
An Aspect Oriented Model Driven Framework

Devon Simmonds
Department of Computer Science

Fort Collins, CO – 80523
simmonds@cs.colostate.edu

Arnor Solberg
SINTEF

P.O. Box 124 Blindern
N-0314 Oslo, Norway

arnor.solberg@sintef.no

Raghu Reddy, Robert France, Sudipto Ghosh
Department of Computer Science

Fort Collins, CO – 80523
{raghu, france,ghosh}@cs.colostate.edu

Abstract
 In model driven development (MDD), specifying
transformations between models at various levels of
abstraction can be a complex task. Specifying
transformations for pervasive system features that are
tangled with other system features is particularly difficult
because the elements to be transformed are distributed
across a model. This paper presents an aspect oriented
model driven framework (AOMDF) that facilitates
separation of pervasive features and supports their
transformation across different levels of abstraction. The
framework is illustrated using an example in which a
platform independent model of a banking application is
transformed to a platform specific model.

Keywords: Aspect-oriented software development,
distributed applications, QVT, middleware, model driven
development, separation of concerns, transactions, UML.

1 Introduction
Model driven development (MDD) shifts software

development from a code-centric activity to a model-
centric activity. Accomplishing this shift entails
developing support for modeling concepts at different
levels of abstraction and transforming abstract models to
more concrete descriptions of software. MDD aims to
reduce complexity in software development through
modularization and abstraction.

An MDD framework should provide mechanisms
supporting both vertical and horizontal separation of
concerns. The model driven architecture (MDA) [1][2]
initiative of the OMG proposes a vertical separation of
concerns mechanism consisting of three different levels of
abstraction: computation independent model (CIM),
platform independent model (PIM) and platform specific
model (PSM). The PIM and PSM are relative to the
defined platform. For example, if middleware is defined
as the platform, separation of platform independent and
platform specific concerns occurs when a middleware
independent model (a PIM) and a corresponding
middleware specific model (a PSM) are defined for a
particular application.

Horizontal separation of concerns is typically realized
by modeling a system using views (e.g., the ISO RM-ODP
framework [2]). A system view describes a certain facet of

the system (e.g., structure, behavior or distribution). The
use of diagram types (e.g., UML activity, class and state
diagrams) [4][6] provided by a modeling language is
normative for specifying view mechanisms. However,
diagram types provide only separation of structure and
behavior and do not inherently provide separation of
crosscutting features. To better manage complexity an
MDD framework should provide support for separating
crosscutting features.

Aspect Oriented Software Development (AOSD)
[8][9][10][11][12] supports horizontal separation of
concerns by providing mechanisms for encapsulating
crosscutting features using aspects. In our aspect oriented
modeling (AOM) approach [19][20], crosscutting features
are modeled as aspects and composed with the primary
design model that describes the core functionality to form
complete applications.

In this paper we present an aspect oriented model
driven framework (AOMDF) that enables vertical and
horizontal separation of concerns. The framework
illustrates how aspect based techniques can facilitate the
separation of concerns and ease the transformation of
designs. Vertical separation of concerns is supported by
providing techniques for transforming the models from
one abstraction level to another. The models are
transformed using mappings that are defined separately
for the primary model and each of the aspects. Horizontal
separation of concerns is realized by modeling
crosscutting features separately as aspects.

Section 2 provides background information on AOM
and model transformations. Section 3 describes the
framework. Section 4 illustrates the framework using a
scenario from a bank application. Section 5 discusses
related work. Section 6 draws some conclusions and
outlines planned work on the framework.

2 Background
2.1 Model Transformation

Many model transformation approaches are based on
specifying mappings from source meta-model concepts to
target meta-model concepts, as well as deriving target
patterns based on source pattern recognition [25][26].
However, these metamodel mappings may not deliver the

desired results. For example, it may not be desirable to
map all instances of a specific meta-model element at the
PIM level the same way. Depending on the characteristics
of the platform (e.g., deployment and distribution), it may
be necessary to transform instances of the same
metamodel element differently. To derive a PSM,
mechanisms provided in the platform as well as
recommended best practices and patterns should be
utilized. For example, most middleware platforms provide
specific services for handling security, persistence, and
transactions. These services may require specific
protocols to be followed. Using a generic mapping of
meta-concepts may not be appropriate when utilizing
platform provided services and protocols. These pervasive
features need to be treated explicitly to obtain the desired
result. The AOMDF facilitates PIM to PSM mappings in
which provided platform specific protocols are used.

MOF 2.0 Query View Transformation (QVT) [6] is an
ongoing standardization effort within the OMG. The aim
of this process is to standardize a language for
specification of model relations and transformations.

We base our mapping specifications on the current
QVT submission. This has both drawbacks and benefits.
A drawback is that the specification is a moving target and
undergoing change. The specification also has some gaps
and unfinished parts which makes it challenging to use.
On the other hand, the QVT will most likely become a
standard, and many industries are involved in its
development. Also, the joint submission specification is
based on languages and tools already provided, such as
Tata Mastercraft [28] and Atlas [29].

