Description Logics

Carsten Lutz and Ulrike Sattler

TU Dresden, Germany

1

Origins of Description Logics

- Representation of conceptual knowledge is subfield of Artificial Intelligence
- Early days of AI: KR through obscure pictures (semantic networks)

Problems: missing semantics (reasoning!), complex pictures

Remedy: Use a logical formalism for KR rather than pictures

Representing Conceptual Knowledge with DLs

Defining elephants using DLs:

- Mammal □ ∃bodypart.Trunk □ ∀color.Grey
- **●** Mammal \sqcap ∃bodypart.Trunk \sqcap (= 1 color) \sqcap ∀color.Grey \sqcap (= 1 weight) \sqcap ((∀weight.Heavy) \sqcup (Dumbo \sqcap ∀weight.Light))

A concept language does not solve all problems...

Do these concepts describe necessary or sufficient conditions?

How can we describe specific elephants such as Dumbo?

How do I avoid losing track when constructing large knowledge bases?

Modern Description Logics

Foci of "modern" DL research:

- 1. Identify interesting Description Logics and study their properties Main topics: decidability, computational complexity, expressivity
- 2. Implement Description Logics in highly-optimized reasoning systems Fast and powerful systems available: e.g. FaCT and RACER
- 3. Apply Description Logics in several application areas
 - Reasoning about Entity Relationship (ER) diagrams
 - Representation of Ontologies for the Semantic Web

The Description Logic ALC: Syntax

 \mathcal{ALC} is the smallest propositionally closed Description Logic.

```
Atomic types: concept names A, B, \ldots (unary predicates) role names R, S, \ldots (binary predicates)
```

Constructors:
$$\neg C$$
 (negation)
 $\neg C \sqcap D$ (conjunction)

-
$$C \sqcup D$$
 (disjunction)

-
$$\exists R.C$$
 (existential restriction)

-
$$\forall R.C$$
 (universal restriction)

For example:
$$\neg(A \sqcup \exists R.(\forall S.B \sqcap \neg A))$$

Mammal $\sqcap \exists bodypart.trunk \sqcap \forall color.Grey$

Semantics of ALC

Semantics based on interpretations $(\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where $\cdot^{\mathcal{I}}$ maps

- each concept name A to a subset $A^{\mathcal{I}}$ of $\Delta^{\mathcal{I}}$.
- each role name R to a binary relation $R^{\mathcal{I}}$ over $\Delta^{\mathcal{I}}$.

Semantics of complex concepts:

$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \qquad (C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}} \qquad (C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$

$$(\exists R.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid (d,e) \in R^{\mathcal{I}} \text{ and } e \in C^{\mathcal{I}}\}$$

$$(\forall R.C)^{\mathcal{I}} = \{d \in \Delta^{\mathcal{I}} \mid (d,e) \in R^{\mathcal{I}} \text{ implies } e \in C^{\mathcal{I}}\}$$

An interpretation \mathcal{I} is a model for a concept C if $C^{\mathcal{I}} \neq \emptyset$.

Reasoning Tasks

Two main reasoning tasks:

- 1. Concept satisfiability does there exist a model of C?
- 2. Concept subsumption does $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ hold for all \mathcal{I} ? (written $C \sqsubseteq D$)

Why subsumption?

⇒ Can be used to compute a concept hierarchy:

In propositionally closed DLs, these can be mutually reduced to one another.

Expressive Power vs. Computational Complexity

In many cases, the expressive power of \mathcal{ALC} does not suffice:

- an elephant has precisely four legs
- every elephant has a bodypart which is a trunk and every trunk is a bodypart of an elephant

Many extensions of \mathcal{ALC} have been developed, for example:

- qualified number restrictions $(\leq n \ R \ C)$ and $(\geq n \ R \ C)$
- inverse roles $oldsymbol{R}^-$ to be used in existential and universal restriction

But: Increasing expressivity also increases computational complexity

⇒ !! tradeoff between expressivity and computational complexity !!

Development of DL Systems

Description Logics should be decidable. But what complexity is "ok"?

DLs are more than a Concept Language

General TBoxes

There exist several kinds of TBoxes.

