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Abstract—We present a novel framework that applies a meta-
learning approach to clustering algorithms. Given a dataset, our
meta-learning approach provides a ranking for the candidate
algorithms that could be used with that dataset. This ranking
could, among other things, support non-expert users in the
algorithm selection task. In order to evaluate the framework
proposed, we implement a prototype that employs regression
support vector machines as the meta-learner. Our case study is
developed in the context of cancer gene expression microarray
datasets.

I. INTRODUCTION

In several domains, such as in Machine Learning, there is a
variety of algorithms that can be considered as candidates to
solve particular problems. One of the most difficulty tasks in
these domains is to predict when one algorithm is better than
another to solve a given problem [1]. Traditional approaches
to predicting the performance of algorithms often involve
costly trial-and-error procedures [2]. Other approaches re-
quire expert knowledge, which is not always straightforward
to acquire.

In the previous context, meta-learning approaches have
arisen as effective solutions, able to automatically predicting
algorithms performance for a given problem [2], [3], [4].
Thus, such approaches could support non-expert users in
the algorithm selection task. As pointed out in [3], there
are different interpretations for the term “meta-Learning”.
In our work, we use “meta-learning” meaning the automatic
process of generating knowledge that relates the performance
of machine learning algorithms to the characteristics of the
problem (i.e., characteristics of its datasets).

So far, in the literature, meta-learning has been used
only for selecting/ranking supervised learning algorithms [2],
[1], [4]. That is, up to now, there no such an approach
for the context of clustering algorithms (i.e., unsupervised
learning). Motivated by this, we extend the use of meta-
learning approaches for clustering algorithms. We develop
our case study in the context of clustering algorithms applied
to cancer gene expression data generated by microarray.

Cluster analysis techniques of gene expression microarray
data is of increasing interest in the field of functional
genomics [5], [6], [7]. One of the reasons for this is the need
for molecular-based refinement of broadly defined biological
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classes, with implications in cancer diagnosis, prognosis and
treatment. Although the choice of the clustering method
for the analysis of microarray datasets is a very important
issue, there are in the literature few guidelines or standard
procedures on how these data should be analyzed [8].

The choice of algorithms are basically driven by the
familiarity of biological experts to the algorithm rather
than the characteristics of the algorithms themselves and
of the data [8]. For example, the wide use of hierarchical
clustering methods is mostly a consequence of its similarity
to phylogenetic methods, which biologists are often acquaint
to. Thus, in this context, by using a meta-learning approach,
our aim is to provide a framework to support non-expert
users in the algorithm selection task.

The remain of this paper is divided into four sections.
Section II introduces a brief explanation about meta-learning
and some of its techniques. In Section III, we present
our meta-learning proposal to rank and select clustering
algorithms. Section IV introduce our case study. We describe
in Section V the experiments that we developed in order
to evaluate the performance of our prototype. Finally, in
Section VI, we present some final remarks and further work.

II. RELATED WORK

As pointed out before, in this work, we use the term
meta-learning meaning the automatic process of obtaining
knowledge that relates the performance of learning algo-
rithms to the characteristics of the learning problems [2]. In
such a context, each meta-example corresponds to a learning
task and is composed of: (1) the features describing the
problem, called meta-features or meta-attributes; and (2) the
information about the performance of one or more algorithms
when applied to the problem.

The meta-learner is a learning system that receives as
input a set of these meta-examples and, from them, acquires
knowledge that will be used to predict the performance
of the algorithms for new problems. In the context of
selecting supervised learning algorithms, the meta-attributes
are, in general, statistics describing the training dataset of
the problem. Examples of these statistics are: number of
training examples, number of attributes, correlation between
attributes, class entropy, among others [9], [1], [10].

In a more strict formulation of meta-learning, each meta-
example has, as performance information, a class attribute
that indicates the best algorithm for the problem, among a
set of candidates [11], [12], [13], [4], [14]. In such a case, the
class label for each meta-example is defined by performing a



cross-validation experiment using the available dataset. The
meta-learner is simply a classifier which predicts the best
algorithm based on the meta-attributes of the problem.

In order to add new functionalities for the meta-learning
process, other approaches have been proposed. In [15], [16],
for instance, a set of different meta-learners is employed not
only to predict a class label associated to the performance
of the algorithms, but also to recommend a ranking of the
algorithms. In such a framework, a meta-learner is built for
each different pair (X, Y) of algorithms. Given a new learning
problem, the outputs of the meta-learners are collected and,
then, points are given to the algorithms according to the
outputs. For example, if “X” is the output of meta-learner (X,
Y), then algorithm X is credited with one point. The ranking
of algorithms is recommended for the new problem directly
from the number of points assigned to the algorithms.