Currently there are a variety of model transformation
approaches and tools available. Many of the model
transformation approaches are referenced in [26]. It is not
clear to us how these approaches and tools will support
the standardization effort in the model transformation
area.

2.2 Aspect Oriented Modeling
There is ongoing research on the usage of AOSD

techniques at the model level [12][14][15][19][22]. The
AOMDF is based on an aspect oriented modeling
approach in which a design is expressed in terms of the
following artifacts [19][20]:
1. A primary model that describes the business logic of

the application.
2. A set of generic aspect models, where each model is

a generic description of a crosscutting feature.
3. A set of bindings that determine where in the primary

model the aspect models are to be composed.
4. A set of composition directives that influence how

aspect models are composed with the primary model.

Before an aspect model can be composed with a
primary model in an application domain, the aspect model
must be instantiated in the context of the application
domain. An instantiation is obtained by binding elements
in the aspect model to elements in the application domain.
The result is called a context-specific aspect model.
Context-specific aspect models and the primary model are
composed to obtain an integrated design view [19][21].

3 The Aspect Oriented Model Driven
Framework

Figure 1 shows the major activities and artifacts supported
in the AOMDF. The primary focus of the framework is
the transformation of aspect oriented models from more
abstract forms to more detailed forms. The major
activities are partitioned into four categories: source level,
mappings, target level and model composition.

�������

�	����
�	���

�	����

�������
�	��

�	����

������
�	���

�������
�������

�	��
��������

�������
�	��

��������

�������
������

��������

������
��������

����	�

�	��	����	�
����������

�	��	����	�

����������
�����������

������
�	���

��������

�������
��������

�	��������������

������
�	���
�	��	��
������

���
�������
�	���

�	��	���
�	��

����
������

��������

������

������
�	���

����
�������

�	��
��������

������

�������
�	��

 	��
�	��	����	�

������
!���

 ������

�	����
!���

������� 	��������
�	���

Figure 1: Aspect oriented model driven framework

The source level includes activities for acquiring or

developing abstract aspect and primary models. At this
level, the aspect models are acquired from an aspect
repository if one is available or they are developed by the
system architect. The primary model is developed by the
system architect. The system architect decides what
features will be included in the primary model and which
will be treated as aspects. The decisions are based on the

distinction of functional and extra functional
requirements. Extra functional requirements also called
Quality of Service (QoS) requirements, such as security
and transaction management are often pervasive. AOSD
techniques are used to separate features that address these
requirements from the primary business functionality.

The mappings category includes activities for
developing or acquiring the corresponding target
mappings for the aspect and primary models. The
transformations between the source and the target levels
are defined by separate mappings for each aspect and the
primary model.

The target level includes activities for applying the
mappings to the source level primary and aspect models.
The target detailed design models are obtained by
applying the source to target transformations that are
specified in the mappings.

The model composition part includes activities for
instantiating and composing the aspect and primary
models using bindings and composition directives
[19][23]. Aspect models need to be instantiated before
they can be composed. Instantiation is performed by
binding the aspect model elements to the application
specific model elements. Once the instantiation is done,
model composition is performed using the composition
directives and a basic name matching procedure [19].

The source and target levels have a recursive nature.
Thus, the source level in one context may appear as the
target level in another context. The source level and target
level are relative to another.

AOMDF has two major variation points that must be
fixed before the framework can be used. The two
variation points are (1) the framework levels and (2) the
level(s) at which composition will be done.

Using the MDA terminology, the two main abstraction
levels for models are PIM and PSM. The PIM and PSM
are relative to the chosen platform (e.g., middleware
platforms like J2EE, CORBA and .Net). One may still
define a set of source and target levels within the PIM and
PSM context. For instance it may be desirable to perform
transformations from PIM architecture model to a PIM
detailed design model, and likewise to have several
abstractions within the PSM level. Table 1 lists five
different instantiation types of this generic framework
based on different combination of the variations points.

 I n s t a n t i a t i o n t yp e s
 1 2 3 4 5
Source level pim pim pim Pim psm
Target level pim psm psm Psm psm
Composition
level(s)

pim pim Psm pim and psm Ps
m

Table 1: Potential framework instantiations

The composed model at the source level can be used
for conformance checking of the composed model at the
target level. However, conformance checking is beyond
the scope of this paper.

The following is a list of the perceived benefits of the
proposed framework:
1. The framework allows developers to conceptualize,

describe, and communicate crosscutting concerns as
conceptual units at various levels of abstraction.

2. The horizontal separation of concerns as aspect
models and a primary model facilitate separate
specification of mappings.

3. The specification of the transformation of an aspect
or the primary model from source to target is less
complex than the specification of the transformation
of an integrated source model to target model, since
the latter transformation is likely to have more
relationships and dependencies.

4. Changes to a crosscutting concern can be made in one
place, and effected by composing the changed aspect
model with a primary model.

