
3 60 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 3. MARCH 1990

Scheduling Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations

JIA XU A N D DAVID

Abstract-We present an algorithm that finds an optimal schedule
on a single processor for a given set of processes such that each process
starts executing after its release time and completes its computation
before its deadline, and a given set of precedence relations and a given
set of exclusion relations defined on ordered pairs of process segments
are satisfied. This algorithm can be applied to the important and pre-
viously unsolved problem of automated pre-run-time scheduling of
processes with arbitrary precedence and exclusion relations in hard-
real-time systems.

Index Terms-Automated pre-run-time scheduler, deadlines, exclu-
sion, hard-real-time systems, precedence, scheduling algorithms.

I. INTRODUCTION
E present an algorithm for solving the following
problem: we are given a set of processes, where

each process consists of a sequence of segments. Each
segment is required to precede a given set of other seg-
ments. Each segment also excludes a given set of other
segments, i.e., once a segment has started its computation
it cannot be preempted by any segment in the set that it
excludes. For each process, we are given a release time,
a computation time, and a deadline. It is also assumed that
we know the computation time and start time of each seg-
ment relative to the beginning of the process containing
that segment.

Our problem is to find a schedule on a single processor
for the given set of processes such that each process starts
executing after its release time and completes its compu-
tation before its deadline, and all the precedence and ex-
clusion relations on segments are satisfied.

Note that if we can solve the problem stated above, then
we can also solve the special case where the release times
and deadlines of each process are periodic, by solving the
above problem for the set of processes occurring within a
time period that is equal to the least common multiple of
the periods of the given set of processes.

The algorithm presented here was designed to be used
by a pre-run-time scheduler for scheduling processes with
arbitrary precedence and exclusion relations in hard-real-

Manuscript received April 3. 1989; revised July I. 1989. Recommended
by P. A. Ng. This work was supported in part by Natural Sciences and
Engineering Research Council of Canada operating grants to D. L. Parnas
and K. C. Sevcik.

J . X u is with the Department of Computcr Science. York University.
4700 Keele Street. North York. Ont. M3J lP3. Canada.

D. L. Parnas is with the Department ol’ Computing and Infomiation
Sciences. Queens University. Kingston. Ont. K7L 3N6. Canada.

IEEE Log Number 8933204.

LORGE PARNAS

time systems [3]. In such systems, precedence relations
may exist between process segments when some process
segments require information that is produced by other
process segments. Exclusion relations may exist between
process segments when some process segments must ex-
clude interruption by other process segments to prevent
errors caused by simultaneous access to shared resources,
such as data, I/O devices, etc.

It has been observed that in many hard-real-time appli-
cations, the bulk of the computation can be confined to
periodic processes where the sequencing and timing con-
straints are known in advance. That is, the release times
and deadlines of processes besides the precedence and ex-
clusion relations defined on them are known in advance.
General techniques also exist for transforming a set of
asynchronous processes into an equivalent set of periodic
processes [161, [171. Thus it is possible to use a pre-run-
time scheduler to make scheduling decisions before run
time. Pre-run-time scheduling has many advantages com-
pared to run time scheduling: precious run time resources
required for run time scheduling and context switching
can be greatly reduced, and more importantly, it is easier
to guarantee in advance that real-time deadlines will be
met.

However, up to the present time, the automated pre-
run-time scheduler for processes with arbitrary prece-
dence and exclusion relations has remained “an unsolved
problem” [3]. As will be discussed below, no algorithm
previously existed for solving the problem of finding an
optimal schedule for a set of processes with arbitrary re-
lease times, deadlines, precedence and exclusion rela-
tions. In the past, designers of safety-critical hard-real-
time systems have had to resort to ad hoc methods and
perform pre-run-time scheduling by hand. Except for very
simple problems, ad hoc and manual methods are prone
to errors, time consuming, and they often fail to find a
feasible schedule even when one exists.

The algorithm presented here makes it possible to com-
pletely automate the task of pre-run-time scheduling pro-
cesses with arbitrary precedence and exclusion relations.
Currently we are working on producing a practical system
that uses this algorithm to systematically search for a fea-
sible schedule when given a set of release time, deadline,
precedence, and exclusion relation parameters. Such a
system would greatly facilitate the task of pre-run-time
scheduling. It would virtually eliminate any possibility of
errors in the computation of schedules. Not only would it

0098-5589/90/0300-0360$0 1 .OO 0 1990 IEEE

X U A N D PARNAS: SCHEDULlNG PROCESSES WlTH RELEASE TIMES 36 I

be capable of finding a feasible schedule whenever one
exists, it would also be capable of informing the user
whenever no feasible schedule exists for a given set of
parameters much faster and reliably than any ad hoc or
manual method. In the latter case, it could also provide
the user with useful information on which parameters
should be modified in order to obtain a feasible schedule.
Such a system would be particularly useful for applica-
tions in which changes in the system often occur and
schedules have to be frequently recomputed.

In [161, Mok treats in detail techniques which allow one
to use a pre-run-time scheduler to make scheduling deci-
sions before run time for both periodic and synchronous
processes by replacing asynchronous processes with an
equivalent set of periodic processes. Extensive surveys of
scheduling problems and algorithms can be found in 121,
[8], and [101. For solving the problem of finding a feasi-
ble schedule for a set of processes where each process
must execute between a given release time and deadline,
all previously reported algorithms either solve the special
case where each process consists of a single segment that
does not allow preemptions, or, solve the special case
where each process consists of a single segment that can
be preempted by any other process. The latter case can be
solved in polynomial time, even if n processors are used
[1 I] , [131. In the former case, the problem is NP-com-
plete in the strong sense, even if only one processor is
used [6], which effectively excludes the possibility of the
existence of a polynomial time algorithm for solving the
problem. For special cases where all processes have unit
computation time, and no preemptions are allowed, poly-
nomial time algorithms have been obtained [4], [5] , [7],
1181. Several heuristics have also been proposed or stud-
ied for the former case [12], [9]. For solving the case
where each process consists of a single segment that does
not allow preemptions, and a single processor is used, an
elegant implicit enumeration algorithm was presented in
[141. Another implicit enumeration algorithm of compa-
rable efficiency is described in [I] .

