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ABSTRACT

Requirements engineering (RE) is concerned with the ide
tification of the goals to be achieved by the envisioned sy
tem, the operationalization of such goals into services an
constraints, and the assignment of responsibilities for th
resulting requirements to agents such as humans, devic
and software. The processes involved in RE includ
domain analysis, elicitation, specification, assessme
negotiation, documentation, and evolution. Getting high
quality requirements is difficult and critical. Recent survey
have confirmed the growing recognition of RE as an area
utmost importance in software engineering research a
practice.

The paper presents a brief history of the main concepts a
techniques developed to date to support the RE task, with
special focus on modeling as a common denominator to
RE processes. The initial description of a complex safet
critical system is used to illustrate a number of curren
research trends in RE-specific areas such as goal-orien
requirements elaboration, conflict management, and t
handling of abnormal agent behaviors. Opportunities fo
goal-based architecture derivation are also discuss
together with research directions to let the field mov
towards more disciplined habits.

1. INTRODUCTION

Software requirements have been repeatedly recogni
during the past 25 years to be a real problem. In their ea
empirical study, Bell and Thayer observed that inadequa
inconsistent, incomplete, or ambiguous requirements a
numerous and have a critical impact on the quality of th
resulting software [Bel76]. Noting this for different kinds o
projects, they concluded that“the requirements for a system
do not arise naturally; instead, they need to be engineer
and have continuing review and revision”. Boehm esti-
mated that the late correction of requirements errors cou
cost up to 200 times as much as correction during su
requirements engineering [Boe81]. In his classic paper
the essence and accidents of software engineering, Bro
stated that“the hardest single part of building a sofware
system is deciding precisely what to build... Therefore, t
most important function that the software builder perform
for the client is the iterative extraction and refinement of th
ti-
-
o
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product requirements”[Bro87]. In her study of software
errors in NASA’s Voyager and Galileo programs, Lut
reported that the primary cause of safety-related faults w
errors in functional and interface requirements [Lut93].

Recent studies have confirmed the requirements problem
a much larger scale. A survey over 8000 projects und
taken by 350 US companies revealed that one third of t
projects were never completed and one half succeeded o
partially, that is, with partial functionalities, major cos
overruns, and significant delays [Sta95]. When asked ab
the causes of such failure executive managers identifed p
requirements as the major source of problems (about hal
the responses) - more specifically, the lack of user involv
ment (13%), requirements incompleteness (12%), chang
requirements (11%), unrealistic expectations (6%), a
unclear objectives (5%). On the European side, a recent s
vey over 3800 organizations in 17 countries similarly co
cluded that most of the perceived software problems are
the area of requirements specification (>50%) and requi
ments management (50%) [ESI96].

Improving the quality of requirements is thus crucial. But
is a difficult objective to achieve. To understand the reas
one should first define what requirements engineering
really about.

The oldest definition already had the main ingredients.
their seminal paper, Ross and Schoman stated that“require-
ments definition is a careful assessment of the needs th
system is to fulfill. It must say why a system is needed, ba
on current or foreseen conditions, which may be intern
operations or an external market. It must say what syste
features will serve and satisfy this context. And it must s
how the system is to be constructed”[Ros77b]. In other
words, requirements engineering must address the con
tual goals why a software is needed, the functionalities t
software has to accomplish to achieve those goals, and
constraints restricting how the software accomplishin
those functions is to be designed and implemented. Su
goals, functions and constraints have to be mapped to p
cise specifications of software behavior; their evolutio
over time and across software families has to be coped w
as well [Zav97b].

This definition suggests why the process of engineeri
requirements is so complex.

• The scope is fairly broad as it ranges from a world o
human organizations or physical laws to a technical ar
fact that must be integrated in it; from high-level objec
tives to operational prescriptions; and from informal t
formal. Thetarget systemis not just a piece ofsoftware,
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but also comprises theenvironmentthat will surround it;
the latter is made of humans, devices, and/or other soft-
ware. The whole system has to be considered under many
facets, e.g., socio-economic, physical, technical, opera-
tional, evolutionary, and so forth.

• There are multiple concerns to be addressed beside func-
tional ones - e.g., safety, security, usability, flexibility, per-
formance, robustness, interoperability, cost,
maintainability, and so on. These non-functional concerns
are often conflicting.

• There are multiple parties involved in the requirements
engineering process, each having different background,
skills, knowledge, concerns, perceptions, and expression
means - namely, customers, commissioners, users, domain
experts, requirements engineers, software developers, or
system maintainers. Most often those parties have conflict-
ing viewpoints.

• Requirement specifications may suffer a great variety of
deficiencies [Mey85]. Some of them are errors that may
have disastrous effects on the subsequent development
steps and on the quality of the resulting software product -
e.g., inadequacies with respect to the real needs, incom-
pletenesses, contradictions, and ambiguities; some others
are flaws that may yield undesired consequences (such as
waste of time or generation of new errors) - e.g., noises,
forward references, overspecifications, or wishful thinking.

• Requirements engineering covers multiple intertwined
activities.
– Domain analysis:the existing system in which the soft-

ware should be built is studied. The relevant stakehold-
ers are identified and interviewed. Problems and
deficiencies in the existing system are identified; oppor-
tunities are investigated; general objectives on the target
system are identified therefrom.

– Elicitation: alternative models for the target system are
explored to meet such objectives; requirements and
assumptions on components of such models are identi-
fied, possibly with the help of hypothetical interaction
scenarios. Alternative models generally define different
boundaries between the software-to-be and its environ-
ment.

– Negotiation and agreement:the alternative require-
ments/assumptions are evaluated; risks are analyzed;
"best" tradeoffs that receive agreement from all parties
are selected.

– Specification:the requirements and assumptions are for-
mulated in a precise way.

– Specification analysis:the specifications are checked
for deficiencies (such as inadequacy, incompleteness or
inconsistency) and for feasibility (in terms of resources
required, development costs, and so forth).

– Documentation:the various decisions made during the
process are documented together with their underlying
rationale and assumptions.

– Evolution: the requirements are modified to accommo-
date corrections, environmental changes, or new objec-
tives.

Given such complexity of the requirements engineering pr
cess, rigorous techniques are needed to provide effec
support. The objective of this paper is to provide: a brief hi
tory of 25 years of research efforts along that way; a concr
illustration of what kind of techniques are available toda
and directions to be explored for requirements engineer
to become a mature discipline.

