
Knowledge of Other Agents and Communicative Actions in the Fluent Calculus

Yves Martin
Fakulẗat Informatik

Technische Universität Dresden
01062 Dresden (Germany)

ym1@inf.tu-dresden.de

Iman Narasamdya
Department of Computer Science

The University of Manchester
M13 9PL Manchester (UK)

in@cs.man.ac.uk

Michael Thielscher
Fakulẗat Informatik

Technische Universität Dresden
01062 Dresden (Germany)

mit@inf.tu-dresden.de

Abstract

The Fluent Calculus has largely been focused on building
agents that work individually. However, agents often need to
interact with each other to learn more about their environment
as well as to achieve their goals. One form of interaction is by
means of communication. Effective, goal–oriented commu-
nication requires knowledge of other agents. This paper stud-
ies the problem of endowing agents with the ability to reason
about the knowledge of other agents and with communication
skills. Our formalism for the knowledge of other agents gen-
eralizes the existing notion of knowledge in the Fluent Cal-
culus. Communication is treated as actions which are called
communicative actions. The specification of communicative
actions is based on the formalism for the knowledge of other
agents. We have also developed an implementation of the
theory as an extension to FLUX, which is a programming
method that allows to design intelligent agents based on the
Fluent Calculus.

INTRODUCTION
Agents that are able to act autonomously under incomplete
information in dynamically changing environments must
maintain a representation of their surroundings. Then, us-
ing their reasoning capabilities, these agents can draw infer-
ences on the basis of the knowledge that they have. Most of
the work so far on the theory and implementation of logic-
based agents has been concerned with single agents.

A first approach for agents to treat communication as ac-
tions in the context of reasoning about actions was intro-
duced by Cohen and Perrault in (Cohen & Perrault 1979).
The formalism chosen in their paper is the STRIPS notation,
and they do not consider agents in a multi-agent setting—
rather they take only one single system consisting of many
agents.

Another approach to communication in multi-agent sys-
tems is based on the agent-programming language GOLOG,
which is rooted in the logical theory of action of the Situa-
tion Calculus (Lesṕeranceet al. 1995; Shapiro, Lesṕerance,
& Levesque 1997). However, there are several restrictions
with the method described in these papers. In (Lespérance
et al. 1995), the individual agents have no information about
the executed actions of other agents. As a consequence, each

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

agent has to assume a possibly infinite number of exoge-
nous actions which have been performed and which could
potentially affect any fluent. This could lead to a complete
loss of knowledge about the world, and therefore the ap-
proach can only be applied to specially designed domains.
This deficiency was eliminated by the approach described
in (Shapiro, Lesṕerance, & Levesque 1997). Nevertheless,
the implementation of (Shapiro, Lespérance, & Levesque
1997) does not allow for systematic knowledge about other
agents. In turn, it is not possible to have separate programs
for the individual agents because it is not clear how to deal
with queries about the mental states of agents. Moreover, the
GOLOG implementation used in (Lespéranceet al. 1995;
Shapiro, Lesṕerance, & Levesque 1997), employs regres-
sion to infer the knowledge state of an agent. For longer
communication sequences, this entails that the knowledge
has to be regressed over the whole sequence back to the ini-
tial situation. The effort for doing this will increase with
each new communicative action.

In this paper, we extend the theory for reasoning about
action and change of the Fluent Calculus to deal with agents
in a multi-agent setting. We also show how this theory can
be effectively implemented in the high-level agent program-
ming language FLUX. A major motivation for this work is
to prepare logically reasoning agents for the Semantic Web.
For example, imagine a software agent which goes shopping
on the Internet on behalf of its user. The goal of this agent is
to buy all required items with a minimal amount of money.
In order to achieve this goal, this shopping agent may have
to communicate with other agents which manage the virtual
stores. Of course, the communication will be much more
effective if the shopping agent has knowledge of these sell-
ing agents. For example, knowing that some agent sells only
electronic devices will prevent our shopping agent from ask-
ing for books in this virtual store. With our method, the
shopping agent can build up more and more knowledge of
others each time he communicates. For subsequent commu-
nications, he would then become better in asking the right
questions to the right agents.

The approach described in this paper shows how to ex-
tend the knowledge of an agent in the Fluent Calculus to
contain information of arbitrarily many other agents. Our
axiomatization is proved to be sound wrt. basic properties
of knowledge. These properties are also shown to be valid

for knowledge updates for both “regular” actions as well as
knowledge-producing (i.e., sensing) actions. Based on the
knowledge of other agents, we develop a set of communica-
tive actions which allow agents to ask questions, to provide
information, or to request the execution of actions from each
other. Knowledge of other agents helps eliminating unnec-
essary communication. For example, if one agent wants to
know a property and knows that another agent knows it, then
the former should ask the latter about this property. Having
this knowledge of the other agent will be defined as a pre-
condition for querying the agent.

In addition to the theoretical framework, we have devel-
oped an implementation of knowledge about other agents
and the communicative actions in the high-level program-
ming language FLUX. Using the paradigm of constraint
logic programming and the notion of incomplete states, we
show how knowledge about other agents can be represented
in a succinct way within a single knowledge state. This leads
to a very nice computational behavior as all the knowledge
is immediately available for checking action preconditions
and other conditions that are of interest to the agent.

Our initial treatment of agents in multi-agent setting rests
on the following assumptions, which should be relaxed in
future extensions of this work: 1. Agents are homogeneous,
i.e., share the same ontology, actions and communication
protocol. 2. We are dealing with knowledge, thus ignoring
the problem of (possibly incorrect) beliefs. We therefore as-
sume that all actions are public. 3. Actions affecting the
shared fluents are assumed not to be executed concurrently.

After this introduction, we briefly recapitulate the es-
sentials of the Fluent Calculus and FLUX. In the section
of Knowlegde of Other Agents, we present an extension
of the calculus that allows agents to represent and rea-
son about the knowledge of other agents. Afterwards, we
give an axiomatization of actions for agent communication
based on agent knowledge. The implementation of our
theoretical framework in the agent programming language
FLUX is described in the section of Knowledge of Other
Agents ins FLUX. We conclude by summarizing the main
features of our approach and showing some paths for fu-
ture research. All programs are available on our web site:
http://www.fluxagent.org .

