
Towards a Software Component Quality Model

Alexandre Alvaro, Eduardo Santana de Almeida, Alexandre Marcos Lins de Vasconcelos, Silvio
Romero de Lemos Meira

Federal University of Pernambuco and C.E.S.A.R – Recife Center for Advanced Studies and Systems,
Brazil

{aa2, esa2, amlv, srlm}@cin.ufpe.br

Abstract
Component based software development is becoming more
generalized, representing a considerable market for the
software industry. The perspective of reduced development
costs and shorter life cycles acts as a motivation for this
expansion. However, several technical issues remain
unsolved before software component’s industry reaches
the maturity exhibited by other component industries.
Problems such as the component selection by their
integrators, the component catalogs formalization and the
uncertain quality of third-party developed components,
bring new challenges to the software engineering
community. In this sense, this paper presents a brief
survey on software component certification area,
analyzing its lacks and further directions. Through this
study, we propose a component quality model, describing
consistent and well-defined characteristics for the
components evaluation.

1. Introduction

One of the most compelling reasons for adopting
component-based approaches to software development is
the premise of reuse. The idea is to build software from
existing components primarily by assembling and
replacing interoperable parts. The implications for reduced
development time and improved product quality make this
approach very attractive [1].

Since components are reused in several occasions, they
are likely to be more reliable than software developed
from scratch, as they were tested under a larger variety of
conditions. Cost and time savings result from the effort
that would otherwise be necessary to develop and integrate
the functionalities provided by the components in each
new software application.

Most of the research dedicated to software components
is focused on their functional aspects (i.e. component
specification, component development, component tests,
etc.). In our ongoing research, we are concerned with the
evaluation of software components quality. This
evaluation should be performed using a component quality
model. However, there are several difficulties in the

development of such a model, such as: (1) which quality
characteristics should be considered, (2) how we can
evaluate them and (3) who should be responsible for such
evaluation [2].

However, the component market, which is a priori
condition to maximize the intra-organizational software
reusability, cannot emerge without supplying high-quality
products. Organizations whose aim is to construct software
by integrating components – rather than developing
software from scratch – will not be able to meet their
objectives if they cannot find sufficient number of
components and component versions that satisfy certain
functional and quality requirements. Without a quality
level, the component usage may have catastrophic results
[3]. So, the common belief is that the market components
are not reliable and this prevents the emergence of a
mature software component market. Thus, the components
market quality problems must be resolved to increase the
reliability, and third-party certification programs would
help to increase the trust in the market oriented
components [4].

In this context, this paper describes the problems
related to this new trend and discuss an initial direction in
attempting to define a component quality model. Besides
this introductory section, this paper is organized as
follows. Section 2 presents a brief survey related to
software component certification research. Section 3
proposes a component quality model, describing its main
problems. Related approaches are considered in Section 4,
and, finally, Section 5 presents the concluding remarks and
directions for future work.

2. Component Certification: A Brief Survey

Existing literature is not that rich in reports related to
practical software component certification experience, but
some relevant research explores the theory of component
certification in academic scenarios. In this sense, this
section presents a brief survey of software component
certification research, since the early 90’s until today.
More details about it can be seen in [5]. The timeline can
be “divided” into two ages: from 1993 to 2001, where the

focus was mainly on mathematical and; test-based models
and, after 2001, where the focus was on techniques and
models based in predicting quality requirements.

In 1993, Poore et. al. [6] developed an approach based
on the use of three mathematics models (sampling,
component and certification models), using test cases to
report the failures of a system and, after, analyzing these
data through mathematical methods in order to achieve a
reliability index. Next, Wohlin & Runeson [7] presented
the first method of component certification that consists in
using modeling techniques, which make it possible not
only to certify components, as well as to certify the system
containing the components.