The presentation will inevitably be biased by my own wor
and background. Although the area is inherently interdis
plinary, I will deliberately assume a computing scienc
viewpoint here and leave the socological and psychologi
dimensions aside (even though they are important). In par
ular, I will not cover techniques for ethnographic observatio
of work environments, interviewing, negotiation, and s
forth. The interested reader may refer to [Gog93, Gog94] f
a good account of those dimensions. A comprehensive,
to-date survey on the intersecting area of information mod
ing can be found in [Myl98].

2. THE FIRST 25 YEARS: A FEW RESEARCH
MILESTONES

Requirements engineering addresses a wide diversity
domains (e.g., banking, transportation, manufacturing), ta
(e.g., administrative support, decision support, process c
trol) and environments (e.g., human organizations, physi
phenomena). A specific domain/task/environment m
require some specific focus and dedicated techniques. Th
in particular the case for reactive systems as we will see a
reviewing the main stream of research..

Modelingappears to be a core process in requirements en
neering. The existing system has to be modelled in so
way or another; the alternative hypothetical systems have
be modelled as well. Such models serve as a basic comm
interface to the various activities above. On the one han
they result from domain analysis, elicitation, specificatio
analysis, and negotiation. On the other hand, they guide f
ther domain analysis, elicitation, specification analysis, a
negotiation. Models also provide the basis for documen
tion and evolution. It is therefore not surprising that most
the research to date has been devoted to techniques for m
eling and specification.

The basic questions that have been addressed over the y
are:

• what aspects to model in thewhy-what-how range,
• how to model such aspects,
• how to define the model precisely,
• how to reason about the model.

The answer to the first question determines theontologyof
conceptual units in terms of which models will be built - e.g
data, operations, events, goals, agents, and so forth.
answer to the second question determines the structur
relationships in terms of which such units will be compose
and linked together - e.g., input/output, trigger, generaliz
tion, refinement, responsibility assignment, and so forth. T
answer to the third question determines the informal, sem
formal, or formal specification technique used to define t
required properties of model components precisely. T
answer to the fourth question determines the kind of reas
6
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ing technique available for the purpose of elicitation, specifi-
cation, and analysis.

The early days

The seminal paper by Ross and Schoman opened the field
[Ros97b]. Not only did this paper comprehensively explain
the scope of requirements engineering; it also suggested
goals, viewpoints, data, operations, agents, and resources as
potential elements of an ontology for RE. The companion
paper introduced SADT as a specific modeling technique
[Ros97a]. This technique was a precursor in many respects.
It supported multiple models linked through consistency
rules - a model for data, in which data are defined by produc-
ing/consuming operations; a model for operations, in which
operations are defined by input/output data; and a data/oper-
ation duality principle. The technique was ontologically
richer than many techniques developed afterwards. In addi-
tion to data and operations, it supported some rudimentary
representation of events, triggering operations, and agents
responsible for them. The technique also supported the step-
wise refinement of global models into more detailed ones -
an essential feature for complex models. SADT was a semi-
formal technique in that it could only support the formaliza-
tion of the declaration part of the system under consideration
- that is, what data and operations are to be found and how
they relate to each other; the requirements on the data/opera-
tions themselves had to be asserted in natural language. The
semi-formal language, however, was graphical - an essential
feature for model communicability.

Shortly after, Bubenko introduced a modeling technique for
capturing entities and events. Formal assertions could be
written to express requirements about them, in particular,
temporal constraints [Bub80]. At that time it was already
recognized that such entities and events had to take part in
the real world surrounding the software-to-be [Jac78].

Other semi-formal techniques were developed in the late
seventies, notably, entity-relationship diagrams for the mod-
eling of data [Che76], structured analysis for the stepwise
modeling of operations [DeM78], and state transition dia-
grams for the modeling of user interaction [Was79]. The
popularity of those techniques came from their simplicity
and dedication to one specific concern; the price to pay was
their fairly limited scope and expressiveness, due to poor
underlying ontologies and limited structuring facilities.
Moreover they were rather vaguely defined. People at that
time started advocating the benefits of precise and formal
specifications, notably, for checking specification adequacy
through prototyping [Bal82].

RML brought the SADT line of research significantly further
by introducing rich structuring mechanisms such as generali-
zation, aggregation and classification [Gre82]. In that sense
it was a precursor to object-oriented analysis techniques.
Those structuring mechanisms were applicable to three
kinds of conceptual units: entities, operations, and con-
straints. The latter were expressed in a formal assertion lan-
guage providing, in particular, built-in constructs for
temporal referencing. That was the time where progress in
database modeling [Smi77], knowledge representation
[Bro84, Bra85], and formal state-based specification

[Abr80] started penetrating our field. RML was also proba
bly the first requirements modeling language to have a fo
mal semantics, defined in terms of mappings to first-ord
predicate logic [Gre86].

Introducing agents

A next step was made by realizing that the software-to-
and its environment are both made of active componen
Such components may restrict their behavior to ensure
constraints they are assigned to. Feather’s seminal pa
introduced a simple formal framework for modeling agen
and their interfaces, and for reasoning about individu
choice of behavior and responsibility for constraints [Fea87
Agent-based reasoning is central to requirements engine
ing since the assignment of responsibilities for goals a
constraints among agents in the software-to-be and in
environment is a main outcome of the RE process. On
such responsibilities are assigned the agents have contrac
obligations they need to fulfill [Fin87, Jon93, Ken93]
Agents on both sides of the software-environment bounda
interact through interfaces that may be visualized throu
context diagrams [War85].

Goal-based reasoning

The research efforts so far were in thewhat-how range of
requirements engineering. The requirements on data a
operations were just there; one could not capturewhy they
were there and whether they were sufficient for achieving t
higher-level objectives that arise naturally in any requir
ments engineering process [Hic74, Mun81, Ber91, Rub9
Yue was probably the first to argue that the integration
explicit goal representations in requirements models p
vides a criterion for requirements completeness - the requ
ments are complete if they are sufficient to establish the g
they are refining [Yue87]. Broadly speaking, agoal corre-
sponds to an objective the system should achieve throu
cooperation of agents in the software-to-be and in the en
ronment.