General TBox: finite set of concept equations $C \doteq D$

An interpretation $\mathcal I$ is a model of a TBox $\mathcal T$ if

$$C^{\mathcal{I}} = D^{\mathcal{I}}$$
 for all $C \doteq D \in \mathcal{T}$.

 $\{\top \doteq (\mathsf{Mammal} \sqcap \exists \mathsf{bodypart.Hunch}) \rightarrow (\mathsf{Camel} \sqcup \mathsf{Dromedary})\}$

Reasoning tasks with TBoxes:

- 1. Concept satisfiability w.r.t. TBoxes Given C and \mathcal{T} , does there exist a common model of C and \mathcal{T} ?
- 2. Concept subsumption w.r.t. TBoxes

Given C,D, and \mathcal{T} , does $C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$ hold in all models of \mathcal{T} ?

(written $C \sqsubseteq_{\mathcal{T}} D$)

Acyclic TBoxes

Concept definition: expression $A \doteq C$ with A concept name and C concept

Elephant \doteq Mammal $\sqcap \exists$ bodypart. Trunk

A finite set \mathcal{T} of concept definitions is an acyclic TBox if

- a) the left-hand sides of concept definitions in ${\mathcal T}$ are unique
- b) it contains no "cycles"

not an acyclic TBox:
$$\{A_0 \doteq A_1 \sqcap C \ A_1 \doteq \exists R.A_2 \ A_2 \doteq A_0 \}$$

Acyclic TBoxes can be conceived as macro definitions.

ABoxes

Fix a set of individual names.

An ABox is a finite set of assertions

$$a:C$$
 (a individual name, C concept)
$$(a,b):R$$
 (a,b individual names, R role name)
$$\{ {\sf dumbo}: {\sf Elephant} \quad , \quad ({\sf dumbo}, {\sf lisa}): {\sf child} \}$$

Interpretations \mathcal{I} map each individual name a to an element of $\Delta^{\mathcal{I}}$.

 \mathcal{I} satisfies an assertion

$$egin{aligned} a:C & & ext{iff} & a^{\mathcal{I}} \in C^{\mathcal{I}} \ (a,b):R & & ext{iff} & (a^{\mathcal{I}},b^{\mathcal{I}}) \in R^{\mathcal{I}} \end{aligned}$$

 \mathcal{I} is a model for an ABox \mathcal{A} if \mathcal{I} satisfies all assertions in \mathcal{A} .

Reasoning with ABoxes

Reasoning tasks with ABoxes:

1. ABox consistency

Given an ABox \mathcal{A} and a TBox \mathcal{T} , do they have a common model?

2. Instance checking

Given an ABox \mathcal{A} , a TBox \mathcal{T} , an individual name a, and a concept C does $a^{\mathcal{I}} \in C^{\mathcal{I}}$ hold in all models of \mathcal{A} and \mathcal{T} ?

(written
$$\mathcal{A}, \mathcal{T} \models a : C$$
)

Instance checking can be reduced to ABox consistency.

Concept satisfiability can be reduced to ABox consistency.

Description Logics and First-order Logic

$$egin{array}{lll} arphi^x(A) &=& P_A(x) \ arphi^x(\neg C) &=&
eg arphi^x(C) \ arphi^x(C \sqcap D) &=&
eg arphi^x(C) \wedge arphi^x(D) \ arphi^x(C \sqcup D) &=&
eg arphi^x(C) ee arphi^x(D) \ arphi^x(\exists R.C) &=&
eg y.P_R(x,y) \wedge arphi^y(C) \ arphi^x(orall R.C) &=&
eg y.P_R(x,y)
ightarrow arphi^y(C) \ arphi^x(orall R.C) &=&
eg y.P_R(x,y)
ightarrow arphi^y(C) \ \end{array}$$

Note: - two variables suffices (no "=", no constants, no function symbols)

- formulas obtained by translation have "guarded" structure
- not all DLs are purely first-order (transitive closure, etc.)

