
kinds of conceptual units: entities, operations, and conframework [Myl92], weaker versions of such link types are
straints. The latter were expressed in a formal assertion larintroduced to relate “soft” goals [Myl92]. The idea is that
guage providing, in particular, built-in constructs for such goals can rarely be said to be satisfied in a clear-cut
temporal referencing. That was the time where progress isense. Instead of goal satisfaction, goal satisficing is intro-
database modeling [Smi77], knowledge representatiomluced to express that lower-level goals or requirements are
[Bro84, Bra85], and formal state-based specificationexpected to achieve the goal within acceptable limits, rather

ufficient condition for satisfying the goal. OR-refinement



than absolutely. A subgoal is then said to contribute partiallyverification of properties such as the viability of an agent's
to the goal, regardless of other subgoals; it may contribut@lan or the fulfilment of a commitment between agents.
positively or negatively. If a goal is AND-decomposed into

subgoals and all subgoals are satisficed, then the goal is safiewpoints, facets, and conflicts

isficeable; but |f_a subgoal is _denled then the goal is deniablezogide the formal and qualitative reasoning techniques
If a goal contributes negatively to another goal and theyhgye other work on conflict management has emphasized
former is satisficed, then the latter is deniable. the need for handling conflicts at the goal level. A procedure
The formal framework gave rise to the KAOS methodology was suggested in [Rob89] for identifying conflicts at the
for eliciting, specifying, and analyzing goals, requirementsrequirements level and characterizing them as differences at
scenarios, and responsibility assignments [Dar93]. Argoal level; such differences are resolved (e.g., through nego-
optional formal assertion layer was introduced to supportiation) and then down propagated to the requirements level.
various forms of formal reasoning. Goals and requirementsn [Boe95], an iterative process model was proposed in
on objects are formalized in a real-time temporal logicwhich (a) all stakeholders involved are identified together
[Man92, Koy92]; one can thereby prove that a goal refine-with their goals (called win conditions); (b) conflicts
ment is correct and complete, or complete such a refinemeietween these goals are captured together with their associ-
[Dar96]. One can also formally detect conflicts among goalsated risks and uncertainties; and (c) goals are reconciled
[Lam98b] or generate high-level exceptions that may preventhrough negotiation to reach a mutually agreed set of goals,
their achievement [Lam98a]. Requirements on operationsonstraints, and alternatives for the next iteration.

are formalized by pre-, post-, and trigger conditions; one Car_(ljonflicts among requirements often arise from multiple

rrey ctaleh e cprtone requremen, TS S0, ST 01, 10 Lo T
scenarios [Lam98c]. completeness qunng requirements elicitation it is essential
that the viewpoints of all parties involved be captured and
The qualitative framework gave rise to the NFR methodol- eventually integrated in a consistent way. Two kinds of
ogy for capturing and evaluating alternative goal decomposiapproaches have emerged. They both provide constructs for
tions. One may see it as a cheap alternative to the formahodeling and specifying requirements from different view-
framework, for limited forms of goal-based reasoning, andpoints in different notations. In the centralized approach, the
as a complementary framework for high-level goals that canyiewpoints are translated into some logic-based “assembly”
not be formalized. The labelling procedure in [Myl92] is a Janguage for global analysis; viewpoint integration then
typical example of qualitative reasoning on goals specifiehmounts to some form of conjunction [Nis89, Zav93]. In the
by names, parameters, and degrees of satisficing/denial Ryistributed approach, viewpoints have specific consistency
child goals. This procedure determines the degree to which ajles associated with them; consistency checking is made by
goal is satisficed/denied by lower-level requirements, byevaluating the corresponding rules on pairs of viewpoints
propagating such information along positive/negative supfNus94]. Conflicts need not necessarily be resolved as they
port links in the goal graph. arise; different viewpoints may yield further relevant infor-

The strength of those goal-based frameworks is that they d&ation during elicitation even though they are conflicting in
not only cover functional goals but alsen-functionabnes;  Some respect. Preliminary attempts have been made to define
the latter give rise to a wide range of non-functional require2 paraconsistent logical framework allowing useful deduc-
ments. For example, [Nix93] showed how the NFR frame-tions to be made in spite of inconsistency [Hun98].

