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Abstract—This paper surveys the field of Markerless Aug-
mented Reality, specifically online and monocular. This research
field is applied by the TechPetro project that aims to define
and developed a Markerless Augmented Reality framework for
the implementation of Augmented Reality based engineering
solutions. In Markerless Augmented Reality, 3D virtual objects
are integrated into a 3D real environment in real-time. This is
achieved using the world as marker instead of fiducial markers
applied in traditional Augmented Reality systems. It discusses
major issues related to the field, such as tracking and registration,
which become much more complex. This paper also describes
the characteristics and experimental results of online monocular
Markerless Augmented Reality techniques. Future directions and
areas requiring further research are briefly discussed. This survey
provides a starting point for anyone interested in researching or
using Markerless Augmented Reality.

Index Terms—Markerless Augmented Reality, Online and
monocular techniques, Survey.

I. INTRODUCTION

This paper surveys the current state-of-the-art in Markerless
Augmented Reality, from now on named MAR throughout this
paper. It describes work performed at many different sites and
explains the issues and problems approached related to online
and monocular MAR systems. It summarizes the tradeoffs and
approaches taken so far to overcome problems and speculates
on some future directions that deserve exploration.

A survey paper does not present new research results. The
contribution comes from consolidating existing information
from many sources and publishing an extensive bibliography
of papers in this field. This paper provides a good starting
point for anyone interested in beginning research in this area.

Section 1 describes what MAR is, and contextualizes the
authors’ studies in the TechPetro project. Section 2 explains
the main techniques developed for building online monocular
MAR systems. Finally, Section 3 draws some conclusions,
highlighting thoughts regarding MAR tendencies, and describ-
ing some areas that require further work and research.

See http://www.cin.ufpe.br/˜grvm
Manuscript received June 30, 2007; revised July 20, 2007.

A. Definition

MAR systems integrate 3D virtual objects into a 3D real
environment in real-time, enhancing user’s perception of and
interaction with the world. Its basic difference from marker
based AR systems is the method used to place virtual objects
in the real world. This approach is not based on the use of
traditional artificial markers that need to be placed in the world
to be tracked by the system in order to calculate their position
and orientation.

In MAR any part of the real environment may be used as a
marker that can be tracked in order to position virtual objects.
Therefore, there are no ambient intrusive markers that are
not really part of the environment. Furthermore, MAR counts
on specialized and robust trackers. Another advantage is the
possibility of extracting from the environment characteristics
information that may later be used by the MAR system.

Nonetheless, tracking and registration techniques become
more complex in MAR systems. Another disadvantage
emerges in online MAR since it presents more restrictions.

B. The TechPetro Project

MAR technology has been studied in the context of the
TechPetro project. TechPetro is a two years project, devel-
oped by the Virtual Reality and Multimedia Research Group
(GRVM) in association with CENPES Petrobras and FINEP.
In this project, engineering solutions will be developed based
on two technologies: MAR and 3D reconstruction from 2D
images. These technologies allow the automatic 3D recon-
struction of complex scenes captured from the real world,
as well as the augmentation of user’s perception through the
use of an interface that integrates in real-time 3D virtual
information into the real world scene visualized by the user.

This paper is related to TechPetro’s MAR studies. In se-
quence, MAR techniques are classified, described and com-
pared.

II. MAR TECHNIQUES

Techniques developed for MAR can be classified in two
major types: model based and Structure from Motion (SfM)
based (Figure 1). In model based techniques, knowledge about
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Fig. 1. Online monocular MAR taxonomy.

the real world is obtained before tracking occurs and is stored
in a 3D model that is used for estimating camera pose. In SfM
based approaches, camera movement throughout the frames is
estimated without any previous knowledge about the scene,
which is acquired during tracking. Model based methods are
often simpler than SfM based ones, but tracking depends on
the visibility of the previously modeled objects in the real
world image. SfM based systems do not have this constraint,
since they are capable of continuously tracking the camera
egomotion in unknown scenes. Both MAR techniques types
are detailed in the following subsections.