We do not know of any published algorithm that solves
the more general problem where some portions of a pro-
cess are preemptable by certain portions of other pro-
cesses, while other portions of a process are not preempt-
able by certain portions of other processes. Such problems
occur frequently in many real world situations. Since the
major concern in a hard-real-time environment is meeting
deadlines, none of the previously published algorithms
were applicable to our problem, since assuming all pro-
cesses are completely preemptable would allow simulta-
neous access to shared resources which could have dis-
astrous consequences; whereas assuming all processes are
completely nonpreemptable would seriously affect our
ability to meet deadlines.

The problem as stated above can easily be proved to be
NP-hard (even the special case where each process is
composed of a single segment that excludes all other sin-
gle segment processes is NP-hard). The objective of the
work reported here was to find a feasible schedule when-

ever one exists for a given set of problem parameters. This
requirement together with the fact that the problem to be
solved is NP-hard, effectively excludes all other types of
solutions except solutions that implicitly enumerates all
possible feasible schedules.

Although it is possible to construct pathological prob-
lem instances where the algorithm would require an
amount of computation time that is exponentially related
to the problem size, it is extremely unlikely that such
pathological problem instances would occur in practical
hard-real-time system applications. Our experience has
shown that even with difficult problems of very large size,
the algorithm can still provide an optimal solution within
reasonable time.

One can easily see that our algorithm is also applicable
to a wide range of practical problems that are not directly
related to the field of computer science. Although we have
adopted the terminology commonly used in computer sci-
ence, readers familiar with the terminology of operations
research may substitute the terms “job” or “task” for
“process,” “machine” for “processor,” “processing
time” for “computation time,” and “portions of a job
that cannot be interrupted by portions of other jobs” for
“segments that exclude other segments.”

A very useful property of this algorithm is that at each
intermediate stage of the algorithm a complete schedule
is constructed. At the beginning, the algorithm starts with
a schedule that is obtained by using an earliest-deadline-
first strategy. Then it systematically improves on that ini-
tial schedule until an optimal or feasible schedule is found.
Thus, even if we have to terminate the algorithm prema-
turely, it would still provide a complete schedule that is
at least as good as any schedule obtained by using an ear-
liest-deadline-first heuristic. Schedules obtained by using
an earliest-deadline-first heuristic have the best known
upperbound on lateness among all previously proposed
heuristics for scheduling nonpreemptable process with ar-
bitrary release times and deadlines 191. The earliest-dead-
line-first strategy is also optimal for scheduling processes
that are completely preemptable [151. Under any circum-
stance, for solving the problem of scheduling processes
with arbitrary release times, deadlines, and precedence
and exclusion relations defined on process segments, this
algorithm should outperform any previously proposed
heuristic.

In the next section, we provide an overview of the al-
gorithm. Basic notation and definitions are introduced in
Section 111. In Section IV we show how to improve on a
valid initial solution. In Section V we describe the strat-
egy used to search for an optimal or feasible solution. The
empirical behavior of the algorithm is described in Sec-
tion VI. Finally, conclusions are presented in Section VII.

11. OVERVIEW OF THE ALGORITHM
From the computation time and start time of each seg-

ment relative to the beginning of the process containing
that segment, and the release time, computation time, and
deadline of each process, one should be able to compute

the release time, computation time, and the deadline for
each segment.

Our algorithm finds a valid schedule in which the late-
ness of all segments in the schedule is minimized, while
satisfying a given set of “EXCLUDE” -relations and a
given set of “PRECEDE” relations defined on ordered
pairs of segments. The set of EXCLUDE relations and the
set of PRECEDE relations are initialized to be identical
with those exclusion and precedence relations required in
our original problem.

If the minimum lateness of all schedules is greater than
zero, then no feasible schedule exists that will satisfy all
deadline constraints. Otherwise, the algorithm, will find a
feasible schedule that meets all deadline constraints.

Our algorithm uses a branch-and-bound technique. It
has a search tree where at its root node we use an earliest-
deadline-first strategy to compute a schedule called a
“valid initial solution” that satisfies the release time con-
straints and all the initial EXCLUDE and PRECEDE re-
lations.

At each node in the search tree, we find the latest seg-
ment in the valid initial solution computed at that node.
We identify two “expand” sets of segments GI and G2
such that the valid initial solution can be improved on if
either the latest segment is scheduled before a segment in
the expand set GI; or, the latest segment preempts a seg-
ment in the expand set G1.

For each segment in the expand sets G, and G1, we
create a successor node in which we add appropriate PRE-
CEDE or “PREEMPT” relations, such that if a valid ini-
tial solution for the successor node is computed using
those new additional relations, then the latest segment in
the parent node would be scheduled before a segment in
GI, or preempt a segment in G2 whenever possible.

For each node in the search tree, we also compute a
lower bound on the lateness of any schedule leading from
that node. The node that has the least lower bound among
all unexpanded nodes is considered to be the node that is
most likely to lead to an optimal solution-we always
branch from the node that has the least lower bound among
all unexpanded nodes. In case of ties, we choose the node
with least lateness among the nodes with least lower
bound.

We continue to create new nodes in the search tree until
we either find a feasible solution, or, until there exists no
unexpanded node that has a lower bound less than the least
lateness of all valid initial solutions found so far. In the
latter case, the valid initial solution that has the least late-
ness is an optimal solution.

The ways in which we use PRECEDE and PREEMPT
relations to either schedule the latest segment before a
segment in the expand set GI or let the latest segment
preempt a segment in the expand set G1 cover all possible
ways of improving on a valid initial solution. This guar-
antees that in the latter case, the solution is globally op-
timal rather than locally optimal.