Two complementary frameworks arose for integrating goa
and goal refinements in requirements models: a form
framework and a qualitative one. In theformal framework
[Dar91], goal refinements are captured through AND/O
graph structures borrowed from problem reduction tec
niques in artificial intelligence [Nil71].AND-refinement
links relate a goal to a set of subgoals (called refinemen
this means that satisfying all subgoals in the refinement i
sufficient condition for satisfying the goal. OR-refinemen
links relate a goal to an alternative set of refinements; th
means that satisfying one of the refinements is a sufficie
condition for satisfying the goal. In this framework, a con
flict link between goals is introduced when the satisfactio
of one of them may preclude the satisfaction of the othe
Operationalization links are also introduced to relate goals
requirements on operations and objects. In thequalitative
framework [Myl92], weaker versions of such link types ar
introduced to relate “soft” goals [Myl92]. The idea is tha
such goals can rarely be said to be satisfied in a clear-
sense. Instead of goal satisfaction, goal satisficing is int
duced to express that lower-level goals or requirements
expected to achieve the goal within acceptable limits, rath
7
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than absolutely. A subgoal is then said to contribute partially
to the goal, regardless of other subgoals; it may contribute
positively or negatively. If a goal is AND-decomposed into
subgoals and all subgoals are satisficed, then the goal is sat-
isficeable; but if a subgoal is denied then the goal is deniable.
If a goal contributes negatively to another goal and the
former is satisficed, then the latter is deniable.

The formal framework gave rise to the KAOS methodology
for eliciting, specifying, and analyzing goals, requirements,
scenarios, and responsibility assignments [Dar93]. An
optional formal assertion layer was introduced to support
various forms of formal reasoning. Goals and requirements
on objects are formalized in a real-time temporal logic
[Man92, Koy92]; one can thereby prove that a goal refine-
ment is correct and complete, or complete such a refinement
[Dar96]. One can also formally detect conflicts among goals
[Lam98b] or generate high-level exceptions that may prevent
their achievement [Lam98a]. Requirements on operations
are formalized by pre-, post-, and trigger conditions; one can
thereby establish that an operational requirement “imple-
ments” higher-level goals [Dar93], or infer such goals from
scenarios [Lam98c].

The qualitative framework gave rise to the NFR methodol-
ogy for capturing and evaluating alternative goal decomposi-
tions. One may see it as a cheap alternative to the formal
framework, for limited forms of goal-based reasoning, and
as a complementary framework for high-level goals that can-
not be formalized. The labelling procedure in [Myl92] is a
typical example of qualitative reasoning on goals specified
by names, parameters, and degrees of satisficing/denial by
child goals. This procedure determines the degree to which a
goal is satisficed/denied by lower-level requirements, by
propagating such information along positive/negative sup-
port links in the goal graph.

The strength of those goal-based frameworks is that they do
not only cover functional goals but alsonon-functionalones;
the latter give rise to a wide range of non-functional require-
ments. For example, [Nix93] showed how the NFR frame-
work could be used to qualitatively reason about
performance requirements during the RE and design phases.
Informal analysis techniques based on similar refinement
trees were also proposed for specific types of non-functional
requirements, such as fault trees [Lev95] and threat trees
[Amo94] for exploring safety and security requirements,
respectively.

Goal and agent models can be integrated through specific
links. In KAOS, agents may be assigned to goals through
AND/OR responsibility links; this allows alternative bound-
aries to be investigated between the software-to-be and its
environment. A responsibility link between an agent and a
goal means that the agent can commit to perform its opera-
tions under restricted pre-, post-, and trigger conditions that
ensure the goal [Dar93]. Agent dependency links were
defined in [YuM94, Yu97] to model situations where an
agent depends on another for a goal to be achieved, a task to
be accomplished, or a resource to become available. For
each kind of dependency an operator is defined; operators
can be combined to define plans that agents may use to
achieve goals. The purpose of this modeling is to support the

verification of properties such as the viability of an agen
plan or the fulfilment of a commitment between agents.

Viewpoints, facets, and conflicts

Beside the formal and qualitative reasoning techniqu
above, other work on conflict management has emphasi
the need for handling conflicts at the goal level. A procedu
was suggested in [Rob89] for identifying conflicts at th
requirements level and characterizing them as difference
goal level; such differences are resolved (e.g., through ne
tiation) and then down propagated to the requirements lev
In [Boe95], an iterative process model was proposed
which (a) all stakeholders involved are identified togeth
with their goals (called win conditions); (b) conflicts
between these goals are captured together with their ass
ated risks and uncertainties; and (c) goals are reconci
through negotiation to reach a mutually agreed set of goa
constraints, and alternatives for the next iteration.

Conflicts among requirements often arise from multip
stakeholdersviewpoints[Eas94]. For sake of adequacy an
completeness during requirements elicitation it is essen
that the viewpoints of all parties involved be captured an
eventually integrated in a consistent way. Two kinds
approaches have emerged. They both provide constructs
modeling and specifying requirements from different view
points in different notations. In the centralized approach, t
viewpoints are translated into some logic-based “assemb
language for global analysis; viewpoint integration the
amounts to some form of conjunction [Nis89, Zav93]. In th
distributed approach, viewpoints have specific consisten
rules associated with them; consistency checking is made
evaluating the corresponding rules on pairs of viewpoin
[Nus94]. Conflicts need not necessarily be resolved as th
arise; different viewpoints may yield further relevant infor
mation during elicitation even though they are conflicting
some respect. Preliminary attempts have been made to de
a paraconsistent logical framework allowing useful dedu
tions to be made in spite of inconsistency [Hun98].

Multiparadigm specification is especially appealling fo
requirements specification. In view of the broad scope of t
RE process and the multiplicity of system facets, no sing
language will ever serve all purposes. Multiparadigm fram
works have been proposed to combine multiple languages
a semantically meaningful way so that different facets can
captured by languages that fit them best. OMT’s combin
tion of entity-relationship, dataflow, and state transition di
grams was among the first attempts to achieve this at a se
formal level [Rum91]. The popularity of this modeling tech
nique and other similar ones led to the UML standardizati
effort [Rum99]. The viewpoint construct in [Nus94] pro
vides a generic mechanism for achieving such combinatio
Attempts to integrate semi-formal and formal languag
include [Zav96], which combines state-based specificatio
[Pot96] and finite state machine specifications; and [Dar9
which combines semantic nets [Qui68] for navigatin
through multiple models at surface level, temporal logic fo
the specification of the goal and object models [Man9
Koy92], and state-based specification [Pot96] for the ope
tion model.
8
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Scenario-based elicitation and validation

Even though goal-based reasoning is highly appropriate for
requirements engineering, goals are sometimes hard to elicit.
Stakeholders may have difficulties expressing them in
abstracto. Operational scenarios of using the hypothetical
system are sometimes easier to get in the first place than
some goals that can be made explicit only after deeper
understanding of the system has been gained. This fact has
been recognized in cognitive studies on human problem
solving [Ben93]. Typically, a scenario is a temporal
sequence of interaction events between the software-to-be
and its environment in the restricted context of achieving
some implicit purpose(s). A recent study on a broader scale
has confirmed scenarios as important artefacts used for a
variety of purposes, in particular in cases when abstract
modeling fails [Wei98]. Much research effort has therefore
been recently put in this direction [Jar98]. Scenario-based
techniques have been proposed for elicitation and for valida-
tion - e.g., to elicit requirements in hypothetical situations
[Pot94]; to help identify exceptional cases [Pot95]; to popu-
late more abstract conceptual models [Rum91, Rub92]; to
validate requirements in conjunction with prototyping
[Sut97], animation [Dub93], or plan generation tools
[Fic92]; to generate acceptance test cases [Hsi94].