A. Model Based

One of the approaches used to calibrate the camera in
MAR applications relies on the use of 3D Computer Aided
Design (CAD) models relative to the objects present in the
real scene [1]. 3D models are matched with the 2D image of
the real world and the output of this process is the objects
that are present in the image, their position and orientation. If
there is not a 3D model of the object to be tracked, then it
can be obtained using any 3D digitizing method, e.g. optical
3D reconstruction. This process is almost always offline and
consists in a preparation stage to the online phase of the
tracker, where the model is correlated with the image.

The advantage of using a model based approach is the
possibility of interaction between real and virtual worlds, like
occlusion and collision [2], as can be seen in the examples
illustrated in Figure 2. In order to accomplish such types of
interaction, the application exploits the fact that the real object
pose is known and its structure is described by the 3D model.
The 3D model is utilized in the physics simulation and the
visibility algorithm, but it is not overlaid onto the image (only
the remaining virtual elements are).

Fig. 2. A virtual car colliding with a real castle ruin (left) and being occluded
by a real castle (right) [2].

Model based approaches require an a priori knowledge
about the real scene, since 3D models of the objects are
needed. Due to the offline model acquiring process, these tech-
niques are, in general, not totally online and cannot be used
in unprepared environments. Furthermore, tracker initialization
is usually done manually or requires a prior training in order
to be automatic. This aspect is critical for AR applications,
since any tracking failure will force the user to reinitialize the
system by hand. Another issue is related to the fact that the
tracked objects need to be present all the time in the image,
otherwise it will not be possible to retrieve the camera pose
and augment the scene.

Model based techniques can be classified in three categories.
The first category consists in methods that take only the
objects’ edges into consideration while doing tracking [2]
[3]. The second one relies on the optical flow of the image
sequence [4], while the third one comprises the use of objects’
texture information to perform tracking [5] [6]. Aspects related
to each category are described next.

1) Edge Based: In this category, camera pose is estimated
by matching a wireframe 3D model of an object with the real
world image edge information. This matching is achieved by
projecting the model onto the image and minimizing the dis-
placement between the projected model and the imaged object.
In order to accomplish this task, a good initial hint about the
object pose is needed. In edge based methods, the initialization
is done manually. Once the first pose is estimated, it is used to
project the model onto the next frame. Assuming that camera
displacement between consecutive frames is relatively small,
using the previous pose estimation to predict the next pose
will not harm the matching process.

Edge based techniques were the first approaches to real-
time 3D object tracking [1]. Due to their low complexity, they
are easy to implement and have a good performance. Because
they only use edge information, edge based approaches are
able to track specular objects affected by environment lighting.
However, edge based methods usually do not support fast
camera movements, since the projected model will be too
far from its correct location. Another problem is related to
matching errors, which may be caused by elements such as a
cluttered background or shadows in the image.

Edge based methods can be divided in two subcategories.
The first subcategory comprises methods that sample some
control points along the edges of the wireframe 3D model
and compare their projections with strong gradients present in
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Fig. 3. Matching between the projected control points of the model and the
imaged object [7].

the image [2]. The second subcategory encloses methods that
detect explicit edges on the image and match them with the
model projection [3].

The first task performed by point sampling methods is
choosing which control points are going to be considered in
the matching phase. Based on the previous estimated pose, the
visible edges of the model are determined. Only the control
points that belong to a visible edge are going to be used.
After such selection, the points are projected onto the image
plane using previous camera pose estimation. Image edges
are detected by calculating the gradients in both x and y
directions. Then, there is a search around the neighborhood of
the projected points in order to find the corresponding points
in the image edges [7] (see Figure 3). Finally, the camera
relative motion is estimated based on the variation of the
points’ positions.

Point sampling methods are very efficient, since the pro-
cessing involved is rather simple. They are also very general,
as they can cover curved edge objects. The disadvantage of
point sampling approaches is their lack of robustness in the
matching phase, which can lead to incorrect pose estimation
and jittering. This problem may be addressed using robust
estimators, insensitive to noise sources, like occlusions and
background cluttering. An example of a MAR application
where a lego toy is placed on a chair is shown in Figure 4 and
described in [2]. The control points and the chair coordinate
system can also be distinguished.

