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Abstract. Secondary information such as Gene Ontology (GO) anno-
tations or location analysis of transcription factor binding is often relied
upon to demonstrate validity of clusters, by considering whether indi-
vidual terms or factors are significantly enriched in clusters. If such an
enrichment indeed supports validity, it should be helpful in finding bi-
ologically meaningful clusters in the first place. One simple framework
which allows to do so and which does not rely on strong assumptions
about the data is semi-supervised learning. A primary data source, gene
expression time-courses, is clustered and GO annotation or transcription
factor binding information, the secondary data, is used to define soft
pair-wise constraints for pairs of genes for the computation of clusters.
We show that this approach improves performance when high quality la-
bels are available, but naive use of the heterogeneous data routinely used
for cluster validation will actually decrease performance in clustering.

1 Introduction

A fundamental task in the analysis of gene expression time-courses is to find
groups of genes undergoing the same transcriptional program or sharing similar
functions. The numerous clustering methods proposed in the literature [2] are
often validated by showing a statistically significant enrichment of individual
Gene Ontology (GO) terms or transcription-factor binding information in some
or all clusters. If the validity of a cluster is concluded from secondary data
shared by its elements, a clustering procedure which prefers such clusters in the
computation should yield superior results.

A natural, simple and mostly assumption-free framework is semi-supervised
learning. Methods make use of labels which are available for a subset of objects
in a combination of supervised and unsupervised learning. One particular type of
methods is called clustering with constraints and it makes weaker assumptions
about the labels by encoding secondary information as pair-wise constraints.
We use either Gene Ontology annotation (GO) [1] or data from location analysis
of transcription regulators bindings (TR) [6] as secondary information. For this
data, the use of a clustering with constraints method, instead of a joint analysis
approach [10, 11], has two advantages: (1) GO and TR is not available for all
genes from expression experiments; and (2) gene expression time-courses provide
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one view of the biological process under investigation, which is very unlikely to
provide the same level of details as GO or TR data. Using such data as secondary
information we can limit the results to biologically more plausible solutions.

One challenge of using GO or TR data as secondary knowledge is their complex
and overlapping structure. GO, for example, consists of three directed acyclic
graphs (DAG), composed of terms describing either molecular functions, pro-
cesses or components. Most genes are directly annotated with several terms.
Furthermore, if a gene is annotated with one term, it is also associated with all
parent nodes of this term. Even though the structure of TR is simpler, genes are
often associated with more than one transcription regulator and vice-versa. This
work makes use of soft pair-wise constraints to model the secondary information,
following the approaches of [5] and [7], and extending the semi-supervised ap-
proach applied for gene expression proposed in [9]. The challenge in this method
is the formulation of the constraints between pairs of genes, which ideally should
extract as much information from the secondary data as possible.

2 Mixture Model Estimation with Constraints

A standard mixture model can be defined as P[xi|Θ] =
∑K

k=1
αkP[xi|θk], where

X = {xi}
N
i=1 is the set of observed vectors and Θ = (α1, ..., αK , θ1, ..., θK) are

the model parameters. By including a set of hidden labels Y = {yi}
N
i=1, where

yi ∈ {1, .., K} defines the component generating the xi, we obtain the complete
data likelihood, which can be estimated with the EM method.

P[X, Y |Θ] = P[X |Y, Θ]P[Y |Θ]

The constraints are incorporated in the estimation by extending the prior
probability of the hidden variable to P[Y |Θ, W ] = P[Y |Θ]P[W |Y, Θ], where W

is the set of positive constraints w+

ij ∈ [0, 1] and negative constraints w−
ij ∈ [0, 1],

for all 1 ≤ i < j ≤ N . As in Lu and Leen 2005, we use the following distribution
from the exponential family to model P[W |Y, Θ].

P[W |Θ, Y ] =
1

Z
exp

P

i

P

j 6=i −λ+w
+

ij
1{yj 6=yi}−λ−w

−
ij

1{yj=yi}

Lange et al. [5] showed that this distribution follows the Maxent principle,
where λ+ and λ− are Lagrange parameters defining the penalty weights of posi-
tive and negative constraints violations. In this formulation, however, one cannot
assume independence between elements in Y in the estimation step. Exact in-
ference of the posterior P[yi = k|xi, Θ] involves the marginalization over all
objects with some non-zero constraint with the ith object. Such computation is
only feasible when the constraints are highly decoupled, which is not the case of
the structures in this study. One way to approximate the posterior distribution is
to use a mean field approximation [5]. More formally, the posterior assignments
will take the form

P[yi = k|Y ′
i , X, Θ, W ] =

αkP[xi, θk]

Z
exp





∑

j 6=i

−λ+w+

ij(1 − rj,k) − λ−w−
ijrj,k



,



where rj,k = P[yj = k|Y ′
j , X, Θ, W ]. When there is no overlap in the annotations—

more exactly, w+

ij ∈ {0, 1}, w−
ij ∈ {0, 1}, w+

ijw
−
ij = 0, and λ+ = λ− ∼ ∞—we

obtain hard constraints as the ones used in [9], or as implicitly performed in [8].