Description Logics and First-order Logic II

TBoxes:

Let C be a concept and \mathcal{T} a (general or acyclic) TBox.

$$arphi(C,\mathcal{T}) = arphi^x(C) \wedge orall x. igwedge_{D \doteq E \in \mathcal{T}} arphi^x(D) \leftrightarrow arphi^x(E)$$

ABoxes:

individual names $a \iff \mathsf{constants}\ c_a$

Description Logics and Modal Logics

Obvious translation:

Notes:

- Interpretations can be viewed as Kripke structures
- \mathcal{ALC} is a notational variant of modal K_{ω}
- TBoxes related to universal modality: $\Box_u \bigwedge_{D \doteq E \in \mathcal{T}} D \leftrightarrow E$
- ABoxes related to nominals / hybrid modal logic
- Extensions of \mathcal{ALC} are related to graded modal logic, PDL, etc.

Overview of the Course

- lacktriangle Introduction and Tableau Algorithm for \mathcal{ALCN}
- Tableau algorithms for expressive Description Logics
- Automata-based decision procedures for expressive Description Logics
- Computational complexity
- Applications, System demonstration, other topics of DL research

The Description Logic ALCN

ALCN: ALC

+ unqualified number restrictions $(\leqslant n \; R)$ and $(\geqslant n \; R)$

Semantics:

$$(\leqslant n \ R)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \# \{ (d, e) \mid (d, e) \in R^{\mathcal{I}} \} \leq n \}$$

$$(\geqslant n \ R)^{\mathcal{I}} = \{ d \in \Delta^{\mathcal{I}} \mid \# \{ (d, e) \mid (d, e) \in R^{\mathcal{I}} \} \geq n \}$$

Mother of many children: Female $\sqcap \forall$ has-children. Human $\sqcap (\geqslant 4 \text{ has-children})$

Chinese mother: Female \sqcap ((\leqslant 1 has-children) $\sqcup \exists$ pays-tax. Expensive)

Note:

Less expressive than qualified number restrictions $(\leqslant n \ R \ C)$ and $(\geqslant n \ R \ C)$

 \implies decidability/complexity of \mathcal{ALCN} -concept satisfiability (without TBoxes)

Tableau Algorithms

Appropriate tool: Tableau Algorithms

- Frequently used to prove decidability/complexity bounds of DLs
- All state-of-the-art DL reasoners are based on tableau algorithms

Strategy:

- Try to construct a model for the input concept C_0
- Represent models by completion trees
- To decide satisfiability of C_0 , start with initial completion tree T_{C_0}
- Repeatedly apply completion rules and check for obvious contradictions
- Return "satisfiable" iff a complete and contradiction-free completion tree was found

Negation Normal Form

A concept *C* is in negation normal form (NNF) if negation occurs only in front of concept names.

Transformation rules:

$$\neg \neg C \quad \rightsquigarrow \quad C$$

$$\neg (C \sqcap D) \quad \rightsquigarrow \quad \neg C \sqcup \neg D$$

$$\neg (C \sqcup D) \quad \rightsquigarrow \quad \neg C \sqcap \neg D$$

$$\neg (\exists R.C) \quad \rightsquigarrow \quad \forall R.\neg C$$

$$\neg (\forall R.C) \quad \rightsquigarrow \quad \exists R.\neg C$$

$$\neg (\forall R.C) \quad \rightsquigarrow \quad \exists R.\neg C$$

$$\neg (\leqslant n R) \quad \rightsquigarrow \quad (\geqslant n+1 R)$$

$$\neg (\geqslant 0 R) \quad \rightsquigarrow \quad \bot$$

$$\neg (\geqslant n R) \quad \rightsquigarrow \quad (\leqslant n-1 R) \quad \text{if } n > 0$$

Dresden

Completion Tree

Completion tree:

Finite tree $T=(V,E,\mathcal{L})$ where \mathcal{L} labels

- each node $x \in V$ with a set $\mathcal{L}(x) \subseteq \operatorname{\mathsf{sub}}(C_0)$
- each edge $(x,y) \in E$ with a role $\mathcal{L}(x,y)$ occurring in C_0 .