In the following section, we shall formally define all

111. NOTATION A N D DEFINITIONS
In order to solve the problem stated above, we first in-

Let the set of processes be denoted by P .
Each process p E P consists of a finite sequence of seg-

m e n t s p [O] , p [l] , . . . , p [n p]] , where p [O] is the first
segment and p [n [p]] is the last segment in process p .

troduce the following definitions and notations.

For each segment i , we define:
a release time r [i] ;
a deadline d [i] ;
a computation time c [i] ;

It is assumed that r [i] , d [i] , and c [i] have integer val-
ues.

Let the set of all segments belonging to processes in P
be denoted by S (P) . Each segment i consists of a se-
quence of segrnenf units (i , O) , (i , I) , . . . , (i , c [i l -
1), where (i , 0) is the first segment unit and (i , c [i] -
1) is the last segment unit in segment i .

We define the set of segment units of S (P) :

U = { (i , k) l i ~ S (P) A o I k I ~ [i] - I } .

Intuitively, a segment unit is the smallest indivisible
granule of a process. Each segment unit requires unit time
to execute, during which it cannot be preempted by any
other process. The total number of segment units in each
segment is equal to the computation time required by that
segment.

A schedule of a set of processes P is a total function a:
U -+ [0 , 0 0) satisfying the following properties:

1) V t E [O, m) : l { (i , k) E U l a (i , k) = t } I 5 I .

2) V (i , k l) , (i , k?) E U : (k l < k l) * (a(i , k l)

< T (P [j l - 0))
Above, condition 1) states that no more than one seg-

ment can be executing at any time. Condition 2) states
that a schedule must preserve the ordering of the segment
units in each segment. Condition 3) states that a schedule
must preserve the ordering of the segments in each pro-
cess.

We say segment i executes at time t iff 3k, 0 5 k 5
c [i] - 1 : a(i , k) = t .

We say segment i executes from tI to t2 iff j k , Vt , 0 5
k I c [i] - I , 0 I t I t2 - tl - 1 : x (i , k + t) = tl +
1 .

We define the start time of segment i to be s [i] = a (i ,

We define the completion time of segment i to be e [i 1

The luteness of a segment i in a schedule of P is defined

The luteness of u schedule o f P is defined by max { e [i]

0);

= a(;, c [i] - I) + 1.

by e [;] - d [i] .

362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 16. NO 3. MARCH IYYO

the terms mentioned above. - d [i] 1 i E s (P)) .

xu A N D PARNAS: SCHEDULING PROCESSES wini RELEASE TIMES 363

We define a latest segment to be a segment that realizes
the value of the lateness of the schedule.

We introduce the PRECEDE relation and EXCLUDE
relation on ordered pairs of segments together with the
notion of a “valid schedule.”

A valid schedule of a set of processes P is a schedule
of P satisfying the following properties.

v i , j E S (P) :

1) s [i] 1 r [i]

2) (i PRECEDESj) * (e [i] I s [j])

3) (i EXCLUDESj A s [i] < s [j])

* M i l I s [j l)
Above, condition 1) states that each process can only

start execution after its release time. Condition 2) states
that in a valid schedule, if segment i PRECEDES segment
j , then under all circumstances, segmentj cannot start ex-
ecution before segment i has completed its computation.
Condition 3) states that in a valid schedule, if segment i
EXCLUDES segment j , then segment j is not allowed to
preempt segment i . That is, if segment i started execution
before segment j , then segment j can only start execution
after segment i has completed its computation.

We initialize the set of PRECEDE relations and the set
of EXCLUDE relations to be identical with the precedence
and exclusion relations that must be satisfied in the orig-
inal problem. In addition, in order to enforce the proper
ordering of segments within each process, we let p [k]
PRECEDE p [k + I] for all p E P , and for all k , 0 5 k
I n [p] - 2. Thus, a valid schedule would satisfy all the
release time, exclusion, and precedence constraints in the
original problem.

A feasible schedule of a set of processes P is a valid
schedule of P such that its lateness is less than or equal
to zero.

An optimal schedule of a set of processes P is a valid
schedule of P with minimal lateness.

The adjusted release time r ’ [i] of segment i is defined

1) r ’ [i] = r [i] , i f 3 j : j PRECEDESi;
by

We also introduce a third relation that will be used in
our algorithm-the PREEMPT relation on pairs of seg-
ments together with the notion of a “valid initial solu-
tion.”

A valid initial solution for a set of processes P is a valid
schedule of P satisfying the following properties:

Vt E [O , a):

1) v j : (3 i : ((i PREEMPTSj A i is ELIGIBLE at t)

v (d [i] < d [j] A 1 (j PREEMPTS i)

A i is ELIGIBLE at t)

V (d [i] = d [j] A c [i] > c [j]

A i (j PREEMPTS i) A i is ELIGIBLE at 1))

=) i (j executes at t))

- 3 i : i executes at t
2) 3 i : i is ELIGIBLE at t

Above, condition 1) states that in a valid initial solu-
tion, if at least one segment i PREEMPTS segment j and
i is ELIGIBLE at time t ; or if at least one segment i has a
shorter deadline than j and i is ELIGIBLE at time t a n d j
does NOT PREEMPT i ; or if at least one segment i has
the same deadline but a longer computation time than j
and i is ELIGIBLE at time t and j does NOT PREEMPT
i , then segment j cannot execute at time t . Condition 2)
states that in a valid initial solution, at any time t , if at
least one segment is ELIGIBLE, then one segment should
execute at time t . Condition 2) effectively guarantees that
all segments will eventually be completed in a valid initial
solution, provided that all relations on segments are
“consistent” as defined below.

