FSMLABS TECHNICAL REPORT

Against priority inheritance

Victor Yodaiken
Finite State Machine Labs (FSMLabs)

Copyright Finite State Machine Labs 2001,2002,2004

September 23, 2004

Abstract

The limitations, dangers, and performance costs of the “priority inheritance” scheme for managing priority
inversion are not widely appreciated. This note explains why priority inheritance is a poor choice of design for
most real-time projects.

1 Inversion and inheritance

There is a mismatch between the properties required from priority driven real-time systems and the property re-
quired for mutual exclusion. A priority scheduled real-time system must ensure that the highest priority runnable
task can start to run in a bounded time — and the bound needs to be small. A mutual exclusion mechanism must
ensure that every task requesting a certain resourceawaitng as it take$or the task that owns the resource

to release it, no matter what the priorities of the tasks. These two constraints can easily conflict paoistpg
inversion— a scheduled task that is waiting for a lower priority task. The classical nightmare case here is when
a low priority task owns a resource, a high priority task is blocked waiting for the resource, and intermediate
priority tasks keep preempting the low priority task so it cannot make progress towards releasing the resource.
Here we hava@inbounded priority inversiarin 1980, Lampson and Redall concisely described the problem with
reference to exclusive entrgionitors

Unless care is taken, the assignment of priorities can be subverted by monitors.[2]

Lampson and Redall explain that to avoid unbounded inversion, the programmer needs to analyze the
program to determine the priority of the highest priority task that locks the resource. The lock operation can then
be modified so that any task that holds the lock is temporarily promoted to this priority while it holds the lock.
The low priority task is considered to be acting on behalf of the highest priority blocked task and the priority
promotion prevents intermediate priority tasks from interfering. This method (now often pailkedy ceiling)
works reliably, but has some drawbacks and the analysis can be difflertirity inheritancd3] promises a
solution to unbounded priority inversion without code analysis. The basic idea of priority inheritance is to
provide dynamic calculation of the ceiling priority. When a task blocks on a resource owned by a lower priority
task, the lower priority task inherits the priority of the blocking task and continues.

The RTLinux core does not support priority inheritaricéor a simple reason: priority inheritance is
incompatible with reliable real-time system design. Priority inheritance is neither efficient nor reliable. Imple-
mentations are either incomplete (and unreliable) or surprisingly complex and intrusive. In fact, the original

1Although it is available on some add-on packages

academic paper presenting priority inheritance [3] specifies (and “proves correct”) an inheritance algorithm that
is wrong. Worse, the basic intent of the mechanism is to compensate for writing real-time software without
taking care of the interaction between priority and mutual exclusion. All too often the result will be incorrect
software with errors that are hard to find during test.

Priority inheritance suffers from the drawbacks of all attempts to solve the wrong problem. Synchroniza-
tion is a price we pay for, sometimes unavoidable, resource conflicts. The best strategy for reducing resource
conflict costs is to reduce competition for shared resources. Think of synchronization protocols as analogous to
tool check-in/check-out protocols in a repair shop. If the workers are spending too much time arguing over who
gets what tool or which workbench, the solution is better scheduling of work, not company wide meetings to
resolve each argument. In a companion article[5] | discuss some methods we use to reduce contention in real
programs.

2 A quartet of complaints

2.1 Problem: nested critical regions

The first problem is thatested critical regions protected by priority inheritance locks generate long inversion
delays.In practice critical regions protected by priority inheritance locks must not contain any inheriting
locking operations.

SupposeT; owns mutexm; and is waiting for mutexn, which is owned byT, and so on. IfHigh
now blocks onm; we have to march down the chain promoting each element. IHigh would be in danger
of unbounded inversion as lower tasks in the chain failed to advance because of intermediate priority tasks. So
priority inheritance needs to be a transitive operation. Consider the worst case inversion delay under priority
inversion. Ignoring the overhead of the algorithm itself, our teigh has to wait for every chained critical
section to complete! The delay is at least shien of the compute times of the critical sections. It's quite possible
that the the inversion delays High may be dominated by the critical sections of distantly related tasks. Note that
adding taskr to the system may have dramatic effects on the worst case delalygloby connectingHigh to a
new chain of linked locks. Suppose, for example, that Higk can block on a chain of tasks that terminates with
a task that blocks on an operating system internal mutex. Now suppose that we add an apparently unrelated task
that may acquire this operating system mutex and become the head of its own chain of tasks linked by inheriting
mutexes. Suddenly, the worst case inversion deldyigh is no less than the sum of the critical section compute
times of all the tasks in both chains.

