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Origins of Description Logics

@ Representation of conceptual knowledge is subfield of Artificial Intelligence

@ Early days of Al: KR through obscure pictures (semantic networks)

mammal

has-weight

grey «—— elephant > heavy
isa
dumbo -S-Weight oy

Problems: missing semantics (reasoning!), complex pictures
@ Remedy: Use a logical formalism for KR rather than pictures
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Representing Conceptual Knowledge with DLs
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Defining elephants using DLs:

@ Mammal M dbodypart. Trunk M Vcolor.Grey

@ Mammal 1 Ibodypart. Trunk M (= 1 color) M Vcolor.Grey
M (= 1 weight) M ((VYweight.Heavy) LI (Dumbo M1 Vweight.Light))

A concept language does not solve all problems...

Do these concepts describe necessary or sufficient conditions?
How can we describe specific elephants such as Dumbo?

How do | avoid losing track when constructing large knowledge bases?



Modern Description Logics

Foci of “modern” DL research:

1. Identify interesting Description Logics and study their properties

Main topics: decidability, computational complexity, expressivity

2. Implement Description Logics in highly-optimized reasoning systems

Fast and powerful systems available: e.g. FaCT and RACER

3. Apply Description Logics in several application areas

- Reasoning about Entity Relationship (ER) diagrams

- Representation of Ontologies for the Semantic Web
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The Description Logic ALC: Syntax
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ALC is the smallest propositionally closed Description Logic.

Atomic types: concept names A, B, ... (unary predicates)

role names R, S, ... (binary predicates)
Constructors: - =C (negation)

-CnbD (conjunction)

-CuD (disjunction)

-dR.C (existential restriction)

-VR.C (universal restriction)

For example: =(A U 3R.(VS.B M —A))
Mammal M dbodypart.trunk 1 Vcolor.Grey



Semantics of ALC

Semantics based on interpretations (AZ, -Z), where -Z maps

- each concept name A to a subset AT of AZ.

- each role name R to a binary relation RT over AZL.

Semantics of complex concepts:
(-C)F =AT\CT (CcnD*=cCc*nD* (cuDb)f=cfuD?
(3R.C)T = {d € AT | (d,e) € RT and e € CT}

(VR.C)T = {d € AT | (d,e) € R” implies e € C*}

An interpretation Z is a model for a concept C if C* # 0.
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Reasoning Tasks

Two main reasoning tasks:

1. Concept satisfiability — does there exist a model of C?

2. Concept subsumption — does C* C D7 hold for all Z?
(written C C D)

Why subsumption?

—> (Can be used to compute a concept hierarchy:

mammal

predator elephant

/

lion
@ In propositionally closed DLs, these can be mutually reduced to one another.
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Expressive Power vs. Computational Complexity
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In many cases, the expressive power of ALC does not suffice:

- an elephant has precisely four legs

- every elephant has a bodypart which is a trunk
and every trunk is a bodypart of an elephant

Many extensions of ALC have been developed, for example:

- qualified number restrictions (< n R C) and (> n R C)

- inverse roles R~ to be used in existential and universal restriction

But: Increasing expressivity also increases computational complexity

— ! tradeoff between expressivity and computational complexity !!



Development of DL Systems

Description Logics should be decidable. But what complexity is“ok” ?

KL-ONE
NIKL
Undecidable
ExpTime Fact, DLP, Race
PSpace Crack, Kris
NP
PTime Classic (AT&T)
| | | | -
late early mid late
"80s '90s '90s "90s

b

TU
Dresden



DLs are more than a Concept Language

Formulated
in DL
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Knowledge base
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General TBoxes
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There exist several kinds of TBoxes.

General TBox: finite set of concept equations C' = D
An interpretation Z is a model of a TBox 7T if
CI=D¥foralC=DE€ET.