5. The aspects are often application independent (e.g.,
security and transaction). The aspect model and its
mappings can therefore be reused across multiple
applications and application domains once they are
defined.

Automated or semi automated model composition need
to be in place to gain full benefit of bullet 3 and 4.

4 Illustrative example

We illustrate the framework with a distributed banking
application that offers electronic money transfer using
distributed transaction services.

In the example, the framework is instantiated as
follows:
• Source and target models are at PIM and PSM levels,

respectively. The platform in question is CORBA
• The model composition is performed only at the PSM

level.
Figure 2 shows the instantiated framework. Mappings

are defined for a CORBA transaction aspect and money
transfer scenario. They are applied on the PIMs to obtain
the PSMs. The primary model is tagged to show where in
the primary model the aspects are composed. Once the
primary model is tagged, the composition is done as
described in our previous work [19][20][23].

�������

�	����
�	���

�	����

�������
�	��

�	����

������
�	���

�������
�������

�	��
��������

�������
�	�� ��������

�������
������

��������

������
��������

�	��	����	�

����������
�����������

������
�	���

��������

�������
������
��������

���
�	��	����	�
����������

�	��������������

������
�	��� �	��	��
������

���
�������
�	���
�	��	���
�	��

����
������

��������

������

������
�	���

����
�������

�	��
��������

������

�������
�	��

��
!���

 �������

��
!���

Figure 2: PIM to PSM framework instance

4.1 Acquire Source Models
We present a simple banking scenario and a transaction

aspect as interaction diagrams to illustrate the instantiated
framework.

4.1.1 Primary model
The bank consists of a set of accounts. The business

functionality includes operations to open and close
accounts. Withdrawal and deposit of specific amounts of
money are provided for accomplishing money transfer.
The transfer of money requires transaction control, which
is modeled as an aspect. The money transfer scenario
shown in Figure 3 is the primary model used in this
example.

Figure 3: Banking scenario primary model

4.1.2 Transaction aspect
A transaction is a collection of operations between

servers and clients that appears atomic. An atomic
operation is an operation that is free of interference from
concurrent operations performed by other threads in a
system. Transactions are required to manifest the `ACID'
properties [24]. While different middleware may provide
different transaction models, a generic transaction model
that captures the essence of distributed transactions can be
specified at the PIM level. The generic model can then be
transformed to utilize the specific protocol of a particular
middleware.

Figure 4 shows a distributed transaction feature
modeled as an aspect. The transaction aspect describes
one-phase and two-phase commit distributed transaction
protocols. The one-phase and two-phase commit protocols
are shown as alternatives in the figure.

The transaction aspect has three main roles:
• A Transaction Client initiates the transaction and

performs a collection of operations for the specific
transaction.

• A Participant provides some service required by the
Transaction Client. Figure 4 also shows a collection
of Participants as a lifeline, representing the set of
Participants involved in the transaction.

• A Transaction Manager is responsible for
coordinating and managing transactions.

The Transaction Client initiates the transaction by
sending the openTransaction. When the Transaction
Manager receives openTransaction message, it opens a
transaction and returns a transaction id (Tid). This Tid is
sent as a parameter in all subsequent operations. The
Transaction Client then performs the collection of
operations of the transaction. When a Participant receives
an operation request it checks whether it is already a
member of the particular transaction. If not, it joins the
transaction before it performs the requested operation.

Two-Phase Commit Protocol: When the transaction
client requests to close the transaction, the Transaction
Manager starts the commit protocol according to the
chosen transaction protocol type. The diagram in Figure 4
shows the details of the two-phase commit protocol. In the
first phase (voting phase), the transaction manager polls
the participants to determine if they are ready to commit.
In the second phase (closing phase), the Transaction
Manager decides to abort or commit the transaction. The
decision is multicast to all participants. At any time
during the transaction, the transaction clients can request
to abort the transaction or the transaction manager may
timeout. Both requests result in the initiation of the
completion phase. The Transaction Manager will then
eventually decide to abort and all participants will be

informed. Participants will then roll back the transaction
individually.

����������	
��

��������
��	 ����	
�
���	 ��������	
���������

	������	�"#

$ 	������������	�"�%�����$

���

&	��"���'���$

	������	�"���'((($

�)������	�"���'((($

�����*"+'������)�)������	�������������	�$,

��	�

-���%������
-���%������
-..���������	�//
�������	�	�	0	���1����	����'
�2	�1����	����3
-�%�������	�	�	
-���������	���	����'
����)��'
������	���	��'
�������	��	����%�		���

*&	����4����,

��������������

�	�����������	�"���$

��	 *�45�1����	����,

����	����"���$

�����*�	6	��7����
	�
���8�	��,

..��������//

9��:;	