The work on deficiency-driven requirements elaboration is
especially worth pointing out. A system there is specified by
a set of goals (formalized in some restricted temporal logic),
a set of scenarios (expressed in a Petri net-like language),
and a set of agents producing restricted scenarios to achieve
the goals they are assigned to. The technique is twofold: (a)
detect inconsistencies between scenarios and goals; (b)
apply operators that modify the specification to remove the
inconsistencies. Step (a) is carried out by a planner that
searches for scenarios leading to some goal violation.
(Model checkers might probably do the same job in a more
efficient way [McM93, Hol97, Cla99].) The operators
offered to the analyst in Step (b) encode heuristics for speci-
fication debugging - e.g., introduce an agent whose responsi-
bility is to prevent the state transitions that are the last step in
breaking the goal. There are operators for introducing new
types of agents with appropriate responsibilities, splitting
existing types, introducing communication and synchroniza-
tion protocols between agents, weakening idealized goals,
and so forth. The repeated application of deficiency detec-
tion and debugging operators allows the analyst to explore
the space of alternative models and hopefully converge
towards a satisfactory system specification.

The problem with scenarios is that they are inherently par-
tial; they raise a coverage problem similar to test cases, mak-
ing it impossible to verify the absence of errors. Instance-
level trace descriptions also raise the combinatorial explo-
sion problem inherent to the enumeration of combinations of
individual behaviors. Scenarios are generally procedural,
thus introducing risks of overspecification. The description
of interaction sequences between the software and its envi-
ronment may force premature choices on the precise bound-
ary between them. Last but not least, scenarios leave
required properties about the intended system implicit, in the
same way as safety/liveness properties are implicit in a pro-

gram trace. Work has therefore begun on inferring go
requirement specifications from scenarios in order to supp
more abstract, goal-level reasoning [Lam98c].

Back to groundwork

In parallel with all the work outlined above, there has bee
some more fundamental work on clarifying the real nature
requirements [Jac95, Par95, Zav97]. This was motivated
a certain level of confusion and amalgam in the literature
requirements and software specifications. At about the sa
time, Jackson and Parnas independently made a first imp
tant distinction betweendomain properties(called indicative
in [Jac95] and NAT in [Par95]) and requirements (calle
optative in [Jac95] and REQ in [Par95]). Such distinction
essential as physical laws, organizational policies, regu
tions, or definitions of objects or operations in the enviro
ment are by no means requirements. Surprisingly, the v
majority of specification languages existing to date do n
support that distinction. A second important distinctio
made by Jackson and Parnas was between (system) req
ments and (software) specifications.Requirementsare for-
mulated in terms of objects in the real world, in a vocabula
accessible to stakeholders [Jac95]; they capture requi
relations between objects in the environment that are mo
tored and controlled by the software, respectively [Par9
Software specificationsare formulated in terms of objects
manipulated by the software, in a vocabulary accessible
programmers; they capture required relations between in
and output software objects.Accuracy goalsare non-func-
tional goals requiring that the state of input/output softwa
objects accurately reflect the state of the corresponding m
itored/controlled objects they represent [Myl92, Dar93
Such goals often are to be achieved partly by agents in
environments and partly by agents in the software. They a
often overlooked in the RE process; their violation may lea
to major failures [LAS93, Lam2Ka]. A further distinction
has to be made between requirements and assumpti
Although they are both optative,requirementsare to be
enforced by the software whereasassumptionscan be
enforced by agents in the environment only [Lam98b]. IfR
denotes the set of requirements,As the set of assumptions,S
the set of software specifications,Ac the set of accuracy
goals, andG the set of goals, the following satisfaction rela
tions must hold:

S, Ac, D|== R with S, Ac, D|=/= false

R, As, D|== G with R, As, D|=/= false

The reactive systems line

In parallel with all the efforts discussed above, a dedicat
stream of research has been devoted to the specific are
reactive systems for process control. The seminal paper h
was based on work by Heninger, Parnas and colleag
while reengineering the flight software for the A-7 aircra
[Hen80]. The paper introduced SCR, a tabular specificati
technique for specifying a reactive system by a set of para
finite-state machines. Each of them is defined by differe
types of mathematical functions represented in tabular f
mat. A mode transition table defines a mode (i.e. a state) a
transition function of a mode and an event; an event tab
defines an output variable (or auxiliary quantity) as a fun
9
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tion of a mode and an event; a condition table defines an out-
put variable (or auxiliary quantity) as a function of a mode
and a condition (the latter may refer to input or output vari-
ables, modes, or auxiliary quantities). The strength of SCR is
its use of terminology and tabular notations familiar to
domain experts. Although it is lightweight the notation is
sufficiently formal to enable useful consistency and com-
pleteness checks, based on the property that tables must rep-
resent total functions. Last but not least, the technique is now
supported by an impressive toolset offering a wide range of
analysis - e.g., dedicated consistency/completeness check-
ing, animation, model checking, and theorem proving
[Heit96, Heit98a, Heit98b]. The main weakness of SCR is its
lack of structuring mechanisms for structuring variables
(e.g., by aggregation or generalization), modes (e.g., by
AND/OR decomposition), and tables (e.g., by refinement
relationships).