In contrast to the previous approach, in [17], [18] one tries
to directly predict the accuracy (or alternatively the error)
of each candidate algorithm. The meta-learner in this case
can be used either to select the algorithm with the highest
predicted accuracy or to provide a ranking of algorithms
based on the order of predicted accuracies. In [18], for
instance, the authors obtained good results when a linear
regression model was used to predict the accuracy of 8
different classification algorithms.

Another interesting approach for meta-learning in the one
in [19]. In that work, the performance of the candidate
algorithms is related to the performance obtained by sim-
pler and faster designed learners, called landmarkers. The
authors claim that some widely used meta-attributes are very
time consuming. Thus, landmarking would be an economic
approach to the characterization of learning problems and to
provide useful information for the meta-learning process.

The concepts and techniques of meta-learning have been
mainly evaluated in the context of select the best algorithms
for classification tasks [2]. However, in recent years, they
have been extended to other domains of application, such as
in the selection of time series forecasting models [4] and in
the design of planning systems [20]. Particulary, in this paper,
we extend these concepts for the context of unsupervised
learning.

III. OUR APPROACH

A. General Architecture

Figure 1 illustrates the general architecture of systems used
for, given a dataset, ranking the candidates algorithms. As it
is usual in Machine Learning, the system has two phases:
training and use. In the training phase, the Meta-Learner
(ML) acquires knowledge from the set of meta-examples
stored in the Database (DB). This knowledge associates
characteristics of the data to the performance of the candidate
algorithms. In our case, these are clustering algorithms.

In the phase of use, given a new dataset, the Feature
Extractor (FE) generate the values of the meta-attributes that
describe these data. According to these values, the Meta-
Learner (ML) module produces a ranking of the available
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Fig. 1. System’s architecture.

candidate algorithms. In order to so, it uses the knowledge
previously provided as a result of the training phase.

The DB stores examples of datasets (i.e., meta-examples)
used in the training phase. Each meta-example associates a
dataset (represented by the chosen set of meta-attributes) to
the performance of the candidate algorithms in clustering that
data. This set of meta-examples is semi-automatically built:
(1) the selection of datasets and algorithms to be considered
is a manual task (as usual); (2) the generation of the meta-
attributes is automatically performed by the FE module; and
(3) the performance of the candidate algorithms in clustering
each dataset is empirically obtained by directly applying each
algorithm to the data and evaluating the obtained result.

The ML module implements the chosen meta-learning
approach to acquiring knowledge (training phase) to be used
in the selection or ranking of the candidate algorithms (use
phase). As seen in Section II, the meta-learning approaches
implement one or more machine learning algorithms to
perform these tasks. In this context, we could use a learning
technique to suggest one single algorithm from the set of
candidate ones. Although this is a valuable approach, a more
informative and flexible solution for algorithm selection is to
provide a ranking of the candidate algorithms to each dataset
under analysis [10]. In such a context, if enough resources
are available, more than one algorithm could be used to
cluster the data. Also, if the user has some preference for a
specific subset of candidate algorithms, he/she can select the
algorithms that obtained the best rank among the algorithms
of interest.

B. Implementation Issues

In order to implement a system according to the archi-
tecture described in the previous section, one has to take
into account some important issues. The first issue to be
addressed is the type of dataset to be considered, since it
will have an impact on all the other aspects in the system’s
implementation. In the case of this paper, as mentioned
before, we consider as case study datasets regarding various
types of cancer generated from microarray data.

Next, we need to specify which clustering algorithms
will be considered to form the set of candidate algorithms.
In this paper, seven clustering algorithms are employed to
generate the candidate solutions. These are the single linkage,
complete linkage, average linkage, k-means, mixture model



clustering, spectral clustering, and shared nearest neighbors
algorithm [21], [22], [23]. These algorithms have been cho-
sen to provide a wide range of recovery effectiveness, as well
as to give some generality to the results.

The third issue to be considered is which features will be
used by the FE module to describe the datasets. Such a choice
depends on the type of dataset being analyzed. For example,
in the context of classification problems, we can find standard
sets of meta-attributes that have been used in the meta-
learning area. This is the case of the Data Characterization
Tool, developed within the METAL project1. In contrast, for
cluster analysis, there is no such standard set of attributes,
since the application of meta-learning to this domain is
new. Nevertheless, we can follow some general guidelines
to define them. For instance, one should choose meta-
attributes that can be reliably identified, avoiding subjective
analysis, such as visual inspection of plots. Subjective feature
extraction is time consuming, requires expertise, and has
a low degree of reliability [24]. One should also use a
manageable number of features in order to avoid a time
consuming selection process.