THE FLUENT CALCULUS
The Fluent Calculus shares with the standard Situation Cal-
culus the basic notion of asituation. The initial situation is
usually denoted by the constantS0. The functionDo(a, s)
denotes the situation which is reached by performing ac-
tion a in situations. In order to specify what holds in a
situation, the expressionHolds(f, s) is used, wheref is a
fluent(i.e., term of sortFLUENT); e.g.,

Holds(OnTable(Book), S0)∧
(∀x)¬Holds(Carrying(Agent, x), S0)

(1)

The Fluent Calculus extends the Situation Calculus by the
notion of astate. The functionState(s) denotes the state (of
the environment of an agent) in situations. By definition,
everyFLUENT term is a state (i.e., term of sortSTATE), and

if z1 andz2 are states then so isz1◦z2. Thefoundational ax-
iomsΣstateof the Fluent Calculus stipulate that function “◦”
shares essential properties with the union operation for sets
(see, e.g., (Thielscher 2001) for details). This allows the
definition of theHolds-expression as a mere macro thus:

Holds(f, s) def= Holds(f, State(s)) and

Holds(f, z) def= (∃z′) z = f ◦ z′

With this, specification (1) entails the following equation for
State(S0):

(∃z) (State(S0) = OnTable(Book) ◦ z ∧
(∀x)¬Holds(Carrying(Agent, x), z)) (2)

Based on the notion of a state, the frame problem is solved
in the Fluent Calculus bystate update axioms, which define
the effects of an actiona as the difference between some
State(s) and the successorState(Do(a, s)); e.g.,

Poss(Pickup(x, y), s) ⊃
State(Do(Pickup(x, y), s)) =

(State(s)−OnTable(y)) + Carrying(x, y)
(3)

The standard predicatePoss(a, s) means that actiona is
possible in situations. The functions “−” and “+” de-
note, respectively, removal and addition of fluents to states.
They have a purely axiomatic characterization in the Flu-
ent Calculus (we again refer to (Thielscher 2001)). For ex-
ample, tacitly assumingPoss(Pickup(Agent, Book), S0) and
uniqueness-of-names for fluentsOnTableandCarrying, the
instance{x/Agent, y/Book, s/S0} of the state update axiom
just mentioned applied to equation (2) yields, with the help
of the foundational axioms,

(∃z) (State(Do(Pickup(Agent, Book), S0)) =
Carrying(Agent, Book) ◦ z∧
¬Holds(OnTable(Book), z)∧
(∀x)¬Holds(Carrying(Agent, x), z))

Representing State Knowledge
The knowledge an agent has of its environment can be rep-
resented in the Fluent Calculus using the notion ofpossible
states. Let the predicateKState(s, z) denote that, according
to the knowledge of the agent,z is a possible state in situ-
ations. The following axiom, for example, says implicitly
that in the initial situation all that is known is that the agent
does not hold any object:

(∀z) (KState(S0, z) ≡
(∀x)¬Holds(Carrying(Agent, x), z))

Formally, a property is defined to be known in a situation if
it holds in all possible states:

Knows(f, s) def= (∀z)(KState(s, z) ⊃ Holds(f, z)) (4)
The effects of actions, including knowledge-producing ac-
tions, are specified byknowledge update axioms, which re-
late the possible states between successive situations; e.g.,

Poss(SenseOnTable(x), s) ⊃
(KState(Do(SenseOnTable(x), s), z) ≡

KState(s, z)∧
[Holds(OnTable(x), z) ≡ Holds(OnTable(x), s)])

That is to say, a statez is still possible after
SenseOnTable(x) just in case it was possible beforehand and
OnTable(x) holds inz iff it holds in the actualState(s).

FLUX
The Fluent Calculus provides the formal underpinnings of
FLUX, which is a logic programming method for the design
of agents that reason about their actions and sensor informa-
tion in the presence of incomplete knowledge (Thielscher
2001). FLUX is based on the representation of knowl-
edge states of agents byopen-ended listsof fluent terms
Z=[F1,...,Fk|_] accompanied byconstraintswhich en-
code negative and disjunctive information:

Constraints Semantics
not_holds(F,Z) ¬Holds(f, z)
not_holds_all(F,Z) (∀~x)¬Holds(f, z)

~x variables inf
or_holds([F1,...,Fn],Z)

∨n
i=1 Holds(fi, z)

As an example, this is a FLUX encoding of the knowledge
state which corresponds to the Fluent Calculus axiom (2):

Z0 = [on_table(book)|Z],
not_holds_all(carrying(agent,X),Z)

The agent infers knowledge of a particular property in
such a knowledge state by examining whether the negation
of the property is unsatisfiable under the given constraints.
To this end, a system of Constraint Handling Rules has been
defined in (Thielscher 2001) by which a set of FLUX con-
straints is solved in accordance with the foundational axioms
of the Fluent Calculus.

Agent programs in FLUX are constraint logic programs
consisting of three componentsPkernel∪ Pdomain∪ Pstrategy.
The domain-independentPkernel provides an encoding of the
foundational axioms and macros of the Fluent Calculus, in-
cluding a definition of how incomplete states are updated
according to positive and negative effects. The environment
of an agent is specified inPdomain, which in particular con-
tains the precondition and knowledge update axioms for the
possible actions of the agent. Finally,Pstrategydescribes the
task-oriented behavior of the agent, according to which it
reasons, plans, and acts. The semantics of a FLUX pro-
gram is given as a combination of the Fluent Calculus and
the standard semantics of logic programming: The computa-
tion tree forPstrategyand a given query determines a particu-
lar sequence of actions executed by the agent. With the help
of the Fluent Calculus this sequence can be formally veri-
fied against desired properties of the agent. For more details
on syntax and semantics of FLUX we refer to (Thielscher
2001).

KNOWLEDGE OF OTHER AGENTS
Environments might contain more than one agent. Instead of
building an environment along with the inhabiting agents,
we are aiming at building agents that are capable of com-
municating with each other. The agent we are currently de-
veloping will subsequently be called “our agent”. Knowing
what other agents know is important to have efficient com-
munication. For example, our agent will only ask another
agent the truth value of some property, if our agent knows
that the other agent knows about the property; whether the
property holds or does not hold in the environment.

Representing Knowledge of Other Agents
Our approach to representing the knowledge of other agents
is by treating the knowledge as yet another information of
the environment. In general, fluents are atomic components
of states that represent some particular information of the
environment. Thus, the knowledge of other agents shall be
represented using a special fluent, which is calledknowledge
fluent:

KF : AGENT× STATE 7→ FLUENT

This fluent function is added to the basic Fluent Calculus
signature. The fluentKF(r, zr) means that the statezr is a
state of which our agent thinks that agentr might think to
be actual.

To give a relation between the possible states of our agent
and the possible states of other agents, we introduce a new
ternary predicate to the basic Fluent Calculus signature, that
is,

KFState: STATE× AGENT× STATE

The relationKFState(z, r, zr) is meant to hold iff the state
zr is a possible state of agentr given thatz is a possible state
of our agent. Aknowledge fluent stateis a formula

KFState(z, r, zr) ≡
Holds(KF(r, zr), z) ∧ Φ(zr)∧
(∀y, z′y)¬Holds(KF(y, z′y), zr)

The above formula says that the predicateKFState(z, r, zr)
relates the possible statezr of agentr with z, that is, the
fluent KF(r, zr) holds in z. Moreover, the statezr is de-
fined using a state formulaΦ(zr) 1 and no knowledge fluent
nesting in the statezr.

The relationK(r, φ) denotes that agentr knows some
propertyφ. Throughout this paper, properties are associated
with fluents. Given a possible statez of our agent,K(r, φ)
holds inz iff φ holds in all possible states belonging to agent
r in the statez. On this basis, our agent knows that agentr
knows propertyφ if the propertyK(r, φ) holds in all possible
states of our agent:

Knows(K(r, φ), s) def=
(∀z) (KState(s, z) ⊃

(∀zr)(KFState(z, r, zr) ⊃ Holds(φ, zr)))

where the propertyφ does not contain any relation of the
form K(r′, φ′).

