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Abstract

Developers of modern software systems are often required to build software that address
security, fault-tolerance, and other dependability concerns. A decision to address a depend-
ability concern in a particular manner can make it difficult or impossible to address other
concerns in software. Proper attention to balancing key dependability and other concerns
in the early phases of development can help developers better manage product risks through
early identification and resolution of conflicts and undesirable emergent behaviors that arise
as a result of interactions across behaviors that address different concerns.

In this paper we describe an aspect-oriented modeling (AOM) approach that eases the
task of exploring alternative ways of addressing concerns during software modeling. The
paper focuses on use of the AOM approach to produce logical, aspect-oriented architecture
models (AAMs) that describe how concerns are addressed in technology-independent model-
ing terms. An AAM consists of a set of aspect models and a base architecture model called
the primary model. An aspect model describes how a dependability concern is addressed, and
a primary model describes how other concerns are addressed. Composition of the aspect and
primary models in an AAM produces an integrated view of the logical architecture described
by the AAM. Composition can reveal conflicts and undesirable emergent properties. Re-
solving these problems can involve developing and analyzing alternative ways of addressing
concerns. Localizing the parts of an architecture that address pervasive and non-orthogonal
dependability concerns in aspect models allows developers to more easily evolve and replace
the parts as they explore alternative ways of balancing concerns in the early stages of devel-
opment.

1 Introduction

The pervasiveness of computer systems highlights the need to engineer software that deliver ser-

vices in a dependable manner. Designs of dependable software must address multiple, possibly

interdependent dependability concerns such as access control, confidentiality, and data integrity.

The manner in which a dependability concern is addressed can affect how other concerns are ad-

dressed. Balancing concerns during software development can involve developing and analyzing

alternative ways of addressing the concerns. Lack of attention to balancing dependability and
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other concerns in the early software development phases can lead to major rearchitecting of the

design in later stages of development.

In this paper, a concern is a problem coupled with a desired goal [20, 21], where the goal

determines acceptable solutions to the problem. For example, the problem of prohibiting unau-

thorized access to protected resources in a banking system is a dependability concern that must be

addressed by banking software that manipulates the protected resources. A model that describes

how a concern is addressed is called a concern solution model. In particular, a model that describes

how a dependability concern is addressed is called a dependability solution model. For example, a

Role Based Access Control (RBAC) model [34] can be used to describe a solution to the banking

system’s access control concern. A decision to address a concern in a particular manner can give

rise to other concerns. For example, the RBAC solution to the access control problem gives rise to

new concerns pertaining to the management of roles and permissions.

This paper focuses on addressing dependability concerns during logical architecture modeling

of software. The concern solution models are expressed in high-level, technology-independent

modeling terms. Current software development techniques allow developers to structure logical

architectures in terms of modules that can be composite classes (i.e., classes that have an internal

class structure), subsystems or interfaces. These modules typically localize solutions that address

key functional concerns. Addressing non-orthogonal dependability concerns results in dependabil-

ity solutions that are spread across the modules of the architecture and tangled with functionality

described in the modules. These solutions are said to crosscut the primary structure of the archi-

tecture model.

Balancing concerns that are addressed by crosscutting solutions in the early phases of develop-

ment can be challenging, primarily because of the difficulty of consistently changing or replacing

the crosscutting solutions in an architecture model. A modeling approach that supports localizing
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the descriptions of crosscutting dependability solutions can significantly ease the task of evolving

and replacing the solution descriptions in an architecture model. In this paper we describe an

aspect-oriented modeling (AOM) approach that allows developers to conceptualize, describe and

communicate logical dependability solution in isolation. The dependability solution models are

called aspect models. An aspect-oriented architecture model (AAM) produced by the AOM ap-

proach consists of a set of aspect models and a base architecture model called the primary model.

The primary model describes concern solutions that determine the base structure of the archi-

tecture model. Each aspect model describes a dependability solution that crosscuts the primary

model. An integrated view of the architecture is obtained by composing aspect and primary mod-

els to produce a composed AAM. Conflicts and undesirable emergent properties can be identified

during composition of aspect and primary models and during analysis of the composed AAM. Ad-

dressing these deficiencies can lead to consideration of alternative ways of addressing concerns.

Use of the AOM approach in the early stages of software development can help reduce software

product risks through early identification and resolution of conflicts and undesirable behaviors that

emerge as a result of integrating concern solutions.

The remainder of this paper is organized as follows. In Section 2 we discuss the major concepts

underlying our AOM approach and give an overview of the approach. In Section 3 we describe

a technique for representing aspect models, and in Section 4 we describe how aspect models can

be composed with primary models. In Section 5 we identify some limitations of the approach and

discuss issues that are not yet fully addressed in the approach. We give an overview of related

work in Section 6 and we conclude in Section 7 with an outline of our plans to further develop the

AOM approach.
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2 Aspect-Oriented Modeling

In the aspect-oriented programming (AOP) language AspectJ, an aspect is a type that crosscuts a

program structure [23]. An aspect contains information typically found in a class (i.e., data mem-

bers and methods) in addition to behavior that is executed at specified point in a program’s execu-

tion. The well-defined points are called join points and the specifications of join points are called

pointcuts. In the modeling community there has been some work on describing aspect-oriented

programs using modeling languages such as the Unified Modeling Language (UML) [38]. AOM,

as described in this paper, is not concerned with describing aspect-oriented programs. Rather,

the AOM approach described in this paper provides support for modeling of concern solutions

in isolation and for integrating the concern solution models with models describing the primary

structure of software.

Modeling languages such as the UML provide some support for multidimensional separation

of concerns through the use of different diagram types that can be used to describe non-orthogonal

views of a system. AOM approaches allow developers to define additional dimensions of separa-

tion based on system-specific concerns. In an AOM approach, aspects localize concern solutions

that crosscut views described by different diagrams in a system model.