We define each pair of relations on segments indicated
by an “x” in the following table to be inconsistent. All
other pairs of relations on segments are consistent.

i P C J j P C i i E X J j E X i i P M j J P M i

i P C J : X

i E X J :
i P M J : X X

X

X

X

else

2) r ’ [i] = max { r [i] , r ’ [j] + c [j] I j PRECEDES i }

At any time t , t E [0, a], we say segment ‘3 is ELI-
GIBLE at t” iff:

1) t 2 r ’ [j] A l (e [j] I t)

2) j l i : i PRECEDES j A 1 (e [i] I t)

3) j l i : i EXCLUDESj A s [i] < t A 1 (e [i] I t)

The above definition guarantees that at any time t , if
segment j is ELIGIBLE at t , then j can be put into exe-
cution at t , while satisfying all the properties of a valid
schedule.

i PC j : i PRECEDES J
i EX J : i EXCLUDES J

i PM J : i PREEMPTS j
x : inconsistent

In addition to satisfying release time, exclusion and
precedence constraints, a valid initial solution also satis-
fies execution priority constraints defined by the set of
PREEMPT relations and deadlines.

Initially, we set the set of PREEMPT relations to be
empty. New PREEMPT relations as well as new PRE-
CEDE relations will be defined and used by the algorithm
to reschedule the latest segment earlier in order to im-
prove on existing valid initial solutions.

The following (simplified) procedure uses an earliest-
deadline-first strategy to compute a valid initial solution

3 64 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 16. NO. 3, MARCH 1990

in which release time constraints and a given set of EX-
CLUDE, PRECEDE, and PREEMPT relations are en-
forced:

t + O
while i (v i : e [i] I r) do

begin
if (3 i : t = r ’ [i] V t = e [i]) then

begin
Among the set
{ j 1 j is ELIGIBLE at t

A ($i : i is ELIGIBLE at t A i PREEMPTS
j)

I
select the segment j that has min d [j] .
in case of ties, select the segment j that has

put j into execution.
max c [j] .

end
t t t + 1

end

A more detailed implementation of the procedure for
computing a valid initial solution can be found in Appen-
dix 1.

See Examples 1-5 in Appendix 3 for examples of
schedules corresponding to valid initial solutions.

IV. How TO IMPROVE ON A VALID INITIAL SOLUTION
Let j be the latest segment in a valid initial solution. (If

there exists more than one segment that have maximum
lateness, then let j be the segment that completed last
among those segments.)

Any nonoptimal schedule may be improved on only if
j can be rescheduled earlier.

We define the set of segments Z [i] recursively as fol-
lows:

1) i E Z [i] ;

2) v k :

if 3I , I E Z [i] :

(e [k] = s [l] A (d’, l ’ ~ Z [i] : r ’ [I ‘]

< 4 k I)

V (s [l] < e [k] < e [i])

then k E Z [i]
The properties of a valid initial solution imply that in

any schedule that corresponds to a valid initial solution:
Z [i] is the set of segments that precede (and include)

i in a period of continuous utilization of the processor;
e [i] is the earliest possible completion time for the

entire set of segments Z [i] .
any nonoptimal schedule may be improved on only

by scheduling some segment k E Z [j] such that d [j] <
d [k] later than the latest segment j .

As an example, in the valid initial solution of the root
node of the search tree of Example 5 : D E Z [D] from 1) ;

A E Z [D] because e [A] = s [D] A r ’ [D] < e [A] ; , B , C
E Z [D] because s [A] < e [B] , e [C] < e [D] . Thus
Z [D] = { A , B , C , D } . e [D] is the earliest possible com-
pletion time for the entire set of segments Z [D] - i f any
other order for the segments in Z [D] is chosen, the last
segment in that new order cannot complete before e [D] .

We define two expand sets GI and G2 as follows:

G~ = { i l i E ~ [j l ~ d [j l < d [i]

A i EXCLUDES j

A 7 (i PRECEDES j)

A 1 (i PREEMPTS j) }

G2 = { i l i E Z [~] A d [j] < d [i

A 1 (i EXCLUDES j)

A 1 (i PRECEDES j

A 1 (i PREEMPTS j)

A $ l : (g k , t : O 5 k I [l] - 1, 0

- < t < c n : s [i] I ~ (1 , k) I e [j])

% an execution of I occurs between

i a n d j %

A (i PRECEDES I v i PREEMPTS I)]
G I is the set of segments that, if scheduled after j , may

reduce the maximum lateness.
G2 is the set of segments that, if preempted by j , may

reduce the maximum lateness.
As examples, the valid initial solution of the root node

of the search tree in Example 1 can be improved on by
scheduling A E GI after the latest segment C . The valid
initial solution of the root node of the search tree in Ex-
ample 4 can be improved on if the latest segment E
preempts A E G 2 . In Example 4 B G2 because there
exists D such that B PRECEDES D and an execution of
D occurs between B and E .

By making use of the fact that e [i] is the earliest pos-
sible completion time of the entire set of segments Z [i] ,
we can compute a lower bound on the lateness of any valid
initial solution satisfying a given set of EXCLUDE, PRE-
CEDE, and PREEMPT relations with the following for-
mula:

let K [i] = { k l k E Z [i] A k # i A d [i]

< d [k] A 1 (k PRECEDES i)

A 1 (k PREEMPTS i) }
if K [i] = 0
then L B [i] = e [i] - d [i]

else L B [i] = e [i] + min { G A P [k , i]

- d [k] l k ~ K [i] } where

if 1 (k EXCLUDES i) then G A P [k , i] = 0

X U A N D PARNAS: SCHEDULING PROCESSES WITH RELEASE TIMES 365

else G A P [k , i] = max { 0, -s[k] + min { r ’ [l] I
l ~ Z [i] A k # I

A s [k] < ~ [l] I ~ [i]

A 1 (k PRECEDE l) }]

L B , [~] = r ’ [i] + c [i] - d [i]

lowerbound = max { LB, [i] , LB2 [i] I i E S(P) }
The lower bound function can be derived by observing

the following: if the set K [i J is empty then the lateness
of i, i.e., e [i] - d [i] cannot be improved on. This is
because if any other segment k E Z [i J where d [k] I d [i]
is scheduled last, then k would be at least as late as the
lateness of i. If k EXCLUDES i and s [k] < min
{ r ’ [l] Is[kJ < s [1 3 I s [i] } , then from the properties
of a valid initial solution, scheduling k after i would leave
a gap in the new schedule that starts at s [k] and ends at
m i n { r ’ [l] l s [k] < s [f] 5 ~ [i] } . (Notethatlcouldbe
equal to i) , and the lateness of the new schedule would
be at least e [i] - d [k] plus the gap size. L B , [i] is a
trivial lowerbound on the lateness of any segment i.

