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Scheduling Processes with Release Times, Deadlines, 
Precedence, and Exclusion Relations 

JIA XU A N D  DAVID 

Abstract-We present an algorithm that finds an optimal schedule 
on a single processor for a given set of processes such that each process 
starts executing after its release time and completes its computation 
before its deadline, and a given set of precedence relations and a given 
set of exclusion relations defined on ordered pairs of process segments 
are satisfied. This algorithm can be applied to the important and pre- 
viously unsolved problem of automated pre-run-time scheduling of 
processes with arbitrary precedence and exclusion relations in hard- 
real-time systems. 

Index Terms-Automated pre-run-time scheduler, deadlines, exclu- 
sion, hard-real-time systems, precedence, scheduling algorithms. 

I. INTRODUCTION 
E present an algorithm for solving the following 
problem: we are given a set of processes, where 

each process consists of a sequence of segments. Each 
segment is required to precede a given set of other seg- 
ments. Each segment also excludes a given set of other 
segments, i.e., once a segment has started its computation 
it  cannot be preempted by any segment in the set that it 
excludes. For each process, we are given a release time, 
a computation time, and a deadline. It is also assumed that 
we know the computation time and start time of each seg- 
ment relative to the beginning of the process containing 
that segment. 

Our problem is to find a schedule on a single processor 
for the given set of processes such that each process starts 
executing after its release time and completes its compu- 
tation before its deadline, and all the precedence and ex- 
clusion relations on segments are satisfied. 

Note that if we can solve the problem stated above, then 
we can also solve the special case where the release times 
and deadlines of each process are periodic, by solving the 
above problem for the set of processes occurring within a 
time period that is equal to the least common multiple of 
the periods of the given set of processes. 

The algorithm presented here was designed to be used 
by a pre-run-time scheduler for scheduling processes with 
arbitrary precedence and exclusion relations in hard-real- 
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time systems [3]. In such systems, precedence relations 
may exist between process segments when some process 
segments require information that is produced by other 
process segments. Exclusion relations may exist between 
process segments when some process segments must ex- 
clude interruption by other process segments to prevent 
errors caused by simultaneous access to shared resources, 
such as data, I/O devices, etc. 

It has been observed that in many hard-real-time appli- 
cations, the bulk of the computation can be confined to 
periodic processes where the sequencing and timing con- 
straints are known in advance. That is, the release times 
and deadlines of processes besides the precedence and ex- 
clusion relations defined on them are known in advance. 
General techniques also exist for transforming a set of 
asynchronous processes into an equivalent set of periodic 
processes [ 161, [ 171. Thus it is possible to use a pre-run- 
time scheduler to make scheduling decisions before run 
time. Pre-run-time scheduling has many advantages com- 
pared to run time scheduling: precious run time resources 
required for run time scheduling and context switching 
can be greatly reduced, and more importantly, it is easier 
to guarantee in advance that real-time deadlines will be 
met. 

However, up to the present time, the automated pre- 
run-time scheduler for processes with arbitrary prece- 
dence and exclusion relations has remained “an unsolved 
problem” [3]. As will be discussed below, no algorithm 
previously existed for solving the problem of finding an 
optimal schedule for a set of processes with arbitrary re- 
lease times, deadlines, precedence and exclusion rela- 
tions. In the past, designers of safety-critical hard-real- 
time systems have had to resort to ad hoc methods and 
perform pre-run-time scheduling by hand. Except for very 
simple problems, ad hoc and manual methods are prone 
to errors, time consuming, and they often fail to find a 
feasible schedule even when one exists. 

The algorithm presented here makes it possible to com- 
pletely automate the task of pre-run-time scheduling pro- 
cesses with arbitrary precedence and exclusion relations. 
Currently we are working on producing a practical system 
that uses this algorithm to systematically search for a fea- 
sible schedule when given a set of release time, deadline, 
precedence, and exclusion relation parameters. Such a 
system would greatly facilitate the task of pre-run-time 
scheduling. It would virtually eliminate any possibility of 
errors in the computation of schedules. Not only would it  
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be capable of finding a feasible schedule whenever one 
exists, it would also be capable of informing the user 
whenever no feasible schedule exists for a given set of 
parameters much faster and reliably than any ad hoc or 
manual method. In the latter case, it could also provide 
the user with useful information on which parameters 
should be modified in order to obtain a feasible schedule. 
Such a system would be particularly useful for applica- 
tions in which changes in the system often occur and 
schedules have to be frequently recomputed. 

In [ 161, Mok treats in detail techniques which allow one 
to use a pre-run-time scheduler to make scheduling deci- 
sions before run time for both periodic and synchronous 
processes by replacing asynchronous processes with an 
equivalent set of periodic processes. Extensive surveys of 
scheduling problems and algorithms can be found in 121, 
[8], and [ 101. For solving the problem of finding a feasi- 
ble schedule for a set of processes where each process 
must execute between a given release time and deadline, 
all previously reported algorithms either solve the special 
case where each process consists of a single segment that 
does not allow preemptions, or, solve the special case 
where each process consists of a single segment that can 
be preempted by any other process. The latter case can be 
solved in polynomial time, even if n processors are used 
[ 1 I ] ,  [ 131. In the former case, the problem is NP-com- 
plete in the strong sense, even if only one processor is 
used [6], which effectively excludes the possibility of the 
existence of a polynomial time algorithm for solving the 
problem. For special cases where all processes have unit 
computation time, and no preemptions are allowed, poly- 
nomial time algorithms have been obtained [4], [ 5 ] ,  [7], 
1181. Several heuristics have also been proposed or stud- 
ied for the former case [12], [9]. For solving the case 
where each process consists of a single segment that does 
not allow preemptions, and a single processor is used, an 
elegant implicit enumeration algorithm was presented in 
[ 141. Another implicit enumeration algorithm of compa- 
rable efficiency is described in [ I ] .  