work could be used to qualitatively reason aboutyiparadigm specification is especially appealling for

performance requirements during the RE and design phas€s,qirements specification. In view of the broad scope of the
Informal analysis techniques based on similar refinemeng

respectively. captured by languages that fit them best. OMT’s combina-
Goal and agent models can be integrated through speciftion of entity-relationship, dataflow, and state transition dia-
links. In KAOS, agents may be assigned to goals througlgrams was among the first attempts to achieve this at a semi-
AND/OR responsibility links; this allows alternative bound- formal level [Rum91]. The popularity of this modeling tech-
aries to be investigated between the software-to-be and itsique and other similar ones led to the UML standardization
environment. A responsibility link between an agent and aeffort [Rum99]. The viewpoint construct in [Nus94] pro-
goal means that the agent can commit to perform its operarides a generic mechanism for achieving such combinations.
tions under restricted pre-, post-, and trigger conditions thaf\ttempts to integrate semi-formal and formal languages
ensure the goal [Dar93]. Agent dependency links werenclude [Zav96], which combines state-based specifications
defined in [YuM94, Yu97] to model situations where an [Pot96] and finite state machine specifications; and [Dar93],
agent depends on another for a goal to be achieved, a taskwhich combines semantic nets [Qui68] for navigating
be accomplished, or a resource to become available. Fahrough multiple models at surface level, temporal logic for
each kind of dependency an operator is defined; operatotbe specification of the goal and object models [Man92,
can be combined to define plans that agents may use t€oy92], and state-based specification [Pot96] for the opera-
achieve goals. The purpose of this modeling is to support théon model.



Scenario-based elicitation and validation gram trace. Work has therefore begun on inferring goal/

Even though goal-based reasoning is highly appropriate foiequirement specifications from scenarios in order to support

requirements engineering, goals are sometimes hard to elicif'°"® abstract, goal-level reasoning [Lam98c].
Stakeholders may have difficulties expressing them irBack to groundwork
abstracto. Operational scenarios of using the hypothetic

. . ) ) "’”1 parallel with all the work outlined above, there has been
system are sometimes easier to get in the first place th

o me more fundamental work on clarifying the real nature of
some goals that can be made explicit only after deepelre fying

derstandi £ th tem has b ined. This fact h quirements [Jac95, Par95, Zav97]. This was motivated by
understanding of the systém has been gained. This 1act NaSee tain evel of confusion and amalgam in the literature on
been recognized in cognitive studies on human proble

Vi Beno3l. Tvoicall S i | equirements and software specifications. At about the same
solving [ efn' t]. )t/_plca Y, ?S(t:)e?arlo Istha ef:nporat time, Jackson and Parnas independently made a first impor-
sequence of interaction events between the software-to-§e, jistinction betweedomain propertiegcalled indicative
and its environment in the restricted context of achlevmgi

some implicit purpose(s). A recent study on a broader scal N [Jac95] and NAT in [Par9S]) and requirements (called

h firmed \ . tant. artefact d 7 Bptative in [Jac95] and REQ in [Par95]). Such distinction is
as coniirmed scenarios as important artetacts use Orcésential as physical laws, organizational policies, regula-

Vafldet)l{ offp_lIers\?e_sg,S|nMparrt1|cuIar In hca?fest vr\]/her:habsftra ions, or definitions of objects or operations in the environ-
modeling fails [Wei98]. Much research effort has there O ment are by no means requirements. Surprisingly, the vast

been recently put in this direction [Jar98]. Scenario-baseq ity of specification languages existing to date do not
techniques have been proposed for elicitation and forvahdaéupport that distinction. A second important distinction

tion - e.g., to elicit requirements in hypothetical situationsm -

X X . ade by Jackson and Parnas was between (system) require-
[Pot94]; to help identify exceptional cases [Pot95]; to POPU"mants e)llnd (software) specificatiorRequiremén)':are f)or-q
late more abstract conceptual models [Rum91, Rub92]; t ulated in terms of objects in the real world, in a vocabulary

vallda7te requwe'mentsD Itr; conjunct;on with pr'ototypmlg accessible to stakeholders [Jac95]; they capture required
[E'Utgz ]',t ammatlotn [Du ?3]’ otr i)an ge':'ergﬂon t00lS g|ations between objects in the environment that are moni-
[Fic92]; to generate acceptance test cases [Hsi94]. tored and controlled by the software, respectively [Par95].
The work on deficiency-driven requirements elaboration isSoftware specificationare formulated in terms of objects
especially worth pointing out. A system there is specified bymanipulated by the software, in a vocabulary accessible to
a set of goals (formalized in some restricted temporal logic)programmers; they capture required relations between input
a set of scenarios (expressed in a Petri net-like languagednd output software objectéccuracy goalsare non-func-
and a set of agents producing restricted scenarios to achieti@nal goals requiring that the state of input/output software
the goals they are assigned to. The technique is twofold: (a)bjects accurately reflect the state of the corresponding mon-
detect inconsistencies between scenarios and goals; (fipred/controlled objects they represent [Myl92, Dar93].
apply operators that modify the specification to remove theéSuch goals often are to be achieved partly by agents in the
inconsistencies. Step (a) is carried out by a planner thagnvironments and partly by agents in the software. They are
searches for scenarios leading to some goal violationoften overlooked in the RE process; their violation may lead
(Model checkers might probably do the same job in a mordo major failures [LAS93, Lam2Ka]. A further distinction
efficient way [McM93, Hol97, Cla99].) The operators has to be made between requirements and assumptions.
offered to the analyst in Step (b) encode heuristics for speciAlthough they are both optativaequirementsare to be
fication debugging - e.g., introduce an agent whose responsgnforced by the software whereassumptionscan be
bility is to prevent the state transitions that are the last step ienforced by agents in the environment only [Lam98bRIf
breaking the goal. There are operators for introducing newdlenotes the set of requirememsthe set of assumptions,
types of agents with appropriate responsibilities, splittingthe set of software specificationdc the set of accuracy
existing types, introducing communication and synchronizagoals, ands the set of goals, the following satisfaction rela-
tion protocols between agents, weakening idealized goaldions must hold:

a}nd sodf%rtr;). Thg repeated applllicationh of defliciency de'ltec- S, Ac, DR with S, Ac, Df false

tion and debugging operators allows the analyst to explore . , "

the space of alternative models and hopefully converge R, As, D=G with R, As, DI false
towards a satisfactory system specification. The reactive systems line

The problem with scenarios is that they are inherently parin parallel with all the efforts discussed above, a dedicated
tial; they raise a coverage problem similar to test cases, malstream of research has been devoted to the specific area of
ing it impossible to verify the absence of errors. Instance+eactive systems for process control. The seminal paper here
level trace descriptions also raise the combinatorial explowas based on work by Heninger, Parnas and colleagues
sion problem inherent to the enumeration of combinations ofvhile reengineering the flight software for the A-7 aircraft
individual behaviors. Scenarios are generally proceduraljHen80]. The paper introduced SCR, a tabular specification
thus introducing risks of overspecification. The descriptiontechnique for specifying a reactive system by a set of parallel
of interaction sequences between the software and its enviinite-state machines. Each of them is defined by different
ronment may force premature choices on the precise boundypes of mathematical functions represented in tabular for-
ary between them. Last but not least, scenarios leaveat. A mode transition table defines a mode (i.e. a state) as a
required properties about the intended system implicit, in théransition function of a mode and an event; an event table
same way as safety/liveness properties are implicit in a prodefines an output variable (or auxiliary quantity) as a func-



tion of a mode and an event; a condition table defines an ouRequirements documentation

put varlable_ _(or auxiliary quantity) as a_functlon of a mOOIfeThe specifications of the domain and requirements models
and a condition (the latter may refer to input or output vari-

- L .are essential components to document requirements for com-
ables, modes, or auxiliary quantities). The strength of SCR igy hication, inspection, negotiation, and evolution. Ideally

its use of terminology and tabular notations familiar 10ynoy shouyid only be part of it. Some work has been done on

domain experts. Although it is lightweight the notation i o5 51ring the process and rationale leading to such models

sufficiently formal to enable useful consistency and comygq,,93 "Nus94] and the actors responsible for decisions so

pleteness checks, based on the property that tables must rgpz; traceability links can be established [Got95].

resent total functions. Last but not least, the technique is now

supported by an impressive toolset offering a wide range o FROM OBJECT ORIENTATION TO GOAL

analysis - e.g., dedicated consistency/completeness chec .'ORIENTATION

ing, animation, model checking, and theorem proving

[Heit96, Heit98a, Heit98b]. The main weakness of SCR is itsToday’s object-oriented analysis techniques have a strong

lack of structuring mechanisms for structuring variablesimpact on the state of practice in requirements engineering.

(e.g., by aggregation or generalization), modes (e.g., byAs introduced before, they combine multiple semi-formal

AND/OR decomposition), and tables (e.g., by refinemenimodeling techniques to capture different facets of the system

relationships). (such as the data, behavioral, and interaction facets); they
. . . rovide structuring mechanisms (such as generalization and

Data structuring was provided by CORE [Fau92], a V"j‘r""mé)lggregation); the;g/] offer a wide épectrumgof notations that

of SCR supporting some form of object orientation. The o~ 'va ised from requi - ;

guirements modeling to design (at some
work around Statecharts [Har87, HAR96] showed how statejq ot confusion between those phases): they now tend
machine specifications could be recursively AND/ORyqards a standard set of notations [Rum99], with built-in
decomposed into finer ones so as to support a stepwise Sp&Gtansion mechanisms, which hopefully will in the end have
ification refinement process. The specification language i§ precise semantics. However, the concepts and structuring
fully graphical and sufficiently formal to enable powerful yechanisms supported essentially emerged by abstraction
animation topls [Har90]. But formality (and therefore analy- from the programming field [Myl99] - the same way as
sis) is more limited than SCR. The work on RSML has takenstryctured analysis came out by abstraction from structured
one step further by extending Statecharts with interfacgyrogramming techniques. In particular, tivay concerns in
descriptions and direct communication among parallel statgne early stages of requirements engineering practice [Hic74,
machines; state transitions are more precisely definegios77h, Mun81, Ber91] are not addressed.
[Lev94]. As a result, the same range of analysis as SCR can . . o . ) .
be provided with structuring facilities in addition [Heimge, |N€ aim of this section is to illustrate the benefits of looking
Cha98, Tho99]. The RSML language is still graphical andtn€ other way round for the purpose of requirements elicita-
integrates tabular formats as well. Like SCR, the techniqud©®": SPecification, and analysis - that is, to start thinking