Data structuring was provided by CORE [Fau92], a variant
of SCR supporting some form of object orientation. The
work around Statecharts [Har87, HAR96] showed how state
machine specifications could be recursively AND/OR
decomposed into finer ones so as to support a stepwise spec-
ification refinement process. The specification language is
fully graphical and sufficiently formal to enable powerful
animation tools [Har90]. But formality (and therefore analy-
sis) is more limited than SCR. The work on RSML has taken
one step further by extending Statecharts with interface
descriptions and direct communication among parallel state
machines; state transitions are more precisely defined
[Lev94]. As a result, the same range of analysis as SCR can
be provided with structuring facilities in addition [Heim96,
Cha98, Tho99]. The RSML language is still graphical and
integrates tabular formats as well. Like SCR, the technique
has been validated by experience in complex projects - nota-
bly, the documentation of the specifications of TCAS II, a
Traffic Collision Avoidance System required on all commer-
cial aircrafts flying in US airspace [Lev94].

Requirements reuse

Requirements refer to specific domains and to specific tasks.
Requirements within similar domains and/or for similar
tasks are more likely to be similar than the software compo-
nents implementing them. Surprisingly enough, techniques
for retrieving, adapting, and consolidating reusable require-
ments have received relatively little attention in comparison
with all the work on software reuse. The area was initiated
by [Reu91] in which a technique based on inheritance was
proposed to reuse fragments of domain descriptions (e.g. in
the library domain) and of task specifications (e.g., history
tracking). Analogical and case-based reasoning techniques
have been borrowed from artificial intelligence to support
structural matching [Mai93] and semantic matching [Mas97]
in the requirements retrieval process. On the task reuse side,
the work on problem frames reprsents a preliminary attempt
to classify and characterize task patterns [Jac95].

The work in this area has not made sufficient progress to date
to determine whether such approaches may be practical and
may scale up.

Requirements documentation

The specifications of the domain and requirements mod
are essential components to document requirements for c
munication, inspection, negotiation, and evolution. Ideal
they should only be part of it. Some work has been done
capturing the process and rationale leading to such mod
[Sou93, Nus94] and the actors responsible for decisions
that traceability links can be established [Got95].

3. FROM OBJECT ORIENTATION TO GOAL
ORIENTATION

Today’s object-oriented analysis techniques have a stro
impact on the state of practice in requirements engineeri
As introduced before, they combine multiple semi-form
modeling techniques to capture different facets of the syst
(such as the data, behavioral, and interaction facets); th
provide structuring mechanisms (such as generalization a
aggregation); they offer a wide spectrum of notations th
can be used from requirements modeling to design (at so
risk of confusion between those phases); they now te
towards a standard set of notations [Rum99], with built-
extension mechanisms, which hopefully will in the end hav
a precise semantics. However, the concepts and structu
mechanisms supported essentially emerged by abstrac
from the programming field [Myl99] - the same way a
structured analysis came out by abstraction from structu
programming techniques. In particular, thewhy concerns in
the early stages of requirements engineering practice [Hic
Ros77b, Mun81, Ber91] are not addressed.

The aim of this section is to illustrate the benefits of lookin
the other way round for the purpose of requirements elici
tion, specification, and analysis - that is, to start thinkin
about objectives as they arise in preliminary material pr
vided, use goal refinement/abstraction as higher-level me
anism for model/specification structuring, and thereb
incrementally derive multiple models:

• the goal model, leading to operational requirements;

• the object model;

• the agent responsibility model, leading to alternative sy
tem boundaries to be explored;

• the operation model.

To suggest that goal-based reasoning is not only useful in
context of enterprise modeling, we take a recent benchm
proposed to the formal specification community: the BAR
system [BAR99]. This case study is appealling for a numb
of reasons: it is a real system; it is a complex, real-tim
safety-critical system; the initial document was provided b
an independent source involved in the development. T
model elaboration will inevitably be sketchy due to lack o
space. We select a few snaphots from the KAOS elaborat
that mix informal, semi-formal, and formal specifications
More details can be found in [Let2K].

The initial document [BAR99] focuses on the control o
speed and acceleration of trains under responsibility of t
Advanced Automatic Train Control being developed for th
San Francisco Bay Area Rapid Transit (BART) system.
10



e

ys-
el

ts

s-

er
er-

s.

l

of

l

2

Goal identification from the initial document

Figure 1 gives a portion of the goal graph identified after a
first reading of the initial document. The goals were obtained
by searching for intentional keywords such as “purpose”,
“objective”, “concern”, “intent”, “in order to”, and so forth.
In this graphical specification, clouds denote soft goals (used
in general to select among alternatives), parallelograms
denote formalizable goals, arrows denote goal-subgoal links,
a double line linking arrows denotes an OR-refinement into
alternative subgoals, and a crossed link denotes a conflict.
The Maintain and Avoid keywords specify “always” goals
having the temporal pattern❑ (P → Q) and ❑ (P → ¬ Q),
respectively. TheAchieve keyword specifies “eventually”
goals having the patternP ⇒ ◊ Q. The “→“ connective
denotes logical implication;❑ (P → Q) is denoted byP ⇒ Q
for short.

Formalizing goals and identifying objects

As safety goals are critical one may start thinking about
them first. The goalMaintain[TrackSegmentSpeedLimit] at the
bottom of Figure 1 may be defined more precisely:

Goal  Maintain[TrackSegmentSpeedLimit]
InformalDef A train should stay below the maximum speed

the track segment can handle.

FormalDef ∀ tr: Train, s: TrackSegment :
On(tr, s) ⇒ tr.Speed ≤ s.SpeedLimit

The predicate, objects, and attributes appearing in this goal
formalization give rise to the following portion of the object
model:

The other goal at the bottom of Figure 1 is defined precisely

as well:
Goal  Maintain[WCS-DistBetweenTrains]

InformalDef A train should never get so close to a train in
front so that if the train in front stops suddenly (e.g.,
derailment) the next train would hit it.

FormalDef ∀ tr1, tr2: Train :
Following(tr1, tr2) ⇒ tr1.Loc - tr2.Loc > tr1.WCS-Dist

The InformalDef statements in those goal definitions ar
taken literally from the initial document;WCS-Dist denotes
the physical worst-case stopping distance based on the ph
ical speed of the train. The initial portion of the object mod
is now enriched from that second goal definition:

The formalization of the goalAvoid[TrainEnterinClosedGate]
in Figure 1 will further enrich the object model by elemen
that are strictly necessary to the goals considered.

Eliciting new goals through WHY questions
It is often worth eliciting more abstract goals than those ea
ily identifiable from the initial document (or from inter-
views). The reason is that one may thereby find out oth
important subgoals of the more abstract goal that were ov
looked in the first place.