We do not know of any published algorithm that solves 
the more general problem where some portions of a pro- 
cess are preemptable by certain portions of other pro- 
cesses, while other portions of a process are not preempt- 
able by certain portions of other processes. Such problems 
occur frequently in many real world situations. Since the 
major concern in a hard-real-time environment is meeting 
deadlines, none of the previously published algorithms 
were applicable to our problem, since assuming all pro- 
cesses are completely preemptable would allow simulta- 
neous access to shared resources which could have dis- 
astrous consequences; whereas assuming all processes are 
completely nonpreemptable would seriously affect our 
ability to meet deadlines. 

The problem as stated above can easily be proved to be 
NP-hard (even the special case where each process is 
composed of a single segment that excludes all other sin- 
gle segment processes is NP-hard). The objective of the 
work reported here was to find a feasible schedule when- 

ever one exists for a given set of problem parameters. This 
requirement together with the fact that the problem to be 
solved is NP-hard, effectively excludes all other types of 
solutions except solutions that implicitly enumerates all 
possible feasible schedules. 

Although it is possible to construct pathological prob- 
lem instances where the algorithm would require an 
amount of computation time that is exponentially related 
to the problem size, it is extremely unlikely that such 
pathological problem instances would occur in practical 
hard-real-time system applications. Our experience has 
shown that even with difficult problems of very large size, 
the algorithm can still provide an optimal solution within 
reasonable time. 

One can easily see that our algorithm is also applicable 
to a wide range of practical problems that are not directly 
related to the field of computer science. Although we have 
adopted the terminology commonly used in computer sci- 
ence, readers familiar with the terminology of operations 
research may substitute the terms “job” or “task” for 
“process,” “machine” for “processor,” “processing 
time” for “computation time,” and “portions of a job 
that cannot be interrupted by portions of other jobs” for 
“segments that exclude other segments.” 

A very useful property of this algorithm is that at each 
intermediate stage of the algorithm a complete schedule 
is constructed. At the beginning, the algorithm starts with 
a schedule that is obtained by using an earliest-deadline- 
first strategy. Then it systematically improves on that ini- 
tial schedule until an optimal or feasible schedule is found. 
Thus, even if we have to terminate the algorithm prema- 
turely, it would still provide a complete schedule that is 
at least as good as any schedule obtained by using an ear- 
liest-deadline-first heuristic. Schedules obtained by using 
an earliest-deadline-first heuristic have the best known 
upperbound on lateness among all previously proposed 
heuristics for scheduling nonpreemptable process with ar- 
bitrary release times and deadlines 191. The earliest-dead- 
line-first strategy is also optimal for scheduling processes 
that are completely preemptable [ 151. Under any circum- 
stance, for solving the problem of scheduling processes 
with arbitrary release times, deadlines, and precedence 
and exclusion relations defined on process segments, this 
algorithm should outperform any previously proposed 
heuristic. 

In the next section, we provide an overview of the al- 
gorithm. Basic notation and definitions are introduced in 
Section 111. In Section IV we show how to improve on a 
valid initial solution. In Section V we describe the strat- 
egy used to search for an optimal or feasible solution. The 
empirical behavior of the algorithm is described in Sec- 
tion VI.  Finally, conclusions are presented in Section VII. 

11. OVERVIEW OF THE ALGORITHM 
From the computation time and start time of each seg- 

ment relative to the beginning of the process containing 
that segment, and the release time, computation time, and 
deadline of each process, one should be able to compute 



the release time, computation time, and the deadline for 
each segment. 

Our algorithm finds a valid schedule in which the late- 
ness of all segments in the schedule is minimized, while 
satisfying a given set of “EXCLUDE” -relations and a 
given set of “PRECEDE” relations defined on ordered 
pairs of segments. The set of EXCLUDE relations and the 
set of PRECEDE relations are initialized to be identical 
with those exclusion and precedence relations required in 
our original problem. 

If the minimum lateness of all schedules is greater than 
zero, then no feasible schedule exists that will satisfy all 
deadline constraints. Otherwise, the algorithm, will find a 
feasible schedule that meets all deadline constraints. 

Our algorithm uses a branch-and-bound technique. It 
has a search tree where at its root node we use an earliest- 
deadline-first strategy to compute a schedule called a 
“valid initial solution” that satisfies the release time con- 
straints and all the initial EXCLUDE and PRECEDE re- 
lations. 

At each node in the search tree, we find the latest seg- 
ment in the valid initial solution computed at that node. 
We identify two “expand” sets of segments GI and G2 
such that the valid initial solution can be improved on if 
either the latest segment is scheduled before a segment in 
the expand set GI; or, the latest segment preempts a seg- 
ment in  the expand set G1. 

For each segment in the expand sets G,  and G1, we 
create a successor node in which we add appropriate PRE- 
CEDE or “PREEMPT” relations, such that if a valid ini- 
tial solution for the successor node is computed using 
those new additional relations, then the latest segment in 
the parent node would be scheduled before a segment in 
GI, or preempt a segment in G2 whenever possible. 

For each node in the search tree, we also compute a 
lower bound on the lateness of any schedule leading from 
that node. The node that has the least lower bound among 
all unexpanded nodes is considered to be the node that is 
most likely to lead to an optimal solution-we always 
branch from the node that has the least lower bound among 
all unexpanded nodes. In case of ties, we choose the node 
with least lateness among the nodes with least lower 
bound. 