..�����������//

���

��������6	�����1���

��	

��	�����������	�

��	
����)��

������*���������	���	����
	�
����)��,

*�4+�1����	����,

���������	�����	��1���

���������	�����	��1���

���
+�1����	����

��	
*������	��	����,

������	�"�	����$

�	�	����

��	�����	����

..��������/

*������	���	��,

������	�"��	��$

�	��	��

�	���<

..��������/

��	�����	����

��	������	��

	�����	
�
���	�

���	
�
���	������

Figure 4: Transaction aspect

4.2 Defining an Interaction Metamodel
QVT transformation specifications are metamodel

based, and thus, to specify transformations, the source and
target meta-models are needed. Both the source models in
our example (the primary model and the transaction
aspect) are specified using UML 2.0 interactions. The
interactions metamodel is specified in the UML 2.0
standard [7]. However, the metamodel for interactions as
specified in the UML 2 is fragmented, and the fragments
are tied together via several other metamodel packages
like the UML 2.0 kernel, the basic actions, and the basic
behaviors. The mapping specifications would have been
unnecessarily complex if we had used the UML 2.0
metamodel specifications directly. We have derived a
simplified interaction metamodel including the basic
concepts of interactions and their relationships. This
model is shown in Figure 5.

����� �����	

!�����"�����#

����$	�
��

%
�
�
�
	&'
�
�
�
	&"
��

�
���
�� �&��

=((+
>

�������

�������$��	

�������$��	

=((+

������� ��

-����7����

-�������7����

=((+

=((+
=((+

-:���������

(�	����	
��

>

+ >(�	����	
��

)������	

>

>

=((+

*���
���)������	

�	����	
��+����	��

(�	����	
��+����	��

,,��-����	
��..

(�	����	
��+����	��

��/

��	

��	

�����

���

�	�
�	

����

��
	
���

���

�����	

�����

����
���

�	��� >

�������	
+

>

>

>

=((+

,,��-����	
��..

�������$��	

�&���*���
��&���*���

��&���$
����

����&

=((+

������	��

!�����"�����#

����$	�
��

����$	�
��

'��-�$���
���	
��

)����"�����

>
-��������

�����������

+ >

=((+

����$	�
��

Figure 5: Simple interaction metamodel

4.3 Acquire Primary Model Mapping
One possible CORBA mapping for the primary model

is to derive a PSM sequence diagram showing the
CORBA object interactions. Stereotypes can be used to
indicate the kind of CORBA objects. This is a
straightforward mapping where CORBA stereotypes are
added and primitive types are converted if they are
different. The result is shown in Figure 6.

Figure 6: PSM sequence diagram

One other mapping is to derive an IDL representation
based on the specified source model. From this, stubs,
skeletons and helper classes can be generated using an
IDL compiler. A QVT specification for mapping
interaction diagrams to CORBA IDL is shown in Figure 7.
The UML profile for CORBA [34] is used as the target
metamodel. This representation is compliant with an IDL
representation and may serve as the source for an IDL
compiler.

Two mappings are defined in Figure 7. The upper
mapping derive the CORBA interfaces with operations,
the lower add directed associations. The left hand side
describes a pattern that should be matched in order for the
mapping to execute. The pattern is an instantiation of the
interaction metamodel. The header of the package
specifies input and output (Lifeline and CORBAInterface,
respectively). These are the anchors of the structures of
the left hand side and right hand side respectively. A
Lifeline has a set of zero or more receive MessageEnds,
Sets are indicated with the multiplicity star. According to
the interaction metamodel Lifeline, Type, Message and
MessageEnd have names. These are not explicitly shown
in the source patterns, but are used to derive the target
structures.

�
���
��0*����(�	������1��!�

�
���
��2��
*+345(�	������

�	�&��

��
���
�� �
*+345(�	������

����6�	�����

�+����	
��

����6������

	&��6�	�����

%
�
�
�
	&6��%
�
�
�
	&
�������	��

�������	��
>

��������� ��>

>
��������

>

-�������7����

�	�&��

�
���
��0*����(�	������1�0!

��������2���5����
�	
��

��	�&��

���
���
��

��5����
�	
��

���������� ��

>

��������

-�������7����

�
0*+345(�	������

����6�0	�����

-���	�����	�7��

�
�*+345(�	������

����6��	�����
�0	�&��

�0�
���
��

���������� ��

> -����7����

021��3

!������5�	������������?�+"+'��+$
���
!������5�	������������?�+"5'��5$

-���	����	�7��

��0������	&

���������	&

0��+(��;������

�"$4����3

Figure 7: QVT primary model mapping specification

The mappings produce a CORBAInterface for each
lifeline type having the same name as the lifeline type
name. For every receive MessagEnd a corresponding
operation is added. The parameter specifications remain
the same in both source and target. This assumes that the
primitive types of source and target are equal, else a type

mapping would be needed. The different members of the
patterns are referred using their names. According to the
QVT specification the names are also used to decide
whether to create new elements or edit existing ones. For
example if the CORBAInterface already exists, only new
operations are added.

An imperative pseudo code specification for this
mapping is as follows:

create Transclient Interface;

add moneyTransfer(..) to Transclient Interface;

create Account Interface;

add withdraw(amount) to Account Interface;

add deposit(amount) to Account Interface;

add directed association between Transclient and Account

The resulting CORBA specification is shown in Figure
15.