Example 1 Consider a very simple world with only two
fluentsF and G. Suppose that in situationS, our agent
knows that agentR knows that fluentG is true (or knows
G). In addition, our agent knows that agentR knowsF or
agentR knows¬F . The following describes the knowledge
state of our agent:

KState(S, z) ≡
z = F ◦G ◦ KF(R,F ◦G) ∨ z = G ◦ KF(R,G)

(5)

1A state formulaΦ(z) is a first-order formula with free state
variablez and without any occurrences of states other than in ex-
pressions of the formHolds(f, z).

F ◦G ◦ KF(R, F ◦G)

G ◦ KF(R, G)

h

Figure 1: Our agent knowsK(R,G) ∧ (K(R,F) ∨
K(R,¬F)).

The above formula is described pictorially in Figure 1. The
small circles in the figure denote the possible states of our
agent. The fact that fluentG holds in all knowledge fluents
belonging to agentR, or formally,

(∀z)(KState(S, z) ⊃
(∀zr)(KFState(z,R, zr) ⊃ Holds(G, zr)))

denotes that our agent knows that agentR knows G. In
one possible state, fluentF holds in all knowledge fluents
of agentR, but in the other, fluentF does not hold in all
knowledge fluents of agentR. This denotes that our agent
has disjunctive knowledgeK(R,F) ∨ K(R,¬F). The ex-
istence of fluentF and fluentG in each possible state is
determined by Corollary 1, which will be explained later.2

In the presence of many agents, the universality of knowl-
edge has to be preserved. For example, it would be incon-
sistent if our agent knows that agentr knows that property
φ is true, but our agent itself knows that propertyφ is false.
The universality of knowledge is captured by the following
foundational axiomsΣknows:

KState(s, State(s))
KFState(z, r, z−)

where z− is defined using the axiom of state exis-
tence (∀P)(∃z)(∀f)(Holds(f, z) ≡ P (f)) 2 with the
predicate variableP substituted by{P/λf.Holds(f, z) ∧
(∀x, z′)(f 6= KF(x, z′))}. The first axiom, which is inher-
ited from (Thielscher 2000), says that the actual state is al-
ways possible in any situation. The second axiom says that
a possible state of our agent, without any knowledge fluent,
is also a possible state of any agent. From those axioms, the
following corollary can be derived:

Corollary 1 Let f be a fluent ands be a situation, then
Σstate∪ Σknowsentails

(∃r1)Knows(K(r1, φ), s) ⊃
(∀r2)(¬Knows(K(r2,¬φ), s))∧
Knows(φ, s) ∧ ¬Knows(¬φ, s)∧
Holds(φ, State(s))

2The axiom of state existence stipulates a state for any com-
bination of fluents, which is a foundational axiom of the standard
Fluent Calculus (Thielscher 2001).

The above corollary says that if there is another agent of
which our agent knows that this other agent knowsφ, then
our agent knowsφ too, but does not know¬φ. Moreover,
there cannot be any agentr2 of which our agent knows that
agentr2 knows¬φ. Finally, propertyφ itself must be true
in the environment (i.e., the actual state).

Example 1 (continued) Formula (5) satisfies the founda-
tional axioms. In accordance with Corollary 1, if our agent
knowsK(R,G), then our agent knowsG too. The knowl-
edge state in Formula (5) shows that fluentG holds in all
possible states of our agent. Therefore, our agent knowsG.
2

Knowledge Update Axioms
In the Fluent Calculus, the effects of actions on the knowl-
edge of our agent are specified byknowledge update axioms.
Each of these axioms is comprised of two components, one
of which reflects the physical effect and the other one rep-
resents the cognitive effect of sensing. These components
together determine the relation betweenKState(s, z), the
knowledge state in situations, andKState(Do(a, s), z′), the
knowledge state after having performed actiona in situation
s.

Knowledge of other agents might have to be updated as
well on updating knowledge states. For example, suppose
that our agent knowsK(R,G). Our agent performs an ac-
tion that makes fluentG become false. Without updating the
knowledge of agentR, our agent’s knowledge becomes in-
consistent, that is, our agent knows¬G ∧ K(R,G) (recall
Corollary 1). To define knowledge update axioms appropri-
ately, the approach taken in this paper is based on the fol-
lowing assumptions:

• Agents are homogenous in capabilities. It means that
those agents have the same set of actions, and those ac-
tions are axiomatized in the same way, in terms of their
preconditions and update actions.

• The physical effects of actions to an environment are ob-
servable by every agents inhabiting the environment.

The first assumption makes preconditions and knowledge
update axioms simple to axiomatize, since the precondition
and effects of every action do not have to be quantified over
agents. The second assumption is needed because our agent
inhabits dynamic environments which include other active
entities, that is, its fellow agents. Consequently, some state
properties are not under the sole control of our agent. There-
fore, our agent must take into account actions besides its
own when maintaining the state of the environment. One
way of addressing this problem is by treating actions asex-
ogenous actions3.

Updating knowledge of other agents involves removal and
addition of infinitely many knowledge fluents to knowledge
states. However, the removal operation “−”, explained in
the previous section, was only defined for the subtraction of
finite states (Thielscher 2001). In this paper, we introduce
function “	” generalizing “−” to the subtraction of infinite

3Exogenous actions are actions which are not performed by our
agent but do affect some relevant fluents.

states, that is,z1 	 τ = z2 wherez2 is defined using the
axiom of state existence with the predicate variableP sub-
stituted by{P/λf.Holds(f, z1) ∧ ¬Holds(f, τ)}.

Having the ingredients, knowledge update axioms can
now be formally defined. The following definition general-
izes the definition in (Thielscher 2000; 2002a), in the sense
that the knowledge of other agents is now taken into consid-
eration.

Definition 2 A knowledge update axiomfor actionA(~x) is
a formula

Knows(Poss(A(~x)), s) ⊃
(∃~y)(∀z′) (KState(Do(A(~x), s), z′) ≡

(∃z) (KState(s, z) ∧Ψ(z∗, z))
∧Π(z′, z∗, Do(A(~x), s)))

where

• thephysical effectΨ(z′, z) is of the form

n∨
i=1

(∃~yi) (Φi(z) ∧ z∗ = z 	 ϑ̂−i + ϑ̂+
i)

where
– Φi(z) is a state formula;

– ϑ̂−i = ϑ− ◦ z−kf , whereϑ− contains the negative physi-

cal effect andz−kf knowledge fluents inz; and

– ϑ̂+
i = ϑ+ ◦ z+

kf , whereϑ+ contains the positive physi-

cal effect andz+
kf contains all knowledge fluents inz−kf

whose states have been updated according to the phys-
ical effectsϑ− andϑ+.

• thecognitive effectΠ(z′, z∗, Do(A(~x), s)) is of the form∧k
i=1[Πi(z∗) ≡ Πi(Do(A(~x), s))]
∧∧l

i=1 Holds(Fi(~ti), z∗) ∧ Holds(Fi(~ti), Do(A(~x), s))
∧

(z′ = z∗ 	 ϑ∗ ∨ z′ = z∗)

whereΠi(z∗) is a state formula andϑ∗ contains all knowl-
edge fluents of some agent inz∗ whose states do not con-
form toΠi(z∗) or fluentFi(~ti) does not hold therein.