We continue to create new nodes in the search tree until 
we either find a feasible solution, or, until there exists no 
unexpanded node that has a lower bound less than the least 
lateness of all valid initial solutions found so far. In  the 
latter case, the valid initial solution that has the least late- 
ness is an optimal solution. 

The ways in which we use PRECEDE and PREEMPT 
relations to either schedule the latest segment before a 
segment in the expand set GI or let the latest segment 
preempt a segment in the expand set G1 cover all possible 
ways of improving on a valid initial solution. This guar- 
antees that in the latter case, the solution is globally op- 
timal rather than locally optimal. 

In  the following section, we shall formally define all 

111. NOTATION A N D  DEFINITIONS 
In order to solve the problem stated above, we first in- 

Let the set of processes be denoted by P .  
Each process p E P consists of a finite sequence of seg- 

m e n t s p [ O ] , p [ l ] ,  . . . , p [ n p ] ] ,  where p [O] is the first 
segment and p [ n [ p ] ]  is the last segment in process p .  

troduce the following definitions and notations. 

For each segment i ,  we define: 
a release time r [ i ] ;  
a deadline d [  i ] ;  
a computation time c [ i ] ;  

It is assumed that r [ i ] ,  d [ i ] ,  and c [ i ]  have integer val- 
ues. 

Let the set of all segments belonging to processes in P 
be denoted by S ( P ) .  Each segment i consists of a se- 
quence of segrnenf units ( i ,  O ) ,  ( i ,  I ) ,  . . . , ( i ,  c [ i l  - 
1 ), where ( i ,  0 )  is the first segment unit and ( i ,  c [  i ]  - 
1 ) is the last segment unit in segment i .  

We define the set of segment units of S (  P ) :  

U =  { ( i , k ) l i ~ S ( P ) A o  I k I ~ [ i ]  - I } .  

Intuitively, a segment unit is the smallest indivisible 
granule of a process. Each segment unit requires unit time 
to execute, during which it cannot be preempted by any 
other process. The total number of segment units in each 
segment is equal to the computation time required by that 
segment. 

A schedule of a set of processes P is a total function a: 
U -+ [0 ,  0 0 )  satisfying the following properties: 

1) V t E  [O, m ) : l { ( i ,  k )  E U l a ( i ,  k )  = t } I  5 I .  

2 )  V ( i ,  k l ) ,  ( i ,  k?)  E U : ( k l  < k l )  * (a(i ,  k l )  

< T ( P [ j l -  0 ) )  
Above, condition 1) states that no more than one seg- 

ment can be executing at any time. Condition 2) states 
that a schedule must preserve the ordering of the segment 
units in each segment. Condition 3) states that a schedule 
must preserve the ordering of the segments in each pro- 
cess. 

We say segment i executes at time t iff 3k, 0 5 k 5 
c [ i ]  - 1 :  a(i ,  k )  = t .  

We say segment i executes from tI to t2 iff j k ,  Vt ,  0 5 
k I c [ i ]  - I ,  0 I t I t2 - tl - 1 :  x ( i ,  k + t )  = tl + 
1 .  

We define the start time of segment i to be s [ i ] = a ( i ,  

We define the completion time of segment i to be e [ i 1 

The luteness of a segment i in a schedule of P is defined 

The luteness of  u schedule o f P  is defined by max { e [ i ]  

0);  

= a(;, c [ i ]  - I )  + 1. 

by e [ ; ]  - d [ i ] .  
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We define a latest segment to be a segment that realizes 
the value of the lateness of the schedule. 

We introduce the PRECEDE relation and EXCLUDE 
relation on ordered pairs of segments together with the 
notion of a “valid schedule.” 

A valid schedule of a set of processes P is a schedule 
of P satisfying the following properties. 

v i ,  j E S ( P ) :  

1) s [ i ]  1 r [ i ]  

2 )  ( i  PRECEDESj) * ( e [ i ]  I s [ j ] )  

3) ( i  EXCLUDESj A s [ i ]  < s [ j ] )  

* M i l  I s [ j l )  
Above, condition 1) states that each process can only 

start execution after its release time. Condition 2) states 
that in a valid schedule, if segment i PRECEDES segment 
j ,  then under all circumstances, segmentj cannot start ex- 
ecution before segment i has completed its computation. 
Condition 3) states that in a valid schedule, if segment i 
EXCLUDES segment j ,  then segment j is not allowed to 
preempt segment i .  That is, if segment i started execution 
before segment j ,  then segment j can only start execution 
after segment i has completed its computation. 

We initialize the set of PRECEDE relations and the set 
of EXCLUDE relations to be identical with the precedence 
and exclusion relations that must be satisfied in the orig- 
inal problem. In addition, in order to enforce the proper 
ordering of segments within each process, we let p [ k ]  
PRECEDE p [ k  + I ]  for all p E P ,  and for all k ,  0 5 k 
I n [ p ]  - 2. Thus, a valid schedule would satisfy all the 
release time, exclusion, and precedence constraints in the 
original problem. 

A feasible schedule of a set of processes P is a valid 
schedule of P such that its lateness is less than or equal 
to zero. 

An optimal schedule of a set of processes P is a valid 
schedule of P with minimal lateness. 

The adjusted release time r ’ [  i ]  of segment i is defined 

1)  r ’ [ i ]  = r [ i ] ,  i f 3 j : j  PRECEDESi; 
by 

We also introduce a third relation that will be used in 
our algorithm-the PREEMPT relation on pairs of seg- 
ments together with the notion of a “valid initial solu- 
tion.” 