2.1 Constraints Definitions

Each DAG of gene ontology is composed of a set of terms T = {t1, ..., tp} and a
set of parent child relations between pairs of terms P (tl, tm) ∈ P . The annotation
of a set of genes G = {g1, ..., gN} can be defined as A(tl, gi) ∈ A. Furthermore,
we also have the property that genes annotated with a term are also annotated
with the whole set of parents of this term, or (P (tl, tm) ∈ P) ∧ (A(tm, gi) ∈
A) → A(tl, gi) ∈ A. The main idea for calculating the constraint is to account
for the similarity of the sub-dags D(gi) = {tm|A(tm, gi) ∈ A, tm ∈ T } associated
with the gene pairs. More formally, for all pair of genes gi and gj, we define the
constraints as (non-annotated genes have constraints equal to zero):

w+

ij =
#{tm|tm ∈ D(gi) ∩ D(gj)}

#{tm|tm ∈ D(gi) ∪ D(gj)}
, and w−

ij =
#{tm|tm ∈ D(gi) ] D(gj)}

#{tm|tm ∈ D(gi) ∪ D(gj)}
.

Similarly, the formula above can be used for a set of of transcription factors
F = {f1, ..., fq}, where A′(fl, gi) ∈ A′ indicates that factor fl bounds to gi and
D′(gi) is the set of factors associated with gi.

3 Results

We use the expression profiles of 384 genes during Yeast mitotic cell division
assigned to one of the five cell cycle phases classes [4], which we refer to as YC5.
Even though this data set is biased towards profiles showing periodic behavior,
and some of the class assignments are ambiguous, it is one of the few with a
complete expert labeling of genes. The relation between regulators and target
genes where obtained from large scale location analysis [6], comprising data
from 142 candidate regulators. Relations were obtained after thresholding the
confidence that the factor binds to a particular gene as in the source literature.
In relation to GO, the SGD Saccharomyces cerevisiae annotation was used and
for simplicity, we only included the DAG molecular process in our analysis.

Multivariate normal distributions with diagonal covariance matrix are used
as models for the expression profiles. Each parameter estimation is performed
15 times and the best model is chosen, to lessen effects of random initialization.
For all experiments we varied values of λ+ and λ−. We use the class labels to
compute sensitivity (Sens), specificity (Spec) and corrected Rand (CR).

As a proof of concept, we use the class labels from YC5 to generate pair-wise
constraints for 5% of all pairs of genes—positive if the genes belong to the same
class, negative else—and observe the performance of the method with distinct
penalizing settings (Fig. 1 top). In all cases, CR, Spec and Sens tend to one for
λ near ten, with the exception of the experiments with positive constraints. In
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Fig. 1. We depict the CR, Sens and Spec after clustering YC5 with positive (left),
negative (middle) and positive and negative (right) constraints. We used either real
class labels (top), GO (middle) or TR (bottom) as secondary information.

this case, one of the five components always remained empty, and two classes
were joined. Furthermore, the use of positive constraints only had a stronger
effect on the sensitivity, while the negative constraints affect the specificity. This
is expected since these constraints penalize false negatives and false positives,
respectively. It also explains the joined classes in the experiments with positive
constraints, since the secondary data gives no penalty for those solutions (and
the models for gene expression makes the decision).

We observe similar results if we use GO and TR as secondary data. There is
a slight but significant increase of CR and Sens for the methods with positive
constraints (t-test indicates an increase at λ+ = 0.5 with p-value of 2.38e− 10),
followed by a decrease in CR, Sens and Spec . No improvements were obtained
with the use of positive and negative constraints, and the negative constraints
alone only deteriorated the results. To better understand the results above, we
repeated the experiments with real labels, but this time including random labels
(also with 5% of pairs constrained). As seen in Fig. 2, the addition of random
labels have a great impact on the recovery of the clusters. The inclusion of 20% of
random labels worsen the results considerably, and for 60% of random labels the
corrected Rand displays a behavior similar to TR and GO. This indicates that (1)
the method is not robust in with respect to noise in the data, and (2) presence
of noise or non-relevant information in TR and GO.
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Fig. 2. We depict the CR obtained by clustering YC5 with positive constraints from 5%
of real labels with the inclusion of 0%, 20%, 40%, 60% and 100% random labels.

This however is not too surprising, so we attempt to estimate the maximal
positive effect one can obtain from this secondary data. We perform the compu-
tation [3] for GO term and TR site enrichment used in cluster validation to obtain
informative terms from the true classes. We repeat the experiments above with
those most informative terms only. However, we observe only a slight improve-
ment for the negative constraints and a marginal improvement with the use both
positive and negative constraints in the TR data set (a CR from 0.454 to 0.472).
On the other hand, no improvement was obtained after filtering terms in GO

(data not shown).
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Fig. 3. We depict CR, Sens and Spec after clustering YC5 with positive (left), negative
(middle) and positive and negative (right) constraints after filtering of relevant TR.

4 Discussion

Semi-supervised learning is clearly an effective framework for joint analysis of
heterogeneous data if high-quality secondary data is available as our experiments
using class labels show. Surprisingly, using the very data routinely considered to
support cluster validity—significantly enriched GO terms and location data—
as secondary data can deteriorate cluster quality drastically. While there are
parameter choices to explore, further theoretical questions to address and more
data sets to repeat experiments on, the main point remains valid and clear:
secondary data has little power for clustering, unless it is of very high quality,
free of errors and ambiguities. Less than a percent of high-quality labels [9] have



a larger positive effect than 5% of labels of which 20% are incorrect. On one
hand, this puts the economy of large-scale experiments into question. On the
other hand, it stresses the importance of theoretical progress on how to reduce
noise, assess reliability of individual data and how to incorporate per object
quality indicators into methods.
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