2

Note that the physical effect is modelled by updating the
possible states of our agentincludingthe states of the knowl-
edge fluents. The cognitive effect is modelled by constrain-
ing the set of possible states so as to agree with the actual
state on the sensed properties and fluent values. Usually, ac-
tions with no physical effect do not involve any knowledge
fluent, although they might affect the knowledge of other
agents. For example, in sensing its own location, our agent
gets to know its location regardless of whether his fellow
agents get to know his location or not. Communication does
not give any physical effect to the environment, but its cogni-
tive effect might involve removal of some knowledge fluents
of some agent from the possible states of our agent. This
case is handled by the last conjunct of the cognitive effect
part of the above definition. In particular, sensing actions

usually do not have any physical effect and do not involve
any knowledge fluent, but they might affect the knowledge
of other agents. This case is covered by the following exam-
ple.

Example 1 (continued) In the initial situationS0, our
agent knows that agentR knows G and has a disjunctive
knowledge of agentR, that is,K(R,F) ∨ K(R,¬F). Sup-
pose our agent performs actionMakeGFalsewhose negative
physical effect involves fluentG. According to our assump-
tions, agentR can observe the action, so that our agent is
obliged to update the knowledge fluent states of agentR.
The following is the precondition and knowledge update ax-
iom of actionMakeGFalse:

Poss(MakeGFalse, z) ≡ >

Knows(Poss(MakeGFalse), s) ⊃
(∀z′) (KState(Do(MakeGFalse, s), z′) ≡

(∃z) (KState(s, z) ∧ z′ = z 	 ϑ̂− + ϑ̂+))

whereϑ̂− andϑ̂+ correspond to those in Definition 2 with
ϑ− = G and ϑ− = ∅. Thus, after performing action
MakeGFalse, the knowledge state of our agent is as follows,

KState(S1, z) ≡ z = F ◦ KF(R,F) ∨ z = KF(R, ∅)

whereS1 = Do(MakeGFalse, S0). The above knowledge
state says that our agent knows¬G ∧ K(R,¬G) in S1. The
knowledgeK(R,F) ∨ K(R,¬F) remains since the action
does not affect fluentF .

Afterwards, our agent performs actionSenseFwhich is
used to sense whether fluentF is true or not in the environ-
ment. The action is defined as follows:

Poss(SenseF, z) ≡ >

Knows(Poss(SenseF), s) ⊃
(∀z′) (KState(Do(SenseF, s), z′) ≡

(∃z) (KState(s, z) ∧ z′ = z)∧
[ΠF (z′) ≡ ΠF (Do(SenseF, s))])

whereΠF (z) def= Holds(F, z). Provided that fluentF is true,
the knowledge state of our agent becomes as follows,

KState(S2, z) ≡ z = F ◦ KF(R,F)

whereS2 = Do(SenseF, S0). The disjunctive knowledge
has now vanished, that is, our agent knowsK(R,F). This
shows that actions having no physical effect might affect the
knowledge of other agents. The evolution of the set of pos-
sible states is depicted in Figure 2. 2

COMMUNICATIVE ACTIONS
The approach to modelling the communication process is to
treat communication itself as constituted by actions. This
approach is in the spirit of the formal theory ofspeech
acts (Austin 1962; Searle 1969). This theory treats com-
munications as actions that might alter the knowledge of the
communication participants. The actions used for the com-
munication are calledcommunicative actions. The specifi-
cation of the actions will benefit greatly from the formalism
for the knowledge of other agents.

F ◦G ◦ KF(R, F ◦G)

G ◦ KF(R, G)

h

S0

F ◦ KF(R, F)

KF(R, ∅)

F ◦ KF(R, F)

S1 S2

j

*
s

Figure 2: The evolution of the set of possible states while
performing actionMakeGFalsefollowed by actionSenseF.
In the initial situationS0, our agent knowsK(R,G) ∧
(K(R,F) ∨ K(R,¬F)).

There are four types of communicative actions developed
here. The first type of communicative actions isask action.
Communicative actions of this type are used to get some
knowledge from other agents. Action functionAskIf with
signature

AskIf : AGENT× FLUENT 7→ ACTION

is an ask action that is used to ask another agent about the
truth values of fluents. Suppose the fluentOn(A,B) de-
notes the condition that blockA is on blockB. The ac-
tion AskIf(R, On(A,B)) is meant to ask agentR if block
A is on blockB. Another ask action is the action scheme
AskValF(r, ~p1, ~p2, ~v2) which is used to ask the values of the
arguments of fluentF. The arguments in question are de-
noted by positions~p1. The arguments whose values~v2 are
known, are denoted by positions~p2. For example, the action
AskValOn(R, [1], [2], [B]) is meant to ask agentR which
block is on blockB. For convenience, this action is sim-
ply written asAskValOn(R, [x], On(x, B)).

The second type of communicative actions istell action.
Communicative actions of this type are used to reply to those
of type ask action. Action functionTellIf with signature

TellIf : AGENT× FLUENT× {−1, 0, 1} 7→ ACTION

is a tell action that is used to tell another agent about the sta-
tus of fluents. The value1 means that the fluent in question
holds, value0 means that the fluent does not hold, otherwise
value−1 denotes that the teller does not know the status of
the fluent. To reply to the actionAskValF(r, ~p1, ~p2, ~v2), there
is a scheme of tell actionTellValF(r, ~p1, ~p2, ~v2, ~~v1), where
~~v1 contains all possible values for the arguments~p1. For ex-
ample, the actionTellValOn(R, [1, 2], [], [], [[A,B], [B,C]])
is meant to tell agentR that blockA is on blockB, which in
turn is on blockC. For clarity, this action shall be written as

TellValOn(R, [x, y], On(x, y), On(A,B) ◦On(B,C))

To achieve its goal, our agent may need some help from
other agents, that is, to perform actions which our agent is
unable to perform. The actionRequest(r, a) is a commu-
nicative action of typerequestthat is used to request agent

r to perform actiona. The last communicative action is the
actionListenof typelisten. Since all communicative actions
discussed so far have no physical effect, they are unobserv-
able by other agents in the environment. Thus, the action
Listenis needed by our agent to listen to other communica-
tive actions directed to him.

The following exemplifies how the specification of com-
municative actions benefit from the formalism for the
knowledge of other agent. Our agent shall ask agentr about
the status of fluentf only if our agent does not know the sta-
tus of fluentf and our agent knows that agentr knows that
fluentf holds or knows that fluentf does not hold. This is
formalized as the precondition of actionAskIf(r, f):

Poss(AskIf(r, f), s) ≡
¬Knows(f, s) ∧ ¬Knows(¬f, s)
∧Knows(K(r, f) ∨ K(r,¬f), s)

The above precondition axiom shows that, to ask agentr
about the status of fluentf , our agent must infer the knowl-
edge of agentr about fluentf . This results in an efficient
communication, in the sense that our agent does not have to
ask every agent about the status of fluentf , but only those
who know the status of the fluent.

