An Aspect Oriented Model Driven Framework

Devon Simmonds
Department of Computer Science
Fort Collins, CO — 80523
simmonds@cs.colostate.edu

Arnor Solberg
SINTEF

P.O. Box 124 Blindern
N-0314 Oslo, Norway

Raghu Reddy, Robert France, Sudipto Ghosh
Department of Computer Science
Fort Collins, CO — 80523
{raghu, france,ghosh}@cs.colostate.edu

arnor.solberg@sintef.no

Abstract
In model driven development (MDD), specifying

the system (e.g., structure, behavior or distrdti The
use of diagram types (e.g., UML activity, class atate

transformations between models at various levels ofdiagrams) [4][6] provided by a modeling language is

abstraction can be a complex task. Specifying
transformations for pervasive system features tat
tangled with other system features is particulafifficult
because the elements to be transformed are distibu
across a model. This paper presents an aspect teden
model driven framework (AOMDF) that facilitates
separation of pervasive features and supports their
transformation across different levels of abstrasti The
framework is illustrated using an example in whigh
platform independent model of a banking applicatien
transformed to a platform specific model.

Keywords. Aspect-oriented software development,
distributed applications, QVT, middlewamaodel driven
development, separation of concerns, transactioh4l..

1 Introduction

Model driven development (MDD) shifts software
development from a code-centric activity to a medel
centric activity. Accomplishing this shift entails
developing support for modeling concepts at diffiére
levels of abstraction and transforming abstract efotb
more concrete descriptions of software. MDD aims to
reduce complexity in software development through
modularization and abstraction.

An MDD framework should provide mechanisms
supporting both vertical and horizontal separatioi
concerns. The model driven architecture (MDA) [1][2
initiative of the OMG proposes a vertical separatif
concerns mechanism consisting of three differerdlgeof
abstraction: computation independent model (CIM),
platform independent model (PIM) and platform sfieci
model (PSM). The PIM and PSM are relative to the
defined platform. For example, if middleware isideél
as the platform, separation of platform independerd
platform specific concerns occurs when a middleware
independent model (a PIM) and a corresponding
middleware specific model (a PSM) are defined for a
particular application.

Horizontal separation of concerns is typically izzd
by modeling a system using views (e.g., the ISO GDP
framework [2]). A system view describes a certaicet of

normative for specifying view mechanisms. However,
diagram types provide only separation of structanel
behavior and do not inherently provide separatién o
crosscutting features. To better manage complexity
MDD framework should provide support for separating
crosscutting features.

Aspect Oriented Software Development (AOSD)
[8][9][10][11][12] supports horizontal separationf o
concerns by providing mechanisms for encapsulating
crosscutting features usimgpectsin our aspect oriented
modeling (AOM) approach [19][20], crosscutting ferats
are modeled as aspects and composed with the primar
design model that describes the core function&ditiorm
complete applications.

In this paper we present an aspect oriented model
driven framework (AOMDF) that enables vertical and
horizontal separation of concerns. The framework
illustrates how aspect based techniques can feilihe
separation of concerns and ease the transformation
designs. Vertical separation of concerns is suppoby
providing techniques for transforming the modelsnir
one abstraction level to another. The models are
transformed using mappings that are defined seggrat
for the primary model and each of the aspects.zdaotal
separation of concerns is realized by modeling
crosscutting features separately as aspects.

Section 2 provides background information on AOM
and model transformations. Section 3 describes the
framework. Section 4 illustrates the framework gsan
scenario from a bank application. Section 5 disesiss
related work. Section 6 draws some conclusions and
outlines planned work on the framework.

2 Background

2.1 Model Transformation

Many model transformation approaches are based on
specifying mappings from source meta-model concepts
target meta-model concepts, as well as derivingetar
patterns based on source pattern recognition [85][2
However, these metamodel mappings may not delheer t

desired results. For example, it may not be delsiréd
map all instances of a specific meta-model eleraetite
PIM level the same way. Depending on the charastiesi
of the platform (e.g., deployment and distributiah)may
be necessary to transform
metamodel element differently. To derive a PSM,
mechanisms provided in the platform as well as

Before an aspect model can be composed with a
primary model in an application domain, the aspeatiel
must be instantiated in the context of the appbecat
domain. An instantiation is obtained by bindingnedmts

instances of the samen the aspect model to elements in the applicadimmain.

The result is called aontext-specific aspect model
Context-specific aspect models and the primary raie

recommended best practices and patterns should be&omposed to obtain an integrated design view [19][2

utilized. For example, most middleware platformsyiie
specific services for handling security, persiseenand
transactions. These services may
protocols to be followed. Using a generic mappirig o
meta-concepts may not be appropriate when utilizing
platform provided services and protocols. Thesegsive
features need to be treated explicitly to obtagndbsired
result. The AOMDEF facilitates PIM to PSM mappings i
which provided platform specific protocols are used

MOF 2.0 Query View Transformation (QVT) [6] is an
ongoing standardization effort within the OMG. Téien
of this process is to standardize a language for
specification of model relations and transformation

We base our mapping specifications on the current
QVT submission. This has both drawbacks and benefit
A drawback is that the specification is a movingyé and
undergoing change. The specification also has sgaps
and unfinished parts which makes it challengingise.
On the other hand, the QVT will most likely become
standard, and many industries are involved in
development. Also, the joint submission specifiyatis
based on languages and tools already provided, asich
Tata Mastercraft [28] and Atlas [29].