Reasoning tasks with TBoxes:

1. Concept satisfiability w.r.t. TBoxes

Given C and 7T, does there exist a common model of C and 77

2. Concept subsumption w.r.t. TBoxes

Given C,D, and T, does CT C D7 hold in all models of 77
(written C C+ D)
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Acyclic TBoxes

b

TU
Dresden

Concept definition: expression A = C with A concept name and C concept

A finite set ‘7~ of concept definitions is an acyclic TBox if
a) the left-hand sides of concept definitions in 7" are unique

b) it contains no " cycles”

not an acyclic TBox: {Ay=ANC
A]_ = HRAZ
Ay = Ao}

Acyclic TBoxes can be conceived as macro definitions.
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ABoxes
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Fix a set of individual names.

An ABox is a finite set of assertions

a:C (a individual name, C' concept)

(a,b) : R (a,b individual names, R role name)

Interpretations Z map each individual name a to an element of AZ.

7T satisfies an assertion
a:C iff al € Ct
(a,b): R iff (a*,b%) € R

T is a model for an ABox A if Z satisfies all assertions in A.
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Reasoning with ABoxes

Reasoning tasks with ABoxes:

1. ABox consistency

Given an ABox A and a TBox 7, do they have a common model?

2. Instance checking

Given an ABox A, a TBox 7, an individual name a, and a concept C

does aZ € CZ hold in all models of A and T7?
(written A, 7 = a : C)

Instance checking can be reduced to ABox consistency.

@ Concept satisfiability can be reduced to ABox consistency.
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Description Logics and First-order Logic
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concept names A = unary predicates Py
role names R = binary predicates Pgr
concepts <~ formulas with one free variable
¢"(A) = Pa(z)
p*(=C) = —¢*(C) w¥Y symmetric
p(CND) = ¢"(C)Ae*(D) with  and y exchanged
p"(CUD) = ¢"(C)Ve"(D)
¢"(AR.C) = Fy.Pr(z,y) A ¢¥(C)
¢*(VR.C) = Vy.Pr(z,y) — ¢?(C)

n__n

Note: - two variables suffices (no "=", no constants, no function symbols)
- formulas obtained by translation have “guarded” structure

- not all DLs are purely first-order (transitive closure, etc.)
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Description Logics and First-order Logic Il
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TBoxes:

Let C be a concept and 7 a (general or acyclic) TBox.
o(C,T) = ¢"(C) AVa. )\ ¢“(D) & ¢"(E)
D=Ee€cT
ABoxes:

individual names a <~ constants ¢,

pla:C) = ¢°(C)[cd]
go((a,b):R) — PR(Cavcb)
A ¢(B)

p(A) I
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Description Logics and Modal Logics

b

TU
Dresden

Obvious translation:

concept names = propositional variables
role names <~ modal parameters
concepts AR.C — formulas &4
concepts VR.C — formulas Ov)
Notes: - Interpretations can be viewed as Kripke structures

- ALC is a notational variant of modal K

- TBoxes related to universal modality: (J,, /\ D~ FE

D=EeT

- ABoxes related to nominals / hybrid modal logic

- Extensions of ALC are related to graded modal logic, PDL, etc.
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Overview of the Course
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Introduction and Tableau Algorithm for ALCN

Tableau algorithms for expressive Description Logics

Automata-based decision procedures for expressive Description Logics

Computational complexity

Applications, System demonstration, other topics of DL research

18



The Description Logic ALCN |
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ALCN: ALC
+ unqualified number restrictions (< n R) and (> n R)

Semantics:
(<n R)" ={d € AT | #{(d,e) | (d,e) € R"} < n}
(>n R)" ={d € AT | #{(d,e) | (d,e) € R*} > n}

Mother of many children: Femal

Chinese mother: Fem

Note:

Less expressive than qualified number restrictions (< n R C) and (> n R C)

— decidability/complexity of ALCN -concept satisfiability (without TBoxes)
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Tableau Algorithms
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Appropriate tool: Tableau Algorithms

@ Frequently used to prove decidability/complexity bounds of DLs

@ All state-of-the-art DL reasoners are based on tableau algorithms

Strategy:

- Try to construct a model for the input concept C,

- Represent models by completion trees

- To decide satisfiability of C), start with initial completion tree Tt

- Repeatedly apply completion rules and check for obvious contradictions

- Return “satisfiable” iff a complete and contradiction-free

completion tree was found
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Negation Normal Form

A concept C is in negation normal form (NNF) if
negation occurs only in front of concept names.