The final issue to be addressed in our work is which meta-
learning approach will be used in the ML module. This
choice depends upon the user’s requirements, since each
meta-learning approach has its advantages and limitations.
In this work, we will present results with the approach that
provides a ranking of the candidate algorithms to each dataset
under analysis.

IV. CASE STUDY

We focus on the problem of selecting algorithms for clus-
tering cancer gene expression data. According to what has
been defined in Section III-B, as our case study, we consider
seven candidate algorithms: single linkage (SL), complete
linkage (CL), average linkage (AL), k-means (KM), mixture
model clustering (M), spectral clustering (SP), and Shared
Nearest Neighbors algorithm (SNN) [21], [22], [23].

We implemented a prototype that according the architec-
ture introduced in Section III-A. In the next sections, we
present some relevant details about the three architecture’s
modules: the Feature Extractor, the Meta-Learner and the
Database.

A. The Feature Extractor

We use a set of eight descriptive attributes (meta-
attributes). Some of them were first proposed for the case
of supervised learning tasks [25].

1) LgE: log10 of the number of examples. A raw indica-
tion of the available amount of training data.

2) LgREA: log10 of the ratio of the number of examples
by the number of attributes. A rough indicator of
the number of examples available to the number of
attributes.

3) PMV: percentage of missing values. An indication of
the quality of the data.

1http://www.cs.bris.ac.uk/˜cgc/METAL

4) MN: multivariate normality, which is the proportion
of T 2 [26](examples transformed via T 2) that are
within 50% of a Chi-squared distribution (degree of
freedom equals to the number of attributes describing
the example). A rough indicator on the approximation
of the data distribution to a normal distribution.

5) SK: skewness of the T 2 vector. Same as the previous
item.

6) Chip: type of microarray technology used (either
cDNA or Affymetrix) - see Section V.

7) PFA: percentage of the attributes that were kept after
the application of the attribute selection filter.

8) PO: percentage of outliers. In this case, the values
stands for the proportion of T 2 distant more than two
standard deviations from the mean. Another indicator
of the quality of the data.

As this set is possibly not optimal, in future implementa-
tions we will consider new features.

B. Meta-Learner

Our system generates a ranking of algorithms for each
dataset given as input. In order to generate a ranking of
P candidates (clustering algorithms), we use P regressors,
each one responsible for predicting the ranking of a specific
algorithm for the input dataset.

For constructing the regressor associated to a given algo-
rithm i, we adopt the following procedure. First, we define
a set of meta-examples. Each meta-example corresponds to
a dataset, described by a set of meta-attributes, with one of
them representing the desired output. The value of the meta-
attribute representing the desired output is assigned according
to the ranking of the algorithm among all the seven ones
used to cluster the dataset. Next, we apply a supervised
learning algorithm to each of the P regressors, which will
be responsible for associating a dataset to a ranking.

As previously mentioned, we consider seven available
clustering algorithms: SL, AL, CL, KM, M, SP and SNN.
As a consequence, we build seven regressors, R1, . . . , R7,
associated to, respectively, SL, AL, CL, KM, M, SP and
SNN. Now, suppose that the outputs of the seven regressors
for a new dataset are, respectively, 7, 5, 6, 1, 2, 4 and 3. Such
an output means, for instance, that model SL is expected to
be the worst model (it is the last one in the ranking), AL is
fifth best model model, CL the fourth one, KM is supposed
to better than all the others, as it is placed as first one in the
ranking.

In our implementation, we use the regression Support
Vector Machine (SVM) algorithm, implemented in LIBSVM:
a library for support vector machines [27]. A reason for this
choice is that, in our preliminary results, SVMs showed a
better accuracy than models such as neural networks and k-
NN.

C. The Database

The Database stores meta-examples regarding cancer gene
expression microarray datasets. Each meta-example has two
parts: (1) the meta-attributes describing the gene expression



data, which are those presented in Section IV-A; and (2)
a vector with the ranking of each clustering algorithm for
that dataset. In order to assign this ranking for a dataset, we
run each of the seven clustering algorithms with the non-
normalized version of the dataset to produce the respective
partitions. The number of clusters is set to be equal to the
true number of the classes in the data. The known class
labels are not used in any way during the clustering. For
all non-deterministic algorithms, we run the algorithm 30
times. Then, for further analysis, we pick the partition with
the best corrected Rand index.