Currently there are a variety of model transforomati
approaches and tools available. Many of the model
transformation approaches are referenced in [268.rot
clear to us how these approaches and tools wilbatp
the standardization effort in the model transfoiorat
area.

its

2.2 Aspect Oriented Modeling

There is ongoing research on the usage of AOSD
techniques at the model level [12][14][15][19][22]he
AOMDF is based on an aspect oriented modeling
approach in which a design is expressed in termtef
following artifacts [19][20]:
1. A primary modelthat describes the business logic of

the application.

2. A set ofgeneric aspect modele/here each model is
a generic description of a crosscutting feature.

3. A set of bindings that determine where in the prima
model the aspect models are to be composed.

4. A set of composition directives that influence how

aspect models are composed with the primary model

require specific

3 The Aspect Oriented Model Driven

Framework
Figure 1 shows the major activities and artifacsp®rted
in the AOMDF. The primary focus of the framework is
the transformation of aspect oriented models froorem
abstract forms to more detailed forms. The major
activities are partitioned into four categorissurce level,
mappings, target levelndmodel composition

Source Level

Acquire
source models

Source
aspect models

Source
primary model

V V

Mapping Acquire aspect Acquire primary
mappings model mappings
Aspect mappings Primary model
. mappings
TargetLevel N 7

Apply gspect Apply primary
mappings model mappings

Target
aspect models

Target
primary model

Model Composition

Specify bindings
.| Composeaspect |
V and primary models)

Composed model
Instantiate >I Develop |
aspect models composition directives

Figure 1: Aspect oriented model driven framework

Context-specific
=| aspect models

Composition
directives

The source level includes activities for acquiriog
developing abstract aspect and primary modatsthis
level, the aspect models are acquired from an &spec
repository if one is available or they are devetbpg the
system architect. The primary model is developedhiey
system architect. The system architect decides what
features will be included in the primary model amich
will be treated as aspects. The decisions are basede

distinction of functional and extra functional
requirements. Extra functional requirements alsbeda for conformance checking of the composed modehat t
Quality of Service (QoS) requirements, such asriggcu target level. However, conformance checking is beyo
and transaction management are often pervasive.DAOS the scope of this paper.
techniques are used to separate features thatsadithese The following is a list of the perceived benefifstioe
requirements from the primary business functiopalit proposed framework:

The mappings category includes activities for 1. The framework allows developers to conceptualize,
developing or acquiring the corresponding target describe, and communicate crosscutting concerns as

The composed model at the source level can be used

mappings for the aspect and primary modéelhe
transformations between the source and the taegeld
are defined by separate mappings for each aspddhan

conceptual units at various levels of abstraction.
The horizontal separation of concerns as aspect
models and a primary model facilitate separate

primary model. specification of mappings.

The target level includes activities for applyinget 3. The specification of the transformation of an aspec
mappings to the source level primary and aspectetaod or the primary model from source to target is less
The target detailed design models are obtained by complex than the specification of the transformatio
applying the source to target transformations the of an integrated source model to target model,esinc
specified in the mappings. the latter transformation is likely to have more

The model composition part includes activities for relationships and dependencies.
instantiating and composing the aspect and primary4. Changes to a crosscutting concern can be madeein on
models using bindings and composition directives place, and effected by composing the changed aspect
[19][23]. Aspect models need to be instantiatedofmef model with a primary model.
they can be composed. Instantiation is performed by5. The aspects are often application independent, (e.g.
binding the aspect model elements to the applisatio security and transaction). The aspect model and its
specific model elements. Once the instantiatioddae, mappings can therefore be reused across multiple
model composition is performed using the compasitio applications and application domains once they are
directives and a basic name matching procedure [19] defined.

The source and target levels have a recursive matur Automated or semi automated model composition need
Thus, the source level in one context may appedhas to be in place to gain full benefit of bullet 3 asd
target level in another context. The source lewel @rget
level are relative to another.

AOMDF has two major variation points that must be 4
fixed before the framework can be used. The two
variation points are (1) thieamework levelsand (2) the PPl ! i
level(s) at whicrcompositionwill be done. distributed transaction services. o .

Using the MDA terminology, the two main abstraction In the example, the framework is instantiated as
levels for models are PIM and PSM. The PIM and PSM follows:
are relative to the chosen p|atform (e.g_, middlewa ° Source and target models are at PIM and PSM levels,
platforms like J2EE, CORBA and .Net). One may still respectively. The platform in question is CORBA
define a set of source and target levels withinfid and ~ * The model composition is performed only at the PSM
PSM context. For instance it may be desirable tfopm level.
transformations from PIM architecture model to MPI Figure 2 shows the instantiated framework. Mappings
detailed design model, and likewise to have severalare defined for a CORBA transaction aspect and mone
abstractions within the PSM level. Table 1 listsefi transfer scenario. They are applied on the PIMsbt@in
different instantiation types of this generic framoek the PSMs. The primary model is tagged to show wiere

based on different combination of the variations o the primary model the aspects are composed. Orece th
primary model is tagged, the composition is done as

lllustrative example
We illustrate the framework with a distributed bk
application that offers electronic money transfaing

Instantiation types described in our previous work [19][20][23].

1 2 3 4 5
Source level | pim pim| pim| Pim psm
Targetlevel | pim| psm| psm Psm sm
Composition | pim | pim | Psm| pimand psm Ps
level(s) m

Table 1: Potential framework instantiations

PIM Level

Acquire
source models

Source
primary model

Source
aspect models

Mappings
Acquire aspect
mappings L
Aspect mappings

Acquire primary
model mappings

i
i

Primary model mappings

PSM Level

Apply aspect
mappings

Apply primary
model mappings

Target
primary model

Composition
directives

L Compose aspect | _ Composed model
and primary models

Figure 2: PIM to PSM framework instance

Instantiate
aspect models

Context-specific
aspect models

4.1 Acquire Source Models

We present a simple banking scenario and a traosact
aspect as interaction diagrams to illustrate tiseaintiated
framework.