4.4 Acquire Aspect Mapping
When developing the aspect mapping we want to utilize
the transaction service provided by CORBA. The
mappings to transform the PIM transaction aspect shown
in Figure 4 must include all interactions that involve the
TransactionManager and all transactional interactions
between Participants and Transclient. These are grouped
into six sets of mappings as follows:

1. The openTransaction message from Transclient
to TransactionManager.

2. The join message from Participant to
TransactionManager.

3. The closeTransaction message from Transclient
to TransactionManager.

4. The abortTransaction message from Transclient
to TransactionManager.

5. The canCommit message from
TransactionManager to Participants.

6. Other mappings involving
decisionCommit(commit), decisionAbort(abort),
doCommit and doAbort.

We describe the aspect mappings first using an imperative
style and we then give examples of how they can be
expresses using QVT.

// openTransaction pseudo code mapping specification:

replace TransactionManager by {ORB; CurrentHelper;
Current;}

replace openTransaction message from Transclient to
TransactionManager by {

 resolve_initial_references(“TransactionCurrent”) from
Transclient to ORB;

narrow(..) from Transclient to CurrentHelper;

}

add set_timeout(time) message from Transclient to Current;

add begin() message from Transclient to Current;

// join pseudo code mapping specification:

replace TransactionManager by {Control; Coordinator;}

replace join(Tid, Pid) message from Participant to
TransactionManager by {

 get_control from Participant to Current;

 get_coordinator from Participant to Control;

 register_resource(Pid) from Participant to Coordinator;

}

delete add_participant message from TransactionManager to
TransactionManager;

// closeTransaction pseudo code mapping specification:

replace closeTransaction message from Transclient to
TransactionManager by commit() from transClient to Current.

// abortTransaction pseudo code mapping specification:

replace abortTransaction message from Transclient to
TransactionManager by rollback() from Transclient to Current.

// canCommit pseudo code mapping specification:

replace canCommit message from TransactionManager to
Participants by prepare() from Current to Participants

.

// Other pseudo code mapping specification:

delete decision(commit) message from TransactionManager to
Transclient.

delete decision(abort) message from TransactionManager to
Transclient.

replace doCommit message from TransactionManager to
Participants by commit() from Current to Participants..

replace doAbort message from TransactionManager to
Participants by rollback() from Current to Participants..

The initiateVotingPhase and initiateCompletionPhase
messages have no CORBA equivalents. They are retained
in the model to provide logistical information to
developers, however, no mappings are applied to them.

�����������	
��0*�

���+����������	
��!

2�
1�(�	����	
����#

	�	�&��

	��
���
��

��1�������� ��

��������

-����7����

(�	����	
��

����67�������
��	7

	�	�&��

	��
���
��

��1�������� ��

+

-�������7����

����67�������	
��

�������7

����67�����������	
��7

Figure 8: Source part of the QVT aspect model
mapping for the “openTransaction” operation

Figure 9: Open transaction CORBA counterpart

Figure 8 shows the source part of the mapping for the
open transaction. The pattern defined in the figure is
basically to recognize the openTransaction message
between the Transclient and the TransactionManager

The derived target of the open transaction is shown in
Figure 9.

The mapping used to derive the CORBA target model
is shown in Figure 10. The target model is obtained in
three steps. The first two steps produce the
operation/return message pairs;
resolve_initial_references(txnString) and narrow(tObj).
The mapping specification for these are shown in the
upper part of Figure 10. The specification of the
set_timeout(time) and the begin() operations are shown in
the lower part of the figure.

�����������	
��0*����+�

���������	
��!
2�

1�(�	����	
����#

	�1�	�&��

	�1��
���
��

���'��-�$��

���������� ��

���������

-����7����

���	�&��

1�(�	����	
��

����6	�	�����

���	�&��

����
���
��

��0������� ��

-�������7����

����67���7

����67�����%�1
�	
��1���

�������7

�������$��	67�&���*���7��8������� ��

�0�������

-�������7����

��9������� ��

-����7����

����67	+�:7

�������$��	67����&7

��	�&��

����67*+3

45���:��	7

	�1�	�&��

	�1��
���
��

�8�'��-�$��

��;������� ��

�8�������

-����7����

�8�	�&��

1�(�	����	
��

����6	�	�����

��	�&��

���
���
��

��<������� ��

-�������7����

����67*-����	=�����7

����67�����>7

�������$��	67�&���*���7
��?������� ��

�9�������

-�������7����

��@������� ��

-����7����

����67�-�7

�������$��	67����&7

�8	�&��

����67*-����	7

����67	+�:7

	�1�	�&��

	�1��
���
��

��A������� ��

�;�������

-����7����

1�(�	����	
��

����6	�	�����

�-�	�&��

�-��
���
��

���B������� ��

-�������7����

����67*-����	7

�
���	-��67��	1	
���-	!	
��#7

�������$��	67�&���*���7

����������� ��

�<�������

-����7����
���0������� ��

-�������7����

�
���	-��67���
�!#7

�������$��	67�&���*���7

����67	C�$	�
������67$	�
��7

����67*+3

45���:��	7

Figure 10: Target part of openTransaction mapping

Figure 11 shows the source part of the QVT mapping for
the join message.