In the explicit edge detection technique, edges are extracted
from the image using a line detection operator such as the
Hough transform. The wireframe model is projected onto
the image using the previously estimated camera pose. The
projection and the image edges are compared in order to
calculate the current camera pose [3]. Figure 5 illustrates the
process.

Explicit edge detection methods are more robust than point
sampling ones, but lack in generality, since the usage of lines
restricts its use to polygonal objects. In addition, point sam-
pling methods are more efficient than explicit edge detection
methods.

2) Optical Flow Based: Differently from edge based meth-
ods, which rely on spatial information obtained by image-

Fig. 4. Point sampling MAR application [2].

Fig. 5. Detected lines on the image (left) and pose estimated by matching
with the projected model (right) [3].

model matching, optical flow based tracking exploits temporal
information. This is extracted from the relative movement of
the object projection onto the image. After initialization, which
is often manual, the optical flow between the frames captured
at time t and t+1 is calculated. Then, the algorithm determines
which points from the model projected onto the image at time
t are still present in the image at time t+1. The displacement
of these points over time is calculated using an algorithm such
as the Kanade-Lucas (KL), described in [8]. This is used to
estimate camera movement.

Due to its integration over time, 3D tracking based on
optical flow presents smoother changes between consecutive
poses. Another advantage is the moderate processing load
needed. However, optical flow techniques tend to accumulate
errors produced by sequential pose estimations, leading to a
deviation from the correct camera calibration. Optical flow
algorithms are also not robust against lighting changes and
large camera displacements, originating errors in object track-
ing and requiring re-initialization. Figure 6 shows an optical
flow based application that performs 3D face tracking [4].

3) Texture Based: In this section, texture based techniques
will be presented, together with their general principles. As
the name says, this category of techniques takes into account
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Fig. 6. Optical flow based MAR application [4].

Fig. 7. 3D tracking with template matching - template image in the center
of the marker (left) and augmented scene (right) [11].

texture information presented in images. Firstly, template
matching techniques will be described [5]. This subcategory
has been proposed in order to apply a distortion model to a
reference image to recover rigid object movement. Another
subcategory is interest point based [6], reasonably similar to
the optical flow technique, that is, they also use just local
features but taking into consideration texture information to
help the search and tracking.

The template matching approach is based on global in-
formation, unlike feature based techniques. The strength of
this subcategory lies in its ability to treat complex patterns
that would be difficult to model by local features. These
techniques are also called sum-of-square-difference or SSD,
as they consist in minimizing the difference between a region
of the image and a reference template.

Basically, such techniques search for the parameters of a
function that warps a template into the target image, so that
tracking can be done. According to [8], this is the general goal
of the KL algorithm. In [9], the author shows an approach
based on the Jacobian of the warping function used in the
KL algorithm to do 2D tracking. However, there are some
problems with variations in illumination and partial occlusions.

When it comes to 3D tracking, the Jacobian approach shows
some difficulties and does not achieve good results. Therefore,
in [5], instead of using the inverse of the Jacobian image, one
could approximate the variations in pixels intensities using
hyperplanes, leading to better results without any further com-
putation. Using the hyperplane approximation, [10] showed
how to treat illumination changes, partial occlusion and fast
motion, using normalization of lighting changes and an ex-
tended motion model. Figure 7 shows a simple augmented
scene where an image was used as a template.

The subcategory of interest point based techniques takes into
account localized features, instead of a global search used by

Fig. 8. Algorithm steps - patch manually selected (top left), automatic feature
detection (top right) and tracking plane (bottom) [14].

template matching techniques. As a result, this subcategory is
less computer-intensive than former ones. Another advantage
is the fact that illumination changes are easily achievable. In
[12], the author mentions that as no inter-frame assumption is
made, it allows a wider baseline than optical flow.

As previously said, this technique is based on local features
selection, and according to [6] these features can be patches
manually selected in a preliminary stage. As there is human
intervention during this step of the process, the selection of
patches demands specific expertise, and it would be very
interesting that these patches could be automatically selected;
there comes the main idea of interest point techniques.