The separation of crosscutting elements is a characteristic that is common to AOP and AOM,

but differences between the artifacts (models versus code) can give rise to differences in tech-

niques. For example, at the code level there is a single representation of functionality (the source

code), while a model can describe a system from multiple views using different diagrams. The

views can be non-orthogonal, for example, a UML sequence diagram that describes how a set

of class instances interact to accomplish a task crosscuts the class diagram view of a system. In

the AOM approach described in this paper, aspects describe solutions that crosscut UML model
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views.

Another difference between AOM and AOP is that code level aspect weaving is concerned

primarily with inserting functionality at well-defined points in a program’s execution. The points

at which functionality can be inserted are determined by the join point model of the AOP language.

Software models are typically static descriptions of structure and behavior. In the cases where the

semantics of a modeling language supports execution of models one can conceivably create a join

point model for the modeling language to support an AOP-like notion of weaving. In the absence

of such semantics, weaving at the model level is essentially static composition of model views.

2.1 Supporting Aspect-Oriented Modeling

The AOM approach described in this paper provides support for (1) describing crosscutting con-

cern solutions as modeling views called aspects, (2) synthesizing an integrated model by compos-

ing aspect and primary model views, and (3) identifying and resolving conflicts and undesirable

emergent properties that arise as a result of integrating aspect and primary models.

Two broad types of concerns can be identified [21]: A concrete concern can be directly realized

in a model (i.e., there are model elements that specifically address the concern), and a qualitative

concern is based on qualities or attributes of a system. Access control and error recovery are

examples of concrete concerns, while concerns pertaining to system performance and memory

utilization are examples of qualitative concerns. The AOM approach described in this paper is

applicable to concrete concerns only. Henceforth, a concrete concern is referred to simply as a

concern.

Aspect models in our AOM approach describe crosscutting dependability solutions in logi-

cal (i.e., high-level and technology-independent) terms. A crosscutting concern solution can be

isolated if its distributed elements have common structural and behavioral characteristics. A gen-
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eralized form of the solution can then be represented as a pattern, where the pattern describes

common characteristics of the distributed solution parts. A pattern view of crosscutting solutions

screens out context-specific details and makes it possible to conceive, describe, and understand

the solutions in isolation. In our AOM approach an aspect model is a pattern that characterizes a

family of logical concern solutions. The patterns are described using UML model templates, as

is also done in the Theme approach [5]. The template notation used in our work is an adaptation

of a UML-based pattern language, called the Role-Based Metamodeling Language (RBML) [12].

Composing an aspect model with a primary model requires that one first instantiate the pattern by

binding template parameters to application-specific values. An instantiated aspect model is called

a context-specific aspect model. This approach paves the way for the development and systematic

use of design patterns that capture logical solutions to dependability concerns.

Model composition technologies that automate significant parts of the AOM composition ac-

tivity are needed if AOM is to scale-up to models of complex “real-world” software systems.

At one extreme are composition tools that take in aspect and primary models and produce com-

posed models without further input from developers. This fixed composition approach provides

very little flexibility in how aspect models are composed with primary models. At the other ex-

treme, developers also provide composition procedures that detail how the aspect models are to

be composed with primary models. This approach is very flexible, but requires more effort from

developers. More practical solutions are likely to lie between these two approaches. For example,

a tool can codify a default composition procedure and allow developers to vary some aspects of

the procedure using composition directives. This is the approach taken in our work.

Context-specific aspect, primary, and composed models are analyzed to uncover flaws. Analy-

sis of the composed model can reveal conflicts and undesirable emergent properties. Analysis can

also be carried out to determine the extent that dependability solutions meet their objectives when
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Figure 1: Components of the AOM Approach

integrated with other concerns.

2.2 An Overview of the AOM Approach

The major components of the AOM approach are shown in Fig. 1. An AAM of an application

consists of (1) a primary model, (2) aspect models and the bindings used to instantiate them in

the application context, and (3) composition directives that determine how the instantiated aspect

models are composed with the primary model to produce a composed AAM.

A primary model consists of UML diagrams that each describes a view of the base architecture.

The primary models in this paper consist of two types of diagrams: UML classifier and interaction

diagrams. Aspect models describe patterns of logical dependability solutions as UML diagram

templates. An AAM presents logical views of a software architecture.

Fig. 2 illustrates how an AAM consisting of two aspect models and a primary model is com-

posed. The aspect models are instantiated by binding template parameters to application-specific

values. We refer to the namespace from which binding values and names of elements in the

primary model are drawn as the application domain namespace. An aspect model can be instanti-

ated multiple times to produce multiple context-specific aspects. Composition of context-specific
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Figure 2: An Overview of Composition in the AOM Approach

aspect and primary models produces a model consisting of UML diagrams obtained by merg-

ing corresponding UML diagrams in the context-specific aspect and primary models. The AOM

approach provides a basic composition procedure that can be altered in restricted ways by com-

position directives. For example, a composition directive can (1) specify that properties in aspect

models override conflicting properties in primary models (or vice versa), (2) specify that partic-

ular primary (or aspect) model elements must be removed or added during composition, and (3)

determine the order in which two or more aspects are composed with a primary model.

The Model Analysis component in Fig. 1 is responsible for analyzing the composed model to

identify errors and to determine the extent that dependability objectives are met. The focus of this

paper is on aspect representation and model composition. We illustrate how identified conflicts

can be resolved using composition directives, but a detailed account of techniques for analyzing

UML models is outside the scope of this paper.
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3 Representing Aspect Models

In this section we describe how aspect models can be represented as template UML diagrams

representing patterns of concern solutions. The template diagrams in this paper produce UML

diagrams describing logical architectural views of solutions when instantiated.