V . SEARCHING FOR A N OPTIMAL OR FEASIBLE
SOLUTION

We now define a search tree that has as its root node
the valid initial solution that satisfies all the EXCLUDE
and PRECEDE relations in the original problem specifi-
cation.

At each node in the search tree we compute the lower
bound and two expand sets G, and G,. Let segment j be
the latest segment in the valid initial solution computed
at that node.

For each segment k E G I , we create a successor node
that corresponds to a new problem, in which we assign a
new relation j PRECEDES k. If we apply the procedure
above and compute a new valid initial solution in which
the new relations are enforced, then segment k will be
scheduled later than segment j in the new schedule.

For each segment k E G2, we create a successor node
that corresponds to a new problem, in which for all seg-
ments 1 such that k EXCLUDES I and an execution of 1
occurs between k and j , we assign the relation 1 PRE-
CEDES k, and for all segments q such that k does NOT
EXCLUDE q and an execution of q occurs between k and
j , we assign the relation q PREEMPTS k and the relation
j PREEMPTS k. We let each successor node inherit all
relations assigned to any of its predecessor nodes. If we
apply the procedure above and compute a new valid initial
solution in which the new relations are enforced, then
segment k will be preempted by segment j in the new
schedule if possible. After generating the valid initial so-
lution for each new successor node, we test it for opti-
mality. If the optimal solution is not discovered among

any of the resulting problems, then we proceed to create
new successor nodes in a similar manner. We use a strat-
egy of branching from the node with the least lower
bound. In case of ties, we choose the node with least late-
ness among the nodes with least lower bound.

The steps of the algorithm are as follows:
(For a more detailed implementation of the algorithm

see Appendix 2.)
Step 0: Compute an initial valid solution and the cor-

responding lowerbound. Find the latest segment j and its
lateness. If its lateness equals its lowerbound then stop-
the schedule is optimal. Otherwise, call the node corre-
sponding to the schedule of the parent node.

Step I : Find the expand sets GI and Gz and create I GI I
+ I G2 1 new child nodes. For each node corresponding to
a segment k in G I , assign a new relation j PRECEDES k.
For each node corresponding to a segment k in G?, for all
segments 1 such that k EXCLUDES I and an execution of
1 occurs between k and j , assign a new relation I PRE-
CEDES k, and, for all segments q such that k does NOT
EXCLUDE q and an execution of q occurs between k and
j , assign the relation q PREEMPTS k and the new relation
j PREEMPTS k.

Let each child node inherit all relations assigned to any
of its predecessor nodes.

Recompute a valid initial solution, lowerbound and find
the latest segment and its lateness for each child node.

Srep 2: If Steps 3 and 4 have been performed for all
child nodes then close the parent node and go to Step 5 .

Otherwise, select the child node with the least lateness.
Srep 3: Set minlateness + min { minlateness, lateness

(childnode) } .
If minlateness is less than or equal to the least lower-

bound of all open nodes then stop-the solution is opti-
mal.

Step 4: If lateness (childnode) = lowerbound (child-
node) then close this child node and return to step 2-this
solution is locally optimal.

If minlateness is less than lowerbound (childnode) then
close this childnode-this node will never lead to a solu-
tion that is better than the current minlateness.

Return to step 2.
Step 5: Select among all open nodes the node with the

least lower bound, in case of ties, select the node with
least lateness. Call this node the parent node and goto step
1. 0

(See Examples 1-5 in Appendix 3 .)
If a feasible schedule is considered sufficient, to achieve

more efficiency, instead of terminating the algorithm only
when a minimum lateness schedule has been found, one
may terminate the algorithm as soon as a feasible schedule
in which all deadlines are met is found. One could also
adopt a strategy of terminating the search whenever a
schedule has been found such that its lateness is within a
prespecified ratio of optimal. An upperbound on that ratio
can be computed with the formule (lateness - L) / L where
L is the least lower bound of all nodes belonging to the
open node set.

366 I E E E TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16, NO. 3, M A R C H 1990

VI. EMPIRICAL BEHAVIOR OF THE ALGORITHM
We have written a program in Pascal that implements

the algorithm described above.
Observation of the empirical behavior of the algorithm

indicated that this algorithm consistently generated sig-
nificantly fewer nodes than one of the best algorithms re-
ported so far that solves the special case where each pro-
cess consists of only one segment that excludes a11 other
segments [141.

We restricted ourselves to comparing the number of
nodes generated for an identical problem sample, because
this is the major factor that determines the size of the
problem that can be effectively computed-it is basically
this number that will grow exponentially when the prob-
lem size increases.

By comparing the two algorithms on sample problems
corresponding to the special case where each process con-
sists of only one segment that excludes all other seg-
ments, we found that for problem sizes of 25 (number of
segments), our algorithm frequently generated 25 % fewer
nodes than the algorithm reported in [141. When the prob-
lem size doubled to 50, our algorithm frequently gener-
ated 44% (approximately 1 - (1 - 0.25)2) fewer nodes.
When we doubled the problem size again, the difference
became even greater-their algorithm was unable to ter-
minate after generating several tens of thousands of nodes,
while our algorithm terminated on the same problem sam-
ple after generating only a few thousand nodes. It was
also observed that for all problem samples of the general
case (arbitrary exclusion relations defined on segments)
that we constructed, solving them with our algorithm al-
ways generated fewer nodes before an optimal schedule
was found than if all segments excluded each other (which
corresponds to the special case).