It is possible to match only a subset of the image, using an
interest operator. Basically, the interest operators must select
all points with a certain set of characteristics. In [1], there is
a good survey about these operators.

Tracking can be done using KL [8]. An alternative to
matching is achieved through the use of the Kanade-Lucas-
Tomasi (KLT) tracker [13]. Initially, there is an extraction
phase, where features with higher eigenvalues are selected.
After that, the tracking phase relies mostly on KL. One
advantage of this approach is that continuity is easier to
achieve, but KLT offers some performance issues.

There is also an interest point technique based on track-
ing planes [14], instead of full 3D models, and it can be
seen in Figure 8. The main idea here is to explore the
homography formed by the plane in two consecutive views.
This computation is performed using the RANdom SAmple
Consensus (RANSAC) algorithm, and recursively determines
which homography is correct.

As someone could expect, this method accumulates errors
during its execution, once there is no a priori knowledge about
any points in the scene, occasioning some drift and a minimal
jittering. In [15], the concept of keyframes is introduced to
resolve the drift issue. Keyframes are images of the scene in
which interest points are precalculated. Then, every incoming
frame is matched against the closest keyframe. It is easy to see
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why this approach is not scalable, once huge differences can
happen between keyframes and incoming frames, occasioning
drift; hence, this approach is hardly applicable to an AR
application.

In [15], the author also shows how to use a mix of the
keyframes approach and information provided by preceding
frames to enforce temporal coherence. This way, the problem
of tracking a 3D model is reformulated as a bundle adjust-
ment problem. In [16], there is a simple way of using edge
information to make the tracker more robust.

B. SfM Based
Instead of relying on previously obtained information about

the scene to be tracked, some MAR techniques estimate the
camera displacement without any a priori knowledge about
the environment. These methods are also able to retrieve the
structure of the scene in real-time, with different levels of
detail, depending on the approach used.

SfM based techniques are mainly online, since they do not
require any previous offline learning phase. Due to this, it is
possible to reconstruct a totally unknown environment on the
fly. As a drawback, SfM approaches are often very complex.
They also have some constraints related to their real-time
nature.

1) Real-Time SfM: A classic technique used in computer
vision to make 3D reconstruction is SfM [17]. Its traditional
implementation follows a suggested pipeline, which is not
concerned with real-time constraints.

SfM produces great results relative to the final mesh gen-
erated by the entire process, but some algorithms present in
its pipeline require a lot of processing time to finish their
work. Usually, the SfM pipeline is composed of the following
phases: feature tracking (normally using some optical flow
based tracker, like KL [8] or KLT [13]), fundamental matrix
extraction and refinement, camera pose estimation and self-
calibration.

Basically, in order for SfM to support real-time constraints,
some of these phases have to be simplified or replaced by
other algorithms that still maintain the robustness of this
technique. In Nistr’s implementation of real-time SfM, he
introduced some modifications to the pipeline relative to the
refinement of the points given by the feature tracker, creating a
brand new solution based on the classic RANSAC refinement
algorithm [18]. He used this new algorithm to classify the
points and eliminate outliers, producing a mesh without noise.
This algorithm works similar to RANSAC, but in a preemptive
way, stopping points classification when a good result is
reached.

In addition, camera pose estimation and self-calibration
phases were replaced by the five-point method in Nistr’s SfM
implementation [19]. This method consists in solving a linear
equation, considering the number of degrees of freedom given
by the metric reconstruction. Therefore, to compute the camera
translation and orientation, only five points are used. Another
remark is that to achieve good results, the intrinsic camera
parameters have to be fixed.

These modifications to the original SfM pipeline removed
some bottlenecks and speeded up the entire process, allowing a

Fig. 9. Example of a mesh computed by the real-time SfM technique,
assuming a circular camera trajectory [20].

Fig. 10. Real-time SfM MAR application [20].

minimum delay to reconstruct a rigid scene and hence getting
closer to real-time 3D reconstruction. Figure 9 illustrates a
mesh computed using Nistr’s SfM technique.