In the UML, template models are described by parameterized packages that explicitly list the

parameters in the package header. We have found this notation to be unwieldy when a large

number of parameters are involved. In this paper the parameters are explicitly marked in the

template diagrams using the symbol “
�
”.

Fig. 3 shows an aspect model, Auth, characterizing logical solutions in which access to a ser-

vice is restricted to authorized clients. The aspect model consists of two diagram templates: A

class diagram template that describes structural properties of the concern solutions and a col-

laboration diagram template that describes interactions among solution elements. Instantiating

the class diagram template shown in Fig. 3(a) results in a class diagram that consists of compos-

ite classes representing logical architectural views of clients, servers with services under access

control, and authorization repositories. A service under access control is represented by two oper-

ations in a server class:

� An operation that checks whether a client that requests the service is authorized to execute

the service. The operation signature is obtained by instantiating the operation template

�
operation. The operation takes in as arguments the client’s identifier (represented by the

operation argument template
�
mid :

�
mgrid) and zero or more values needed by the service

(represented by the argument template
�
params1 � ). The template parameter params1 � is

referred to as a collection parameter indicating that it must be bound to a collection of

values.
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� An operation that performs the required service. This operation is obtained by instantiating

the operation template
�
doOperation. The use of the

�
params1 � collection parameter in both

the operation and doOperation templates indicates that the same value (i.e., the same set of

arguments) must be used to instantiate the collection parameter in both of the templates.

The class template
�
AuthorizationRepository consists of the operation template

�
checkAuth

that produces an operation that performs authorization checks when instantiated. A
�
checkAuth

operation uses the client identifier (represented by
�
q :

�
mgrid), an operation identifier (represented

by
�
op :

�
OpType), and possibly other information passed in as arguments (represented by the

collection parameter
�
params2 � ), to determine whether the client is authorized to access the op-

eration or not. If the client is authorized the operation returns a value that is an instantiation of

�
valid, otherwise it returns a value that is an instantiation of

�
invalid.

Operation templates may be associated with template forms of pre- and postconditions, re-

ferred to as constraint templates, that produce OCL specifications when instantiated. These con-

straint templates are presented separately from the diagrams to reduce diagram clutter. If an oper-

ation template is not associated with a constraint template then an operation produced by the tem-

plate must be specified in the primary model or its behavior is to be specified or implemented in

a subsequent refinement or detailing of the logical model. The operation templates
�
doOperation

and
�
checkAuth do not have constraint templates associated with them. The following is the com-

mented constraint template associated with the
�
operation template. The notation is based on the

Object Constraint Language (OCL) version 2 [40]:

Context |Server::|operation(|mid:|mgrid,(|p:|T)*) :

Pre:

-- This operation can be invoked at any time.
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|Client |Server
<<Class Template>>

|doOperation(|params1*)

|operation(|mid:|mgrid,|params1*)

<<Association Template>>
|accessAuthRep

|checkAuth(|q:|mgrid,|op:|OpType,|params2*):{|valid,|invalid}

|n|m

|q

|p

|accesses

<<Class Template>>

|n.1: |auth := |checkAuth(|id,|opid,|other*)

|n: |operation(|id,|opParams*)

(b) Collaboration Diagram Template for an Authorization Aspect Model

:|AuthorizationRepository

:|Server:|Client
collaboration role template

object template

message template |n.2A [|auth=|valid]: |doOperation(|opParams*)

|n.2B [|auth=|invalid]: |error

(a) Class Diagram Template for an Authorization Aspect Model

<<Association Template>>

|AuthorizationRepository
<<Class Template>>

bound to params1* in |operation
must be exactly the values
indicates that values bound to this

parameters
indicates a set of 0 or more

postconditions (not shown)
template forms of pre− and
operation templates include

Figure 3: An Authorization-based Access Control Aspect Model
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true

Post:

/* The service is carried out if and only if the client is

authorized to invoke the service. */

let authmessage : OclMessage =

|AuthorizationRepositoryˆ|checkAuth(|mid,|opid,|p*) in

(authmessage.hasReturned() and authmessage.result() = True

implies |Serverˆ|doOperation(|p*)) and

(|Serverˆ|doOperation(|p*) implies

authmessage.hasReturned() and authmessage.result() = True)

The collaboration diagram template shown in Fig. 3(b) consists of template forms of partici-

pants (e.g., :
�
Client) and messages (e.g.,

�
n :

�
operation � �

id � �
opParams ��� . An instantiated partici-

pant template produces either a named or anonymous participant, for example, binding UserMgmt

to the parameter Server in the :
�
Server participant template produces the anonymous participant

: UserMgmt. In a participant template, the type parameter (e.g.,
�
Server in :

�
Server) must be a

classifier template in a corresponding classifier diagram template. Participant type parameters and

the corresponding classifier templates must be instantiated with the same value.

Message templates consist of parameterized message sequence expressions, and parameterized

message expressions. For example,
�
n � 1 :

�
auth : � �

checkAuth � �
id � �

opid � �
other ��� , consists of a

parameterized sequence expression,
�
n � 1 in which n is a parameter that can be substituted by

sequence expression (e.g., substituting 2.1.3 for n gives the sequence expression 2.1.3.1), and a

parameterized message expression
�
auth : � �

checkAuth � �
id � �

opid � �
other ��� with parameters auth,

checkAuth, id, opid, and an optional set of arguments indicated by the collection parameter other � .

The message expression response : � IDcheck � userid � updateOp � userstatus � usersession � can be
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obtained from this template by binding response to auth, IDcheck to checkAuth, userid to id,

updateOp to opid and � userstatus � usersession � to other � .

The collaboration diagram template for the Auth aspect model describes the following inter-

action pattern:

� Message
�
n: A client requests a service on a server by calling an instantiation of

�
operation.