A valid initial solution for a set of processes P is a valid 
schedule of P satisfying the following properties: 

Vt E [O ,  a): 

1)  v j :  ( 3 i :  (( i PREEMPTSj A i is ELIGIBLE at t )  

v ( d [ i ]  < d [ j ]  A 1 ( j  PREEMPTS i) 

A i is ELIGIBLE at t )  

V ( d [ i ]  = d [ j ]  A c [ i ]  > c [ j ]  

A i ( j  PREEMPTS i )  A i is ELIGIBLE at 1 ) )  

=) i ( j  executes at t ) )  

- 3 i : i executes at t 
2) 3 i :  i is ELIGIBLE at t 

Above, condition 1) states that in a valid initial solu- 
tion, if at least one segment i PREEMPTS segment j and 
i is ELIGIBLE at time t ;  or if at least one segment i has a 
shorter deadline than j and i is ELIGIBLE at time t a n d j  
does NOT PREEMPT i ;  or if at least one segment i has 
the same deadline but a longer computation time than j 
and i is ELIGIBLE at time t and j does NOT PREEMPT 
i ,  then segment j cannot execute at time t .  Condition 2) 
states that in a valid initial solution, at any time t ,  if at 
least one segment is ELIGIBLE, then one segment should 
execute at time t .  Condition 2) effectively guarantees that 
all segments will eventually be completed in a valid initial 
solution, provided that all relations on segments are 
“consistent” as defined below. 

We define each pair of relations on segments indicated 
by an “x” in the following table to be inconsistent. All 
other pairs of relations on segments are consistent. 

i P C J  j P C i  i E X J  j E X i  i P M j  J P M i  

i P C J :  X 

i E X J :  
i P M J :  X X 

X 

X 

X 

else 

2 )  r ’ [ i ]  = max { r [ i ] ,  r ’ [  j] + c [ j ]  I j PRECEDES i }  

At any time t ,  t E [0, a], we say segment ‘3 is ELI- 
GIBLE at t” iff: 

1) t 2 r ’ [ j ]  A l ( e [ j ]  I t )  

2 )  j l i :  i PRECEDES j A 1 ( e [ i ]  I t )  

3) j l i : i  EXCLUDESj A s [ i ]  < t A 1 ( e [ i ]  I t )  

The above definition guarantees that at any time t ,  if 
segment j is ELIGIBLE at t ,  then j can be put into exe- 
cution at t ,  while satisfying all the properties of a valid 
schedule. 

i PC j : i PRECEDES J 
i EX J : i EXCLUDES J 

i PM J : i PREEMPTS j 
x : inconsistent 

In addition to satisfying release time, exclusion and 
precedence constraints, a valid initial solution also satis- 
fies execution priority constraints defined by the set of 
PREEMPT relations and deadlines. 

Initially, we set the set of PREEMPT relations to be 
empty. New PREEMPT relations as well as new PRE- 
CEDE relations will be defined and used by the algorithm 
to reschedule the latest segment earlier in order to im- 
prove on existing valid initial solutions. 

The following (simplified) procedure uses an earliest- 
deadline-first strategy to compute a valid initial solution 
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in which release time constraints and a given set of EX- 
CLUDE, PRECEDE, and PREEMPT relations are en- 
forced: 

t + O  
while i ( v i : e [ i ]  I r )  do 

begin 
if ( 3 i : t  = r ’ [ i ]  V t = e [ i ] )  then 

begin 
Among the set 
{ j 1 j is ELIGIBLE at t 

A ( $i : i is ELIGIBLE at t A i PREEMPTS 
j )  

I 
select the segment j that has min d [ j ] .  
in case of ties, select the segment j that has 

put j into execution. 
max c [  j ] .  

end 
t t t  + 1 

end 

A more detailed implementation of the procedure for 
computing a valid initial solution can be found in Appen- 
dix 1.  

See Examples 1-5 in Appendix 3 for examples of 
schedules corresponding to valid initial solutions. 

IV. How TO IMPROVE ON A VALID INITIAL SOLUTION 
Let j be the latest segment in a valid initial solution. (If 

there exists more than one segment that have maximum 
lateness, then let j be the segment that completed last 
among those segments.) 

Any nonoptimal schedule may be improved on only if 
j can be rescheduled earlier. 

We define the set of segments Z [  i ]  recursively as fol- 
lows: 

1) i E Z [ i ] ;  

2 )  v k :  

if 3I ,  I E Z [  i ]  : 

( e [ k ]  = s [ l ]  A (d’, l ’ ~ Z [ i ] : r ’ [ I ‘ ]  

< 4 k I )  

V ( s [ l ]  < e [ k ]  < e [ i ] )  

then k E Z [  i ]  
The properties of a valid initial solution imply that in 

any schedule that corresponds to a valid initial solution: 
Z [  i ]  is the set of segments that precede (and include) 

i in a period of continuous utilization of the processor; 
e [ i ]  is the earliest possible completion time for the 

entire set of segments Z [  i ] .  
any nonoptimal schedule may be improved on only 

by scheduling some segment k E Z [  j ]  such that d [  j ]  < 
d [ k ]  later than the latest segment j .  

As an example, in the valid initial solution of the root 
node of the search tree of Example 5 :  D E Z [  D ]  from 1) ;  

A E Z [ D ]  because e [ A ]  = s [ D ]  A r ’ [ D ]  < e [ A ] ; , B ,  C 
E Z [ D ]  because s [ A ]  < e [ B ] ,  e [ C ]  < e [ D ] .  Thus 
Z [ D ]  = { A ,  B ,  C ,  D } .  e [ D ]  is the earliest possible com- 
pletion time for the entire set of segments Z [ D ] - i f  any 
other order for the segments in Z [ D ]  is chosen, the last 
segment in that new order cannot complete before e [ D ]  . 