4.1.1 Primary model

The bank consists of a set of accounts. The busines
functionality includes operations to open and close
accounts. Withdrawal and deposit of specific ameurit
money are provided for accomplishing money transfer
The transfer of money requires transaction contwbich
is modeled as an aspect. The money transfer soenari
shown in Figure 3 is the primary model used in this
example.

sd Money transfer J

-acc” String
-acc2 String
-amount Real

T
moneyTransfer(acc: accz amount) |

TransferClien Account Account

T
‘ |
withdraw(amount} |

deposii(amount]

H

Figure 3: Banking scenario primary model

4.1.2 Transaction aspect

A transaction is a collection of operations between
servers and clients that appears atomic. An atomic
operation is an operation that is free of intenrfiesefrom
concurrent operations performed by other threads in
system. Transactions are required to manifest AlgdD'
properties [24]. While different middleware may yide
different transaction models, a generic transactmuel
that captures the essence of distributed transectian be
specified at the PIM level. The generic model dantbe
transformed to utilize the specific protocol of articular
middleware.

Figure 4 shows a distributed transaction feature
modeled as an aspect. The transaction aspect loescri
one-phase and two-phase commit distributed traiogsact
protocols. The one-phase and two-phase commit gotsto
are shown as alternatives in the figure.

The transaction aspect has three main roles:
A Transaction Client initiates the transaction and
performs a collection of operations for the specifi
transaction.

A Participant provides some service required by the
Transaction Client. Figure 4 also shows a collectio
of Participants as a lifeline, representing the et
Participants involved in the transaction.

A Transaction Manager is responsible for

coordinating and managing transactions.

The Transaction Client initiates the transaction by
sending theopenTransaction When the Transaction
Manager receivespenTransactiormessage, it opens a
transaction and returns a transactionTial), This Tid is
sent as a parameter in all subsequent operatioms. T
Transaction Client then performs the collection of
operations of the transaction. When a Participac¢ives
an operation request it checks whether it is ajread
member of the particular transaction. If not, iinfthe
transaction before it performs the requested ojoerat

Two-Phase Commit Protocol:When the transaction
client requests to close the transaction, the HBetitn
Manager starts the commit protocol according to the
chosen transaction protocol type. The diagram gute 4
shows the details of the two-phase commit protdeodathe
first phase \oting phasg the transaction manager polls
the participants to determine if they are readgdommit.

In the second phasecl¢sing phasg the Transaction
Manager decides to abort or commit the transaciite.
decision is multicast to all participants. At atigne
during the transaction, the transaction clients reauest
to abort the transaction or the transaction managgy
timeout. Both requests result in the initiation thfe
completion phase. The Transaction Manager will then
eventually decide to abort and all participants| gk

informed. Participants will then roll back the tsaction 4.2 Defining an Interaction Metamodel

individually. QVT transformation specifications are metamodel
based, and thus, to specify transformations, thececand
| = Transaction] PRI target meta-models are needed. Both the sourcelsniode
::;:::g}zgt{igr»transProtocoI(onePhaseCommit,twoPhaseCommit} our example (the primary model and the transaction
+transactionAborted, timeOut, decisionAbort, decissionCommit:Boolean aSpeCt) are Specified using UML 20 interactionhe'r
I:Transclient I:Participant t::::;'.‘,;;ﬂ?:‘% [:TransactionManager interactions metamodel is SpeCified in the UML 2.0
operatbn(... standard [7]. However, the metamodel for interangias
| openTranspotion(tType) specified in the UML 2 is fragmented, and the fragts
r Tid are tied together via several other metamodel praka
Loop [(1,numberOfOperationsinTransaction)]) ||ke the UML 20 kel’neL the baSiC aCtiOI’lS, and lﬂ'clBlC
r behaviors. The mapping specifications would havenbe
operation(Tid,...) R .
\ unnecessarily complex if we had used the UML 2.0
OM metamodel specifications directly. We have deriaed
lioined=false] , . iy pig) simplified interaction metamodel including the lmasi
— concepts of interactions and their relationshipisT
— model is shown in Figure 5.
. . NamedElement
[DDOPGT&IIOI‘I(TIG,“.) CombinedFragment (from Kernel)
interactionOperator: name:String
closeTransaction(Tid) InteractionOperator visibility:VisibilityKind 0.1
+/signature
refersTo1
alt [t=2phaseCommit] +sendEvent
- p——— Interaction 0.1 0..1
initiateVotingPhase Fragment MessageEnd PO..1 Message
par) : +receiveEvent ™| messageSort:
Loop [noVoteExist or yesFromAII]) [* Lifeline 01 MessageSort
m * ; name:String
canCommit(Tid) <<enumeration>> oA .)
<<mu|tireceive>>7 InteractionOperator ., , rargumen
" YesiNo seq Parameter |1 «[ValueSpecifcation
J— alt (from Kernel) | specifiedBy From Kernel
initiateCompletionPhase ﬁf;ak name:String ‘ name:String
> r
abortTransaction loop t
critical synchCall
neg asynchCall
opt assert asynchSignal
timeOut ignore reply
— consider
break [transactionAborted ortimeOut]) Figure 5: Slmple interaCtion metamOdel
initiateCompletionPhase
H
=1phaseCommi . . .
o f=tphasyommil 4.3 Acquire Primary Model Mapping
1PhaseCommit One possible CORBA mapping for the primary model
1 is to derive a PSM sequence diagram showing the
att) (decisionCommi CORBA object @nteractions. Stereotypes can t_)e u_eed
P ——" indicate the kind of CORBA objects. This is a
[[processCommit <<multicast> straightforward mapping where CORBA stereotypes are
5@00;’”‘;2:’““ added and primitive types are converted if they are
L= different. The result is shown in Figure 6.
[decisionAbort] sd CORBA moeny transfer J
deciion(abort <<mulicast> 1oz sting CoRaRe | [<oRRE> [<R >
processAbort doAbort +amount double w Acc‘oum w
Trollback 1 ! !
moneyTransfer(acc” accz amount] | | withdraw(amount) i i
| o O Y i
.) ~ deposit(amount) _|
Figure 4: Transaction aspect ! U