Figure 11: Source part of the QVT aspect model

mapping for the “join” operation

The pattern defined in Figure 11 essentially recognizes

the join message between the Participant and the
TransactionManager.

The derived target of the join transaction is shown in
Figure 12.

Figure 12: join transaction CORBA counterpart

The corresponding mapping specification for the
CORBA target Model is shown in Figure 13.

As the example illustrates the mapping specifications
of both the open transaction and the join are complex.
This is because these specific messages need to be treated

explicitly in order to utilize the CORBA transaction
service and follow the required protocols.

Figure 13: Target part of the QVT aspect model

mapping for the “join” operation

However, since transactions are application independent,
the mapping specification is highly reusable. In the
example we can recognize appearance of a repeating

pattern that is used in order to specify the derivation of the
target. Thus, it may be possible to obtain more powerful
mapping specifications through parameterized patterns.

����������	
��

��������
��	 ����	
�
���	

	������	�"#$

�)�&

���?�		������	�

	������	�"���'((($

�)������	�"���'((($

�����*"+'������)�)������	�������������	�$,

��	�

*&	����4����,

�	����"$

��	

�������

�����*�	6	��7����
	�
���8�	��,

..��������//

9��:;	

..�����������//

���

��	

�	���<"�@A7$

��	

����)��

������*���������	���	����
	�
����)��,

���
+�1����	����

��	

�	����"$

��	�����	����

..��������/

�	���<

��	����@	���<

..��������/

	�����	
�
���	�

���	
�
���	������

�*-����	=�����

�+34

;���	2"�)�&$

���

���?����	��"����$

@��	��?������?����������"���������$

�����"$

���*����
��	��

��������?���	����"���$

���

�	��*��	���

�	�

���?�	���	

�-�*-����	

*�45�1����	����,

���������	�����	��1���

*�4+�1����	����,

*������	��	����,

*������	���	��,

-���%������
-���%������
-..���������	�//
�������	�	�	0	���1����	����'
�2	�1����	����3
-�%�������	�	�	
-���������	���	����'
����)��'
������	���	��'
�������	��	����%�		���

Figure 14: CORBA transaction PSM

4.5 Apply Mapping
Figure 15 shows the CORBA IDL interface generated by
applying the PIM to PSM mappings specified in section

4.2 to the primary model. A composed sequence diagram
can be obtained from applying all the aspect mappings to
the PIM transaction aspect.

Figure 15: Generated Interfaces based on UML profile

for CORBA

4.6 Specify Aspect Bindings and
Instantiate Aspect Models
Before composition, the primary model is tagged to define
where in the primary model the aspects are composed.
The aspect tagging is based on AOP weaving
mechanisms. Figure 16 shows the banking scenario and
how the lookup aspect and the transaction aspect should
be weaved into the model. The lookup aspect is another
aspect that be defined similar to the transaction aspect.
The <<aspect>> stereotype is used to model aspect tags.
Subsequent to the incoming moneyTransfer method call
the lookup aspect is performed twice to get the handle of
the accounts involved. The transaction aspect is a
stereotyped combined fragment that encompasses the
transactional method calls. Combined fragments are
constructs defined for interaction diagrams in UML 2.0.

Figure 16: Primary model tagged with aspects

Once, the primary model is tagged with the aspects, the
aspects and primary model are composed using the

bindings and composition directives to obtain an
integrated design view referred to as the composed model.
The composition procedure has been illustrated previously
in our previous work [19].

5 Related work
Several researchers have done work on developing

transformation languages and tools. ArcStyler [30],
EXMOF [27], Objecteering [31], and Tarzan/XMorph
[32] are some of some transformation engines available.
TopModl [33] is an international open-source initiative
launched to provide an extensible framework for model-
driven experimentation. Most of the tools/languages are
domain-specific and are either imperative or declarative.
The proposed framework shown in the paper uses both
declarative and imperative languages for transformations
and hence can be used in a wider scope.

Jacobson [16][17] describes the development of design
aspects based on use cases, which are then composed to
create different views of the system. The work maps
directly to program level aspects, using the composition
techniques originally developed for AspectJ [5]. The work
does not explicitly give details about transformation of
models, rules of composition, structural relations, etc.

Reina et al. [15] propose the use of meta-models and
UML profiles for separation of concerns at the PIM and
PSM levels. The problem with this approach is that a
different meta-model is required for every new concern.

In the aspect-oriented modeling approach proposed by
Clarke et al. [22], a design called a subject is created for
each system requirement. A comprehensive design is a
composition of subjects. Subjects are expressed as UML
model views, and composition merges the views provided
by the subjects. The approach does not deal with vertical
separation of concerns.

