

Social modeling of organizations with iStar 2.0

Based on material by Fabiano Dalpiaz

Outline

Actors & Intentional Social dependencies

Linking int. elements Modeling views Metamodel Hands-on!

Organizations

- A (business) organization is a social structure with a purpose, e.g., providing services or producing products
- Organizations can be understood as composite systems intended to achieve organizational goals and objectives
- ► Two basic types of organizations:
 - Production organizations: manufacturing, farming, construction and agriculture, software, games
 - ▶ **Service organizations**: transportation, communication, banking and finance, medicine, education and retailing, distribution

Modeling organizations: why?

- Many reasons exist that justify creating conceptual models of an organization
 - Training of (new) employees
 - Knowledge management
 - Certification and accreditation (e.g., ISO)
 - Re-engineering of / improving the organization
 - Requirements engineering
- ► The purpose affects the suitability of modeling languages

Which modeling language?

How does the org operate? Business processes

Why do actors act in certain ways?

Goal models

What elements and assets?
Class/ER diagrams

. . .

The i* language

- Developed in the mid Nineties [Yu 1995]
- Provides a framework for asking 'why' questions
- Based on the notion of an 'intentional actor'
- Models are created using two diagrams
 - Strategic Diagrams: social relationships between actors
 - Rationale Diagrams: goals and sub-goals of actors

i^* in 2016: the good, the bad, the ugly

- Quickly adopted by the research community
- ► Multiple extensions were proposed, e.g., for specific domains such as security, risk, law

But

- ▶ Many extensions make it hard for newcomers to learn it
- Practitioners won't adopt it
- ▶ Educators will teach their own variant

The road to iStar 2.0

▶ A **community effort** to solve the above-mentioned issues

- ▶ 10/2014: One-day meeting the day before the ER'14 conference in Atlanta
- ▶ 01/2015: Draft of discussions and open questions
- ▶ 06/2015: Community meeting at CAiSE'15 in Stockholm (iStar teaching workshop)
- 08/2015: First draft (v 0.1)
- ▶ 09/2015: Discussion at the iStar Workshop at with RE'15
- ▶ 10/2015: Dedicated one-day meeting before ER'15 in Stockholm
- ▶ 12/2015: Draft distributed among the community
- 01/2016: Draft updated (v 0.2)
- 03/2016:Three authors meet at REFSQ'16 in Gothenburg
- ▶ 03/2016: iStar 2.0 Language Guide, first draft
- ▶ 05/2016: iStar 2.0 Langauge Guide released on arXiv.org (3 authors, 22 endorsers)

Running example

- ▶ University travel reimbursement
 - **Students** organize trips to conferences
 - ► They rely on travel agencies and the university's trip management information system
 - Multiple alternatives exist to arrange a trip

Outline

Actors

- Organizations are social entities
- Their operation relies on the effective interaction among a number of actors

► **Actor:** an active, autonomous entity that aims at achieving its goals by exercising its know-how, in collaboration with other actors

Agents and Roles

- ▶ Two types of actors exist in iStar 2.0: agent and role
- ► **Agent**: an actor with concrete, physical manifestations, such as a human individual, an organization, or a department
- ▶ **Role**: an abstract characterization of the behavior of a social actor within some specialized context or domain of endeavor

Which one should I use?

► Can I identify a concrete individual or (sub)organization?

▶ Do I want to characterize an abstract class?

▶ I don't know at this time, or I do not care

Actor association links

- ▶ Often one wants to relate multiple actors (incl. agents & roles)
- ▶ iStar 2.0 offers binary, directed actor links
- ▶ is-a: represents the concept of generalization / specialization, and can be applied to (role to role) or (actor to actor)
 - Does not apply to agents. Why?

Actor association links

- **participates-in**: represents any kind of association, other than is-a, between two actors
- Depending on the linked elements, takes different meanings
 - (agent to role) typically represents the plays relationship

 (linking elements of the same type) typically represents the part-of relationship

Actor association links

- **participates-in**: represents any kind of association, other than is-a, between two actors
- Depending on the linked elements, takes different meanings
 - (agent to role) represents the plays relationship

(linking elements of the same type) represents the part-of relationships

Outline

Intentional elements

- ▶ iStar 2.0 focuses on intentions: things that actors want
- Intentional elements appear inside a so-called actor boundary, representing that actor's perspective in the model
- ► Four types of intentional elements
 - Goal
 - Quality
 - Task
 - Resource
- An actor with an empty actor boundary

Goals

- A goal is a state of affairs that the actor wants to achieve and that has clear-cut criteria of achievement
 - "Travel from Amsterdam to Osaka"
 - "Paper published"
 - "Tickets booked"
 - There is a clear criterion to determine if these are achieved. E.g., did I reach Osaka?
- ► Goals are represented as ovals

Qualities

- ► A quality is an attribute for which an actor desires some level of achievement
- ▶ Being attributes, they always relate to an entity
 - "Performance (of a system)"
 - "Yearly profit (of an organization)"
 - "Quick booking (of a trip)"
- Qualities guide the search for ways of achieving goals
- ▶ Represented as curved, cloud-like shapes

Tasks

- A **task** represents actions that an actor wants to be executed
 - Usually within the purpose of achieving a goal
- Examples
 - "Pay for tickets"
 - "Take the train"
 - "Scan the receipt"
- ► Represented as diamonds

Resources

- ► A **resource** is a physical or informational entity that an actor requires in order to perform a task
- Examples
 - Credit card
 - Server
 - Personal details
- ► Represented as rectangles

Credit card

Example of intentional elements

Outline

Dependencies

- ► Social relationships are represented as dependencies
- ► A dependency is a relationship with five arguments:
 - Depender: an actor that depends for something (the dependum) to be provided
 - DependerElmt: an intentional element within the depender's actor boundary where the dependency starts from, which explains why the dependency exists
 - Dependum: an intentional element that is the object of the dependency
 - Dependee: the actor that should provide the dependum
 - DependeeElmt: the intentional element that explains how the dependee intends to provide the dependum.