Figure 6: PSM sequence diagram

One other mapping is to derive an IDL representatio
based on the specified source model. From thigsstu
skeletons and helper classes can be generated asing
IDL compiler. A QVT specification for mapping
interaction diagrams to CORBA IDL is shown in Figut.
The UML profile for CORBA [34] is used as the targe
metamodel. This representation is compliant withRin
representation and may serve as the source foDan |
compiler.

mapping would be needed. The different membersiof t
patterns are referred using their names. Accortinthe
QVT specification the names are also used to decide
whether to create new elements or edit existing oRer
example if theCORBAInterfacealready exists, only new
operations are added.

An imperative pseudo code specification for this
mapping is as follows:

Two mappings are defined in Figure 7. The upper
mapping derive the CORBA interfaces with operatjons
the lower add directed associations. The left hgicde
describes a pattern that should be matched in dodéne
mapping to execute. The pattern is an instantiatiotine
interaction metamodel. The header of the package
specifies input and outputifeline and CORBAInterface

create Transclient Interface;

add moneyTransfer(.fo Transclient Interface;

create Account Interface;

add withdraw(amount}o Account Interface;

add deposit(amountio Account Interface;

add directed association betwe&ransclient andAccount

respectively). These are the anchors of the strestof
the left hand side and right hand side respectivaly
Lifeline has a set of zero or more receive MessageE
Sets are indicated with the multiplicity star. Acotding to
the interaction metamodalifeline, Type, Messageand
MessageEndhave names. These are not explicitly shown
in the source patterns, but are used to derivetaiget
structures.

Lifeline2Corbalnterface_p1(l
:Lifeline, ci: CORBAInterface

ci:CORBAInterface
name=lt.name

I:Lifeline

m:Message |

p:Parameter

¥
me:M geEnd

+receiveEvent

*
o:Operation
name=m.name
type=mt.name
visibility=m.visibility

O

p:Parameter

Lifeline2Corbalnterface_p2(
m:Message, as:Association

. as:Association
m:Message +associationEnd
ae2:Property
‘ rme: M geEnd Hsme:“ geEnd

+assocationEnd
DL ae1:Property ‘

*\ +receiveEvent *| +sendEvent

[M:Lifeline | ci1:CORBAInterface

[12:Lifeline |

12t:Type

name=l1t.name

{ael .igNaviga
e()=true}

{when}
Lifeline2Corbalnterface_p1(I1,ci1) and Lifeline2Corbalnterface_p1(12,ci2)

ci2:CORBAInterface
name=I2t.name

Figure 7: QVT primary model mapping specification

The resulting CORBA specification is shown in Figur
15.

4.4 Acquire Aspect Mapping

When developing the aspect mapping we want tozatili
the transaction service provided by CORBA. The
mappings to transform the PIM transaction aspectveh

in Figure 4 must include all interactions that ilweothe
TransactionManagerand all transactional interactions
betweenParticipantsand Transclient These are grouped
into six sets of mappings as follows:

1. The openTransactiormessage from Transclient
to TransactionManager.

2. The join message from Participant to
TransactionManager.

3. The closeTransactiormessage from Transclient
to TransactionManager.

4. The abortTransactionmessage from Transclient
to TransactionManager.

5. The canCommit message from
TransactionManager to Participants.

6. Other mappings involving

decisionCommit(commit), decisionAbort(abort),
doCommit and doAbort.

We describe the aspect mappings first using anratipe
style and we then give examples of how they can be
expresses using QVT.

The mappings produce @ORBAlInterfacefor each
lifeline type having the same name as the lifelipge
name. For every receive MessagEnd a correspondir
operation is added. The parameter specificationsire
the same in both source and target. This assuraeshi
primitive types of source and target are equag alsype

/I openTransaction pseudo code mapping specification:

replace TransactionManager by {ORB;
Current}

CurrentHelper;

replace openTransaction message from Transclient to
TransactionManageby {

resolve_initial_references(“TransactionCurrent”) from

Transclientto ORB

narrow(..)from Transclientto CurrentHelper;

}

add set_timeout(timejnessagérom Transclientto Current,
add begin()messagéom Transclientto Current;

I/l join pseudo code mapping specification:
replace TransactionManageby {Control; Coordinator;}

replace join(Tid, Pid)
TransactionManageby {

message from Participant to

get_controfrom Participanto Current;
get_coordinatdirom Participanto Control;
register resource(Pidirom Participanto Coordinator

}

deleteadd_participant messaffem TransactionManageto
TransactionManagger

/I closeTransactiopseudo code mapping specification:

replace closeTransaction message from Transclient to
TransactionManageby commit()from transClientto Current.

// abortTransaction pseudo code mapping specification

replace abortTransaction message from Transclient to
TransactionManageby rollback() from Transclientto Current.