Kulkarni et al. [18] present a model driven
development approach for separation of concerns. They
use an abstract template to separate system concerns at the
model and code levels. This is similar to our AOM
approach. Our approach uses parameterized UML to
specify aspects. In addition, AOM uses parameterized
OCL to perform verifiable composition [21].

Jezequel et al. [35][36][37] have suggested an
approach where they introduce specialized stereotypes for
each crosscutting concern. They have developed an
UMLAUT tool that can be used as a framework for
building application-specific weavers to weave multi-
dimensional high level UML design models into detailed
design models. This is similar to the binding procedure in
AOM, where the generic models are instantiated in the
context of the application. UMLAUT uses a form of roles
but the treatment of properties is not as extensive.

Gray et al. [13][38] use aspects in domain-specific
models that specifically target embedded systems.

Requirements, architecture and the environment of a
system are captured in the form of formal high-level
models that allow representation of concerns. Their
research is part of Model-Integrated Computing (MIC)
and extends the scope and usage of models such that they
form the backbone of a development process for building
embedded software systems. The work in our research can
complement theirs by providing UML based approach for
representing aspects and is more generic.

Mellor [39] discusses how model-driven architecture
can support aspect-oriented modeling. Their work talks
about a framework that brings models and aspect
orientation together. The research just brings out the
issues related to aspects, UML, and MDA. Our approach
provides a framework that can be used for developing
software using aspect oriented mechanisms.

6 Conclusion and Further Work
Modern systems are complex. Separation of concerns is

recognized as a key principle to cope with complexity in
software development. In this paper, we have reasoned
that both vertical and horizontal separation of concerns
should be provided for managing complexity in a model
driven development.

Aspect-oriented technologies can be used to support
horizontal separation of crosscutting concerns from other
functionality. The AOM approach emphasizes the
separation and modularization of crosscutting concerns in
design units (aspects). The AOMDF provides additional
support for specifying transformations. The AOMDF
allows us to separate out the mapping specification for
pervasive features from the mapping specification of the
primary model. The aspect mapping specification then
becomes reusable and the mapping specification of the
primary model becomes simpler.

 The paper illustrates the transformation of a platform
independent distributed transaction aspect to a platform
specific transaction aspect. We also describe the
integration of the transaction aspect in the context of a net
banking application. The example illustrates that the
mapping of pervasive services can be complex, for
instance, since we need to obtain specific mappings of
specific operations. However, development of mappings
is comparable to the development of compilers and is not
a task a regular system developer will do. We expect that
when model driven development becomes more mature
and more frequently used, the tools will provide ready to
use mapping specifications for a wide set of
transformations. A system architect will be responsible for
configure the provided mappings appropriately according
to the system or system family at hand.

Currently we are working on techniques to resolve
conflicts that can occur if more than one aspect is

composed with the primary model. Verifiable composition
techniques that discharge proof obligations during
composition are being developed.

In the future, we plan to apply different middleware
mappings to the same transaction protocol and determine
the feasibility of the approach. Also, we plan to create a
repository of the most common middleware concerns.

References
[1] OMG MDA™ Guide v1.0.1, Object Management Group,

http://www.omg.org/docs/omg/03-06-01.pdf

[2] R. M. Soley, D.S. Frankel, J. Mukerji, and E.H. Castain,
Model Driven Architecture - The Architecture Of Choice
For A Changing World, OMG 2001.
http://www.omg.org/mda

[3] ISO/IEC 10746: (1995): Basic reference model for open
distributed processing.

[4] OMG, Unified Modeling Language (UML™) 1.5
Specification, Object Management Group, Document
formal/03-03-01, 2003.

[5] Eclipse AspectJ project, http://eclipse.org/aspectj

[6] Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10),
QVT-Merge Group 1.8, OMG document ad/2004-10-
04. www.omg.org

[7] The Object Management Group. Unified Modeling
Language: Superstructure. Version 2.0, OMG, ptc/03-
07-06, 2003.

[8] Aspect Oriented Software Development. AOSD Webpage.
URL http://aosd.net/, 2005.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingier, and J. Irwin. Aspect Oriented
Programming. In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), Springer
Verlag LNCS 1241, Finland, June 1997.

[10] H. Ossher and P. Tarr. Using multidimensional separation
of concerns to (re)shape evolving software.
Communications of ACM, 44(10):43-50, 2001.

[11] J. Kienzle and R. Guerraoui. AOP: Does it make sense? the
case of concurrency and failures. In Proceedings of the
16th European Conference on Object-Oriented
Programming (ECOOP, pages 37-61. Springer-Verlag,
2002.

[12] I. Ray, R. France, N. Li, and G. Georg, "An Aspect-Based
Approach to Modeling Access Control Concerns", Journal
of Information and Software Technology, 46(9), pp. 575-
587, July 2004.