We define two expand sets GI  and G2 as follows: 

G~ = { i l i E ~ [ j l ~ d [ j l  < d [ i ]  

A i EXCLUDES j 

A 7 ( i  PRECEDES j )  

A 1 ( i  PREEMPTS j ) }  

G2 = { i l i  E Z [ ~ ]  A d [ j ]  < d [ i  

A 1 ( i  EXCLUDES j )  

A 1 ( i  PRECEDES j 

A 1 ( i  PREEMPTS j )  

A $ l : ( g k ,  t : O  5 k I [ l ]  - 1, 0 

- < t < c n : s [ i ]  I ~ ( 1 ,  k )  I e [ j ] )  

% an execution of I occurs between 

i a n d j  % 

A ( i  PRECEDES I v i PREEMPTS I )  ] 
G I  is the set of segments that, if scheduled after j ,  may 

reduce the maximum lateness. 
G2 is the set of segments that, if preempted by j ,  may 

reduce the maximum lateness. 
As examples, the valid initial solution of the root node 

of the search tree in Example 1 can be improved on by 
scheduling A E GI after the latest segment C .  The valid 
initial solution of the root node of the search tree in Ex- 
ample 4 can be improved on if the latest segment E 
preempts A E G 2 .  In Example 4 B G2 because there 
exists D such that B PRECEDES D and an execution of 
D occurs between B and E .  

By making use of the fact that e [ i ]  is the earliest pos- 
sible completion time of the entire set of segments Z [  i ] ,  
we can compute a lower bound on the lateness of any valid 
initial solution satisfying a given set of EXCLUDE, PRE- 
CEDE, and PREEMPT relations with the following for- 
mula: 

let K [ i ]  = { k l k  E Z [ i ]  A k # i A d [ i ]  

< d [ k ]  A 1 ( k  PRECEDES i) 

A 1 ( k  PREEMPTS i )  } 
if K [ i ]  = 0 
then L B [ i ]  = e [ i ]  - d [ i ]  

else L B [ i ]  = e [ i ]  + min { G A P [ k ,  i ]  

- d [ k ] l k ~ K [ i ] }  where 

if 1 ( k  EXCLUDES i) then G A P [  k ,  i ]  = 0 
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else G A P [ k ,  i ]  = max { 0, -s[k]  + min { r ’ [ l ]  I 
l ~ Z [ i ] A k  # I 

A s [ k ]  < ~ [ l ]  I ~ [ i ]  

A 1 (k PRECEDE l ) } ]  

L B , [ ~ ]  = r ’ [ i ]  + c [ i ]  - d [ i ]  

lowerbound = max { LB, [ i ] ,  LB2 [ i ]  I i E S( P ) } 
The lower bound function can be derived by observing 

the following: if the set K [ i J is empty then the lateness 
of i, i.e., e [ i ]  - d [ i ]  cannot be improved on. This is 
because if any other segment k E Z [  i J where d [  k] I d [  i ]  
is scheduled last, then k would be at least as late as the 
lateness of i. If k EXCLUDES i and s [ k ]  < min 
{ r ’ [ l ]  Is[kJ  < s [ 1 3  I s [ i ] } ,  then from the properties 
of a valid initial solution, scheduling k after i would leave 
a gap in the new schedule that starts at s [ k ]  and ends at 
m i n { r ’ [ l ] l s [ k ]  < s [ f ]  5 ~ [ i ] } .  (Notethatlcouldbe 
equal to i) ,  and the lateness of the new schedule would 
be at least e [ i ]  - d [ k ]  plus the gap size. L B , [ i ]  is a 
trivial lowerbound on the lateness of any segment i. 

V .  SEARCHING FOR A N  OPTIMAL OR FEASIBLE 
SOLUTION 

We now define a search tree that has as its root node 
the valid initial solution that satisfies all the EXCLUDE 
and PRECEDE relations in the original problem specifi- 
cation. 

At each node in the search tree we compute the lower 
bound and two expand sets G,  and G,. Let segment j be 
the latest segment in  the valid initial solution computed 
at that node. 

For each segment k E G I ,  we create a successor node 
that corresponds to a new problem, in which we assign a 
new relation j PRECEDES k. If we apply the procedure 
above and compute a new valid initial solution in which 
the new relations are enforced, then segment k will be 
scheduled later than segment j in the new schedule. 

For each segment k E G2, we create a successor node 
that corresponds to a new problem, in which for all seg- 
ments 1 such that k EXCLUDES I and an execution of 1 
occurs between k and j ,  we assign the relation 1 PRE- 
CEDES k, and for all segments q such that k does NOT 
EXCLUDE q and an execution of q occurs between k and 
j ,  we assign the relation q PREEMPTS k and the relation 
j PREEMPTS k. We let each successor node inherit all 
relations assigned to any of its predecessor nodes. If we 
apply the procedure above and compute a new valid initial 
solution in which the new relations are enforced, then 
segment k will be preempted by segment j in the new 
schedule if possible. After generating the valid initial so- 
lution for each new successor node, we test it for opti- 
mality. If the optimal solution is not discovered among 

any of the resulting problems, then we proceed to create 
new successor nodes in a similar manner. We use a strat- 
egy of branching from the node with the least lower 
bound. In case of ties, we choose the node with least late- 
ness among the nodes with least lower bound. 