� Message
�
n � 1: An authorization check is requested by calling an instantiation of

�
checkAuth

in the authorization repository linked with the server.

� Message
�
n � 2A: If authorization is granted then the service is performed by invoking an

instantiation of
�
doOperation.

� Message
�
n � 2B: If authorization is not granted the client is informed that access is not

allowed.

The aspect model shown in Fig. 3 produces concern solution models that can be integrated

with architecture models in which modules are composite classes (see [39] for more details on

UML composite classes). Logical architectures can also be described using UML subsystems and

interfaces as modules. The access control solution expressed in terms of subsystem templates is

shown in Fig. 4(a), and the logical solution expressed in terms of interface templates is shown in

Fig. 4(b). The collaboration diagram templates in these aspect models are syntactically identical

to the collaboration diagram template shown in Fig. 3(b) and thus are not shown.

The three access control aspect models shown in Fig. 3 and Fig. 4 are specializations of the

aspect model shown in Fig. 5. The collaboration diagram of the generalized aspect is syntactically

identical to the collaboration diagram shown in Fig. 3(b). The generalized aspect model cannot be

directly instantiated because it is based on abstract UML constructs (classifiers and relationships).

This type of aspect model is called an abstract aspect model. An abstract aspect model must be
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(a) Subsystem Diagram Template for an Authorization Aspect Model

(b) Interface Diagram Template for an Authorization Aspect Model

<<provided>>

<<Interface Template>>
|IAuthorizationRepository

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

<<Subsystem Template>>
|AuthorizationRepository

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

<<Subsystem Template>>
|Server

|doOperation(|params1*)
|operation(|mid:|mgrid,|params1*)

<<provided>>

<<required>>
|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

<<Interface Template>>
|IServer

|operation(|mid:|mgrid,|params1*)
|doOperation(|params1*)

<<Interface Template>>
|IClient

<<Subsystem Template>>
|Client

<<required>>

|operation(|mid:|mgrid,|params1*)

Figure 4: Examples of Subsystem and Interface Based Access Control Aspect Models
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(a) Classifier Diagram Template for an Authorization Aspect Model

|operation(|mid:|mgrid,|params1*)

|doOperation(|params1*)

<<Classifier Template>>
|Server

<<Relationship Template>>

<<Relationship Template>>

|n.2B [|auth=|invalid]: |error

|n.2A [|auth=|valid]: |doOperation(|opParams*)

:|Client :|Server

:|AuthorizationRepository

(b) Collaboration Diagram Template for an Authorization Aspect Model

|n: |operation(|id,|opParams*)

|n.1: |auth := |checkAuth(|id,|opid,|other*)

|checkAuth(|q:|mgrid,|op:OpType,|params2*):{|valid,|invalid}

<<Classifier Template>>

|AuthorizationRepository

<<Classifier Template>>
|Client

Figure 5: A Generalized Access Control Aspect Model

specialized to a concrete aspect model (i.e., one based on concrete UML constructs) before it can

be instantiated.

The remainder of this paper uses architecture models in which modules are composite classes

to illustrate the AOM approach. The internal structures of the composite classes are hidden in the

architectural views presented in this paper.

4 Composing Aspect and Primary Models

Composing an aspect model with a primary model involves (1) instantiating the aspect model,

using bindings, to produce a context-specific aspect model, and (2) integrating the context-specific
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aspect model with the primary model. In this section we illustrate how composition can be carried

out using a small example.

4.1 A Composition Example

Fig. 6(b) shows a primary model that describes a user management system in which Manager

objects are linked to a UserMgmt object that controls access to a repository of user information (a

UserRepository object). The UserMgmt class defines operations for adding a user to the repository

(addUser) and for deleting a user from the repository (deleteUser). Access to the addUser and

deleteUser operations by Manager objects is unrestricted in the primary model. To restrict access

to these operations the instantiated Auth aspect model shown in Fig. 6(a) is composed with the

primary model to obtain the composed model shown in Fig. 6(c).

The context-specific aspect model in Fig. 6(a) is obtained by instantiating the Auth aspect

model using bindings that define the values that are to be substituted for parameters in the Auth

diagram templates. A binding relates an aspect model element to a model element and can be

expressed as a pair of the form (aspect element name, model element name). The model element

name can be the name of a primary model element or the name of an application-specific element

that is to be added to the composed model during composition. The type of the construct named

by model element name must be the same as the parameter type, for example, a class template

can only be bound to a model element that is a class. Some of the bindings used to produce the

context-specific aspect model shown in Fig. 6(a) are given below:

(
�
Client, Manager); (

�
mgrid, MgrID); (

�
accesses, accesses); (

�
m, 1..*); ((

�
n,

�
p,

�
q),1)1;

(
�
doOperation, doDeleteUser), (

�
doOperation, doAddUser);

(
�
Server,UserMgmt); (

�
AuthorizationRepository, SystemMgmtAuthRep).

1This is an abbreviated form of three pairs that respectively map n, p, and q to the multiplicity 1
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m : MgrID

Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserMgmt

«datatype»
MgrID

«datatype»
UID

1..* 1

accesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

m : MgrID

Manager

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

«datatype»
MgrID

«datatype»
UID

1..* 1

accesses

UserRepository

1

1

accessUserRep

Auth context-specific
aspect class diagram

User Management
primary class diagram

Composition Directives

Rename Primary::UserMgmt::addUser() to doAddUser()

Rename Primary::UserMgmt::deleteUser() to doDeleteUser()

m : MgrID

Manager

«datatype»
MgrID

«datatype»
UID

1..* 1

accesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

UserRepository

1

1

accessUserRep

Composed class
diagram

(b)(a)

(c)

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserMgmt

Integrated Aspect and Primary View

<<merge>>

<<merge>>

Figure 6: Example of Composing a Context-Specific Aspect Class Diagram and a Primary Class

Diagram
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Note that a single parameter may be instantiated more than once; for example, the operation

template doOperation is instantiated twice to produce doAddUser and doDeleteUser operations.