Our agent has to follow some rules while it is communi-
cating with other agents. A protocol specifies the rules of en-
counter governing a dialogue between agents. We develop a
simple binary protocol involving the communicative actions
that we have already specified. A communication protocol
is a set of rules determining the would–be performed actions
for each communicative actions. Here, we are aiming at de-
veloping honest and sincere agents. Thus, the protocol will
also reflect the honesty and sincerity of our agent. For exam-
ple, the actionAskIf(r2, f) performed by agentr1 is replied
by agentr2 with the actionTellIf (r1, f, v), where the value
of variablev depends on the knowledge of agentr2 about
fluentf .

The semantics of communicative actions defined here has
a different perspective from the semantics of standard agent
communication languages, such asFIPA Communicative
Acts Language(FIPA:The Foundation for Intelligent Physi-
cal Agents 2000). Our approach to giving the semantics is
purely subjective, while FIPA takes objective approach. For
example, the actionTellIf defined here corresponds to the
primitive action Inform defined in the FIPA specification.
The postcondition ofTellIf says that, after telling agentr
about some property, our agent gets to know that agentr
knows the property. UnlikeTellIf , the postcondition of ac-
tion Inform is specified as follows: after informing agent
r about some property, agentr knows the property. FIPA
Communicative Acts Language, however, is now the stan-
dard of agent communication language. For future work,
we have to build an interface bridging our communicative
actions and FIPA’s language. The interface will allow our
agent to communicate with other agents which are not im-
plemented in FLUX.

KNOWLEDGE OF OTHER AGENTS IN
FLUX

This section presents the implementation of the aforemen-
tioned formalism in FLUX. First, the encoding of knowl-
edge of other agents is described. This description will
also shows the semantics of FLUX expressions in terms
of knowledge of other agents. Afterwards, an extension to
FLUX constraint system is given. This extension is meant
to handle knowledge of other agents. Finally, the encoding
of knowledge update axioms, which respect the knowledge
of other agents, is explained.

Encoding Knowledge of Other Agents in FLUX
To begin with, the following explains the notations that we
use in this section. The variable fluentf in the Fluent Cal-
culus corresponds to the variable fluent termF in FLUX.
FluentF in the Fluent Calculus is associated with the flu-
ent termf in FLUX. Likewise for variables and constants
denoting agents.

We have already mentioned that knowledge states of
agents are represented as open-ended lists of fluent terms.
A FLUX state is a listZ=[F1,...,Fk|_] of pairwise dif-
ferent fluents along with finite number of constraints repre-
senting the knowledge that our agent has. In other words, a
FLUX state represents all possible knowledge states that our
agent has. Therefore, if fluentf holds in the listZ, then the
fluent holds in all possible knowledge states of our agent.
Thus, it means that our agent knowsF .

Encoding the knowledge of other agents is not so straight
forward. The problem is that there could be infinitely many
knowledge fluents, so that it is impractical to enumerate
them. The approach taken here is to encode all knowledge
fluents belonging to the same agent as one single knowl-
edge fluent, the second argument of which is an incomplete
list. To accommodate this, it is required that, for each agent,
there exists at most a fluentFR = kf(R,ZR) holding in the
list Z. The listZR is an incomplete list. The fluentkf(R,ZR)
is the encoding of all knowledge fluents belonging to agent
r. Thus, if fluentF holds in ZR, then the fluent holds in
all knowledge fluents of agentr. Consequently, it means
that our agent knowsK(r, f). Moreover, applying state con-
straints to the listZR gives the following semantics, where
each item in the second column denotes the knowledge of
agentr that our agent knows in some situation:

Constraints Semantics
not_holds(F,ZR) K(r,¬f), s)
or_holds([G1,...,Gm],ZR) K(r,

∨m>0
j=1 gj)

or_holds([k(R,G1),
∨k>0

j=1 K(r, gj)∨
...,k(R,Gk),

∨m>0
j=l K(r,¬gj)

k(R,neg(Gl)),
...,k(R,neg(Gm))]

It is worth mentioning that knowledge of the form¬K(r, f)
is not yet expressible in FLUX.

According to the above description, the following is the
encoding for Example 1, provided that the situationS in the
example is the initial situation:

cons_state(Z) <=> nonvar(Z) | cons_kf(Z,Z). %1a

cons_kf(Z1,_) <=> var(Z1) | cons_state(Z1). %2a

cons_kf([F|Z1],Z2) <=> %3a

F\=kf(_,_) | cons_kf(Z1,Z2).

cons_kf([kf(R,ZR)|Z1],Z2) <=> %4a

cons_kf1(ZR,Z2),

cons_kf(Z1,Z2).

cons_kf1(ZR,Z) <=> var(ZR) | true. %5a

cons_kf1([F|ZR1],Z) <=> %6a

holds(F,Z), cons_kf1(ZR1,Z).

Figure 3: FLUX CHRs for knowledge–consistent state.

init(Z0) :-
Z0 = [kf(r,[g|_])|_],
or_holds([k(r,f),k(r,neg(f))],Z0),
duplicate_free(Z0).

The specification of the initial conditions is encoded in
FLUX by the definition of the predicateinit(Z0) . There
is only one knowledge fluentkf(r,ZR) belonging to agent
r , and fluentg holds in the listZR. This encodes the fact
that our agent knowsK(R,G). The disjunctive knowl-
edge of agentR about fluentF is encoded using disjunc-
tive constraintor_holds([k(r,f),k(r,neg(F))],Z0) .
The auxiliary constraintduplicate_free(Z0) ensures
no multiple occurrences of fluents in the listZ0. In the
presence of many agents, the definition of this constraint
is extended. The new definition includes the application
of the constraint to the listZR of every knowledge fluent
kf(R,ZR) . Thus, no multiple occurrences of fluents hap-
pens in the lists of knowledge fluents. Moreover, the defini-
tion of duplicate_free also includes imposing the con-
straint not_holds_all(kf(X,ZX),ZR) to every knowl-
edge fluentkf(R,ZR) . This guarantees no occurrences of
nesting knowledge fluents.

At this point, nothing prevents us from constructing a
FLUX state that does not obey Corollary 1. For example,
the following FLUX state is allowed:

Z = [kf(r,[f|ZR])|_], not_holds(f,Z),
duplicate_free(Z)

The above state describes that our agent knows¬F , but
knowsK(r, F). In what follows, a FLUX state is said to be
knowledge–consistentif it respects Corollary 1.

To keep FLUX states knowledge–consistent, another aux-
iliary constraintcons_state(Z) is introduced. The con-
straint is applied to the lists of the FLUX states. Figure 3
shows part of the definition of the constraint. Essentially,
the constraint examines every knowledge fluentkf(R,ZR)
in the list Z using rules1a − 4a. If fluent F holds in the
list ZR, then the constraintcons_kf1(ZR,Z) ensures that
the fluent also holds in the listZ. This means, whenever our
agent knowsK(r, f), then he knowsf too. This makes the
FLUX state obey Corollary 1 over positive knowledge of
other agents. Other forms of knowledge of other agents can
be treated similarly. Having the problem fixed, the previous
encoding of Example 1 is revised to

init(Z0) :-

Z0 = [kf(r,[g|ZR])|Z],
or_holds([k(r,f),k(r,neg(f))],Z0),
cons_state(Z0), duplicate_free(Z0).