/I canCommit pseudo code mapping specification:

replace canCommit messagefrom TransactionManagerto
Participantsby prepare()from Currentto Participants

/I Other pseudo code mapping specification:

delete decision(commitinessagérom TransactionManageto
Transclient.

delete decision(abort) messagefrom TransactionManageto
Transclient.

replace doCommit message from TransactionManagerto
Participantsby commit()from Currentto Participants..

replace doAbort message from TransactionManager to
Participantsby rollback() from Currentto Participants..

The initiateVotingPhase and initiateCompletionPhase
messages have no CORBA equivalents. They are eetain
in the model to provide logistical information to
developers, however, no mappings are applied ta.the

openTransaction2Co
rbaOpenTransaction(
i, i_c:InteractionMM)

izInteraction

| teiLifeline | | tmLifeline |
tct:Type tmt:Type
name="Transclient’ name="Transaction
Manager’

me_s:MessageEnd me_r:MessageEnd

+sendEvent +receiveEvent

‘ m:Message

\ name=’openTransaction’

Figure 8: Source part of the QVT aspect model
mapping for the “openTransaction” operation

sd Transactior

I Transclient

/:ORB

operatior (...) | I:CurrentHelper

T

I

L 1esolve_initia _references (txnString) J
1

Ob,
rarrow(tOb)
- >

cur

cur:Current

1

Figure 9: Open transaction CORBA counterpart

sel_timeoul(time)

kegir ()

Figure 8 shows the source part of the mappingHer t
open transaction. The pattern defined in the figisre
basically to recognize theopenTransactionmessage
between th@ ransclientand theTransactionManager

The derived target of the open transaction is shiown
Figure 9.

The mapping used to derive the CORBA target model
is shown in FigurelO. The target model is obtained in
three steps. The first two steps produce the
operation/return message pairs;
resolve_initial_references(txnStringgnd narrow(tObj)
The mapping specification for these are shown & th
upper part of FigurelQ. The specification of the
set_timeout(timeand thebegin() operations are shown in
the lower part of the figure.

openTransaction2CorbaOp

Figure 11 shows the source part of the QVT mapfing
thejoin message.

join2CorbadJoin(i,

+receiveEvent

enTransaction(i,
i_c:Interaction

i_c:InteractionMM)

i_c:InteractionMM)
orb:Lifeline

|

orbt:Type
name="orb’

tc_c:Lifeline

tc_ct:Type
name=tct.name

me1:MessageEnd H me2:MessageEnd

+sendEvent +receiveEve

m1t:Type

Name="COR m1:Message

BA.object’ name="resolve_intila_ref
erences’
messageSort="synchCall’ me4:MessageEnd
+sendEvent

me3:MessageEnd

m1at:Type
name=’String’

{ m1a:ValueS..
name="txnString

m2:Message

name="tObj’
messageSort="reply’

i_c:Interaction

tc_c:Lifeline ch:Lifeline

i:Interaction

‘ p:Lifeline ‘ ‘ tm:Lifeline ‘
pi:Type tmt:Type
name=’Participant’ name='Transaction
Manager

meSet:MessageEnd

meSet:MessageEnc

+sendEvent +receiveEvent
‘ m:Message
\ name=’join’
+argument
Pl:-Type | — a:ValueSpecification
name=String name="tid’

cht:Type
name=’CurrentHelper’

tc_ct:Type
name=tct.name

me5:MessageEnd ‘ ‘ me6:MessageEnd
+receiveEvent

+sendEvent

m3t:Type
Name=’Current’

m3:Message

name=’narrow’
messageSort="synchCall’

me8:MessageEnd

me7:MessageEnd
+sendEvent
+receiveEvent m3at:Type m3a:ValueS..
BA.object’ name='tObj

m4:Message

name=’"cur’
messageSort="reply’

i_c:Interaction

tc_c:Lifeline cur:Lifeline

curt:Type
name="Current’

tc_ct:Type
name=tct.name

me9:MessageEnd ‘ ‘ me10:MessageEnd ‘
+sendEvent +receiveEvent

m5:Message

signature='set_timeout(time)’
messageSort="synchCall’

me12:MessageEnd
+receiveEvent

me11:MessageEnd
+sendEvent

mé6:Message

signature="begin()’
messageSort="synchCall’

Figure 10: Target part of openTransaction mapping

Figure 11: Source part of the QVT aspect model
mapping for the “join” operation

The pattern defined in Figure 11 essentially retam
the join message between the Participant and the

TransactionManager.
The derived target of thpin transaction is shown in

Figure 12.

sd Transaction

cur:Current

I:Farticipant
ctrl:Control
O

opl

[joinec= false] cor:Coordinator
gel_contro |
ciil -

gel_coordinator
e
register_resource(Pic) B o

N L
Figure 12: join transaction CORBA counterpart

The corresponding mapping specification for the

CORBA target Model is shown in Figure 13.
As the example illustrates the mapping specificegio

of both the open transaction and the join are ceripl
This is because these specific messages needtitedbed

explicitly in order to utilize the CORBA transaatio pattern that is used in order to specify the déiowaof the
service and follow the required protocols. target. Thus, it may be possible to obtain more gy
mapping specifications through parameterized pater

joir 2CorbaJoin(,
_c InteractionMM)

sd Transaction
+Tid:String
+Pid:String
+<<enumeration>> transProtocol{onePhaseCommit, twoPhaseCommit}
+t:transProtocol