Transformation rules:
—/ C ~ C

_I(C|_|D) ~ =aC U-D
—I(CUD) ~ =C MNAaD

-(>nR) - (<n—1R) ifn>0
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Completion Tree

Completion tree:

Finite tree T' = (V, E, L) where L labels

- each node = € V with a set L(x) C sub(C))
- each edge (z,y) € E with a role £(x,y) occurring in Cj.

Initial completion tree for concept Cy: ({xo}, 0, £) where L(x¢) = {Co}

Apply completion rules until

- the completion tree is complete.

or - there exists a node = € V such that

{ 1. {A,~A} C L(x) for some concept name A
Clash
or2. {(<n R),(=m R)} C L(x) withm > n.
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Completion Rules |
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Tre {Cl 1l Cg, . .} —n xre {Cl [ Cg, Cla Cg, ¥ i .}
re {Cl L] Cg, . } —i re {Cl ] CZa C, .o }
for C - {Cl, Cg}
ze {dR.C,...} |—3 | z+{3R.C,...}
RJ
y*{C}
xze {VR.C,...} |—-v | z*{VR.C,...}

ye{...}

)
y*{...,C}
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Completion Rules Il
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a has no R-succ.

{(< n R),.

W\N

osel) PR &
7N

merge two R-succs.

Example: blackboard
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Correctness of the Algorithm

Lemma

1. The algorithm terminates on any input
2. If the algorithm returns “satisfiable”, then the input concept has a model.

3. If the input concept has a model, then the algorithm returns “satisfiable”.

Corollary
1. ALCN -concept satisfiability and subsumption are decidable
2. ALCN has the tree model property
3. ALCN has the finite model property
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Termination

Role depth of concepts:
d(A) =d(<n R)=0 d(>n R) =
d(—C) = d(C)
d(CND)=d(CUD)=max{d(C),d(D)}
d(IR.C) = d(VR.C) =d(C) + 1

The algorithm terminates since:
1. depth of the completion tree bounded by d(Cy).

. for each node, at most #sub(Cj) successors are generated

each node label contains at most #sub(Cj) concepts

~ W N

. concepts are never deleted from node labels

@ 5. nodes may be deleted (via identification), but 1 and 2 is independent from this
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A PSpPACE upper bound for ALCN

Modify EXPSPACE tableau algorithm:

1. Construct completion tree in a depth-first manner:

2. Keep only paths of the tree in memory!

Yields a PSPACE algorithm: - paths are of length polynomial in |Cy|
- the outdegree is polynomial in |Cy|.

@ PSpACE lower bound will be proved later!
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Reasoning with Acyclic TBoxes
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Naive approach: unfolding

— reduce satisfiability w.r.t. TBoxes to satisfiability without TBoxes

Let C'y be concept, T acyclic TBox

1. replace concept names on right hand sides of definitions A = C

with their defining concept

2. replace each concept name in Cj defined in ‘7 with its definition.

Terminates due to acyclicity!

But: exponential blowup in the worst case Ay =VR.A; MVS. A
A =VR.A,TIVS. A,

Ar_1 =VR.A,MVS. Ay
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Unfolding on the Fly

Idea:

Modify existing tableau algorithm to directly deal with acyclic TBoxes

Roadmap:
- convert concept definitions into one of the forms
A=-X, A=BNMB;,, A=B,UB;,, A=VR.B, A=3R.B
with A, B, B;, B, concept names and X primitive concept name

- restrict node labels to concept names

- make on the fly TBox lookups for rule application

Result: Satisfiability of ,ALC-concepts w.r.t. acyclic TBoxes is PSPACE-complete.
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That's it
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More on tableau algorithms tomorrow!

30