An instantiation multiplicity can be associated with a template to restrict the number of times a

template can be instantiated; for example, a template of the form
�
Temp 1..1 indicates that Temp

can only be instantiated once. If a template is not associated with a (instantiation) multiplicity then

the number of instantiations possible is not restricted (as is the case in the aspect models given in

this paper).

Sometimes it is more convenient to express bindings as relationships between structures. For

example, the bindings for operation templates can be expressed as follows:

((
�
operation,

�
mid,

�
params1*), (addUser, mid, � u:UID � ));

((
�
operation,

�
mid,

�
params1*), (deleteUser, mid, � u:UID � ));

((
�
checkAuth,

�
q,

�
op,

�
OpType,

�
params2*), (checkSysAuth, mid, op, String, � � )).

Bindings also determine how constraint templates are instantiated. For example, the above

bindings are used to produce the following OCL definitions of the addUser and deleteUser oper-

ations in the context-specific aspect model:

Context UserMgmt::addUser(mid:MgrID,u:UID):

Pre:

true

Post:

/* doAddUser() is called if and only if the Manager object

is authorized to add users. */

let authmessage : OclMessage =

SystemMgmtAuthRepˆcheckSysAuth(mid,?:String) in

authmessage.hasReturned() and authmessage.result() = True
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implies selfˆdoAddUser(u) and

selfˆdoAddUser(u) implies

authmessage.hasReturned() and authmessage.result() = True

Context UserMgmt::deleteUser(mid:MgrID,u:UID):

Pre:

true

Post:

/* doDeleteUser() is called if and only if the Manager object

is authorized to delete users. */

let authmessage : OclMessage =

SystemMgmtAuthRepˆcheckSysAuth(mid,?:String) in

authmessage.hasReturned() and authmessage.result() = True

implies selfˆdoDeleteUser(u) and

selfˆdoDeleteUser(u) implies

authmessage.hasReturned() and authmessage.result() = True

The AOM approach uses a basic name-based composition procedure in which elements with

the same name are merged to form a single diagram element in the composed model. For example,

merging the aspect and primary class diagram views of the Manager class results in a class that

integrates information from both views. Some of the rules that determine how information asso-

ciated with matching elements are combined are given below (these rules can be modified using

composition directives, as indicated below):
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� If the matching elements are operations with operation specifications, the operation specifi-

cation in the composed model is the conjunction of the operation specifications associated

with the matching operations. A composition directive can be used to vary how the specifi-

cations are logically connected.

� If the matching elements are attributes (or other elements) with constraints, the constraint

associated with the attribute in the composed model is the conjunction of the constraints

associated with the matching attributes. A composition directive can be used to vary how

the constraints are logically connected.

� If the matching elements are associations, then the stronger (more restrictive) multiplicity at

an association end is used in the composed model. A composition directive can be used to

override this rule.

Unmatched model elements (i.e., model elements that only occur in either the aspect model or the

primary model) are included in the composed class diagram.

Using the basic composition procedure to compose the UserMgmt aspect and primary model

views results in a conflict for the addUser and deleteUser operations because they have the same

names but different specifications in the two views; the addUser and deleteUser in the context-

specific aspect model carry out authorization checks, while the operations with the same names

in the primary model add and delete users, respectively (the primary model specifications are not

given in this paper). Furthermore, the operations doAddUser and doDeleteUser in the context-

specific aspect model have the same specifications as those provided for addUser and deleteUser

operations, respectively, in the primary model. Composition directives are used to resolve the

conflict by renaming the addUser and deleteUser operations in the primary model to doAddUser

and doDeleteUser. The renaming removes the conflict and allows the primary model operations
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to be merged with the doAddUser and doDeleteUser operations in the context-specific aspect

model. The result is that the doAddUser and doDeleteUser operations in the context-specific

aspect model are respectively merged with the original addUser and deleteUser operations in the

primary model as shown in Fig. 6.

In general, a composition directive can (1) determine the order in which multiple aspect mod-

els are composed with a primary model, (2) define precedence or override relationships between

matching aspect and primary model elements with conflicting properties or definitions, and (3)

determine the elements that are renamed (e.g., to resolve conflicts), added, or deleted during com-

position. Adding new elements or deleting existing elements may be necessary to correctly com-

pose aspect and primary models. For example, a security access control aspect may restrict access

to an object by prohibiting particular relationships between the object and other objects. This can

be done by identifying undesirable relationships in the aspect models and deleting them if found

in the primary model. Elements marked for deletion in an aspect model are referred to as prohib-

ited elements. Later in this section we give an example of a situation that requires composition

directives that add and delete model elements.

In summary, composition directives allow one to vary how aspect and primary models are

composed. Consequently, aspect models do not need to capture all possible variations. In the

next subsection we show how composition directives can be used to obtain variants of solutions

described by aspect models.

4.2 Using Composition Directives to Obtain Variants of Composed Models

Using the same aspect and primary models, different composed models can be produced by vary-

ing the bindings and composition directives. Fig. 7 shows a composed model obtained by com-

posing the Auth aspect class diagram and the User Management primary class diagram using a
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different set of bindings and composition directives. We do not give the bindings for this case;

they can be inferred from the context-specific aspect model shown in Fig. 7(a).