[13] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale
and B. Natarajan, "An Approach for Supporting Aspect-
Oriented Domain Modeling," in Proceedings of the 2nd
Intl. Conference on Generative Programming and
Component Engineering (GPCE'03), Erfurt, Germany,
Sept. 2003.

[14] R. Silaghi, F. Fondement, and A. Strohmeier. Towards an
MDA-Oriented UML Profile for Distribution. In
Proceedings of the 8th IEEE International Enterprise
Distributed Object Computing Conference, EDOC,
Monterey, CA, USA, September 2004.

[15] A. M. Reina, J. Toress, and M. Toro. Towards developing
generic solutions with aspects. In proceedings of the
Workshop in Aspect Oriented Modeling held in
conjunction with UML 2004, October 2004.

[16] I. Jacobson. Case for Aspects - Part I. Software
Development Magazine, pp 32-37, October 2003.

[17] I. Jacobson. Case for Aspects - Part II. Software
Development Magazine, pp 42-48, November 2003.

[18] V. Kulkarni, S. Reddy. Separation of Concerns in Model-
driven Development. IEEE Software 20(5):64-69, 2003.

[19] R. B. France, I. Ray, G. Georg, and S. Ghosh. An aspect-
oriented approach to design modeling. IEE Proceedings -
Software, Special Issue on Early Aspects: Aspect-Oriented
Requirements Engineering and Architecture Design,
151(4), August, 2004.

[20] G. Georg, R. Reddy, and R. France. Specifying cross-
cutting requirements concerns. In Proceedings of the
International Conference on the UML, October 2004.
Springer, 2004.

[21] E. Song, R. Reddy, R. France, I. Ray, G. Georg, R.
Alexander. Verifying Access Control Properties using
Aspect Oriented Modeling. Accepted in 10th ACM
Symposium on Access Control Models and Technologies
(SACMAT), Scandic Hasselbacken, Stockholm, June 1-3,
2005.

[22] S. Clarke, W. Harrison, H. Ossher, and P. Tarr. Separating
concerns throughout the development lifecycle. In
Proceedings of the 3rd ECOOP Aspect-Oriented
Programming Workshop, Lisbon, Portugal, June 1999.

[23] G. Straw, G. Georg, E. Song, S. Ghosh, R. France, and J.
Bieman, "Model Composition Directives", in proceedings
of the 7th UML Conference, Lisbon, Portugal, October 10-
15, 2004.

[24] G. Coulouris, J. Dollimore and T. Kindberg. Distributed
Systems Concepts and Design (3rd Ed.) Page 471.
International Computer Science Series, Addison-
Wesley/Pearson Education, USA, 2001.

[25] Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10),
QVT-Merge Group 1.8, OMG document ad/2004-10-04.
www.omg.org

[26] K. Czarnecki, S. Helsen, Classification of Model
Transformation Approaches, Proceedings Workshop on
Generative Techniques in the Context of Model-Driven
Architecture,OOPSLA’03

[27] EXMOF - Queries, Views and Transformations on Models
using MOF, OCL and EXMOF, Joint 2nd revised
submission. Compuware Corp., SUN Microsystems.
ad/2004-10-03

[28] Tata MasterCraft. http://www.tata-
mastercraft.com/index1.asp

[29] Atlas Transformatino Language, www.tni-
software.com/?p=mda

[30] ArcStyler http://www.io-
software.com/products/arcstyler_overview.jsp

[31] Objecteering/Introduction User Guide. Version 5.3 -
CODOBJ 001/001. www.objecteering.com

[32] K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, J. Steel.
Model Transformation: A Declarative, Reusable Patterns
Approach. In Proceedings 7th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC 2003), pp 174-185

[33] P.A. Muller, P. Studer, J.M Jézéquel. Model-driven
generative approach for concrete syntax composition In
workshop on Best Practices for MDSD (OOPSLA'2004),
October 2004

[34] UML™ Profile for CORBA™ version 1.0, April 2002,
formal/02-04-01.

[35] W. Ho, F. Pennaneach, J. Jezequel, and N. Plouzeau.
Aspect-Oriented Design with the UML. In Proc. of Multi-
Dimensional Separation of Concerns Workshop at ICSE,
pp 60-64, 2000.

[36] W. Ho, F. Pennaneach, and N. Plouzeau. UMLAUT: A
Framework for Weaving UML-Based Aspect-Oriented
Designs. In TOOLS '00: Proceedings of the Technology of
Object-Oriented Languages and Systems (TOOLS 33), pp
324 -334. IEEE Computer Society, 2000.

[37] J. M. Jezequel, A. Guennec, F. Pennaneach, G. Sunye, and
K. Vinceller. The UMLAUT Web Page. URL
http://www.irisa.fr/UMLAUT

[38] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling
crosscutting constraints in domain-specific modeling.
Communications of the ACM, 44(10):87-93, October
2001.

[39] S. Mellor, A Framework for Aspect-Oriented Modeling, 4th
AOM Workshop at UML’03, San Francisco, CA, October
2003.