_c Interaction

p_c Lifeline cur Lifeline +transactionAborted, timeOut, decisionAbort, decissionCommit:Boolean
\ ‘ I:Transclient ‘ ‘ I:Participant ‘ t::P?(tmp:ntf]: I:ORB
r .
p_ct Type curt Type ‘ operation(...)
name=p{ name nhame="Cur operation(.) Resolve |initial_references(txnString l:CurrentHeIper—‘
rent’ o5
Narrow(tObj)) | o U
: |
me19 MessageEnd ‘ ‘ me20 MessageEnd ‘ cur ' i
+sendEvent +receiveEvel
cur:Current
101 Type . .
N "Coni 10 Message Set_timeout(time)
rol name="gel_control’ Bean)

M geSort="synchCall’ Loop [(1,numberOfOperationsinTransaction)]
me2: M geEnd me22 MessageEnd){ ctrl:Control

+sendEvent operation(Tid,...) ‘

opt .
foimed=false] cor:Coordinator
11 Message

get_control
name=’ctrl’ et
MessageSort="reply’ get_coordinator

e
_c Interaction

| register resource(Rid)

[doOperation(Tid,...)

+receiveEvent

p_c Lifeline ctrl Lifeline

commit()
‘ p_ct Type ‘ ctrit Type
[t=2phaseCommit]
[name=ptname | name="Control alt H =2p i
pa:j Loop [noVoteExist or yesmeAl\u
<<multicast>>
‘ me23 MessageEnd ‘ ‘ me24 MessageEnd prepare
+sendEvent +receiveEvent <<multireceive>>
|
w121 Type Yes/No

["Name="Coordir | w12 Message =
ator name="gel_coordinator'

M Sort="synchCall’ M

- Y me2€ MessageEnd opt)
+sendEvent rollback(TRUE
+receiveEvent m13 Message L
name=’cor’ opt []
MessageSort="reply’ timeOut

_c Interaction —

break [transactionAborted or timeOut]) —‘

initiateCompletionPhase

p_c Lifeline cor Lifeline

[t=1phaseCommit]

p_ct Type cort Type ref 1PhaseCommit ‘
name=pt name name="Coordir L
ator —
alt [decisionCommit]
<<multicast>
me27 MessageEnd \ ‘ me28 MessageEnd commit)
+sendEvent +receiveEvent orocessCommit
M1 Type [

PP 14 Message
! [decisionAbort]

name=’register_resource’
MessageSort="synchCall’

<<multicast>

rollback
[l——
processRollback
m10f Type m12a ValuesS. B
name="Part =Pid’
cipant name="Pid

Figure 14: CORBA transaction PSM

Figure 13: Target part of the QVT aspect model
mapping for the “join” operation
However, since transactions are application inddeet)
the mapping specification is highly reusable. Ire th
example we can recognize appearance of a repeatin

4.5 Apply Mapping
Figure 15 shows the CORBA IDL interface generated b
g@\pplying the PIM to PSM mappings specified in satti

4.2 to the primary model. A composed sequence aiagr
can be obtained from applying all the aspect mappto
the PIM transaction aspect.

<<CORBAlInterface>>
TransferClient

<<CORBAInterface>>
Account

withdraw(amouni double)
deposit(amouni double)

moneyTransfer(acc1 string, acc2 string,
amouni double)

Figure 15: Generated Interfaces based on UML profé
for CORBA

4.6 Specify Aspect Bindings and

Instantiate Aspect Models

Before composition, the primary model is taggedetine
where in the primary model the aspects are composed
The aspect tagging is based on AOP weaving
mechanisms. Figure 16 shows the banking scenado an
how the lookup aspect and the transaction aspectich
be weaved into the model. The lookup aspect ishanot
aspect that be defined similar to the transactispeet.
The <<aspect>> stereotype is used to model aspgst t
Subsequent to the incomingoneyTransfemethod call
the lookup aspect is performed twice to get thedleanf

the accounts involved. The transaction aspect is a

stereotyped combined fragment that encompasses th
transactional method calls. Combined fragments are
constructs defined for interaction diagrams in URID.

sd Money transfer J

-acc” String

-accz String

-amount Real

<<enumeratior >> transProtoco {onePhaseCommii twoPhaseCommit}
+tg transProtoco = twoPhaseCommit

+tname String="moneyTr

<<CORBAImpl>>
TransferClient
T

1
<<aspec/>>

LookupAccouni_z~ (acc=acc”)
T

|

|

|

|

|

|

|

|

|

|

| |

| |

‘ T |
<<aspecl>> }
lookupAccouni_zZ(acc=accz) |
I |

|

|

T

|

|

|

|

|

|

|

|

|

|

|

<<CORBAImp >>
& Account
T

<<CORBAImp >>
&2 Account
T

moneyTransfer(acc® accz amount)

<<aspeci>> Transaction(tp tnamey

withdraw(amount) }

‘ deposit(amount)

T
|
=)

Figure 16: Primary model tagged with aspects

Once, the primary model is tagged with the aspehbts,

aspects and primary model are composed using themodels

bindings and composition directives to obtain an
integrated design view referred to as the composedkel.
The composition procedure has been illustratedipustly

in our previous work [19].

5 Related work

Several researchers have done work on developing
transformation languages and tools. ArcStyler [30],
EXMOF [27], Objecteering [31], and Tarzan/XMorph
[32] are some of some transformation engines aaila
TopModl [33] is an international open-source iritia
launched to provide an extensible framework for etod
driven experimentation. Most of the tools/languages
domain-specific and are either imperative or detiae.
The proposed framework shown in the paper uses both
declarative and imperative languages for transftiona
and hence can be used in a wider scope.