More abstract goals are identified by asking WHY question
For example, asking a WHY question about the goalMain-
tain[WCS-DistBetweenTrains] yields the parent goalAvoid[Train-
Collision]; asking a WHY question about the goa
Avoid[TrainEnteringClosedGate]yields a new portion of the
goal graph, shown in Figure 2.

In this goal subgraph, the companion subgoalMaintain[Gate-
ClosedWhenSwitchInWrongPosition] was elicited formally by
matching a formal refinement pattern to the formalization
the parent goalAvoid[TrainOnSwitchInWrongPosition], found by
a WHY question, and to the formalization of the initial goa
Avoid[TrainEnteringClosedGate][Dar96, Let2K]. The dot join-
ing the two lower refinement links together in Figure
means that the refinement is (provably) complete.

ServeMorePassengers

TrainsMore
CloselySpaced

NewTracksAdded

Minimize[Costs]

Min [Time
BetweenStations]

SafeTransport

Avoid [TrainEntering
ClosedGate]

Maintain
[WCS-DistBetweenTrains]

Maintain
[TrackSegmentSpeedLimit]

...

Min[DvlptCosts]
Min

[OperationCosts]

...

Figure 1 - Preliminary goal graph for the BART system

TrackSegment
SpeedLimit:SpeedUnit
...

Train
Speed:SpeedUnit
...

On

TrackSegment
SpeedLimit:SpeedUnit
...

Train

Speed:SpeedUnit
Loc : Location
WCS-Dist : Distance

On

Following

Avoid
[TrainEnteringClosedGate]

Maintain[TrainOnCorrectLine]

Avoid[TrainOnSwitchInWrongPostion]

Maintain [GateClosedWhen
SwitchInWrongPosition]

Figure 2 - Enriching the goal graph by WHY elicitation
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The quest of more abstract goals should of course remain
within the system’s subject matter [Zav97a].

Eliciting new goals through HOW questions

Goals have to be refined until subgoals are reached that can
be assigned to individual agents in the software-to-be and in
the environment. Terminal goals in the former case become
requirements; they are assumptions in the latter.

More concrete goals are identified by asking HOW ques-
tions. For example, a HOW question about the goalMain-
tain[WCS-DistBetweenTrains] in Figure 1 yields an extension of
the goal graph shown in Figure 3.

The formalization of the three subgoals in Figure 3 may be
used to prove that together they entail the father goalMain-
tain[WCS-DistBetweenTrains] formalized before [Let2K]. These
subgoals have to be refined in turn until assignable subgoals
are reached. A complete refinement tree is given in Annex 1.

Identifying potential responsibility assignments

Annex 1 also provides a possible goal assignment among
individual agents. This assignment seems the one suggested
in the initial document [BAR99]. For example, the accuracy
goal Maintain[AccurateSpeed/PositionEstimates] is assignable to
the TrackingSystem agent; the goalMaintain[SafeTrainResponse-
ToCommand] is assignable to theOnBoardTrainController agent;
the goal Maintain[SafeCmdMsg] is assignable to theSpeed/
AccelerationControlSystem agent.

It is worth noticing that goal refinements and agent assign-
ments are both captured by AND/OR relationships. Alterna-
tive refinements and assignments can be (and probably have
been) explored. For example, the parent goalMaintain[WCS-
DistBetweenTrains] in Figure 3 may alternatively be refined by
the following threeMaintain subgoals:

PreceedingTrainSpeed/PositionKnownToFollowingTrain
SafeAccelerationBasedOnPreceedingTrainSpeed/Position
NoSuddenStopOfPreceedingTrain

The second subgoal above could be assigned to theOnBoard-
TrainController agent. This alternative would give rise to a
fully distributed system.

To help making choices among alternatives, qualitative rea-
soning techniques might be applied to the softgoals identi-
fied in Figure 1 [Myl99].

Deriving agent interfaces

Let us now assume that the goalMaintain[SafeCmdMsg] at the
bottom of the tree in Annex 1 has been actually assigned to
the Speed/AccelerationControlSystem agent. The interfaces of

this agent in terms of monitored and controlled variables c
be derived from the formal specification of this goal (we ju
take its general form here for sake of simplicity):

Goal  Maintain[SafeCmdMsg]
FormalDef ∀ cm: CommandMessage, ti1, ti2: TrainInfo

cm.Sent ∧ cm.TrainID = ti1.TrainID ∧ FollowingInfo (ti1, ti2)
⇒ cm.Accel ≤ F (ti1, ti2) ∧ cm.Speed > G (ti1)

To fulfil its responsibility for this goal theSpeed/Acceleration-
ControlSystem agent must be able to evaluate the goal an
cedent and establish the goal consequent. The age
monitored object is thereforeTrainInfo whereas its controlled
variables are CommandMessage.Accel and CommandMes-
sage.Speed. The following agent interfaces are derived b
this kind of reasoning:

Identifying operations
Goals refer to specific state transitions; for each of them
operation causing it is identified and preliminarily defined b
domain pre- and postconditions that capture the state tra
tion. For the goalMaintain[SafeCmdMsg] formalized above we
get, for example,

Operation  SendCommandMessage
Input  Train {arg  tr}
Output  ComandMessage {res  cm}
DomPre ¬ cm.Sent
DomPost  cm.Sent ∧ cm.TrainID = tr.ID

This definition minimally captures what any sending of
command to a train is about in the domain considered;
does not ensure any of the goals it should contribute to.

Operationalizing goals
The purpose of the operationalization step is to strength
such domain conditions so that the various goals linked
the operation are ensured. For goals assigned to softw
agents, this step producesrequirementson the operations for
the corresponding goals to be achieved. Preliminary deri
tion rules for an operationalization calculus were introduc
in [Dar93]. In our example, they yield the following require
ments that strengthen the domain pre- and postconditions

Operation  SendCommandMessage
Input  Train {arg  tr}, TrainInfo; Output  ComandMsg {res  cm}
DomPre ... ; DomPost ...
ReqPost for  SafeCmdMsg:

Tracking (ti1, tr) ∧ Following (ti1, ti2)
→ cm.Acc ≤ F (ti1, ti2) ∧ cm.Speed > G (ti1)

ReqTrig for  CmdMsgSentInTime:
■≤0.5 sec ¬ ∃ cm2: CommandMessage:

cm2.Sent ∧ cm2.TrainID = tr.ID

(The trigger condition captures an obligation to trigger th

Maintain
[WCS-DistBetweenTrains]

Maintain [Safe
Speed/Acceleration

Commanded]

Maintain
[SafeTrainResponse

ToCommand]

Maintain
[NoSuddenStop

OfPrecedingTrain]

Figure 3 - Goal refinement

Train

Speed/Acceleration
ControlSystem

TrainInfo

CommandMessage

OnBoard
TrainController

Tracking
System

Train.AccelTrain.Speed
Train.Loc
12



ing
nd-

to
eep
al

nd
be
o
of

ble

el
gi-
re
als
.