has been validated by experience in complex projects - not220Ut Objectives as they arise in preliminary material pro-
bly, the documentation of the specifications of TCAS 1, aV|ded, use goal refinement/abstraction as higher-level mech-

Traffic Collision Avoidance System required on all commer- anism for model/specification structuring, and thereby

cial aircrafts flying in US airspace [Lev94]. incrementally derive muitiple models:
« the goal model, leading to operational requirements;

« the object model;

Requirements refer to specific domains and to specific tasks. . : .
. AT : - .~ "*"the agent responsibility model, leading to alternative sys-
Requirements within similar domains and/or for similar tem boundaries to be explored:

tasks are more likely to be similar than the software compo- _
nents implementing them. Surprisingly enough, techniques the operation model.

for retrieving, adapting, and consolidating reusable require suggest that goal-based reasoning is not only useful in the
ments have received relatively little attention in comparisonggntext of enterprise modeling, we take a recent benchmark
with all the work on software reuse. The area was initiategyroposed to the formal specification community: the BART
by [Reu91] in which a technique based on inheritance wagystem [BAR99]. This case study is appealling for a number
proposed to reuse fragments of domain descriptions (e.g. iff reasons: it is a real system; it is a complex, real-time,
the library domain) and of task specifications (e.g., historysafety-critical system; the initial document was provided by
tracking). Analogical and case-based reasoning techniqueg independent source involved in the development. The
have been borrowed from artificial intelligence to supportmodel elaboration will inevitably be sketchy due to lack of
structural matching [Mai93] and semantic matching [Mas97]space. We select a few snaphots from the KAOS elaboration
in the requirements retrieval process. On the task reuse sidgyat mix informal, semi-formal, and formal specifications.
the work on problem frames reprsents a preliminary attempg/ore details can be found in [Let2K].

to classify and characterize task patterns [Jac95].

Requirements reuse

The initial document [BAR99] focuses on the control of
The work in this area has not made sufficient progress to datepeed and acceleration of trains under responsibility of the
to determine whether such approaches may be practical amkdvanced Automatic Train Control being developed for the
may scale up. San Francisco Bay Area Rapid Transit (BART) system.
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Goal identification from the initial document as well:

Figure 1 gives a portion of the goal graph identified after a Goal Maintain[WCS-DistBetweenTrains] o
first reading of the initial document. The goals were obtained '”for;”a'tDef t;‘ tt’?;’thht"”.’d hever get so Clojs fo atrain in
by searching for intentional keywords such as “purpose”, Jgfaiﬁgeng the ret i woid e ey g,
“objective”, “concern”, “intent”, “in order to”, and so forth. ) '
FormalDef O trl, tr2: Train :
In this graphical specification, clouds denote soft goals (used Following(trL, r2) O trl.Loc - tr2.Loc > tr1. WCS-Dist
in general to select among alternatives), parallelogramsrh in Def stat ¢ th | definiti
denote formalizable goals, arrows denote goal-subgoal linkg "€ InformalDef statements in those goal definitions are

a double line linking arrows denotes an OR-refinement mtotakenhllterallly from the initial doc(;JmentNCks) D|stddenor:es H
alternative subgoals, and a crossed link denotes a conflic?® Physical worst-case stopping distance based on the phys-

The Maintain and Avoid keywords specify “always” goals ical speed of the train. The initial portion of the object model
having the temporal pattern P - Q) and 0 (P - - Q) is now enriched from that second goal definition:

respectively. TheAchieve keyword specifies “eventually”

goals having the patterr O ¢ Q. The “~“ connective Train on |TrackSegment

denotes logical implicatio] (P - Q) is denoted by O SpeedLimit:SpeedUni

for short 9 P 3 ( Q wioe SpeedSpeedUnit peedLimit-speedtini
' Loc : Location

WCS-Dist : Distanceg

| Following

: The formalization of the goalvoid[TrainEnterinClosedGate]
Min in Figure 1 will further enrich the object model by elements
[OperationCo that are strictly necessary to the goals considered.