Jacobson [16][17] describes the development ofydesi
aspects based on use cases, which are then comjosed
create different views of the system. The work maps
directly to program level aspects, using the corntijpos
techniques originally developed for AspectJ [5]eMork
does not explicitly give details about transformatiof
models, rules of composition, structural relaticets,

Reina et al. [15] propose the use of meta-modeds an
UML profiles for separation of concerns at the Pdiid

PSM levels. The problem with this approach is that

different meta-model is required for every new @rnc

In the aspect-oriented modeling approach propoged b
Clarke et al. [22], a design called a subject eatzd for
each system requirement. A comprehensive design is
composition of subjects. Subjects are expressddMis
model views, and composition merges the views plexyi
by the subjects. The approach does not deal witlicae
separation of concerns.

Kulkarni et al. [18] present a model driven
development approach for separation of concerngy Th
use an abstract template to separate system caretettne
model and code levels. This is similar to our AOM
approach. Our approach uses parameterized UML to
specify aspects. In addition, AOM uses parameddriz
OCL to perform verifiable composition [21].

Jezequel et al. [35][36][37] have suggested an
approach where they introduce specialized sterestjqr
each crosscutting concern. They have developed an
UMLAUT tool that can be used as a framework for
building application-specific weavers to weave fnult
dimensional high level UML design models into dietchi
design models. This is similar to the binding phae in
AOM, where the generic models are instantiatedhi t
context of the application. UMLAUT uses a form ofes
but the treatment of properties is not as extensive

Gray et al. [13][38] use aspects in domain-specific
that specifically target embedded systems.

Requirements, architecture and the environment of acomposed with the primary model. Verifiable comgiosi
system are captured in the form of formal highdeve techniques that discharge proof obligations during
models that allow representation of concerns. Their composition are being developed.
research is part of Model-Integrated Computing (MIC In the future, we plan to apply different middleear
and extends the scope and usage of models sucthélyat mappings to the same transaction protocol and mater
form the backbone of a development process fodingl the feasibility of the approach. Also, we plan teate a
embedded software systems. The work in our reseanch repository of the most common middleware concerns.
complement theirs by providing UML based approamh f
representing aspects and is more generic References

Mellor [39] discusses how model-driven architecture [1] OMG MDA™ Guide v1.0.1, Object Management Group,
can support aspect-oriented modeling. Their wotksta http://www.omg.org/docs/omg/03-06-01.pdf
about a framework that brings models and aspect[z] R. M. Soley, D.S. Frankel, J. Mukerji, and E.H.s@dn,

orientation together. The research just brings that Model Driven Architecture - The Architecture Of Gbe

issues related to aspects, UML, and MDA. Our apgroa For A Changing World, OMG 2001.

provides a framework that can be used for devetppin http://www.omg.org/mda

software using aspect oriented mechanisms. [3] ISO/IEC 10746: (1995): Basic reference model foerop
distributed processing.

Modern systems are complex. Separation of conggrns Specification, Object Management Group, Document
. S . L. formal/03-03-01, 2003.

recognized as a key principle to cope with comyeixi _ . . .
software development. In this paper, we have resson [5] Eclipse AspectJ project, http://eclipse.org/aspectj
that both vertical and horizontal separation of aans [6] Revised submission for MOF 2.0
should be provided for managing complexity in a elod Query/Views/Transformations RFP (ad/2002-04-10),
driven development. QVT-Merge Group 1.8, OMG document ad/2004-10-

Aspect-oriented technologies can be used to support 04. www.omg.org
horizontal separation of crosscutting concerns fadher [7]
functionality. The AOM approach emphasizes the
separation and modularization of crosscutting coree
design units (aspects). The AOMDF provides addition) @ |
support for specifying transformations. The AOMDF 8] Aspect Oriented Software Development. AOSD Webpage.

. o URL http://aosd.net/, 2005.

allows us to separate out the mapping specification . :
pervasive features from the mapping specificatibthe ~ [9] G. Kiczales, J. Lamping, A. Mendhekar, C. MaedaVC.
primary model. The aspect mapping specificatiom the Ilg?ggsa‘lmfﬁ-il\nﬂé thIS?cl)ige;?ngsjdf :;";"’Eugzgzzt COnemt:
be_comes r((ajuic,%ble and t_he ||T1app|ng specificatiorhef t on Object-Oriented Programming (ECOOP), Springer
primary model becomes simpler. _ Verlag LNCS 1241, Finland, June 1997.

The paper illustrates the transformation of afptat 101 H. Ossh 4 P. Tar. Usi ltidi ional sai
independent distributed transaction aspect to tfopta [+01 H. Ossher and P. Tarr. Using multidimensional etz

o . . of concerns to (re)shape evolving software.

specific transaction aspect. We also describe the Communications of ACM, 44(10):43-50, 2001.
integration of the transaction aspect in the canvéa net ’ ’

banking application. The example illustrates thae t [11]J Kienzle and R. Guerraoui. AOP: Does it make egiise
case of concurrency and failures. In Proceedingshef

mapping O.f pervasive services can b?_ Comple_x, for 16th European Conference on Object-Oriented
instance, since we need to obtain specific mappofgs Programming (ECOOP, pages 37-61. Springer-Verlag,
specific operations. However, development of magpin 2002.

is comparable to the development of_ compilers anabt [12] 1. Ray, R. France, N. Li, and G. Georg, "An AspBased

a task a regular system developer will do. We expet Approach to Modeling Access Control Concerns"”, dalr

The Object Management Group. Unified Modeling
Language: Superstructure. Version 2.0, OMG, ptc/03-
07-06, 2003.

when model driven development becomes more mature

and more frequently used, the tools will providadge to

of Information and Software Technology, 46(9), p@5-
587, July 2004.

use mapping specifications for a wide set of [13] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. (Goé

transformations. A system architect will be resplolesfor
configure the provided mappings appropriately adicqy
to the system or system family at hand.