Dependencies, an example

Dependencies, an example

Dependum types

- ► The type of the dependum specializes the semantics of the dependency relationship
 - Goal: the dependee is free to choose how to achieve the goal
 - Quality: the dependee is free to choose how to sufficiently satisfy the quality
 - ▶ **Task**: the dependee is expected to execute the task in a prescribed way
 - Resource: the dependee is expected to make the resource available to the depender
- ▶ Different dependum types give the dependee different degrees of freedom

Omitting dependency parts

- ▶ Omitting the dependerElmt implies not specifying why the dependency exists
- Omitting the dependeeElmt implies not specifying how the dependency will be fulfilled

Outline

Motivation

Actors & Intentional Social dependencies

Linking int. elements

Modeling views

Metamodel Hands-on!

Intentional element links

The elements within an actor boundary are interrelated.

But we have seen no ways to relate them so far.

Any idea?

Intentional element links: overview

► Four link types:

- Refinement
- NeededBy
- Contribution
- Qualification

		Arrowhead pointing to			
		Goal	Quality	Task	Resource
Link starts from	Goal	Refinement	Contribution	Refinement	n/a
	Quality	Qualification	Contribution	Qualification	Qualification
	Task	Refinement	Contribution	Refinement	n/a
	Resource	n/a	Contribution	NeededBy	n/a

Refinement

- ▶ **Refinement** is a generic relationship that links goals and tasks hierarchically
 - n-ary relationship linking one parent to one or more children
 - An intentional element can be the parent in at most one refinement link
- ► Two types of refinement
 - ▶ **AND:** the fulfillment of all n children ($n \ge 2$) makes the parent fulfilled
 - Inclusive OR: the fulfillment of at least one child makes the parent fulfilled

NeededBy

- ► The **NeededBy** relationship links a task with a resource and it indicates that the actor needs the resource in order to execute the task
 - ▶ No details on the reason for this need: consumption, reading, ...

Contribution

- ► Contribution links represent the effects of intentional elements on qualities
 - ► These are qualitative links
 - Assist analysts in the decision-making process among alternative goals / tasks
- Qualities can be
 - ► Fulfilled (or satisfied), having sufficient positive evidence
 - Denied, having strong negative evidence
- ▶ No details here on how fulfillment / denial are calculated

Contribution types

- ▶ Four types, expressing that "the source provides..."
 - Make: sufficient positive evidence for the satisfaction of the target
 - ▶ **Help**: weak positive evidence for the satisfaction of the target
 - ▶ **Hurt**: weak evidence against the satisfaction (or for the denial) of the target
 - ▶ **Break**: sufficient evidence against the satisfaction (or for the denial) of the target

Qualification

- ► The **qualification** relationship relates a quality to its subject: a task, goal, or resource
- **Examples:**
 - the quality "Quick booking" refers to the goal "Trip parts booked", elaborating on how this goal might be achieved
 - the quality "No errors" refers to errors possibly created while fulfilling the goal "Request prepared"

The resulting model: full!

Zoom-in: actors and their links

Zoom-in: goals AND-refinement

Zoom-in: goals OR-refinement

Zoom-in: qualities to compare alternatives

Zoom-in: dependencies

Outline

Model views

- ▶ When using iStar 2.0, the analyst creates a model
- Such model can be visualized via multiple perspectives or model views
- \triangleright Standard views exist, including two from i^* :
 - Strategic rationale (SR)
 - Strategic dependency (SD)
- ► Hybrid views can be defined

Strategic rationale in iStar 2.0

- ► Shows all details captured in the model!
 - Actors
 - Actor links
 - Intentional elements
 - Dependencies
 - Intentional element links

Strategic dependency in iStar 2.0

- ▶ Shows **only** the social part of the model
 - Actors
 - Actor links
 - Dependencies
- but not intentional ele-ents and their links

A hybrid view

▶ For example

- Some actor boundaries are open, but not all
- Actor links are hidden

Other hybrid views

- Functional (no qualities)
- Actor view (only actors and their links)

Outline

Syntax of iStar 2.0

Precise syntax of iStar 2.0

- ▶ Some details cannot be captured via a metamodel
- A few of them here (more in the paper)
 - ► No is-a cycles
 - No participates-in cycles
 - ► Two actors can be linked by at most one actor link
 - The depender and dependee of a dependency should be different actors
 - Refinement should not lead to refinement cycles
 - lt is not possible for a quality to contribute to itself

Why is precise syntax that important?

- Minimize ambiguity to facilitate homogeneous learning
- Guide tool developers

➤ Two weeks after the release of the standard, the first iStar 2.0 compliant tool was released by researchers in Brazil

Outline

Practice!

- ▶ Take a scenario as instructed by the student assistant
- ► Tasks
 - Identify the main actors
 - Define their goals
 - Find their dependencies
 - Use intentional element links
 - Analyze and evaluate alternative ways of fulfilling goals!
- Use the cheat sheet
- Create the models pen-on-paper
 - Scan and send us the models by the end of the day!

Literature

► Fabiano Dalpiaz, Xavier Franch, Jennifer Horkoff. *iStar 2.0 Language Guide*. arXiv:1605.07767, 2016 https://arxiv.org/abs/1605.07767