-

n-
ree
h-

ally
.

he
tive

ch
ller
operation as soon as the condition gets true and provided the
domain precondition is true. In the example above the condi-
tion says that no command has been sent in every past state
up to one half-second [BAR99].)

Using a mix of semi-formal and formal techniques for goal-
oriented requirements elaboration, we have reached the level
at which most formal specification techniques would start.
To sum up, goal-oriented requirements engineering has
many advantages:

• object models and requirements are derived systematically
from goals,

• goals provide the rationale for requirements,

• the goal refinement structure provides a comprehensible
structure for the requirements document,

• alternative goal refinements and agent assignments allow
alternative system proposals to be explored,

• goal formalization allows refinements to be proved correct
and complete.

4. LIVING WITH CONFLICTS

As discussed earlier in the paper, goals also provide a firm
basis for conflict analysis. Requirements engineers live in a
world where conflicts are the rule, not the exception [Eas94].
Conflicts must be detected and eventually resolved even
though they may temporarily be useful for eliciting further
information.

The initial BART document suggests an interesting example
of conflict [BAR99, p.13]. Figure 4 helps visualizing it.

Roughly speaking, the commanded speed may not be too
high, because otherwise it forces the distance between trains
to be too high for safety reason (see the left part of Figure 4);
on the other hand, the commanded speed may not be too low,
because otherwise it may force uncomfortable acceleration
(see the right part of Figure 4). To be more precise, we look
at the formalizations produced during goal elaboration:

Goal  Maintain [CmdedSpeedCloseToPhysicalSpeed]
FormalDef ∀ tr: Train

tr.AccCM ≥ 0

⇒ tr.SpeedCM ≤ tr.Speed + f (dist-to-obstacle)

and
Goal  Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]

FormalDef ∀ tr: Train
tr.AccCM ≥ 0 ⇒ tr.SpeedCM > tr.Speed + 7

These two goals are formally detected to be divergent us
the techniques described in [Lam98b]. The generated bou
ary condition for making them logically inconsistent is

◊ (∃ tr: Train) (tr.AccCM ≥ 0 ∧ f (dist-to-obstacle) ≤ 7)

The resolution operators from [Lam98b] may be used
generate possible resolutions; in this case one should k
the safety goal as it is and weaken the other conflicting go
to remove the divergence:

Goal  Maintain [CmdedSpeedAbove7mphOfPhysicalSpeed]
FormalDef ∀ tr: Train

tr.AccCM ≥ 0 ⇒ tr.SpeedCM > tr.Speed + 7

∨ f (dist-to-obstacle) ≤ 7

5. BEING PESSIMISTIC

First-sketch specifications of goals, requirements a
assumptions tend to be too ideal. If so they are likely to
violated from time to time in the running system due t
unexpected behavior of agents. The lack of anticipation
exceptional behaviors may result in unrealistic, unachieva
and/or incomplete requirements.

Goals also provide a basis for early generation of high-lev
exceptions which, if handled properly at requirements en
neering time, may generate new requirements for mo
robust systems. To illustrate this, consider some of the go
appearing at the bottom of the refinement tree in Annex 1

The goalAchieve[CmdMsgSentInTime] may be obstructed by
conditions such as:

CommandNotSent,
CommandSentLate,
CommandSentToWrongTrain

The goalMaintain[SafeCmdMsg] may be obstructed by the con
dition

UnsafeAcceleration,

and so on. We call such obstructing conditionsobstacles
[Pot95]. Obstacles can be produced for each goal by co
structing a goal-anchored fault-tree, that is, a refinement t
whose root is the goal negation. Formal and heuristic tec
niques are available for generating obstacles systematic
from goal specifications and domain properties [Lam2Ka]

Alternative resolution strategies may then be applied to t
generated obstacles in order to produce new or alterna
requirements. For example, the obstacleCommandSentLate
above could be resolved by an alternative design in whi
accelerations are calculated by the on-board train contro
instead; this would correspond to agoal substitutionstrat-
egy. The obstacleUnsafeAcceleration above could be resolved
by assigning the responsibility for the subgoalSafeAccelera-
tionCommanded of the goalMaintain[SafeCmdMsg] to the Vital-
StationComputer agent instead [BAR99]; this would

LimitedAccelerWhen
CmdedSpeedAbove7mph
OfPhysicalSpeed

ServeMorePsgers

SmoothMove

Min [Dist
BetwTrains]

Max
[TrainSpeed]

SafeTransport

DistanceBetweenTrains
IncreasedWithCmdedSpeed

Maintain [CmdedSpeed
CloseToPhysicalSpeed]

Maintain [CmdedSpeed
Above7mphOfPhysicalSpeed]

Figure 4 - Conflict in speed/acceleration control
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correspond to anagent substitutionstrategy. Anobstacle
mitigation strategy could be applied to resolve the obstacle
OutOfDateTrainInfo obstructing the accuracy goalMaintain[Accu-
rateSpeed/PositionEstimates], by introducing a new subgoal of
the goal Avoid[TrainCollisions], namely, Maintain[NoCollision-
WhenOutOfDateTrainInfo]. This new goal has to be refined in
turn, e.g., by subgoals requiring full braking when the mes-
sage origination time tag has expired.

6. FROM REQUIREMENTS TO ARCHITECTURE

Currently there is very little support for building or modify-
ing a software architecture guaranteed to meet a set of func-
tional and non-functional requirements. Proposals for
architectural description languages and associated analysis
techniques have flourished [Luc95, Mag95, Tay96, Gar97];
constructive techniques have also been proposed for archi-
tectural refinement [Mor95]. However, little work has been
devoted to date to techniques for systematically deriving
architectural descriptions from requirements specifications.
This is somewhat paradoxical as the software architecture
has long been recognized to have a profound impact on the
achievement of non-functional goals such as security, avail-
ability, fault tolerance, evolvability, and so forth [Per92,
Sha96].

A goal-based approach for architecture derivation might be
useful and is feasible. The general principle is to:

• use functional goals assigned to software agents to derive a
first abstract dataflow architecture,

• use non-functional goals to refine dataflow connectors.