Since the real-time constraint is supported by SfM, it has
been used in MAR systems. Real-time SfM can offer more
information about the entire scene, and may provide data
to improve the MAR system with features like occlusion of
virtual objects by real ones and physical based interaction
between them. Although 3D information about the scene can
supply all these results in MAR, it has not been strongly
explored yet. Many efforts have been applied to attach SfM
to MAR, but until now only some results were achieved [20]
(see illustration in Figure 10).

Because SfM is a traditional technique, a lot of internal
algorithms applied by it are already implemented in most com-
puter vision libraries [21]. Trackers, linear equation solvers,
camera pose estimators and more pieces of code are available
to developers, simplifying the creation of a 3D reconstruction
system based on SfM. However, a good knowledge about
how the technique works internally is mandatory to achieve
real-time execution. This is obtained by hacking mathematical
equations, optimizing them and removing some variables that
are not used after a shortcut in the math flow.

2) MonoSLAM: SLAM (Simultaneous Localization and
Mapping) is a well defined and used approach in the robotic
community for constructing a representation of the envi-
ronment on the fly and estimating robot motion. SLAM is
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Fig. 11. Active search ellipses (left) and scene with four virtual objects
(right) [22].

mainly accomplished by using modern methods of sequential
Bayesian inference and normally uses sensors such as laser
range-finders and sonar. MonoSLAM was created based on
the probabilistic SLAM methodology using a single freely-
moving wide-angle camera as the only sensor and with a real-
time constraint [22].

The MonoSLAM algorithm runs at 30 frames per second
(fps), estimates camera pose and creates a sparse map of the
environment natural landmarks. It is a very efficient algorithm
with a low level of jitter (1-2 cm) and drift-free, while
being robust to handle extreme rotation, occlusion and closed
loop. However, it is restricted to indoor environments, smooth
camera movement and monochrome camera image.

To initialize the system, a known picture is necessary to
be present in the initial frame at an approximated certain
distance. The algorithm begins searching for features in the
image utilizing the image interest operator of Shi and Tomasi
[13] to locate the best candidate within a limited window of
80x60 pixels. This window is randomly positioned in any
area that does not contain other features nor will be out of
the camera view, based on the current camera and angular
velocities.

When good features are selected, the algorithm estimates
its depth and associates it with a level of uncertainty. As the
feature continues to be tracked in the next frames, the depth
estimation is enhanced and the feature is fully initialized and
stored as an oriented planar texture of 11x11 pixels. It utilizes
the Davison and Murray’s approach, which relies on visual
landmarks, as they have more unique signatures than standard
corner features [23]. The tracking of each feature occurs within
an ellipse region, and shape and position in the image are
defined based on its level of uncertainty and on the camera
estimated movement, respectively (Figure 11, left).

The features are inserted in a probabilistic feature based
map that is maintained during all the lifetime of the operation
and is updated by the Extended Kalman Filter (EKF). The map
grows as new features are added, or shrinks when a feature
that fails to be detected many times is removed.

The MonoSLAM technique was used in an AR scenario
where virtual furniture is added to an image stream captured
by a handheld camera (Figure 11, right). The virtual objects
showed to be stable in this example.

III. CONCLUSION

This paper has surveyed MAR techniques that use only one
camera and work in real-time. Nevertheless, there are other
MAR approaches, such as that in [24], which works offline
and is mainly applied to video post production.

Among the previously presented tracking methods for MAR
applications, SfM based techniques should be highlighted,
due to their ability to augment completely unknown scenes.
Research regarding SfM applied to MAR is still in its infancy
and therefore there are several open problems that need
careful attention. For example, real-virtual interaction, which
is exploited by model based MAR applications [2], has not
yet been approached by SfM based ones. Indeed, SfM based
techniques retrieve information about the environment that
could be used to build complex applications taking advantage
of such kind of interaction.

However, it is important to say that, according to the prob-
lem tackled, purely model based or hybrid approaches should
be considered. Even though there are markerless techniques for
augmented reality, the use of markers is suitable for systems
that do not mind the presence of artificial elements in the
scene. In other words, the solution is defined by the kind of
problem being faced.
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