Finally consider what happens if a waiting task in an inheritance chain has its timer go off. All tasks
down-chain must be disinherited. All of this activity adds to the inversion delay.

2.2 Problem: mixed inheriting and non-inheriting operations

Priority inheritance fails if tasks mix inheriting and non-inheriting blocking operatiolspractice, critical
regions protected by priority inheritance locks must not contain any non-inheriting blocking operations
either.

Priority inheritance algorithms assume that each locked resource has a single identifiable owner that can
inherit. But many blocking operations do not have single identifiable owners. Consider what happens if a task
T has a priority inheriting mutexn protecting a critical region that contains a blocking I/O operation on an
interprocess communication pseudo-device, such as a pipe or fifo. Iftghlblocks onm andLow is waiting
for taskVeryLowto write data into the pipe, then our classic unbounded inversion delay is possible — unless the
inheritance algorithm is transitive across different types of blocking operations.

Low lockm | read p
High lock m
VeryLow lock m1 | write p

That is, the inheritance operation must first proniater and then see thaiow is waiting on the pipe for
VeryLowand promoté/eryLow Even worse, ifVeryLowis itself waiting on a blocking operation, we have to
follow that chain too. However, in general it is impossible to follow the chain because a pipe may not have any
owner or it may have many owners and there is often no way to find out. Pipes are simply not suitable for priority
inheritance.

Priority inheritance algorithms require that the owner of the lock must release the lock — otherwise
the inherited priority is not properly returned. But the standard algorithm for producer consumer involves the
producer unlocking and the consumer locking. Supposemthabnsumes data passed By using a semaphore
s to synchronize so thal; decrements and blocks afid posts. IfT; can hold inheriting mutexn when it
decrements, then it is possible tha#igh will block on m and pass its priority td; which is not going to be
able to use it. IfT3 preemptsT,, then inversion can arbitrarily deldyigh. Perhaps you think that we can make
the inheritance algorithm promote when it sees thar; is blocked ons. But what if there are many producer
tasks? What if the producer tasks take turns? Semaphores are not designed for inheritance.

The existence of priority inherit locks makes this error easy to make. There is no good way to statically
test that there are no instances of this type of use of locks in the system, and there is no sensible recovery if
the error is caught at runtime. Many operating systems run signal handlers in the context of the current task for
efficiency. In such a case, a signal handler that releases a lock can cause a fatal error that may not show up on
tests.

You might respond that this is hardly fair because priority ceiling has the same trouble. But the static
analysis required for priority ceiling is at a level that would uncover our semaphore problem. And who cares
about being fair? | care about what happens when the nuclear power plant software needs to shut that valve at
once! And | shudder to think of how the programmers designing that plant software may have belietteglthat
didn’t need static analysis because priority inheritance took care of the problem automatically.

One solution would be to ban inheritance-resistant blocking operations, but POSIX specifies at least the
following synchronizing methods that are completely unsuitable for inheritance: semaphores, read/write locks,
and blocking I/0. POSIX semaphores are not required to be decremented and incremented in pairs by the same
task or even to have an identifiable owner. Read/write locks can have many owners and cannot be efficiently
implemented if all owners are identified. And blocking I/O is just hopeless when you think about inheritance.

According to Vahalia [4], the Solaris developers made inheritance “sort-of” work on reader/writer locks.

A reader/writer lock allows many readers to hold the lock at the same time but gives exclusive access to a single
writer — there are no readers when a writer has the lock. Which reader gets to inherit when a writer blocks?
“All of them” is a bad answer because we need to then make acquiring a read lock very expensive (defeating
the purpose) and each lock would need auxiliary storage big enough to identify a potentially large number of
readers. So the Solaris designers decided to make the first reader the “reader of record” and only promote that
one. What happens if the first reader releases the lock before the others? Things don’t work, that's what happens:
low priority remaining readers still block the writer and they do not inherit. Basically, this trick means that
devastating errors will be unlikely to show up in tests.

2.3 Problem: Performance

Priority inheritance worst case performance is worse than the easy alternatives in mostlogsestice, un-
less the guarded critical region requires a relatively high compute cost, priority inheritance has guaranteed
poor performance.