Thus the performance of our algorithm on the general
case in terms of the number of nodes generated should be
much better than the performance reported in [14] when
solving the special case.

VII. CONCLUSIONS

The major contribution of our algorithm is that it solves
a very general and important problem that no other re-
ported algorithm is capable of solving. It is the first al-
gorithm that is able to systematically search for an opti-
mal or feasible schedule that satisfies a given set of release
time, deadline, precedence, and exclusion constraints de-
fined on process segments. The algorithm can be applied
to the important and previously unsolved problem of au-
tomated pre-run-time scheduling of processes with arbi-
trary precedence and exclusion relations in hard-real-time
systems.

With our algorithm it is possible to take into account
the cost of context switching. All we need to do is add to
the computation time of each segment the following: 1)
the time required to save the status of a preempted seg-
ment, 2) the time required to load a new segment, and 3)
the time required to restart a preempted segment. This is

because the only possible time where a process switch may
take place is either at the adjusted release time or at the
completion time of a segment. Furthermore, each seg-
ment can only preempt any other segment once. Hence
we can always “charge” the cost of a context switch to
the preempting segment so that all deadlines will be met.
(See [151 for a similar argument for the earliest-deadline-
first strategy .)

When implementing this algorithm, it may be advan-
tageous to make space-time tradeoffs to match available
resources. If our major constraint is space instead of time,
we might consider only storing at each node partial infor-
mation that is different from the information stored at its
ancestor nodes, then whenever we need complete infor-
mation to proceed at a certain node, we use the informa-
tion stored at its ancestor nodes to reconstruct the com-
plete information required at that node. For example, we
only stored new PRECEDE and PREEMPT relations at
each node when implementing our algorithm, which re-
sulted in a significant saving of space without seriously
affecting computation time.

One may also include an initial problem parameter ver-
ification stage that performs a preliminary analysis of all
the initial problem parameters and modifies or rejects if
necessary any problem parameters that are either redun-
dant or inconsistent with other parameters prior to using
this algorithm.

We note that this algorithm can be easily generalized to
the case where exclusion regions within each process
overlap or are embedded within each other.

For future work, we will explore ways of generalizing
this algorithm to solve the problem of scheduling pro-
cesses with release times, deadlines, precedence and ex-
clusion relations on n processors. Another interesting di-
rection for future work would be to explore ways of
generalizing this algorithm to solve the problem with ad-
ditional resource constraints [191.

APPENDIX 1

COMPUTING A VALID INITIAL SOLUTION
The following procedure computes a valid initial solu-

tion in which the release time constraints and a set of EX-
CLUDE, PRECEDE, and PREEMPT relations are satis-
fied:

AN IMPLEMENTATION OF THE PROCEDURE FOR

lastt : = (any negative value):
lastseg : = (any segment index);
idle := true;
for each segment i do

begin
started[i] : = false;
completed[i] : = false;
comptimeleftl i] : = c[i] ;
s [i] := - 1 ;

end;
t := 0;
while not(for all segments i: completed[i] = true) do
begin

t : = min { t I t > lastt and ((exists i: t = r‘ [i]) or
((idle = false) and (comptimeleft[lastseg] = t - lastt)))
1;

if idle = false then

X U AND PARNAS: SCHEDULlNG PROCESSES WITH RELEASE TlMES 367

begin
% in the valid initial solution computed by the procedure: %
let segment lastseg execute from lastt to t ;
comptimeleftl lastseg] : = comptimeleft[lastseg] - (t -
lastt);
if comptinieleft[lastseg] = 0 then

begin
completed[lastseg] : = true;
e[lastseg] : = t;

end:
end;
S + { j 1 j is ELIGIBLE and no other segment i exists

such that i is also ELIGIBLE and i
PREEMPTS j

1
if S is empty then idle : = true

else
begin

idle := false;
SI + { j I d[j] = min { d [i] I i in S } }
select segment x such that c [x] = max { c[i] I i in SI

if not started[x] then
1:

begin
started[x] : = true;
s[X I : = t ;

end;
lastseg := x;

end;
lastt : = t ;

end;

Above, “lastt” is the last time that the procedure tried
to select a segment for execution. “lastseg” is the seg-
ment that was last selected for execution. “idle” indi-
cates whether there was any segment selected at lastt.
“started[i]” indicates whether segment i had started ex-
ecution. “completed[i]” indicates whether segment i had
completed execution. “comptimeleft[i 1’’ is the remain-
ing computation time of segment i.

APPENDIX 2
AN IMPLEMENTATION OF THE MAIN ALGORITHM

begin {main}
nodeindex := 0
initialize (PC (nodeindex), E X)
PM (nodeindex) 0
optimal : = false;
feasible : = false;
opennodeset + 0
if consistent (PC (nodeindex), EX, PM (nodeindex)) then
begin

schedule (nodeindex) + validinitialsolution (PC (nodeindex),

leastlowerbound : = lowerbound (nodeindex)
if lateness (nodeindex) = least lowerbound then

if lateness (nodeindex) 5 0 then

if not (optimal or feasible) then
begin

EX, PM (nodeindex))

optimal := true;

feasible : = true;

opennodeset +- { nodeindex }
minlateness : = lateness (nodeindex);
minlatenode : = nodeindex;
while not (optimal or feasible or spacetimelimitsexceeded)

do
begin

lowestboundset +- { I 1 lowerbound(I) = leastlowcr-

select parentnode such that:
bound }

lateness (parentnode) = min { lateness (i) I i E low-
estboundset }

j : = latestsegment (schedule (parentnode))
firstchildnode := nodeindex + I

for each segment k E G , (parentnode)
begin

nodeindex : = nodeindex + I
PC(nodeindex) + PC(parentnode) U {(j ,k)}

end

begin
for each k E GI (parentnode)

nodeindex := nodeindex + I
PC (nodeindex) + PC(parentnode)
for all I such that:

k EX I and an execution of I
occurs between k and j in sched-

begin
ule (parentnode):