However, it is inefficient to keep FLUX states
knowledge–consistent every time knowledge assertion oc-
curs. The approach taken here is that the constraint
cons_state is only applied to the initial states, and it is
left to the assertion methods to ensure that assertions do not
make the state inconsistent. This means, if our agent asserts
that he knows that other agent knows about some property,
then our agent has to assert that he knows the property as
well. The issue of knowledge–consistency suggest the fol-
lowing FLUX program for asserting the knowledge of other
agents:

holds_kf(R,F,Z) :-
holds(kf(R,ZR),Z),
holds(F,ZR), holds(F,Z).

The above program says as follows: upon asserting that
agentr knows fluentf using the predicateholds(F,ZR) ,
our agent also asserts that he knows fluentf using the pred-
icateholds(F,Z) .

It has been shown already that disjunctive knowl-
edge of other agents is handled using the constraint
or_holds([T1,...,Tk],Z) , in which the knowledge of
other agent is encoded using the termk(R,F) . However,
the current constraint handling rules are not sufficient to re-
solve the termk(R,F) such that the whole FLUX state is
knowledge–consistent. Therefore, not only do the current
rules have to be modified, but some new rules have to be
added to the FLUX constraint solver.

Figure 4 depicts the new rules along with the modifica-
tion of the existing rules in (Thielscher 2002b). There are
two additional terms used internally in the encoding of the
disjunctive knowledge of other agents. The first additional
term is of the formk(R,F,ZR) , the meaning of which is the
same as the termk(R,F) . Moreover, the listZR denotes the
knowledge fluent states belonging to agentr. The second
additional term is of the formh(R,F) , which is used to des-
ignate that the fluentF holds in the list of our agent’s FLUX
state.

To begin with, variablesF andR denote, respectively, a
variable fluent and a variable agent. In addition, variablesZ
and ZR denote, respectively, the list of our agent’s FLUX
state and the list of knowledge fluentkf(R,ZR) . CHR
1b simplifies a singleton disjunction of a non–knowledge
fluent, that is,

∨n=1
i=1 Holds(fi, z) ≡ Holds(f1, z). CHR

2b − 4b is used to assert the fluentF in the listZ if the term
k(R,F,ZR) is the only remaining disjunct. This reduction
is justified by our explanation of knowledge assertion, that
is, whenever our agent gets to knowK(r, f), then he should
knowf as well.

CHR 5b is used to reduce the termk(R,F,[G|ZR])
to k(R,F,ZR) if the fluent G is not equal to the fluentF
or neg(F) . The reduction is then useful for the following
CHRs. Rule6b says that, having reduced by CHR5b, if g
is equal tof , then the whole disjunction is true. This rule is

or_holds([F],Z) <=> F\=eq(_,_), F\=k(_,_,_) %1b

| holds(F,Z).

or_holds([D],Z) <=> D=k(R,F,ZR), F\=neg(_) %2b

| holds(F,ZR),holds(F,Z).

or_holds([D1,D2],Z) <=> D2=k(R,F,ZR), %3b

D1=h(R,F), F\=neg(_)

| holds(F,ZR).

or_holds([D],Z) <=> D=k(R,F1,ZR), F1=neg(F) %4b

| not_holds(F,ZR), not_holds(F,Z).

or_holds(V,Z) <=> member(k(R,F,ZR),V,V1), %5b

nonvar(ZR), ZR=[F1|ZR1],

F\=F1, F\=neg(F1)

| or_holds([k(R,F,ZR1)|V1],Z).

or_holds(V,Z) <=> member(k(R,F,ZR),V), %6b

nonvar(ZR), ZR=[F1|_], \+ F\=F1

| (member(h(R,F),V,V1) -> true

; holds(F,Z)).

or_holds(V,Z) <=> member(k(R,F,ZR),V,V1), %7b

nonvar(ZR), ZR=[F1|_],\+ F\=neg(F1)

| or_holds(V1,Z).

or_holds(V,Z) <=> member(h(R,F1),V), %8b

member(k(R,F,ZR),V,V1),

\+ F\=neg(F1) | or_holds(V1,Z).

or_holds(V,Z), not_holds(F,ZR) <=> %9b

member(k(R,F,ZR1),V,V1), ZR\==Z, ZR==ZR1

| (member(h(R,F),V1,V2) -> or_holds(V2,Z)

; or_holds(V1,Z)).

not_holds(F, Z) \ or_holds(V, Z) <=> %10b

member(k(R,F1,_), V, W), F1==F,

\+ member(h(R,F1),V)

| or_holds(W, Z).

not_holds_all(F, Z) \ or_holds(V, Z) <=> %11b

member(k(R,F1,_), V, W),

inst(F1, F), \+ member(h(R,F1),V)

| or_holds(W, Z).

or_holds(V, W, [F1|Z]) <=> %12b

member(D, V, V1), D=k(R,F), F1=kf(R,ZR)

| or_holds(V1,[k(R,F,ZR)|W],[F1|Z]).

or_holds(V, W, [F1|Z]) <=> %13b

member(D, V, V1),

(D=k(R,F1) ; D=k(R,F1,ZR)),

\+ member(h(R,F1),V,_)

| or_holds(V1,[h(R,F1), D|W],[F1|Z]).

or_holds(V, W, [F1|Z]) <=> %14b

member(D, V, V1),

(D=k(R,neg(F1)); D=k(R,neg(F1),_)),

| or_holds(V1,W,[F1|Z]).

Figure 4: An extension and modifications of FLUX CHRs
for disjunction.

justified byΣstate∪ Σknows, which entails

Knows(K(r, f), s) ∧ [Knows(K(r, f), s) ∨Ψ] ≡
Knows(K(r, f), s) and

Knows(K(r, f), s) ⊃ Knows(f, s)

In contrast, CHR7b will remove termk(R,neg(F),ZR)
from the disjunction ifF holds inZR. Correspondingly, CHR
9b removes the termk(R,F,ZR) from the disjunction if
F does not hold inZR. These rules are also sanctioned by
Σstate∪ Σknows, which entails

Knows(K(r, f), s) ∧ [Knows(K(r,¬f), s) ∨Ψ] ≡
Knows(K(r, f), s) ∧Ψ and

Knows(K(r, f), s) ⊃ Knows(f, s)

Rule 8b removes the termk(R,neg(F),ZR) from the
disjunction, but the removal is caused by the termh(R,F)
denoting thatF holds in the listZ. This rule is entailed by
Σstate∪ Σknows, which implies

Knows(f, s) ∧ [Knows(K(r,¬f), s) ∨Ψ] ≡
Knows(f, s) ∧Ψ

CHRs10b − 11b are used to remove the termk(R,F,ZR)
from the disjunction if the fluentF does not hold in the listZ.
This group of rules is justified by the fact thatΣstate∪Σknows
entails

Knows(¬f, s) ∧ [Knows(K(r, f), s) ∨Ψ] ≡
Knows(¬f, s) ∧Ψ and

(∀~x)Knows(¬f1, s) ∧ [Knows(K(r, f2), s) ∨Ψ] ≡
(∀~x)Knows(¬f1, s) ∧Ψ

where~x are the variables off1 and given thatf1θ = f2 for
someθ.