Lampson and Redall's method and all elaborations of that method, including priority inheritance, have a
certain level of built in inversion delay while the lower priority task completes the critical region. While you can
argue that the lower priority task is doing something on behalf of the higher priority task sharing the resource,
the bottom line is that the higher priority task is waiting for the lower priority task. But inheritance increases this
built delay.

At its most simple: inheritance costs include:

1. Blocking the higher priority task;

Passing the priority down;
Restarting the lower priority task;
The compute time of the critical section in the lower priority task;

Unblocking the higher priority task when the resource is freed;

o o M 0w N

Restarting the higher priority task.

If we allow nesting of priority inherit locks, this can be multiplied by the length of the longest chain.

Now let's consider a simple alternative design: disable all preempts during the critical section. The worst
case inversion delay of a task under the “disable preemption” method is the longest compute time of any critical
region of any lower priority task in the system. There is no false preempt, no block, no restart, and no transitivity.

If the guarded operation is short, such as a link or unlink operation on a queue, there is no doubt that priority
inheritance loses. So priority inheritance is only a performance win forfaékhe sum of the critical section
compute costs plus the overhead of any chain of connected resources is lower than the cost of the most expensive
critical resource on some lower priority task that does not belong to any chain inclliding

2.4 Problem: Operating System Performance

Inheritance algorithms are complicated and easy to get wrdngpractice putting priority inheritance into
an operating system increases the inversion delays produced by the operating system.

You could say that many components of operating systems are complicated and easy to get wrong, but it
is widely believed that “implementation of the basic priority inheritance protocol is rather straightforward”[3].

In fact, the “basic priority inheritance” algorithm specified by Sha, Rajkumar, and Lehocigygher straight-
forward, but it is also incorrect. The flaw comes in the method for restoring priorities. Basic priority inheritance
specifies that when a task releases a lock, it restores its priority to the priority it had before it acquired the lock:
inherited priorities are restored using a stack algorithm. But the stack algorithm assumes incorrectly that inher-
itance operations come in the same order as semaphore locking operations. Suppbdedieski; and then

m, and then it inherits a priority om;. If T then unlocksam, and reverts to the priority it had prior to locking

m; it would discard the inherited priority. The simple stack algorithm does not work — indicating that the proof
of correctness in [3] is flawed.

A correct inheritance algorithm must keep a list for task of each held lock and for each held lock, there
must be a list every inherited priority and when a task releases a lock it must revert to the highest remaining
inherited priority. This entire operation must be done atomically to avoid missing inheritances and false inheri-
tances. When a task unlocks an inherit lock it searches through a list of all locks it holds, and for each held lock
checks a list of inherited priorities to determine whether what its new priority should be — all atomically. Now
consider what happens if we take transitivity into account.

We often want to keep wait-queues in priority order. But priority inheritance can change the priority of
threads waiting in queues. As taldigh blocks onl, in the example above each task down the queue must inherit
and then be moved to the correct spot in its wait queue. Generally we would do this with two queue operations:
dequeue and insert where the insert operation &rlemgth queue can take steps. In the worst case, as the
chain is created task — 2 needs to reorder task— 1's wait queue, task — 3 needs to reorder both — 1 and
n — 2 and, so we may have something like/", i queue reorder operations each taking 1 steps. Note that
the each descent of a chain and all the queue operations in the descent must be done atomically. Imagine if we
protect an operation on a shared queue with a priority inherit mutex and our worst case synchronization cost for
protecting the queue operation is an atomic operation consistinglefjueues and inserts. Now imagine that
taskSuperHighbecomes runnable at the moment this inherit operatioiligh starts. Even iSuperHighdoes
not share any resources whtigh, it must still wait for this entire atomic operation to complete. So the operating
system itself becomes a source of inversion delays for tasks as the operating system atomically carries out the
inheritance algorithm on unrelated tasks.

The VxWorks designers originally tried to evade the issue by having a thread retain its highest inherited
priority until it released all locks — but this can cause unbounded inversion. Suppedecksl; and therl,
and inherits fromSuperHighon 1,, released, and continues to use the super-high priority. Reportedly, recent
versions of VxWorks have the full algorithm implemented — but see below. The reader should see [4] for a
gruesome description of what was needed in Solaris for an implementation that seems to be complete (ignoring
the issues raised above on read/write locks and other inheritance unfriendly blocking operations).