In fact, in terms of the index to measure the success of
the algorithm in recovering the true partition of the dataset
and build the ranking, we also employ the corrected Rand
index (cR) [21], [28]. The cR can take values from -1 to 1,
with 1 indicating a perfect agreement between the partitions,
and the values near 0 or negatives corresponding to cluster
agreement found by chance.

Formally, let U = {u1, . . . , ur, . . . , uR} be the par-
tition given by the clustering solution, and V =
{v1, . . . , vc, . . . , vC} be the partition formed by an a priori
information independent of partition U (the gold standard).
The corrected Rand is defined as:
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where (1) nij represents the number of objects in clusters
ui and vj ; (2) ni· indicates the number of objects in cluster
ui; (3) n·j indicates the number of objects in cluster vj ; (4)
n is the total number of objects; and (5)

(
a
b

)
is the binomial

coefficient a!
b!(a−b)! .

Based on the values of the cR, the ranking for the
algorithms is generated as follows. The clustering algorithm
that presents the highest cR come higher in the ranking.
Algorithms that generate partition with the same cR receive
the same ranking number, which is the mean of what they
would have under ordinal rankings.

V. EXPERIMENTAL DESIGN

A. Description of the Datasets

We describe here the experiments that we developed in
order to evaluate the performance of our prototype. Thirty
two microarray datasets are included in this analysis (see
Table I). These datasets present different values for char-
acteristics such as type of microarray chip (second column),
number of patterns (third column), number of classes (fourth
column), distribution of patterns within the classes (fifth
column), dimensionality (sixth column), and dimensionality
after feature selection (last column).

In terms of the datasets, it is important to point out that
microarray technology is usually available in two different
platforms, cDNA and Affymetrix [5], [6], [7]. Measurements
of Affymetrix arrays are estimates on the number of RNA
copies found in the cell sample, while cDNA microarrays

values are ratios of the number of copies in relation to a
control cell sample.

In the case of Affymetrix, following other works, for our
datasets, all genes with expression level below to 10 are set to
the minimum threshold of 10. The maximum threshold is set
at 16,000. Values below or above these thresholds are often
not reliable [5], [29], [30]. That is, our analysis is performed
on the scaled data to which the ceiling and threshold values
have been applied.

Furthermore, in order to remove uninformative genes
for the case of Affymetrix arrays, we apply the following
procedure. For each gene j (attribute), we compute the mean
mj . But before doing so, in order to get rid of extreme values,
we discard the 10% largest and smallest values. Based on
this mean, we transform every value x∗ij of example i and
attribute j to:

yij = log2(x
∗
ij/mj)

After the previous transformation, we select for further
analysis genes whose expression level differed by at least
l-fold, in at least c samples, from their mean expression
level across samples. With few exceptions, the parameters
l and c were chosen in such a way as to yield a filtered
dataset with around at least 10% of the original number of
genes (features). It is important to point out that the data
transformed with the previous equation is only used in the
filtering step.

A similar filter procedure was applied for the case of
cDNA microarray, but without the need to transform the data.
In the case of cDNA microarray datasets, whose attributes
(genes) could present missing values, we discard the ones
with more than 10% of missing values. The attributes that are
kept and still present missing values have the values replaced
for the respective mean value of the attribute.

B. System Performance

For a given dataset, in order to generate the ranking, we
considered the configuration that obtained the best corrected
Rand. We executed the algorithms with Euclidean distance,
Pearson correlation and Cosine, but always with the number
of cluster set to the real number of classes in the dataset.

We evaluate the performance of the meta-learners using
the leave-one-out procedure. At each step, 31 examples are
used as the training set, and the remaining example is used
to test the generated SVMs. This step is repeated 32 times,
using at each time a different test example.

The quality of a suggested ranking for a given dataset is
evaluated by measuring the similarity to the ideal ranking,
which represents the correct ordering of the models according
to the corrected Rand. In our work, we used the Spearman’s
rank correlation coefficient (see [10]) to measure the simi-
larity between a suggested and the ideal rankings.