CHR12b is used to evaluate knowledge fluents against all
fluents in the listZ. On the evaluation, every termk(R,F) is
replaced by its ternary formk(R,F,ZR) if the encountered
fluent is kf(R,ZR) . CHR 13b is used to tagKnows(f, s)
by the termh(R,F) , if there exists a termk(R,F) or its
ternary form in the disjunction. Finally, CHR14b denotes
the universal property of knowledge, namely, if our agent
knowsf , then it does not know that there is another agent
knows¬f .

Example 2 Suppose our agent knowsG and¬F . More-
over, it knows that agentR knowsF or knowsG. For sim-
plicity, the following reflects the state without the constraints
duplicate_dree andcons_state :

?- Z=[g, kfluent(r, ZR)|Z1], not_holds(f, Z),
or_holds([k(r, f), k(r, g)], Z).

ZR = [g|ZR1]
Z1 = Z1
Z = [g, kfluent(r, [g|ZR1])|Z1]

Yes

not_holds(f, Z1)

2

Inferring Knowledge of Other Agents in FLUX

By definition, our agent knowsK(r, f) if K(r, f) holds in
every possible statez of our agent, in the sense that flu-
ent f holds in the statezr of every fluentKF(r, zr) oc-
curring in z. However, it is impractical to check whether
K(r, f) holds in all possible states of our agent. The ap-
proach here is adapted from (Thielscher 2003), that is, our
agent knowsK(r, f) if it fails assertingK(r,¬f). This
method is allowed since knowledge of the form¬K(r, f)
is not expressible. Formally, suppose that a knowledge state
KState(s, z) ≡ Φ(z) is identified with the state specification
Φ(z). Then our agent knows that agentr knows fluentf iff
{Φ(z), KFState(z, r, zr),¬Holds(φ, zr)} is unsatisfiable. In
turn, this can be verified using negation–as–failure to prove
that the constraint solver derives an inconsistency on assert-
ing the state constraintnot_holds(F,ZR) . The following
program exemplifies howK(R,G) is inferred from Exam-
ple 1:

?- init(Z0), holds(kf(r, ZR1), Z),
\+ not_holds(g, ZR1).

Yes

Disjunctive knowledge of other agents is inferred in a
slightly complicated way. Our agent knowsK(r, φ1) ∨
K(r, φ2) if it is not true that there is a possible statez of
our agent, in which there are knowledge fluentsKF(r, zr1)
andKF(r, zr2) (possibly the same knowledge fluent), such
that φ1 does not hold inzr1 andφ2 does not hold inzr2.
However, since all agentr’s knowledge fluents in the Flu-
ent Calculus are encoded in FLUX as one single knowledge
fluent, there is no way of accessing some particular knowl-
edge fluents in FLUX. Thus, we cannot use the same ap-
proach that we have used beforehand. Fortunately, there is
also a feasible alternative to infer such a knowledge. The
alternative has already been hinted by the correctness of the
constraintor_holds([T1,...,Tk],Z) . Informally, if our
agent knowsK(r, φ1) ∨ K(r, φ2), then when it is assumed
that our agent additionally knows¬φ1, it indeed knows
K(r, φ2). In another way, when it is assumed that our agent
knows¬φ2, then it knowsK(r, φ1). This approach is justi-
fied by Corollary 1.

Example 3 The precondition of the actionAskIf(r, f) re-
quires inferring disjunctive knowledge of agentr. The fol-
lowing shows how the precondition is encoded and its ap-
plication to Example 1, provided that the situationS in the
example is the initial situation:

poss(ask_if(R,F),Z) :-
\+ (knows(R,F); knows_not(R,F)),
\+ (\+ (holds(kf(R, ZR), Z),

holds(F, Z),
\+ not_holds(F, ZR)),

\+ (holds(kf(R, ZR), Z),
not_holds(F, Z),
\+ holds(F, ZR))).

?- init(Z0), poss(ask_if(r,f),Z0)
Yes

2

minus(Z, [], Z).

minus(Z, [F|Fs], Zp) :-

(\+ not_holds(F, Z) ->

holds(F, Z, Z1),

cancel_knows(F,Z1) ;

\+ holds(F, Z) -> Z1 = Z ;

cancel(F, Z, Z1), cancel_knows(F,Z1),

not_holds(F, Z1)),

minus(Z1, Fs, Zp).

plus(Z, [], Z).

plus(Z, [F|Fs], Zp) :-

(\+ holds(F, Z) -> Z1=[F|Z] ;

\+ not_holds(F, Z) -> Z1=Z ;

cancel(F, Z, Z2), add_holds(F,Z2),

not_holds(F, Z2), Z1=[F|Z2]),

plus(Z1, Fs, Zp).

update(Z1, ThetaP, ThetaN, Z2) :-

minus(Z1, ThetaN, Z), plus(Z, ThetaP, Z2).

Figure 5: FLUX clauses for updating incomplete states.

Knowledge Update Axioms in FLUX

It has been shown in the previous section that knowledge
update axioms must consider the knowledge of other agents
as well. This demands that the encoding of knowledge up-
date axioms in (Thielscher 2002b) be extended. Firstly,
the extension is due to the disjunctive knowledge of other
agents. For example, suppose it is specified that our agent
has a disjunctive knowledge

∨k>1
i=1 ti, where there is ani

(for 1 ≤ i ≤ k) such thatti = K(r, f). So, once our agent
performs an action whose negative physical effects include
the fluentf , then by the assumption of exogenous actions,
agentr does no longer knowf . In the same manner as
the approach in (Thielscher 2002b), if the status of the flu-
ent is not entailed by the state specificationΦ(z), such that
KState(s, z) ≡ Φ(z), then partial knowledge off in Φ(z)
does not transfer to the resulting statez 	 f .

Figure 5 depicts a set of clauses for updating in-
complete states. The clauses are similar to those
in (Thielscher 2002b), except that there are two new pred-
icates,cancel_knows(F,Z) andadd_holds(F,Z) . The
former one is used to cancel disjunctive knowledge if there
existsK(r, f1) in the disjunctive knowledge, such that the
fluentf can be unified with the fluentf1. The cancellation
is due to negative physical effects of some action which in-
volve the fluentf . The latter predicate is used to add the
termh(R,F) to the disjunctive knowledge (recall the use of
the termh(R,F) in the encoding of disjunctive knowledge
of other agents). The addition is due to positive physical
effect of some action which involve the fluentf .