Just as chip designers have a certain “transistor budget” that cannot be exceeded without making a chip
too expensive to produce, design, and operate, operating system designers have an "algorithmic complexity”
budget. Just as deciding to add decode of complex instructions may mean that the chip has a smaller cache,
deciding to add priority inheritance may mean that the operating system can’t use faster data structures.

2.5 Summarizing

Let's summarize the notes:
1. Priority inheritance protected critical sections should not contain inheriting blocking operations.
2. Priority inherit protected critical sections should not contain non-inheriting blocking operations.
3. Priority inheritance adds a significant amount of complexity to the operating system.

4. Priority inheritance protected critical sections should be relatively costly in terms of compute time or they
perform worse than the simplest alternative.

As a short comment, if we spot a compute expensive critical region that contains no nested blocking
operations, our first thought should not be to cheer that we have finally found a good place to use priority
inheritance. Instead we should ask why the task needs to do so much computation inside a critical region.

3 Concluding notes

Avoiding unbounded priority inversion is important, but not not mysterious. Reliable solutions are not easy, but
despite claims that actually designing and analyzing code is too hard[1], there is no good substitute. Priority
inversion is caused by scheduling when a low priority task holds a resource that may be required by a higher
priority task. The obvious solutions are to (1) make the operation using this resource atomic and fast (so there is
no scheduling), or (2) remove the contention, or (3) priority schedule the operations. Priority inheritance attempts
to provide option (3) as a side-effect. The paper [5] will describe better solutions in detail, but let me conclude
with quick examples of all three options.

How do we make an operation atomic? In RTLinux programmers can ughhtead_spin_lock opera-
tion to disable interrupts and, in an SMP system, set a spin lock. For most queue operations, the sequence
pthread_spin_lock; deq; pthread_spin_unlock has a far better worst case performance than anything more
complex and it is easy to analyze and validate. Even better, we can use an existing atomic operatau like
andwrite on RT-fifos.

How can we remove contention? The ancient trick of a flip-buffer is always useful. Suppose we have
a producer and 5 consumers of sensed data. We can easily reserve, say, 10 buffers. The producer can scan the
buffer list looking for a free one and simply drop data if there are no free buffers. The consumers can scan
through the buffers usingem_trylock. When a consumer is done, it can mark the buffer free. What do we do
if no buffers are available? In most cases, consumers can simply fail if there is no data to consume. Or they
can use a counting semaphore to block for data. On RTLinux, the counting semaphore is priority sorted so the
highest priority waiter will get the first chance at new data. What about the producer? One strategy is to have
the producer do a second scan on a failure and try to grab the semaphore. Because we have 10 buffers and only
5 consumers, we can require that each consumer only hold at most one buffer. The producer can then be assured
that there are 5 usable buffers holding stale data that can be overwritten.

And how can we explicitly schedule operations? Suppose we have a database of some sort and we have
gueries that can potentially take a while to process. Define a structure, say

struct request { myrequest_t request_identifier;
pthread_t requestor;
sem_t *s;
myrecord_t *return_data;

}

The requester fills out a request, writes the request to a RT-fifo, does a semaphore post on the server
thread semaphore and does a semaphore lock to wait. A server process wakes up, orders the queue of requests
and completes them in priority order. If we set the server priority to be equal to that of the highest possible
requester, then no inversion can take place. For long transaction on behalf of low priority threads, the server can
break the transaction into components and keep checking for both new requests anddadlthgield to allow
high priority users to advance.

4 Thanks

This note has been in rough draft for many years and has benefited from comments from many people who
should not be held responsible for my views or errors. Thanks to Mark Brown at IBM, Prof. Ismael Ripoll at the
University of Valencia in Spain,Kevin Dankwardt of K. Computing, and Michael Barabanov and Cort Dougan
of FSMLabs for the most recent useful comments.

References

[1] Barbie. Recorded message:math is too hard, around 1995.

[2] B. W. Lampson and D. D. Redell. Experience with processes and monitors in @esanunications of the
ACM, 23(2):105-117, feb 1900.

[3] John P. Lehoczky Lui Sha, Ragunathan Rajkumar. Priority inheritance protocols: An approach to real-time
synchronizationlEEE Transactions on Compute39:1175-1185, 1990.

[4] Uresh Vahalia.Unix Internals: The new frontierdPrentice-Hall, 1996.

[5] Victor Yodaiken. Synchronization strategies in rtlinux. Technical Report 2FSM2002, FSMLabs, 2002.