The steps of the algorithm are as follows: 
(For a more detailed implementation of the algorithm 

see Appendix 2.) 
Step 0: Compute an initial valid solution and the cor- 

responding lowerbound. Find the latest segment j and its 
lateness. If its lateness equals its lowerbound then stop- 
the schedule is optimal. Otherwise, call the node corre- 
sponding to the schedule of the parent node. 

Step I :  Find the expand sets GI and Gz and create I GI I 
+ I G2 1 new child nodes. For each node corresponding to 
a segment k in G I ,  assign a new relation j PRECEDES k. 
For each node corresponding to a segment k in G?, for all 
segments 1 such that k EXCLUDES I and an execution of 
1 occurs between k and j ,  assign a new relation I PRE- 
CEDES k, and, for all segments q such that k does NOT 
EXCLUDE q and an execution of q occurs between k and 
j ,  assign the relation q PREEMPTS k and the new relation 
j PREEMPTS k. 

Let each child node inherit all relations assigned to any 
of its predecessor nodes. 

Recompute a valid initial solution, lowerbound and find 
the latest segment and its lateness for each child node. 

Srep 2: If Steps 3 and 4 have been performed for all 
child nodes then close the parent node and go to Step 5 .  

Otherwise, select the child node with the least lateness. 
Srep 3: Set minlateness + min { minlateness, lateness 

(childnode) } . 
If minlateness is less than or equal to the least lower- 

bound of all open nodes then stop-the solution is opti- 
mal. 

Step 4: If lateness (childnode) = lowerbound (child- 
node) then close this child node and return to step 2-this 
solution is locally optimal. 

If minlateness is less than lowerbound (childnode) then 
close this childnode-this node will never lead to a solu- 
tion that is better than the current minlateness. 

Return to step 2. 
Step 5: Select among all open nodes the node with the 

least lower bound, in case of ties, select the node with 
least lateness. Call this node the parent node and goto step 
1. 0 

(See Examples 1-5 in Appendix 3 . )  
If a feasible schedule is considered sufficient, to achieve 

more efficiency, instead of terminating the algorithm only 
when a minimum lateness schedule has been found, one 
may terminate the algorithm as soon as a feasible schedule 
in which all deadlines are met is found. One could also 
adopt a strategy of terminating the search whenever a 
schedule has been found such that its lateness is within a 
prespecified ratio of optimal. An upperbound on that ratio 
can be computed with the formule (lateness - L ) / L  where 
L is the least lower bound of all nodes belonging to the 
open node set. 
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VI. EMPIRICAL BEHAVIOR OF THE ALGORITHM 
We have written a program in Pascal that implements 

the algorithm described above. 
Observation of the empirical behavior of the algorithm 

indicated that this algorithm consistently generated sig- 
nificantly fewer nodes than one of the best algorithms re- 
ported so far that solves the special case where each pro- 
cess consists of only one segment that excludes a11 other 
segments [ 141. 

We restricted ourselves to comparing the number of 
nodes generated for an identical problem sample, because 
this is the major factor that determines the size of the 
problem that can be effectively computed-it is basically 
this number that will grow exponentially when the prob- 
lem size increases. 

By comparing the two algorithms on sample problems 
corresponding to the special case where each process con- 
sists of only one segment that excludes all other seg- 
ments, we found that for problem sizes of 25 (number of 
segments), our algorithm frequently generated 25 % fewer 
nodes than the algorithm reported in [ 141. When the prob- 
lem size doubled to 50, our algorithm frequently gener- 
ated 44% (approximately 1 - ( 1 - 0.25)2)  fewer nodes. 
When we doubled the problem size again, the difference 
became even greater-their algorithm was unable to ter- 
minate after generating several tens of thousands of nodes, 
while our algorithm terminated on the same problem sam- 
ple after generating only a few thousand nodes. It was 
also observed that for all problem samples of the general 
case (arbitrary exclusion relations defined on segments) 
that we constructed, solving them with our algorithm al- 
ways generated fewer nodes before an optimal schedule 
was found than if all segments excluded each other (which 
corresponds to the special case). 

Thus the performance of our algorithm on the general 
case in terms of the number of nodes generated should be 
much better than the performance reported in [14] when 
solving the special case. 

VII. CONCLUSIONS 

The major contribution of our algorithm is that it solves 
a very general and important problem that no other re- 
ported algorithm is capable of solving. It is the first al- 
gorithm that is able to systematically search for an opti- 
mal or feasible schedule that satisfies a given set of release 
time, deadline, precedence, and exclusion constraints de- 
fined on process segments. The algorithm can be applied 
to the important and previously unsolved problem of au- 
tomated pre-run-time scheduling of processes with arbi- 
trary precedence and exclusion relations in hard-real-time 
systems. 

With our algorithm it is possible to take into account 
the cost of context switching. All we need to do is add to 
the computation time of each segment the following: 1) 
the time required to save the status of a preempted seg- 
ment, 2) the time required to load a new segment, and 3) 
the time required to restart a preempted segment. This is 

because the only possible time where a process switch may 
take place is either at the adjusted release time or at the 
completion time of a segment. Furthermore, each seg- 
ment can only preempt any other segment once. Hence 
we can always “charge” the cost of a context switch to 
the preempting segment so that all deadlines will be met. 
(See [ 151 for a similar argument for the earliest-deadline- 
first strategy . ) 

When implementing this algorithm, it may be advan- 
tageous to make space-time tradeoffs to match available 
resources. If our major constraint is space instead of time, 
we might consider only storing at each node partial infor- 
mation that is different from the information stored at its 
ancestor nodes, then whenever we need complete infor- 
mation to proceed at a certain node, we use the informa- 
tion stored at its ancestor nodes to reconstruct the com- 
plete information required at that node. For example, we 
only stored new PRECEDE and PREEMPT relations at 
each node when implementing our algorithm, which re- 
sulted in a significant saving of space without seriously 
affecting computation time. 