The first step is rather simple; once a software agent is
assigned to a functional goal its interfaces in terms of moni-
tored/controlled variables can be determined systematically
(see Section 5). The agents become architectural compo-
nents; the dataflow connectors are then derived from input/
output data dependencies. (The granularity of such compo-
nents is determined by the granularity of goal refinement.)

The second step is the difficult one. There is some hope here
that connector refinement patterns could be used to support
the process. The idea is to annotate such patterns with non-
functional goals they achieve, and to consider applying a pat-
tern when its associated goal matches the goal under consid-
eration. A catalog of patterns would codify the architect’s
knowledge [Mor95] - much the same way as [Gam95] but at
the architecting level and with a proof (or a solid argument),
once for all, that the associated goal is established.

Figure 5 sketches a few such patterns to help visualizing the
general idea.

Preliminary experience with this approach on small exam-
ples suggests that it is worth investigating further. In particu-
lar, refinement patterns must be combined with abstraction
patterns to be applied to components from the implementa-
tion infrastructure imposed.

Explicit links between refined connectors and non-functional
goals would also allow architectural views to be extracted
through queries (e.g., security view, availability view, etc.).

7. MORE WORK FOR THE NEXT 25 YEARS!

Efforts should thus be devoted to bridging the gap betwe
RE research and research in software architecture. E
though streamlined derivation processes may be envisa
for software development, things get much more comp
cated for software evolution. For example, the confli
between requirements volatility and architectural stability
a difficult one to handle.

In some application domains, complex customizable pac
ages are increasingly often chosen by clients as an alter
tive to software development. Another unexplored transitio
that should be investigated is the systematic derivation
parameter settings from requirements.

Massive access to the internet will enable more and mo
end-users to access software applications. Define-it-yours
approaches should therefore be explored to support RE
the-small involving end-users as the only stakeholders.

The gap between RE research and formal specificat
research is another important one to bridge. Roughly spe
ing, the former offers much richer modeling abstraction
while the latter offers much richer analysis - such as mod
checking, deductive verification, animation, test data gene
tion, formal reuse of components, or refinement from spe
fication to implementation [Lam2Kb]. The technology ther
is reaching a level of maturity where tool prototypes evolv
into professional products and impressive experience in fu
formal development of complex systems is emergin
[Beh99]. One should therefore look at ways for mapping th

Maintain[Evolvability]

...
Maintain[Autonomous(C1,C2)]

C1 C2dataflow

C1 Registrargenerates C2
registers

notifies

Maintain[Security]

...
Avoid[ClassifiedDataFlowing(C1,C2)]

C1 C2dataflow

C1 SecurityFilter
dataflow

C2dataflow

Implicit invocation pattern [Sha96]

“No read up, no write down” pattern [Rie99]

Figure 5 - Goal-driven connector refinement
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conceptually richer world of RE to the formal analysis
world. One recent attempt in this general direction is worth
pointing out [Dwy99].

Domain and requirements models should ideally capture
more knowledge about the multiple aspects, concerns, and
activities involved in the requirements engineering process.
The problem here is to find best compromises between
model expressiveness and precision, for richer analysis, and
model simplicity, for better usability. In particular, one
should look at effective combinations that integrate semi-for-
mal, formal, and qualitative reasoning about non-functional
requirements.

Modeling agents is a particular area of concern. Traditional
RE has decomposed the world in two components - the soft-
ware and its environment. Most often there are multiple soft-
ware, human and physical components having to cooperate.
Limited capabilities, inaccurate beliefs, poor cooperation,
and wrong assumptions may be sources of major problems
[LAS93, Lev95, But98]. Much work is needed here to sup-
port agent-based reasoning during requirements elaboration
and, in particular, responsibility assignment.

Models for reasoning about current alternatives and future
plausible changes have received relatively little attention to
date. Such reasoning should be at the heart of the RE process
though. These are exciting fields open for exploration.

Much RE work has been done on new languages and sets of
notations. It is time to shift towards building complex arte-
facts using such languages.Constructive techniques are
needed to guide requirements engineers in the incremental
elaboration and assessment of requirements. In particular,
one should clarify when and where to shift from informal
through semi-formal to formal; when and how to shift from
scenarios to requirements models; when and how to shift
from conflicting viewpoints to a consistent documentation;
and so forth.

Another area of investigation is requirements reengineering.
It frequently happens that existing requirements documents
are so poorly written and structured that it is hard to work
with them later on during development and maintenance.
Abstraction and restructuring techniques would be highly
useful in this context.

On the language side itself, one should care more for seman-
tically meaningful integrations of multiple languages to cap-
ture the multiple facets of the system; manipulation of
multiple formats for the same language (e.g., textual, tabular,
graphical); and multibutton analysis where different levels of
optional analysis are provided - from cheap, surface-level to
more expensive, deep-level [Lam2Kb].

On the tool side, there are many opportunities for RE-spe-
cific developments. Let us suggest just a few examples. The
final deliverable of the requirements phase is most often a
document in natural language that in addition to indicative
and optative statements may integrate graphical portions of
models, excerpts from interviews, and so forth. A most wel-
come tool would be one to assist in the generation of such a
document to keep the structure of the requirements model
(e.g., the goal refinement structure), extract relevant portions
of it, and maintain traceability links to subsidiary elicitation

material. Earlier in the RE process, one might envisa
dynamic tools for exploration of alternatives that like game
unfold based on the actions of users and integrate a variet
interactive presentation media - e.g., interview video, orig
nals of documentation and so on [Fea97]. A last example
tools for supporting requirements evolution through runtim
monitoring and resolution of deviations between the sy
tem’s behavior and its original requirements [Fea98].

8. BY WAY OF CONCLUSION

The last 25 years have seen growing interest and effo
towards ameliorating the critical process of engineerin
higher-quality requirements. We have reviewed a number
important milestones along that way and tried to convinc
the reader that goal-based reasoning is central to requi
ments engineering - for requirements elaboration, explor
tion of alternative software boundaries, conflic
management, requirements-level exception handling, a
architecture derivation. Goals are also abstractions stak
holders are familiar with. In all the industrial projects ou
technology transfer institute has been involved in, it turne
out that high-level managers and decision makers we
much more interested in checking goal models than, e.
object models.

We also tried to suggest that much remains to be done. T
work is worth the effort though. After all, given the
expected progress in component reuse and automated p
gramming technologies, will there be anything else left i
software engineering, beside software geriatry, than requir
ments engineering?
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