The two systems described by the composed AAMs shown in Fig. 6(c) and in Fig. 7(c) accom-

plish the same tasks but do so differently. In Fig. 7(c) the authorization operations and the services

are located in separate objects. Rather than treating the UserMgmt class as a
�
Server class, a new

server class is introduced by the context-specific aspect model (see Fig. 7(a)). The intent is that

the addUser and deleteUser operations in the UserAuth class would call the corresponding op-

erations in UserMgmt after a successful authorization. To create a class diagram that reflects this

intent, composition directives are defined that (1) add an association between the UserAuth and

the UserMgmt classes, (2) removes the association between the client and the UserMgmt class,

(3) removes the doAdduser and doDeleteUser operations from the UserAuth class, and (4) re-

places references to doAdduser and doDeleteUser with references to addUser and deleteUser,

respectively, in UserMgmt. The first directive is depicted by the association between the classes

in the aspect and the primary model shown in Fig. 7. The second, third, and fourth directives are

captured by the following expressions:

Replace Primary::Manager::accesses by Aspect::Manager::uaccesses

- removes the accesses association between Manager and UserMgmt

in the primary model (graphically indicated by placing an X

on the association in the class diagram) and replaces all

references to the association in Manager to the uaccesses

association in the aspect model.

Replace Aspect::UserAuth::doAddUser() by Primary::UserMgmt::addUser()

- removes doAddUser (graphically indicated by placing an X on the

22



m : MgrID

Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)
doAddUser(in u : UID)
doDeleteUser(in u : UID)

UserAuth

«datatype»
MgrID

«datatype»
UID

1..*

1

uaccesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

m : MgrID

Manager

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

«datatype»
MgrID

«datatype»
UID

1..* 1

accesses

UserRepository

1

1

accessUserRep

1

1

Auth context-specific
aspect class diagram

User Management
primary class diagram

X

X
X

prohibited elements are marked with an X

Composition Directives
Replace Primary::Manager::accesses by Aspect::Manager:uaccesees

Replace Aspect::UserAuth::doAddUser() by Primary::UserMgmt::addUser()

Replace Aspect::UserAuth::doDeleteUser() by Primary::UserMgmt::deleteUser()

m : MgrID

Manager

addUser(in mid : MgrID, in u : UID)
deleteUser(in mid : MgrID, in u : UID)

UserAuth

«datatype»
MgrID

«datatype»
UID

1..* 1

uaccesses

checkSysAuth(in mid : MgrID, in op : String)

SystemMgmtAuthRep

1

1

accessAuthRep

addUser(in u : UID)
deleteUser(in u : UID)

UserMgmt

UserRepository

1

1

accessUserRep

1 1

Composed diagram

(b)(a)

(c)

Integrated Aspect and Primary View

<<call>>

<<call>>

Figure 7: An Alternative Composition of the Auth and User Management Class Diagrams
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operation in the class diagram) and replaces all references

to it by references to addUser in the primary model.

Replace Aspect::UserAuth::doDeleteUser() by Primary::UserMgmt::deleteUser()

- removes doDeleteUser and replaces all references to it

by references to addUser in the primary model.

The replacement of references is needed to ensure that the constraint definitions that refer to

the deleted elements refer to their replacements in the composed model. For example, the above

directives produce a composed model that include the following operation definitions for addUser

and deleteUser in UserAuth (this is obtained by replacing references to selfˆdoAddUser(u)

by UserMgmtˆaddUser(u) , and selfˆdoDeleteUser(u) by UserMgmtˆdeleteUser(u) in

the OCL definitions of addUser and deleteUser given earlier for the primary model in Fig. 6(b)):

Context UserAuth::addUser(mid:MgrID,u:UID):

Pre:

true

Post:

/* UserMgmt.addUser() is called if and only if the Manager object

is authorized to add users. */

let authmessage : OclMessage =

SystemMgmtAuthRepˆcheckSysAuth(mid,?:String) in

authmessage.hasReturned() and authmessage.result() = True

implies UserMgmtˆaddUser(u) and

UserMgmtˆaddUser(u) implies
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authmessage.hasReturned() and authmessage.result() = True

Context UserAuth::deleteUser(mid:MgrID,u:UID):

PreCondition:

true

PostCondition:

/* UserMgmt deleteUser() is called if and only if the Manager

object is authorized to delete users. */

let authmessage : OclMessage =

SystemMgmtAuthRepˆcheckSysAuth(mid,?:String) in

authmessage.hasReturned() and authmessage.result() = True

implies UserMgmtˆdeleteUser(u) and

UserMgmtˆdeleteUser(u) implies

authmessage.hasReturned() and authmessage.result() = True

In summary, we have shown how aspect and primary models can be composed and how com-

position directives can be used to resolve conflicts. One can view primary models and context-

specific aspect models as views of an architecture, and thus their composition can be considered

to be a view composition activity. We also show how composition directives and bindings can

be used to produce different composed models from the same aspect and primary models. The

example illustrates how bindings and composition directives can be used to reflect architectural

decisions.
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5 Limitations and Open Issues

In this section we discuss some of the issues that are not yet addressed by our AOM approach, and

outline our plans for addressing the issues.

5.1 Identifying Aspects

It may not be desirable to model all crosscutting concern solutions as aspects. An AOM approach

should provide guidelines that help developers determine the crosscutting concern solutions that

can beneficially be localized in aspects. Our AOM approach targets crosscutting dependability

solutions that may need to be balanced against other concern solutions, and those that are expected

to evolve significantly during development. The localization of these solutions can ease evolution

of the solutions and provide support for rigorous tradeoff analysis. Currently, our AOM approach

does not provide a set of detailed guidelines for determining the crosscutting solutions that should

be localized as aspects. Good guidelines should be based on experience and data collected on

projects that utilize the AOM approach. Such experience and data are not yet available.

5.2 Developing Composition Strategies

When multiple aspect models are composed with a primary model, one has to be concerned with

(1) the order in which the aspect models are composed, and (2) identifying and resolving conflicts

or compromised behaviors. A conflict arises when a property in one aspect model contradicts a

property in another aspect model. Composing a single aspect model with a primary model can

also result in conflicts that need to be resolved (as shown in the previous section).