ServeMorePassenge)

TrainsMore
CloselySpaced

Min [Time
BetweenStation

Min[DvlptCosts

Eliciting new goals through WHY questions

It is often worth eliciting more abstract goals than those eas-
ily identifiable from the initial document (or from inter-
views). The reason is that one may thereby find out other
important subgoals of the more abstract goal that were over-
looked in the first place.

SafeTransport

/ Maintain[TrainOnCorrectLin?{

Av0|d [TrainEnterin
ClosedGate]

Maintain Maintain /Avoid[TrainOnSwitchInWrongPostio?{
[wWCs- DlstBetweenTraln [TrackSegmentSpeedLl it]

Figure 1 - Preliminary goal graph for the BART system

Formalizing goals and identifying objects / Avoid
i

As safety goals are critical one may start thinking about | [TrainEnteringClosedGa:

Maintain [GateCIosedWh’T
them first. The goaMaintain[TrackSegmentSpeedLimit] at the

SwitchinWrongPositio

bottom of Figure 1 may be defined more precisely: Figure 2 - Enriching the goal graph by WHY elicitation
Goal Maintain[TrackSegmentSpeedLimit] More abstract goals are identified by asking WHY questions.
InformalDef A train should stay below the maximum speed For example, asking a WHY question about the gmah-
the track segment can handie. tain[WCS-DistBetweenTrains] yields the parent goaivoid[Train-
FormalDef [ tr: Train, s: TrackSegment: Collision]; asking a WHY question about the goal
On(tr, s) U tr.Speed < s.SpeedLimit Avoid[TrainEnteringClosedGateyields a new portion of the

The predicate, objects, and attributes appearing in this gogoal graph, shown in Figure 2.
formalization give rise to the following portion of the object | this goal subgraph, the companion subgeahtain[Gate-

model: ClosedWhenSwitchinWrongPosition] was elicited formally by
i matching a formal refinement pattern to the formalization of
Train on |TrackSegment the parent goadvoid[TrainOnSwitchinwrongPosition], found by
SpeedSpeedUnit SpeedLimit:SpeedUni a WHY question, and to the formalization of the initial goal
Avoid[TrainEnteringClosedGatg§Dar96, Let2K]. The dot join-

ing the two lower refinement links together in Figure 2
The other goal at the bottom of Figure 1 is defined preciselymeans that the refinement is (provably) complete.
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The quest of more abstract goals should of course remaithis agent in terms of monitored and controlled variables can
within the system’s subject matter [Zav97a]. be derived from the formal specification of this goal (we just

. ke i neral form here for sake of simplicity):
Eliciting new goals through HOW questions take its 9e _ea ° ere for sake of simplicity)
Goal Maintain[SafeCmdMsg]

Goals have to be refined until subgoals are reached that can rormaipef 0 cm: CommandMessage, ti1, ti2: Traininfo

be assigned to individu_al agents i_n the software-to-be and in cm.Sent Ocm.TrainID = til.TrainID O FollowingInfo (i1, ti2)
the environment. Terminal goals in the former case become 0 cm.Accel < F (ti1, ti2) Ocm.Speed > G (ti1)
requirements; they are assumptions in the latter. To fulfil its responsibility for this goal thepeed/Acceleration-

More concrete goals are identified by asking HOW ques<ontrolSystem agent must be able to evaluate the goal ante-

tions. For example, a HOW question about the geah- cedent and establish the goal consequent. The agent’s

tain(WCS-DistBetweenTrains] in Figure 1 yields an extension of monitored object is thereforeaininfo whereas its controlled

the goal graph shown in Figure 3. variables are CommandMessage.Accel and CommandMes-
sage.Speed. The following agent interfaces are derived by

Maintain this kind of reasoning:
[WCS-DistBetweenTraing]
* Train.Loc Train
Train.Speed ‘\Train.Accel
Maintain [Safe Maintain Maintain Tracking QnBoard
Speed/Acceleratiofy[SafeTrainResponse [NoSuddenStop System TrainController
Commanded] ToCommand] | |OfPrecedingTrai Traininfo

Figure 3 - Goal refinement

Speed/Acceleratio
ControlSystem CommandMessage

The formalization of the three subgoals in Figure 3 may be
used to prove that together they entail the father geal- Identifying operations

tain[WCS-DistBetweenTrains] formalized before [Let2K]. These oals refer to specific state transitions: for each of them an

erJ: ?g:(lzshggvi tgokr)ﬁ :g'gan(ragfi:?etrlrj]renn??rtéleﬁssg?\?:r? Ii(ra] SAlfqbn%c:(aEperation causing it is identified and preliminarily defined by
: P 9 'omain pre- and postconditions that capture the state transi-

Identifying potential responsibility assignments tion. For the goaMaintain[SafeCmdMsg] formalized above we