One may also include an initial problem parameter ver- 
ification stage that performs a preliminary analysis of all 
the initial problem parameters and modifies or rejects if 
necessary any problem parameters that are either redun- 
dant or inconsistent with other parameters prior to using 
this algorithm. 

We note that this algorithm can be easily generalized to 
the case where exclusion regions within each process 
overlap or are embedded within each other. 

For future work, we will explore ways of generalizing 
this algorithm to solve the problem of scheduling pro- 
cesses with release times, deadlines, precedence and ex- 
clusion relations on n processors. Another interesting di- 
rection for future work would be to explore ways of 
generalizing this algorithm to solve the problem with ad- 
ditional resource constraints [ 191. 

APPENDIX 1 

COMPUTING A VALID INITIAL SOLUTION 
The following procedure computes a valid initial solu- 

tion in which the release time constraints and a set of EX- 
CLUDE, PRECEDE, and PREEMPT relations are satis- 
fied: 

AN IMPLEMENTATION OF THE PROCEDURE FOR 

lastt : = ( any negative value ): 
lastseg : = ( any segment index ); 
idle := true; 
for each segment i do 

begin 
started[ i ]  : = false; 
completed[ i ]  : = false; 
comptimeleftl i ]  : = c[ i] ;  
s [ i ]  := - 1 ;  

end; 
t :=  0; 
while not( for all segments i: completed[ i ]  = true) do 
begin 

t : = min { t I t > lastt and ((exists i: t = r‘ [ i ]  ) or 
((idle = false) and (comptimeleft[ lastseg] = t - lastt))) 
1; 

if idle = false then 
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begin 
% in the valid initial solution computed by the procedure: % 
let segment lastseg execute from lastt to t ;  
comptimeleftl lastseg] : = comptimeleft[ lastseg] - ( t  - 
lastt ); 
if comptinieleft[ lastseg] = 0 then 

begin 
completed[ lastseg] : = true; 
e[lastseg] : = t; 

end: 
end; 
S + { j 1 j is ELIGIBLE and no other segment i exists 

such that i is also ELIGIBLE and i 
PREEMPTS j 

1 
if S is empty then idle : = true 

else 
begin 

idle := false; 
SI + { j I d[ j ]  = min { d [ i ]  I i in S } } 
select segment x such that c [ x ]  = max { c[ i ]  I i in SI 

if not started[ x ]  then 
1: 

begin 
started[ x ] : = true; 
s[ X I  : = t ;  

end; 
lastseg := x; 

end; 
lastt : =  t ;  

end; 

Above, “lastt” is the last time that the procedure tried 
to select a segment for execution. “lastseg” is the seg- 
ment that was last selected for execution. “idle” indi- 
cates whether there was any segment selected at lastt. 
“started[ i ]”  indicates whether segment i had started ex- 
ecution. “completed[ i]” indicates whether segment i had 
completed execution. “comptimeleft[ i 1’’ is the remain- 
ing computation time of segment i.  

APPENDIX 2 
AN IMPLEMENTATION OF THE MAIN ALGORITHM 

begin {main} 
nodeindex := 0 
initialize (PC ( nodeindex), E X )  
PM ( nodeindex) 0 
optimal : = false; 
feasible : = false; 
opennodeset + 0 
if consistent (PC (nodeindex), EX, PM (nodeindex)) then 
begin 

schedule (nodeindex) + validinitialsolution (PC (nodeindex), 

leastlowerbound : = lowerbound ( nodeindex ) 
if lateness (nodeindex) = least lowerbound then 

if lateness (nodeindex) 5 0 then 

if not (optimal or feasible) then 
begin 

EX, PM (nodeindex )) 

optimal := true; 

feasible : = true; 

opennodeset +- { nodeindex } 
minlateness : = lateness (nodeindex); 
minlatenode : = nodeindex; 
while not (optimal or feasible or spacetimelimitsexceeded ) 

do 
begin 

lowestboundset +- { I 1 lowerbound( I )  = leastlowcr- 

select parentnode such that: 
bound } 

lateness ( parentnode) = min { lateness ( i )  I i E low- 
estboundset } 

j : = latestsegment (schedule ( parentnode)) 
firstchildnode := nodeindex + I 

for each segment k E G ,  ( parentnode) 
begin 

nodeindex : =  nodeindex + I 
PC(nodeindex) + PC(parentnode) U {( j ,k )}  

end 

begin 
for each k E GI ( parentnode) 

nodeindex := nodeindex + I 
PC (nodeindex) + PC( parentnode) 
for all I such that: 

k EX I and an execution of I 
occurs between k and j in sched- 

begin 
ule ( parentnode ): 

PC ( nodeindex) + PC ( nodeindex) U 
{(U)} 

end 
PM(nodeindex) + PM(parentnode) U {(j.k} 
for all q such that: 

not (k EX q )  and an execution of q 
occurs between k and j in sched- 

begin 
ule ( parentnode ): 

PMtnodeindex) + PM( nodeindex) U 
((0 1 

end 
end 

opennodeset +- opennodeset - { parentnode } 
if not (optimal or feasible) then 
for childnode : = firstchildnode to nodeindex do 
begin 

if consistent ( PC ( childnode), EX, PM ( childnode)) 

begin 
then 

schedule (childnode) + 

validinitialsolution( PC (childnode), EX, 
PM (childnode)) 

if lateness (childnode) < minlateness then 
begin 

minlateness : = lateness (childnode); 
minlatenode : = childnode; 

end; 
if lateness(chi1dnode) 5 0 then 

else 
feasible := true 

if minlateness > lowerbound (childnode) then 
opennodeset opennodeset U {child- 

node } 
end; 

end; 
leastlowerbound + min { lowerbound ( i )  I i E openno- 
deset } 
if opennodeset = 0 or (minlateness 5 leastlowerbound) 

then 
optimal : = true; 

end; 
minlateschedule : = schedule ( minlatenode ) 

end; 
end; 

end. 
(end of algorithm) 