A behavior defined by an aspect model is compromised when it cannot be performed as speci-

fied because some of its sub-behaviors have been modified (or deleted) after merging with behav-

iors defined in other aspect models or the primary model. For example, (1) an aspect model may
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remove a relationship between two entities that is needed by a behavior defined in another aspect

model, or (2) an operation replacement introduced by a composition directive results in behavior

that violates requirements previously satisfied by the operation being replaced. These problems

can be resolved by making tradeoffs based on the relative importance of satisfying the conflicting

requirements. Resolving problem (1) requires one to tradeoff the requirement that needs the re-

lationship against the requirement that necessitates its deletion. Problem (2) can be resolved by

restoring the overridden operation and renaming the operation replacement.

It may be possible to apply prior experience in addressing concerns to constrain composition

such that the occurrences of conflicts and compromised behaviors are minimized. Such experi-

ence can be captured in composition strategies. A composition strategy is influenced by domain

knowledge pertaining to aspects (e.g., security and fault tolerance expertise), past experiences in

addressing concerns, results of tradeoff analyses, and the properties (e.g., idempotency, commuta-

tivity, associativity, and monotonicity) of the aspect models. Consider, for example, two security

aspect models: one for authentication and the other for authorization. Doing authorization without

authentication is meaningless. To get the desired result, an authentication aspect model must be

composed with a primary model before an authorization aspect model.

In summary, a composition strategy should be based on the properties of the aspect models,

the constraints imposed by the domains of the aspect models, the results of tradeoff analyses, and

the past experiences based on realizing multiple, competing aspect models. A challenge is to de-

velop a language for expressing composition strategies and techniques for obtaining composition

directives from strategies. We are currently addressing these problems in our AOM research.
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5.3 Analyzing Composed Models

For large complex systems, the result of composition may be a complex model that may be difficult

to comprehend. On the other hand, the composed model provides the detail needed to identify

conflicts and undesirable emergent properties that arise as a result of interactions between model

elements described by aspect and primary models. In the AOM approach, composition is carried

out primarily to support analysis that uncovers conflicts and other defects that arise as a result of

integrating aspect and primary model views.

Analysis can be performed at three levels: Unit analysis is concerned with analyzing a single

context-specific aspect model, integration analysis occurs when context-specific aspect models

are composed sequentially with a primary model, and system analysis occurs when all aspect

models have been composed with a primary model. When multiple aspect models are composed

sequentially with a primary model, one must test that no existing capabilities were broken and that

the capability of the newly composed aspect was preserved in the composition. System analysis is

concerned with determining whether the composed AAM satisfies the requirements.

To support dynamic evaluation of composed models, an operational semantics for UML mod-

els is needed. We are currently adapting a systematic technique for testing and exercising UML

designs to our AOM approach [1, 16, 29]. State exploration techniques, such as model-checking

(e.g., see [2, 19]), can also be used to analyze composed models.

We are also developing a system analysis technique that involves evaluating composed models

against a representative set of usage scenarios. The scenarios describe both proper and improper

uses of the system. Scenarios describing improper usages are called misuse scenarios. For ex-

ample, in order to evaluate the impact of security concern solutions on an application, misuse

scenarios that describe malicious attacks can be developed. Misuse scenarios are used to deter-

28



mine if the mechanisms defined by the security aspect models are sufficient to prevent the attacks

from compromising protected resources. Scenarios describing authorized interactions are used to

determine if the authorized activities are adversely affected by behaviors described by the aspect

models. Scenarios are expressed in terms of UML behavioral models (e.g., sequence diagrams)

and can be based on use cases that describe authorized behaviors and on misuse cases that de-

scribe behaviors that should not be present in a correct system implementation. Analysis involves

composing the scenario descriptions with the composed AAM and evaluating the result. If correct

composition of a misuse scenario and an AAM produces a consistent model then the AAM has

a flaw. Similarly, if correct composition of a scenario describing authorized interactions and an

AAM produces an inconsistent model, then the AAM has a flaw.

5.4 Evolving Aspect-Oriented Models

Support for extracting aspect and primary model views from composed models can help ease the

task of evolving AAMs. For example, changing a context-specific aspect model or primary model

after composition has been carried out can be accomplished by extracting the model view from

the composed model and changing the model. Reintegration of the view involves propagating the

changes to the other parts of the composed model. Similarly, developers should be able to add new

composition directives or modify composition directives and bindings in order to resolve conflicts

and fix other defects in the composed model. Extraction of model views or composition related

information, and their reintegration requires tool support if this approach is to scale-up to large

system models. Automated support for view extraction and reintegration also eases exploration of

solution alternatives carried out to support tradeoff analysis.

Extracting views and other information used to compose models requires maintaining relation-

ships among aspect models, the primary model and the composed model. The problem is similar
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to tracking the evolution of complex composite parts in discrete manufacturing. We are currently

investigating the use of a standard framework, the Product Data Management (PDM) framework

[18], that was developed for managing the evolution of complex products in the discrete manufac-

turing area to support storing and evolving AAMs.

5.5 Process Support for Architectural Modeling using AOM

AOM can be carried out in the context of an iterative and incremental architecture development

process. In the first iteration an initial primary model is developed. This model reflects early

decisions pertaining to the concerns that determine the modular structure of the architecture. The

AOM approach described in this paper supports the development of architecture model in which

the modules can be composite classes, subsystems, or logical components.

An initial set of context-specific aspects that describe logical solutions to a subset of depend-

ability concerns that crosscut the primary model are also developed in the first iteration. The initial

aspect and primary models are composed to produce a composed AAM, which is then analyzed.

The following activities are carried out in each subsequent iteration:

� If the analysis performed in the previous iteration uncovers problems, the aspect models,

primary model, or the composition directives are modified accordingly.