Annex 1 also provides a possible goal assignment amonaet' for example,

individual agents. This assignment seems the one suggeste@reration SendCommandMessage

in the initial document [BAR99]. For example, the accuracy ~'nPut Train {arg tr}

goal Maintain[AccurateSpeed/PositionEstimates] iS assignable to Output ComandMessage {res cm}

the TrackingSystem agent; the goaliaintain[SafeTrainResponse- DomPre ~ cm.Sent )

ToCommand] is assignable to thenBoardTrainController agent; .DomPo.st. ?m.Sen't D.cm.TralnID =D .

the goal Maintain[SafeCmdMsg] is assignable to thespeeqs ~ This definition minimally captures what any sending of a
AccelerationControlSystem agent. command to a train is about in the domain considered; it

It is worth noticing that goal refinements and agent assignEJIOeS not ensure any of the goals it should contribute to.

ments are both captured by AND/OR relationships. Alterna-Operationalizing goals

tive refinements and assignments can be (and probably hayge purpose of the operationalization step is to strengthen
been) explored. For example, the parent ga@htainlWCS-  g;;ch domain conditions so that the various goals linked to

DistBetweenTrains] in Figure 3 may alternatively be refined by e operation are ensured. For goals assigned to software
the following threeMaintain subgoals: agents, this step producesjuirementsn the operations for

PreceedingTrainSpeed/PositionKnownToFollowingTrain the corresponding goals to be achieved. Preliminary deriva-
SafeAccelerationBasedOnPreceeding TrainSpeed/Position tion rules for an operationalization calculus were introduced
NoSuddenStopOfPreceedingTrain in [Dar93]. In our example, they yield the following require-

The second subgoal above could be assigned tortheard- ments that strengthen the domain pre- and postconditions:
TrainController agent. This alternative would give rise to a Operation SendCommandMessage
fully distributed system. Input Train {arg tr}, Traininfo; Output ComandMsg {res cm}

To help making choices among alternatives, qualitative rea- D°MPre -.; DomPost ..

soning techniques might be applied to the softgoals identi- ReaPostfor SafeCmdMsg:

fied in Figure 1 [Myl99]. Tracking (ti1, tr) O Fo_IIOV\{ing (ti1, ti2) ‘
- cm.Acc < F (ti1, ti2) Ocm.Speed > G (til)

Deriving agent interfaces ReqTrig for CmdMsgSentinTime:

Let us now assume that the goadintain[SafeCmdMsg] at the B 05 sec 7 Jcm2: CommandMessage:

bottom of the tree in Annex 1 has been actually assigned to cm2.Sent [Jem2.TrainID = tr.ID

the Speed/AccelerationControlSystem agent. The interfaces of (The trigger condition captures an obligation to trigger the
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operation as soon as the condition gets true and provided theGoal Maintain [CmdedSpeedCloseToPhysicalSpeed]
domain precondition is true. In the example above the condi- FormalDef [ tr: Train
tion says that no command has been sent in every past state tr.AcCey = 0

up to one half-second [BAR99].) O tr.Speedgy < tr.Speed + f (dist-to-obstacle)

Using a mix of semi-formal and formal techniques for goal—and

oriented requirements elaboration, we have reached the levelGoal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
at which most formal specification techniques would start. FormalDef O tr: Train

To sum up, goal-oriented requirements engineering has tr.Accey = 0 O tr.Speedgy, > tr.Speed + 7

many advantages: These two goals are formally detected to be divergent using

« object models and requirements are derived systematicallfne techniques described in [Lam98b]. The generated bound-
from goals, ary condition for making them logically inconsistent is

« goals provide the rationale for requirements, 0 (Btr: Train) (tr.Accey 2 0 Of (dist-to-obstacle) < 7)
érhe resolution operators from [Lam98b] may be used to
generate possible resolutions; in this case one should keep

) i . the safety goal as it is and weaken the other conflicting goal
» alternative goal refinements and agent assignments alloyg remove the divergence:

« the goal refinement structure provides a comprehensibl
structure for the requirements document,

alternative system proposals to be explored, Goal Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
+ goal formalization allows refinements to be proved correct FormalDef Otr: Train
and complete. tr.Acccy =0 O tr.Speedgy > tr.Speed + 7

O f (dist-to-obstacle) < 7
4. LIVING WITH CONFLICTS
_ o _ 5. BEING PESSIMISTIC
As discussed earlier in the paper, goals also provide a f'rn&irst-sketch specifications of goals, requirements and

basis for conflict analysis. Requirements engineers live in %ssumptions tend to be too ideal. If so they are likely to be

world where conflicts are the rule, not the exception [Ea594]violated from time to time in the running system due to
Conflicts must be detected and eventually resolved evep

thouah thev mav temporarilv be useful for eliciting further unexpected behavior of agents. The lack of anticipation of
infor?nationy y P y 9 exceptional behaviors may result in unrealistic, unachievable

and/or incomplete requirements.