Initial completion tree for concept C_0 : $(\{x_0\},\emptyset,\mathcal{L})$ where $\mathcal{L}(x_0)=\{C_0\}$

Apply completion rules until

- the completion tree is complete.

or - there exists a node $x \in V$ such that

Clash
$$\left\{ egin{array}{ll} 1. \ \{A, \neg A\} \subseteq \mathcal{L}(x) \ ext{for some concept name } A \ ext{or 2. } \{(\leqslant n \ R), (\geqslant m \ R)\} \subseteq \mathcal{L}(x) \ ext{with } m > n. \end{array}
ight.$$

Completion Rules I

$xullet \{C_1 \sqcap C_2, \ldots\}$	\rightarrow_{\sqcap}	$xullet \{C_1 \sqcap C_2, C_1, C_2, \ldots\}$
$xullet \{C_1 \sqcup C_2, \ldots \}$	\rightarrow_{\sqcup}	$xullet \{C_1 \sqcup C_2, {\color{red} C}, \ldots \}$ for $C \in \{C_1, C_2\}$
$x \bullet \{\exists R.C, \ldots\}$	→ ∃	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$
$egin{array}{c c} oldsymbol{x}ullet & \{orall R.C,\ldots\} \ oldsymbol{x}ullet & \{\ldots\} \end{array}$	\rightarrow_{\forall}	$egin{array}{c} egin{array}{c} egin{array}$

Completion Rules II

Example: blackboard

Correctness of the Algorithm

Lemma

- 1. The algorithm terminates on any input
- 2. If the algorithm returns "satisfiable", then the input concept has a model.
- 3. If the input concept has a model, then the algorithm returns "satisfiable".

Corollary

- 1. \mathcal{ALCN} -concept satisfiability and subsumption are decidable
- 2. \mathcal{ALCN} has the tree model property
- 3. \mathcal{ALCN} has the finite model property

Termination

Role depth of concepts:

$$d(A) = d(\leq n \ R) = 0$$
 $d(\geq n \ R) = 1$ $d(\neg C) = d(C)$ $d(C \sqcap D) = d(C \sqcup D) = \max\{d(C), d(D)\}$ $d(\exists R.C) = d(\forall R.C) = d(C) + 1$

The algorithm terminates since:

- 1. depth of the completion tree bounded by $d(C_0)$.
- 2. for each node, at most $\# sub(C_0)$ successors are generated
- 3. each node label contains at most $\#sub(C_0)$ concepts
- 4. concepts are never deleted from node labels
- 5. nodes may be deleted (via identification), but 1 and 2 is independent from this

A PSPACE upper bound for \mathcal{ALCN}

Modify ExpSpace **tableau algorithm**:

1. Construct completion tree in a depth-first manner:

2. Keep only paths of the tree in memory!

Yields a PSPACE algorithm: - paths are of length polynomial in $|C_0|$

- the outdegree is polynomial in $|C_0|$.

PSPACE lower bound will be proved later!

Reasoning with Acyclic TBoxes

Naive approach: unfolding

⇒ reduce satisfiability w.r.t. TBoxes to satisfiability without TBoxes

Let C_0 be concept, $\mathcal T$ acyclic TBox

- 1. replace concept names on right hand sides of definitions $A \doteq C$ with their defining concept
- 2. replace each concept name in C_0 defined in \mathcal{T} with its definition.

Terminates due to acyclicity!

But: exponential blowup in the worst case

$$A_0 \doteq orall R.A_1 \sqcap orall S.A_1 \ A_1 \doteq orall R.A_2 \sqcap orall S.A_2 \ dots$$

$$A_{k-1} \doteq \forall R.A_k \sqcap \forall S.A_k$$

Unfolding on the Fly

Idea:

Modify existing tableau algorithm to directly deal with acyclic TBoxes

Roadmap:

- convert concept definitions into one of the forms

$$A \doteq \neg X$$
, $A \doteq B_1 \sqcap B_2$, $A \doteq B_1 \sqcup B_2$, $A \doteq \forall R.B$, $A \doteq \exists R.B$ with A, B, B_1, B_2 concept names and X primitive concept name

- restrict node labels to concept names
- make on the fly TBox lookups for rule application

Result: Satisfiability of \mathcal{ALC} -concepts w.r.t. acyclic TBoxes is PSPACE-complete.

That's it

More on tableau algorithms tomorrow!