PC (nodeindex) + PC (nodeindex) U
{(U)}

end
PM(nodeindex) + PM(parentnode) U {(j.k}
for all q such that:

not (k EX q) and an execution of q
occurs between k and j in sched-

begin
ule (parentnode):

PMtnodeindex) + PM(nodeindex) U
((0 1

end
end

opennodeset +- opennodeset - { parentnode }
if not (optimal or feasible) then
for childnode : = firstchildnode to nodeindex do
begin

if consistent (PC (childnode), EX, PM (childnode))

begin
then

schedule (childnode) +

validinitialsolution(PC (childnode), EX,
PM (childnode))

if lateness (childnode) < minlateness then
begin

minlateness : = lateness (childnode);
minlatenode : = childnode;

end;
if lateness(chi1dnode) 5 0 then

else
feasible := true

if minlateness > lowerbound (childnode) then
opennodeset opennodeset U {child-

node }
end;

end;
leastlowerbound + min { lowerbound (i) I i E openno-
deset }
if opennodeset = 0 or (minlateness 5 leastlowerbound)

then
optimal : = true;

end;
minlateschedule : = schedule (minlatenode)

end;
end;

end.
(end of algorithm)

In the algorithm above, a node in the “opennodeset”
is a node that does not have successors, but may be se-
lected as the node to be branched from next.
“PC (nodeindex)” and “PM (nodeindex)” are respec-
tively the set of PRECEDE relations and the set of
PREEMPT relations associated with the node identified
by “nodeindex.” “EX” is the (constant) set of EX-
CLUDE relations. “schedule (nodeindex)” is the valid
initial solution computed using PC (nodeindex), EX and
PM (nodeindex). “lateness (nodeindex)” is the lateness
of schedule (nodeindex). “lowerbound (nodeindex),
GI (nodeindex), and G2 (nodeindex)” are, respectively,

368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 16. NO 3. MARCH 1990

the lowerbound and the two expand sets computed from
schedule (nodeindex).

To achieve more efficiency, instead of terminating the
algorithm only when a minimum lateness schedule has
been found, the algorithm terminates as soon as a feasible
schedule in which all deadlines are met is found; or, when
a predefined spacehime limit is exceeded.

APPENDIX 3
EXAMPLES 1-5

Example 1.

r[A] = 40 r[B] = 60 r[C] = 50 r[D] = 0 A EXCLUDES B C EXCLUDES A
c[A] = 20 c[B] = 20 c[C] = 20 CID] = 20 D EXCLUDES A B EXCLUDES C
d[A] = 110 d[B] = 90 d[C] = 91 d[D] = 120 A EXCLUDES C C EXCLUDES D

Root node of warch tree

1atcn-s = e[C] - d[C] = 100 - 91 = 9
Z[C] = { A , R. C)
lowerbound = LB[Cl = e[C] + (.'[Cl - .[A] - d[A]) = 100 + (50 - 40 - 110) = d

G I = {A) G2 = 0

C PRECEDES A

91 120

latest segmcnt. A . B
l n t e i i e ~ ~ = e [A] . d[A] = e[B] - d[B] = 0
Z[A] = { C , B. A)

lowerbound = LB[A] =<[A] -d[A]
= LB[B] = e[H] - d[B] = 0

(globally optimal since lateness equal to

lemt lower hound of all open nodes)

'

Z[BI = (C, R I

Example 2.

r [~] = 0 r [~ ~] = In = bo A EXCLUDES 11

d [~] = 110 d[n] = 101 d [~] = 10
r[,\] = 50 r[B] = 20 <[<:I = 10 D EXCLUDES C

n-1 lloc~(. o rsra .~~ , t r r P

C PRECEDES U C PREEMPTS A
U PRECEDES A

Example 3.

*[A] = 0 481 = 20 r[C] = 40 D EXCLUDES C
c[A] = 30 c[B] = 20 c[C] = 30
d[A] = 80 d[B] = X I d[C] = 70

llmt node d s e i r e h tree:

R I

lalest segment. C
laleness = e[C] - d[C] = 8 0 . i o = I O

Z[C] = { A , R, C)
lowerbound = I.B2[C] = r'[C] + c[C] - d[C] = 40 + 3 0 . i o = 0

61 = {U)

/

C PRECEDES B

lG2 = (h]

\

C PREEMPTS A
B PREEMPTS A

Example 4.

r[A] = 0 r[B] = 1 r[C] = 60 r[D] = 40 ,[E] = 90 A EXCLUDES D C EXCLUDES E
<[A] = 30 e[B] = 40 c[C] = 30 c[D] = IO .[E] = 50 A EXCLUDES D C EXCLUDES D
d[A] = 161 d[B] = 51 d[C] = 90 d[D] = 91 d[E] = 140 B EXCLUDES C D EXCLUDES E

D PRECEDES D

Root node of search tree:

1 91 161

latest segment- E
lateness = e[E] - d[E] = 160 - 140 = 20

Z[E] = (A , B, C. D. E)
lowerbound = LBZ[E] = .'[E] +.[E] - d[E] = 90 + 50 - 140 = 0

G 2 = {A) G I = 0

D PRECEDES A C PREEMPTS A
D PRECEDES A E PREEMPTS A

latcsi srgmrtmt- ,\, 1:. E
laleness = e[A] - d[A] = e[C) - d[C] = e(E] - d[E] = 0
Z[A] = {B, D. C, E , A)

ZICI = {Cl
Z[El = {El
lowerhound = LR[A] = e[A] ~ d[A] = LB[C] = e[C] ~ d[C]

= LB(E] = e[E] ~ d[E] = 0
(globally optimal since lateness equal l o

least lowc. bound,,i dl.ope- nodes)

X U AND PARNAS: SCHEDULING PROCESSES WITH RELEASE TIMES 369

/
/

D PnECEDES A

c E (:2

1
A PREEMPTS C
D PREEMPTS C
D PREEMPTS C

n E G 2

\
A PREEMPTS D
C PREEMPTS Ll
D PREEMPTS U

ACKNOWLEDGMENT
We are grateful to E. Margulis and K. C. Sevcik for

helpful comments on earlier drafts. Helpful comments and
suggestions from the anonymous referees are gratefully
acknowledged.