� New aspect models for dependability concerns not covered in previous iterations can be

introduced, and the primary model can also be extended to take into account functionality

not considered in previous iterations.

� If needed, new composition directives are created.

� The modified aspect and primary models are composed and analyzed.
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5.6 Tool Support for AOM

We are developing a prototype integrated toolset that supports (1) creation and cataloging of aspect

models, (2) composition of aspects and primary models, and (3) rigorous analysis of composed

models. To date, our work on tool development has produced the following:

� An architectural design of a toolset that supports creation of aspect models, composition of

aspects and primary models, and analysis of composed models has been developed [26].

� A prototype editor for creating aspect model class diagram templates has been developed.

The editor was built using the Eclipse Modeling Framework (see http://www.eclipse.org/emf).

The prototype does not support instantiation of the templates.

� A tool, built on top of Rational Rose, that generates instantiations from template forms of

UML class diagrams (generic aspects) has been developed.

� A prototype model composer that takes primary model and context-specific aspect class

diagrams and composes them has been developed.

We are currently integrating and extending the above tools to form an integrated AOM tool

set.

6 Related Research

Aspect-oriented programming (AOP) supports multi-dimensional separation of concerns (MD-

SoC) at the programming level [3, 22, 23, 24, 25, 27, 28, 35, 36]. An AOP aspect is an implemen-

tation or design concern that crosscuts the primary functional units of a program (e.g., concerns

that crosscut classes of an object-oriented program). A few researchers have started to address the

problem of defining and composing aspects at an abstraction level higher than the programming

language level (e.g., see [5, 11, 17, 32, 33, 37]).
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Fiadeiro et al. [11] specify aspects related to system coordination using an algebraic approach.

Their approach is applicable to detailed design and code, and utilizes a notation that is not widely

known by system developers. Gray et al. [17] use aspects to represent aspects in domain-specific

models. Their research is part of the Model-Integrated Computing (MIC) initiative that targets em-

bedded software systems specifically. MIC extends the scope and usage of models such that they

form the backbone of a development process for building embedded software systems. Require-

ments, architecture and the environment of a system is captured in the form of formal high-level

models that allow the representation of concerns. Our work on MDSoC can complement the MIC

efforts by providing UML-based techniques for representing and composing aspects, and making

tradeoff decisions. Suzuki et al. [37] extend the UML so that it can be used to model code level

aspects. Their approach is restricted to design aspects that can be represented as aspects in an

aspect-oriented program.

In the AOM approach proposed by Clarke et al. [4, 6, 7], a design, called a Subject, is cre-

ated for each system requirement. A comprehensive design is a composition of subjects. Subjects

are expressed as UML model views. Composition relationships specify how models are to be

composed by identifying overlapping concepts in the subjects and specifying how models are in-

tegrated. The UML metamodel is extended to support composition relationships and describe

well-formedness rules for composition. Two types of integration strategies are used: Override and

merge. Override integration is used when existing behavior in a subject needs to be updated to re-

flect new requirements. Merge integration is used when subjects for different requirements are to

be integrated. Operations in related subjects may need to be merged into a unified operation. Rec-

onciliation strategies are use to resolve conflicts between property values of corresponding subject

elements. Precedence relationships, transformation functions applied to conflicting elements, ex-

plicit specification of reconciled elements, and default values may be used for reconciliation.
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As part of the Early Aspects initiative, Moreira, Araujo, and Rashid have targeted multi-

dimensional separation throughout the software cycle [30, 31, 32, 33]. This work supports modu-

larization of broadly scoped properties at the requirements level to establish early tradeoffs, pro-

vide decision support and promote traceability to artifacts at later development stages.

The work described in this paper extends our previous work (e.g., see [13, 14, 15]) by refining

the aspect modeling notation and the instantiation process, and refining the notion of composition

directives to support conflict resolution and modeling of solution variants.

7 Conclusion

Current modeling approaches provide good support for modularizing systems along a few di-

mensions. AOM can significantly enhance support for separation of concerns targeted at tackling

growing software complexity. The AOM approach described in this paper can help developers bet-

ter manage the complexity of creating and evolving complex software that must address multiple

dependability concerns.

Our research goal is to develop an AOM approach that addresses three factors that contribute

to the complexity of software development: (1) the complexity inherent in the required functional-

ity of the software system; (2) the pervasiveness and variety of interdependent concerns that must

be addressed in an architecture; and (3) the need to balance forces when addressing competing

system concerns. The above factors can be addressed in an AOM approach that integrates work

on model-driven development, MDSoC, and value-based assessment. Model-driven development

addresses factor (1) by raising the level of abstraction at which functionality is developed. Ap-

proaches that support MDSoC address factor (2) by providing the means for isolating, composing

and analyzing crosscutting solutions. Value-based assessment techniques address factor (3) by
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providing a base for rigorous tradeoff analysis. The work described in this paper addresses factors

(1) and (2). We are currently developing support that explicitly addresses factor (3). Tradeoff

analysis is desired when crosscutting solutions interact in ways that compromise the accomplish-

ment of concern objectives. In such situations the system developer must make tradeoffs based on

prioritizations of objectives. The challenge is to (1) develop systematic and quantitative tradeoff

analysis techniques that allow developers to assess alternative solutions, (2) develop techniques

for capturing and representing experience related to making tradeoffs across a set of aspect mod-

els, and (3) use the captured experience to guide how aspect models are composed with other

models. The captured experience can take the form of composition strategies that determine the

set of aspect models and composition directives that produce a composed model that best meets

the requirements. Composition strategies and the decisions they drive should be based on infor-

mation about value and importance of the architectural choices represented in alternative aspect

models. Our ongoing work in this area involves adapting existing approaches to tradeoff analysis,

for example, the DDP approach [8, 9, 10].
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