In the algorithm above, a node in the “opennodeset” 
is a node that does not have successors, but may be se- 
lected as the node to be branched from next. 
“PC (nodeindex)” and “PM (nodeindex)” are respec- 
tively the set of PRECEDE relations and the set of 
PREEMPT relations associated with the node identified 
by “nodeindex.” “EX” is the (constant) set of EX- 
CLUDE relations. “schedule (nodeindex)” is the valid 
initial solution computed using PC (nodeindex), EX and 
PM (nodeindex). “lateness (nodeindex)” is the lateness 
of schedule ( nodeindex ). “lowerbound (nodeindex ), 
GI (nodeindex), and G2 (nodeindex)” are, respectively, 
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the lowerbound and the two expand sets computed from 
schedule ( nodeindex). 

To achieve more efficiency, instead of terminating the 
algorithm only when a minimum lateness schedule has 
been found, the algorithm terminates as soon as a feasible 
schedule in which all deadlines are met is found; or, when 
a predefined spacehime limit is exceeded. 

APPENDIX 3 
EXAMPLES 1-5 

Example 1. 

r[A] = 40 r[B] = 60 r[C] = 50 r[D] = 0 A EXCLUDES B C EXCLUDES A 
c[A] = 20 c[B] = 20 c[C] = 20 CID] = 20 D EXCLUDES A B EXCLUDES C 
d[A] = 110 d[B] = 90 d[C] = 91 d[D] = 120 A EXCLUDES C C EXCLUDES D 

Root node of warch tree 

1atcn-s = e[C] - d[C] = 100 - 91 = 9 
Z[C] = { A ,  R. C) 
lowerbound = LB[Cl = e[C] + (.'[Cl - .[A] - d[A]) = 100 + (50 - 40 - 110) = d 

G I  = {A) G2 = 0 

C PRECEDES A 

91 120 

latest segmcnt. A .  B 
l n t e i i e ~ ~  = e [ A ] .  d[A] = e[B] - d[B] = 0 
Z[A] = { C ,  B. A) 

lowerbound = LB[A] =<[A] -d[A] 
= LB[B] = e[H] - d[B] = 0 

(globally optimal since lateness equal to 

lemt lower hound of all open nodes) 

' 

Z[BI = (C, R I  

Example 2. 

r [ ~ ]  = 0 r [ ~ ~ ]  = In = bo A EXCLUDES 11 

d [ ~ ]  = 110 d[n] = 101 d [ ~ ]  = 10 
r[,\] = 50 r[B] = 20 <[<:I = 10 D EXCLUDES C 

n-1 lloc~(. o rsra .~~ ,  t r r P  

C PRECEDES U C PREEMPTS A 
U PRECEDES A 

Example 3. 

*[A] = 0 481 = 20 r[C] = 40 D EXCLUDES C 
c[A] = 30 c[B] = 20 c[C] = 30 
d[A] = 80 d[B] = X I  d[C] = 70 

llmt node d s e i r e h  tree: 

R I  

lalest segment. C 
laleness = e[C] - d[C] = 8 0 .  i o  = I O  

Z[C] = { A ,  R, C )  
lowerbound = I.B2[C] = r'[C] + c[C] - d[C] = 40 + 3 0 .  i o  = 0 

61 = {U) 

/ 

C PRECEDES B 

lG2 = ( h ]  

\ 

C PREEMPTS A 
B PREEMPTS A 

Example 4. 

r[A] = 0 r[B] = 1 r[C] = 60 r[D] = 40 ,[E] = 90 A EXCLUDES D C EXCLUDES E 
<[A] = 30 e[B] = 40 c[C] = 30 c[D] = IO .[E] = 50 A EXCLUDES D C EXCLUDES D 
d[A] = 161 d[B] = 51 d[C] = 90 d[D] = 91 d[E] = 140 B EXCLUDES C D EXCLUDES E 

D PRECEDES D 

Root node of search tree: 

1 91 161 

latest segment- E 
lateness = e[E] - d[E] = 160 - 140 = 20 

Z[E] = (A ,  B, C. D. E) 
lowerbound = LBZ[E] = .'[E] +.[E] - d[E] = 90 + 50 - 140 = 0 

G 2 =  {A)  G I  = 0  

D PRECEDES A C PREEMPTS A 
D PRECEDES A E PREEMPTS A 

latcsi srgmrtmt- ,\, 1:. E 
laleness = e[A] - d[A] = e[C) - d[C] = e(E] - d[E] = 0 
Z[A] = {B, D. C, E ,  A )  

ZICI = {Cl 
Z[El = {El  
lowerhound = LR[A] = e[A] ~ d[A] = LB[C] = e[C] ~ d[C] 

= LB(E] = e[E] ~ d[E] = 0 
(globally optimal since lateness equal l o  

least lowc. bound,,i dl.ope- nodes) 
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/ 
/ 

D PnECEDES A 

c E (:2 

1 
A PREEMPTS C 
D PREEMPTS C 
D PREEMPTS C 

n E G 2  

\ 
A PREEMPTS D 
C PREEMPTS Ll 
D PREEMPTS U 
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