REFERENCES
J. Carlier. “Probleme a une machine.” Institute de Programmation.
Univ. Paris VI, manuscript. 1980.
E. G. Coffman, Jr.. Computer rind J ~ i l x h ~ i p Scheduling Theory. New
York: Wiley-Interscience. 1976.
S . R. Faulk and D. L. Parnaa. “On synchronization in hard-real-time
systems.” Commun. ACM, vol. 3 1 , Mar. 1988.
M. R. Garey and D. S . Johnson, “Scheduling tasks with non-uniform
deadlines on two-processors.” J . ACM. vol. 23, J u l y 1976.
- . “Two-processor scheduling with stan-times and deadlines,“
SIAM J . Coinput.. vol. 6. Sept. 1977.
-. Computers rind lntrirctuhility: A Guidc t o the Thcory of N P -
Conipleteness. San Francisco. CA: Frccman. 1979.
M. R . Garey. D. S . Johnson. B. B. Simons. and R. E. Tarjan.

“Scheduling unit-time tasks with arbitrary release times and dead-
lines,” S I A M J . Coinput.. v o l . IO. May 1981.
M. J . Gonzalez, Jr . , “Deterministic processor scheduling,” Cornpot.
Surveys. vol. 9 , Sept. 1977.
D. Gunsfield. “Bounds for naive multiple machine scheduling with
release times and deadlines,” J . Algorithms. vol. 5 , 1984.
E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Recent
developments in detcrministic sequencing and scheduling: A sur-
vey.” in Proc. NATO Advunced Study mid Reseurch Institute on The-
oreticul Approuches to Si~hecluling Prohlen7.s. Durham. England, Ju ly
1981 ; also in Dererniinistic und Stochustic Scheduling. M. A. H.
Dempster et a l . , Eds.
C. L. Lui and J . W. Layland. “Scheduling algorithms for multipro-
gramming in a hard-real-time environment.” J . ACM, vol. 20, Jan.
1973.
G. K. Manacher, “Production and stabilization of real-time task
schedules,” J . ACM, vol. 14. July 1967.
C. Martel, “Preemptive scheduling with release times. deadlines, and
due dates,” J . ACM, vol. 29. July 1982.
G. McMahon and M. Florian. “On scheduling with ready time and
due dates to minimize maximum lateness,” Oper. Res . . vol. 23 . 1975.
A. K. Mok and M. L. Detouzoa, “Multiprocessor scheduling in a
hard real-time environment.” in Proc. 7th IEEE Texcrs CoriJ Corn-
puting Systems. Nov. 1978.
A. K . Mok. “Fundamental design problems of distributed systems
for the hard-real-time environment,” Ph.D. dissertation, Dept. Elec.
Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA.
May 1983.
- . “The design of real-time programming systems based on pro-
cess models.” in Proc,. IEEE Rrcil-Tinie Systmw Syinp.. Dec. 1984.
B. Simons, “Multiprocessor scheduling of unit-time jobs with arbi-
trary release times and deadlines.” SlAM J . Coinput.. vol. 12, May
1983.
W. Zhou, K . Ramamrithan. and J. Stankovic. “Preemptive sched-
uling under time and resource constraints.” IEEE Trtrns. Cornput..
Aug. 1987.

Dordrecht, The Netherlands: D. Reidel.

Jia Xu received the Docteur en Sciences Appli-
quCes degree in computer science from the Univ-
ersite Catholique de Louvain. Belgium, in 1984.

He is presently an Assistant Professor in the
Department of Computer Science at York Univer-
sity, North York. Ont.. Canada. From 1984 to
1985 he was a postdoctoral fellow at the Univer-
sity of Victoria, Victoria. B.C., Canada. From
1985 to 1986 he was a postdoctoral fellow at the
University of Toronto, Toronto. Ont., Canada.
His research interests include real-time systems,

scheduling, and database management systems.
Dr. Xu is a member of the Association for Computing Machinery

David Lorge Parnas, born February IO, I94 I , is
a Professor at Queen’s University in Kingston.
Ont., Canada, where he is a project leader and
principal investigator for the Telecommunications
Research Institute of Ontario. He is interested in
all aspects of computer systems engineering. His
special interests include program organization.
program semantics, precise computer system doc-
umentation. process structure, process synchro-
nization, and precise abstract specifications. He
initiated and led an experimental redesign of a

hard-real-time system, the on-board flight program for the U.S. Navy’s
A-7 aircraft, in order to evaluate a number of software engineering prin-
ciples. More recently he has advised the Atomic Energy Control Board on
the use of safety-critical real-time software in a new nuclear plant. Previ-
ously, he was Lansdowne Professor of Computer Science at the University
of Victoria, Victoria. B.C., Canada. He was also Principle Investigator of
the Software Cost Reduction Project at the Naval Research Laboratory in
Washington, DC. He has also taught at Carnegie-Mellon University, the
University of Maryland. the Technische Hochschule Darmstadt, and the
University of North Carolina at Chapel Hill.

Dr. Parnas was the first winner of the “Norbert Wiener Award for Pro-
fessional and Social Responsibility.” given annually by Computing Pro-
fessionals for Social Responsibility. and has an honorary doctorate from
the ETH in Zurich.