The initial BART document suggests an interesting examplgsoals also provide a basis for early generation of high-level
of conflict [BAR99, p.13]. Figure 4 helps visualizing it. exceptions which, if handled properly at requirements engi-

neering time, may generate new requirements for more
Min [Dist
BetwTrain

robust systems. To illustrate this, consider some of the goals
/ Maintain E:mdedSpe?ﬁ /A Maintain [CmdedSpeed qé]

The goal Achieve[CmdMsgSentinTime] may be obstructed by
conditions such as:

CommandNotSent,

CommandSentLate,

CommandSentToWrongTrain

The goalMaintain[SafeCmdMsg] may be obstructed by the con-
dition

UnsafeAcceleration,
and so on. We call such obstructing conditiooisstacles
/ LimitedAccelerwhen D/L [Pot95]. Obstacles can be produced for each goal by con-
d

[TrainSpeed

appearing at the bottom of the refinement tree in Annex 1.
CloseToPhysicalSpee bove7mphOfPhysicalSpe

/ DistanceBetweenTrain

IncreasedWithCmdedSpded| CmdedSpeedAbove7m structing a goal-anchored fault-tree, that is, a refinement tree
OfPhysicalSpeed whose root is the goal negation. Formal and heuristic tech-
/ nigues are available for generating obstacles systematically

SafeTranspo @ from goal specifications and domain properties [Lam2Ka].
Alternative resolution strategies may then be applied to the
Figure 4 - Conflict in speed/acceleration control generated obstacles in order to produce new or alternative

requirements. For example, the obstaclgnmandSentLate
Roughly speaking, the commanded speed may not be toabove could be resolved by an alternative design in which
high, because otherwise it forces the distance between trairaecelerations are calculated by the on-board train controller
to be too high for safety reason (see the left part of Figure 4)instead; this would correspond togmal substitutionstrat-
on the other hand, the commanded speed may not be too lowgy. The obstaclensafeAcceleration above could be resolved
because otherwise it may force uncomfortable acceleratiohy assigning the responsibility for the subgsaleAccelera-
(see the right part of Figure 4). To be more precise, we lookionCommanded of the goalMaintain[SafeCmdMsg] to the vital-
at the formalizations produced during goal elaboration: StationComputer agent instead [BAR99]; this would
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correspond to aragent substitutiorstrategy. Anobstacle

mitigation strategy could be applied to resolve the obstacle / Maintain[Evolvability)
OutOfDateTrainInfo Obstructing the accuracy gaahintain[Accu-

rateSpeed/PositionEstimates], by introducing a new subgoal of /

the goal Avoid[TrainCollisions], hamely, Maintain[NoCollision- " /MaintainAutonomous(C1,C2)]

WhenOutOfDateTraininfo]. This new goal has to be refined in
turn, e.g., by subgoals requiring full braking when the mes-

dataflow
sage origination time tag has expired.

6. FROM REQUIREMENTS TO ARCHITECTURE

Currently there is very little support for building or modify- generatesr————g C9ISter

. . R traf 3 C2
ing a software architecture guaranteed to meet a set of func- cgisra notifies -
tional and non-functional requirements. Proposals for Implicit invocation pattern [Sha96]

architectural description languages and associated analysis
techniques have flourished [Luc95, Mag95, Tay96, Gar97];

/ Maintain[Security]

constructive techniques have also been proposed for archi-
tectural refinement [Mor95]. However, little work has been /
devoted to date to techniques for systematically deriving Avoid[ClassifiedDataFlowing(CL,C2)]

architectural descriptions from requirements specifications.
This is somewhat paradoxical as the software architecture dataflow
has long been recognized to have a profound impact on the
achievement of non-functional goals such as security, avail-

ability, fault tolerance, evolvability, and so forth [Per92,

Sha96].

dataflow —
A goal-based approach for architecture derivation might be dataflo

useful and is feasible. The general principle is to: “No read up, no write down’” pattern [Rie99]

« use functional goals assigned to software agents to derive a ) ) _
first abstract dataflow architecture, Figure 5 - Goal-driven connector refinement

« use non-functional goals to refine dataflow connectors. 7 MORE WORK FOR THE NEXT 25 YEARS!

The first step is rather simple; once a software agent igforts should thus be devoted to bridging the gap between
assigned to a functional goal its interfaces in terms of MONiRE yesearch and research in software architecture. Even

(see Section 5). The agents become archi_tectural COMPGs; software development, things get much more compli-
nents; the dataflow connectors are then derived from inpu{ated for software evolution. For example, the conflict

output data dependencies. (The granularity of such compgsetween requirements volatility and architectural stability is
nents is determined by the granularity of goal refinement.) g yifficult one to handle.