Thus far, the encoding of update has only addressed our
agent’s state and the knowledge of other agents in the form
of disjunctive knowledge

∨k>0
i=1 K(r, fi). In Definition 2, the

states of knowledge fluents are also updated. Therefore, for
knowledge update axioms, there are two updates, the first
one is to update our agent’s state, which does not involve
any knowledge fluent, and the second one is to update every

knowledge fluent in our agent’s state.
As all knowledge fluents are encoded as one single knowl-

edge fluent, removing (updating) one single knowledge flu-
ent in FLUX means removing (respectively, updating) all
corresponding knowledge fluents in the Fluent Calculus.
The above encoding of the predicateupdate has already
been ready to be used for updating the states of knowledge
fluents. With many agents, there are many single knowl-
edge fluents. This suggests the following scheme of recur-
sive clauses for updating the knowledge of other agents with
respect to some actionA:

UpdateKF(z,A, z)← ¬Holds(KF(r, zr), z).
UpdateKF(z1, A, [KF(r, zr2)|z2])←

Holds(KF(r, zr1), z1, zt),
Φ1(z1)→ Update(zr1, ϑ

+
1 , ϑ−1 , zr2); . . . ;

Φn(z1)→ Update(zr1, ϑ
+
n , ϑ−n , zr2);

UpdateKF(zt, A, z2).

where eachΦi(zi) is a state specification, andϑ+
i andϑ−i

are, respectively, positive and negative effects. This scheme
is then attached to encoding of knowledge update axioms.

Example 4 Consider again Example 1. Action
MakeGFalseandSenseFcan be encoded as follows:

state_update(Z1,makegfalse,Z2,[]) :-
update(Z1,[],[g],ZT),
update_kf(ZT,makegfalse,Z2).

update_kf(Z1,makegfalse,[kf(R,ZR2)|Z2]):-
holds(kf(R,ZR1),Z1,ZT), \+ nonground(R),
update(ZR1,[],[g],ZR2),
update_kf(ZT,makegfalse,Z1).

update_kf(Z,makegfalse,Z) :-
\+ holds(kf(_,_),Z).

state_update(Z,sensef,Z,[F]) :-
F=true -> holds(f,Z) ; true.

Provided that the situationS in Example 1 is the initial
situation and fluentF is true in the world, then the follow-
ing describes the encoding of the evolution of possible states
shown in the example:

?- init(Z0),
state_update(Z0, makegfalse, Z1, []),
state_update(Z1, sensef, Z2, [true]).

Z0 = [kf(r, [g|ZR]), g|ZT]
Z1 = [kf(r, ZR)|ZT]
Z2 = [kf(r, [f|ZR]), f|ZT]

not_holds(g, ZR), not_holds(f, ZR),
not_holds(g, ZT), not_holds(f, ZT)

...

The result described above is the same as what Example 1
has shown. In the last situation, our agent knowsK(R,¬G)
due to the presence of the constraintsnot_holds(g,ZR)
and not_holds(g,ZT) . Moreover, since fluentf holds
both in the listZ2 and the list[f|ZR] of kf(r,[f|ZR]) ,
our agent also knowsK(r, f). 2

DISCUSSION
We have introduced a formalism for the knowledge of other
agents and communication in the Fluent Calculus. The
knowledge of other agents is represented as knowledge flu-
ents. These fluents represent the possible states that our
agent thinks that other agents think to be in. Since there
could be infinitely many possible states, one might argue
that it is impractical to encode knowledge fluents by enu-
merating them. The complete paper will show, however,
that knowledge fluents can be encoded in a succinct way.
The representation of the knowledge of other agents and the
knowledge updates have also been shown to obey the uni-
versal property of knowledge.

Communication is treated as a set of communicative ac-
tions. The specification of communicative actions bene-
fits from the formalism for the knowledge of other agents.
Moreover, the ability to reason about the knowledge of other
agents is important to have efficient communication. This
extended abstract has shown one example, that is, to ask an-
other agent about some property, our agent has to infer the
knowledge of the agent it asks. This results in efficient com-
munication.

The formalism for knowledge and communicative actions
has been implemented in FLUX. The implementation of the
formalism extends the existing FLUX system (Thielscher
2002a). The full paper will discuss the implementation of
our formalism in detail. Although incomplete, the sound-
ness of the implementation is sufficient for sound agent pro-
gramming.

Other related approaches to treating communication as ac-
tions are (Acqua, Sadri, & Toni 1999; Cohen & Perrault
1979; Kowalski & Sadri 1999; Lespéranceet al. 1995;
Shapiro, Lesṕerance, & Levesque 1997). The main differ-
ence between these and our approach is as follows. Our
approach takes a purely subjective perspective, whereas the
other formalisms take an objective perspective, that is, the
approaches view the system consisting of many agents as
one system. In other words, the other formalisms are mainly
used to prove properties of multi–agent systems rather than
for building individual agents.

An important limitation of our approach is that agents
cannot reason about what other agents knowof other agents.
This limitation, however, was necessary to obtain an effec-
tive encoding of the knowledge of other agents in FLUX.
Moreover, the negative knowledge of other agents has not
been encoded in FLUX. For example, our agent knows
¬K(r, φ) (agentr does not knowφ), has not been encoded
in FLUX and is left for future work.

References
Acqua, D.; Sadri, F.; and Toni, F. 1999. Communicat-
ing Agents. InProceedings of the Workshop on Multi–
Agent Systems in Logic Programming. In conjunction with
ICLP’99.

Austin, J. L. 1962.How to Do Things with Words. London:
Oxford University Press.

Cohen, P. R., and Perrault, C. R. 1979. Elements of a plan-

based theory of speech acts.Cognitive Science3(3):177–
212.
FIPA:The Foundation for Intelligent Physical Agents.
2000. FIPA communicative act library specification.
URL:http://www.fipa.org .
Kowalski, R. A., and Sadri, F. 1999. From logic program-
ming towards multi–agent systems.Annals of Mathematics
and Artificial Intelligence.
Lesṕerance, Y.; Levesque, H. J.; Lin, F.; Marcu, D.; Reiter,
R.; and Scherl, R. B. 1995. Foundation of a logical ap-
proach to agent programming. In Wooldridge, M.; Müller,
J. P.; and Tambe, M., eds.,Proceedings of IJCAI ’95 ATAL
workshop LNAI, volume 1037, 331–345. Springer-Verlag.
Searle, J. R. 1969.Speech Acts: An Essay in The Phi-
losophy of Language. Cambridge: Cambridge University
Press.
Shapiro, S.; Lesṕerance, Y.; and Levesque, H. J. 1997.
Specifying communicative multi–agent systems with con-
golog. InWorking Notes of the AAAI Fall 1997 Symposium
on Communicative Action in Humans and Machines, vol-
ume 1037, 72–82. Cambridge, MA: AAAI Press.
Thielscher, M. 2000. Representing the knowledge of a
robot. In Cohn, A.; Giunchiglia, F.; and Selman, B., eds.,
Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR), 109–
120. Breckenridge, CO: Morgan Kaufmann.
Thielscher, M. 2001. The Qualification Problem: A solu-
tion to the problem of anomalous models.Artificial Intelli-
gence131(1–2):1–37.
Thielscher, M. 2002a. Programming of reasoning and
planning agents with FLUX. In Fensel, D.; McGuinness,
D.; and Williams, M.-A., eds.,Proceedings of the Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning (KR), 435–446. Toulouse, France:
Morgan Kaufmann.
Thielscher, M. 2002b. Reasoning about actions with CHRs
and finite domain constraints. InProceedings of the Inter-
national Conference on Logic Programming (ICLP).
Thielscher, M. 2003. FLUX: A logic programming method
for reasoning agent.Journal of Theory and Practice of
Logic Programming.