Given a dataset i, we calculate the squared difference be-
tween the suggested and the ideal rankings for each algorithm
j (D2

ij). Then, we compute the sum of these differences for
all algorithms:



TABLE I
DATASET DESCRIPTION

Dataset Chip n Nr. Classes Dist. Classes d Filtered d
Alizadeh-V1 [31] cDNA 42 2 21,21 4022 1095
Alizadeh-V2 [31] cDNA 62 3 42,9,11 4022 2093
Armstrong-V1 [32] Affy 72 2 24,48 12582 1081
Armstrong-V2 [32] Affy 72 3 24,20,28 12582 2194
Bhattacharjee [33] Affy 203 5 139,17,6,21,20 12600 1543
Bittner [34] cDNA 38 2 19, 9 8067 2201
Bredel [35] cDNA 50 3 31,14,5 41472 1739
Chen [36] cDNA 180 2 104,76 22699 85
Chowdary [37] Affy 104 2 62,42 22283 182
Dyrskjot [38] Affy 40 3 9,20,11 7129 1203
Garber [39] cDNA 66 4 17,40,4,5 24192 4553
Golub-V1 [40] Affy 72 2 47,25 7129 1877
Gordon [41] Affy 181 2 31,150 12533 1626
Khan [42] cDNA 83 4 29,11,18,25 6567 1069
Laiho [43] Affy 37 2 8,29 22883 2202
Lapoint-V1 [44] cDNA 69 3 11,39,19 42640 1625
Lapoint-V2 [44] cDNA 110 4 11,39,19,41 42640 2496
Liang [45] cDNA 37 3 28,6,3 24192 1411
Nutt-V1 [46] Affy 50 4 14,7,14,15 12625 1377
Nutt-V2 [46] Affy 28 2 14,14 12625 1070
Nutt-V3 [46] Affy 22 2 7,15 12625 1152
Pomeroy-V1 [47] Affy 34 2 25,9 7129 857
Pomeroy-V2 [47] Affy 42 5 10,10,10,4,8 7129 1379
Ramaswamy [29] Affy 190 14 11,10,11,11,22,10,11,10,30,11,11,11,11,20 16063 1363
Risinger [48] cDNA 42 4 13,3,19,7 8872 1771
Shipp [49] Affy 77 2 58,19 7129 798
Singh [50] Affy 102 2 58,19 12600 339
Su [51] Affy 174 10 26,8,26,23,12,11,7,27,6,28 12533 1571
Tomlins-V1 [52] cDNA 104 5 27,20,32,13,12 20000 2315
Tomlins-V2 [52] cDNA 92 4 27,20,32,13 20000 1288
West [53] Affy 49 2 25,24 7129 1198
Yeoh-V1 [54] Affy 248 2 43,205 12625 2526

D2
i =

∑
j

D2
ij (1)

Finally, the Spearman coefficient is calculated using the
equation:

SRCi = 1− 6 ∗D2
i

P 3 − P
, (2)

where P is the number of candidate algorithms. The value of
this coefficient ranges from [−1, 1] . The larger is the value
of SRCi, the greater is the similarity between the suggested
and the ideal rankings for the dataset i.

In order to evaluate the rankings generated for datasets
in the test set, we calculated the average of the Spearman’s
correlation for all these datasets (Equation 3).

SRC =
1
32
∗
∑

i∈test

SRCi (3)

The result of our approach was compared to a de-
fault ranking method, where the average ranking is sug-
gested for all datasets. In our case, the default ranking is:
SL=6.41, AL=4.60, CL=3.84, KM=2.31, M=3.40, SP=3.07,
SNN=4.36. In Table II, we show the mean and standard devi-
ation for the Spearman coefficient for the rankings generated
by our approach and for the default ranking.

As it can be seen, the rankings generated by our method
were more correlated to the ideal ranking. In fact, according
to a hypothesis test, at a significance level of 0.05, the mean
of the correlation value found with our method was signifi-
cantly higher than that obtained with the default ranking.

VI. FINAL REMARKS

In this work, we proposed a new approach to providing
knowledge for the selection of clustering algorithms. We can
point out contributions of this work to two different fields:
(1) we applied meta-leaning concepts to a problem which had
not yet been tackled: clustering algorithm selection; and (2)
in terms of cluster analysis, we provided a novel framework
to support non-expert users in the algorithm selection task.

In order to evaluate our framework, we developed a case
study in the context of cancer gene expression microarray
datasets. The experiment performed revealed good results in
that our method, compared to the default ranking, generated
rankings that were more correlated to the ideal ranking. In
fact, according to a hypothesis test, at a significance level of
0.05, the mean of the Spearman coefficient value found with
our method was significantly higher than that obtained with
the default ranking.

Finally, we would like to highlight that several works can
be developed from our proposal by implementing other meta-
learners for different categories of datasets, and by using



TABLE II
MEAN OF THE SPEARMAN COEFFICIENT

Method SRC
Default 0.59± 0.37
Meta-Leaner 0.75± 0.21

other meta-learning approaches that have not yet been used
in the algorithm selection problem.
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