The second step is the difficult one. There is some hope hefi@ some application domains, complex customizable pack-
that connector refinement patterns could be used to suppaayes are increasingly often chosen by clients as an alterna-
the process. The idea is to annotate such patterns with notive to software development. Another unexplored transition
functional goals they achieve, and to consider applying a pathat should be investigated is the systematic derivation of
tern when its associated goal matches the goal under consigarameter settings from requirements.

eration. A catalog of patterns would codify the architect's\;assive access to the internet will enable more and more
knowledge [Mor95] - much the same way as [Gam95] but alynq_ysers to access software applications. Define-it-yourself
the architecting level and with a proof (or a solid argument),approaches should therefore be explored to support RE-in-

once for all, that the associated goal is established. the-small involving end-users as the only stakeholders.
Figure 5 sketches a few such patterns to help visualizing th&he gap between RE research and formal specification
general idea. research is another important one to bridge. Roughly speak-

Preliminary experience with this approach on small examing: the former offers much richer modeling abstractions
while the latter offers much richer analysis - such as model

ples suggests that it is worth investigating further. In particu-

lar, refinement patterns must be combined with abstractioﬁheCk'ng’ deductive verification, animation, test data genera-
tion, formal reuse of components, or refinement from speci-

patterns to be applied to components from the Implemema1‘ication to implementation [Lam2Kb]. The technology there
tion infrastructure imposed. . : :

is reaching a level of maturity where tool prototypes evolve
Explicit links between refined connectors and non-functionainto professional products and impressive experience in fully
goals would also allow architectural views to be extractedormal development of complex systems is emerging
through queries (e.g., security view, availability view, etc.). [Beh99]. One should therefore look at ways for mapping the
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conceptually richer world of RE to the formal analysis material. Earlier in the RE process, one might envisage
world. One recent attempt in this general direction is worthdynamic tools for exploration of alternatives that like games
pointing out [Dwy99]. unfold based on the actions of users and integrate a variety of

Domain and requirements models should ideally capturdltéractive presentation media - e.g., interview video, origi-
more knowledge about the multiple aspects, concerns, arftf!S Of documentation and so on [Fea97]. A last example are
activities involved in the requirements engineering process00!S for supporting requirements evolution through runtime

The problem here is to find best compromises betweefonitoring and resolution of deviations between the sys-
model expressiveness and precision, for richer analysis, af@M's behavior and its original requirements [Fea98].

model simplicity, for better usability. In particular, one

should look at effective combinations that integrate semi-for8- BY WAY OF CONCLUSION
mal, formal, and qualitative reasoning about non-functionalThe last 25 years have seen growing interest and efforts
requirements. towards ameliorating the critical process of engineering

Modeling agents is a particular area of concern. Traditiona[!i9her-quality requirements. We have reviewed a number of
RE has decomposed the world in two components - the sofiMportant milestones along that way and tried to convince
ware and its environment. Most often there are multiple soft!n€ reader that goal-based reasoning is central to require-
ware, human and physical components having to cooperatg1€Nts engineering - for requirements elaboration, explora-
Limited capabilities, inaccurate beliefs, poor cooperationtion of alternative software  boundaries, ~ conflict
and wrong assumptions may be sources of major problemi@anagement, requirements-level exception handling, and
[LAS93, LevO5, But98]. Much work is needed here to Sup_archltecture derivation. Goals are also abstractions stake-

port agent-based reasoning during requirements elaboratigtp!ders are familiar with. In all the industrial projects our
and, in particular, responsibility assignment. technology transfer institute has been involved in, it turned

) ) out that high-level managers and decision makers were
Models for reasoning about current alternatives and futurg, ,ch more interested in checking goal models than, e.g.
plausible changes have received relatively little attention tcbbject models.

date. Such reasoning should be at the heart of the RE procea? . :
though. These are exciting fields open for exploration. € also tried to suggest that much remains to be done. The
work is worth the effort though. After all, given the

Much RE work has been done on new languages and sets gkpected progress in component reuse and automated pro-
notations. It is time to shift towards building complex arte- gramming technologies, will there be anything else left in

facts using such language€onstructivetechniques are ggftware engineering, beside software geriatry, than require-
needed to guide requirements engineers in the incrementalents engineering?

elaboration and assessment of requirements. In particular,
one should c_Ianfy when and yvhere to shift from mformal Acknowledgment.
through semi-formal to formal; when and how to shift from . ) ] )

scenarios to requirements models; when and how to shiffmanuel Letier was instrumental in developing the KAOS

from conflicting viewpoints to a consistent documentation;SPecification of the BART system from which the excerpts
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useful in this context.
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ANNEX 1: GOAL REFINEMENT TREE AND RESPONSIBILITY ASSIGNMENT IN THE BART SYSTEM
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