Currently we are working on techniques to resolve
conflicts that can occur if more than one aspect is

and B. Natarajan, "An Approach for Supporting Agpec
Oriented Domain Modeling," in Proceedings of thed 2n
Intl. Conference on Generative Programming and
Component Engineering (GPCE'03), Erfurt, Germany,
Sept. 2003.

[14] R. Silaghi, F. Fondement, and A. Strohmeier. Toweaad [28] Tata MasterCraft. http://www.tata-
MDA-COriented UML Profile for Distribution. In mastercraft.com/index1.asp

Proceedings of the 8th IEEE International Entegpris [29] Atlas Transformatino Language wWww. i

Distributed Object Computing Conference, EDOC, software.com/?p=mda ' '

Monterey, CA, USA, September 2004. ' ' _
[30] ArcStyler http://www.io-

[15] A. M. Reina, J. Toress, and M. Toro. Towards devielp

generic solutions with aspects. In proceedings (e t) i] i)
Workshop in Aspect Oriented Modeling held in [31] Objecteering/introduction User GuideVersion 5.3 -

software.com/products/arcstyler_overview.jsp

conjunction with UML 2004, October 2004. CODOBJ 001/001. www.objecteering.com
[16]1. Jacobson. Case for Aspects - Part I. Software [32] K. Duddy, A. Gerber, M.J. Lawley, K. Raymond, Jedt
Development Magazine, pp 32-37, October 2003. Model Transformation: A Declarative, Reusable Retie
Approach. In Proceedings 7th IEEE International
[17]1. Jacobson. Case for Aspects - Part Il. Software Enterprise Distributed Object Computing Conference
Development Magazine, pp 42-48, November 2003. (EDOC 2003), pp 174-185
[18] V Kulkarni, S. Reddy Separation of Concerns inddle [33] P.A. Muller, P. Studer, IM Jézéquel Model-driven
driven Development. IEEE Software 20(5):64-69, 2003 generative approach for concrete syntax composition
[19] R. B. France, I. Ray, G. Georg, and S. Ghosh. Amects workshop on Best Practices for MDSD (OOPSLA'2004),
oriented approach to design modeling. IEE Procemsdin October 2004
Software, Special Issue on Early Aspects: Aspett@®d 341 L™ Profile for CORBA™ version 1.0, April 2002,
Requirements Engineering and Architecture Design, formal/02-04-01.

151(4), August, 2004.
. [35] W. Ho, F. Pennaneach, J. Jezequel, and N. Plouzeau.
[20] G. Georg, R. Reddy, and R. France. Specifying eross Aspect-Oriented Design with the UML. In Proc. of kitu

cutting requirements concems. In Proceedings @& th Dimensional Separation of Concerns Workshop at ICSE
International Conference on the UML, October 2004. pp 60-64, 2000.

Springer, 2004.
[36] W. Ho, F. Pennaneach, and N. Plouzeau. UMLAUT: A
[21] E. Song, R. Reddy, R. France, I. Ray, G. Georg, R. Framework for Weaving UML-Based Aspect-Oriented
Alexander. Verifying Access Control Properties @sin Designs. In TOOLS '00: Proceedings of the Technplfy

Aspect _Oriented Modeling. Accepted in 10th ACM Object-Oriented Languages and Systems (TOOLS 38), p
Symposium on Access Control Models and Technologies 324 -334. IEEE Computer Society, 2000.

(SACMAT), Scandic Hasselbacken, Stockholm, June 1-3

2005. [37] J. M. Jezequel, A. Guennec, F. Pennaneach, G. Sangle
. . K. Vinceller. The UMLAUT Web Page. URL
[22] S. Clarke, W. Harrison, H. Ossher, and P. Tarragsng http://www.irisa. frfUMLAUT

concerns throughout the development lifecycle. In)
Proceedings of the '™ ECOOP Aspect-Oriented [38]J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling

Programming Workshop, Lisbon, Portugal, June 1999. crosscutting constraints in domain-specific modglin
[23] G. Straw, G. Georg, E. Song, S. Ghosh, R. Framu,Ja Communications of the ACM, 44(10):87-93, October

Bieman, "Model Composition Directives”, in procesgh 2001.

of the 7th UML Conference, Lisbon, Portugal, Octobe- [39] S. Mellor, A Framework for Aspect-Orientédodeling, 4"

15, 2004. AOM Workshop at UML'03, San Francisco, CA, October
[24] G. Coulouris, J. Dollimore and T. Kindberg. Distrtbd 2003.

Systems Concepts and Design (3rd Ed.) Page 471.
International Computer Science Series, Addison-
Wesley/Pearson Education, USA, 2001.

[25] Revised submission for MOF 2.0
Query/Views/Transformations RFP (ad/2002-04-10),
QVT-Merge Group 1.8, OMG document ad/2004-10-04.
WWW.omg.org

[26] K. Czarnecki, S. Helsen, Classification of Model
Transformation Approaches, Proceedings Workshop on
Generative Techniques in the Context of Model-Drive
Architecture, OOPSLA'03

[27] EXMOF - Queries, Views and Transformations on Medel
using MOF, OCL and EXMOF, Joint 2nd revised
submission. Compuware Corp., SUN Microsystems.
ad/2004-10-03