Two years later, in 1996, Rohde et al. [8] provided a
synopsis of in-progress research and development in reuse
and certification of software components at Rome
Laboratory of the Air Force Material Command, Rome,
NY. They developed a Certification Framework (CF) and
defined the elements of the reuse context that are
important to certification, to define the underlying models
and methods of certification and, at last, to define a
decision-support technique to construct a context-sensitive
process for selecting the techniques and tools and applying
them in order to certify components. After that,
Sametinger [9] presented an interesting suggestion: the use
of certification components levels. These levels depend on
the nature, frequency, reutilization and importance of the
component in a particular context. However, this is just a
suggestion of certification levels and no practical work
was actually done to evaluate it. Next, in 1998, the Trusted
Components Initiative (TCI)1 stands out. The TCI is a
loose affiliation of researchers with a shared heritage in
formal interface specification. Representative of TCI is the
use of pre/post conditions on APIs [10]. This approach
supports compositional reasoning, but only about a
restricted set of behavioral properties of assemblies.

In this same year, Voas [11] defined a certification
methodology using automated technologies, such as black-
box (or COTS) testing and fault injection to determine
whether the component fits into a specific scenario.
Another work involving component tests may be seen in
[12], where Wohlin & Regnell extended their previous
research [7]. Now, focusing on techniques available for
certifying both components and systems.

The state of the art, up to around 1999, was that
components were being evaluated only with the results of
the tests performed to the components. However, such
testing had no well-defined way to measure the efficiency
of the results. In 2000, Voas & Payne [13] defined some
dependability metrics to measure the reliability of the
components, and created a methodology for systematically
increasing dependability scores by performing additional
test activities.

1 http://www.trusted-components.org

In 2001, Morris et al. [14] proposed an entirely
different model for software component certification. The
model was based on test that developers supply in a
standard portable form. So, the purchasers can establish
the quality and suitability of purchased software.

Around 2001 some changes occurred in this area. The
research started to change its focus and other issues began
to be considered in component certification, besides
testing, such as documentation quality, reuse level degree,
among other properties.

Thus, in 2001, Stafford & Wallnau [15] developed the
component marketplaces that supports prediction of
system properties prior to component selection. The model
is concerned with the question of verifying functional and
quality-related values associated with a component

In this same year, Woodman et al. [16] analyzed some
processes involved in various approaches to Component-
Based Development (CBD) and examined eleven potential
CBD quality attributes. According to Woodman et al.,
only six requirements are applicable to component
certification: Accuracy, Clarity, Replaceability,
Interoperability, Performance and Reliability.
Concomitantly, with the objective of obtaining the
properties that a component should have, in 2003, Hissam
et al. [17] introduced Prediction-Enabled Component
Technology (PECT) as a means of packaging predictable
assembly as a deployable product. A PECT is the
integration of a component technology with one or more
analysis technologies.

Other approach, in 2003, was proposed by McGregor et
al. [18], defining a technique to provide component-level
information to support prediction of assembly reliabilities
based on properties of the components that form the
assembly. Still, during 2003, a CMU/SEI’s report [19]
extended the Hissam et. al. work [17], describing how
component technology can be extended in order to achieve
Predictable Assembly from Certifiable Components
(PACC). SEI’s approach to PACC is Prediction-Enabled
Component Technology (PECT).

In another work, in 2003, Meyer [20] highlighted the
main concepts of trusted component along two
complementary directions: a “low road” leading to
qualification of existing components (e.g. defining a
component quality model, determining the main
characteristics of a component to achieve a certain level of
quality), and a “high road” aimed at the production of
components with fully proved correctness properties.

Moreover, two failure cases were found in the
literature. The first failure occurred in the US government,
when trying to establish criteria for certificating
components [17], and the second failure happened with an
IEEE committee, in an attempt to obtain a component
certification standard [21].

By looking at these works, which represent the history
and the current state-of-the-art in component certification,

we may notice that this is a still immature area. Further
research is needed in processes, methods, techniques,
models, and tools, in order to obtain well-defined
standards to component certification.

In general, the main certification idea’s is bringing
quality to a certain software product, in this case software
components. One of the core goals to achieve quality in
component is to acquire reliability and, in this way,
increase the component market adoption. Normally, the
software component evaluation occurs through models that
evaluate its quality. These models describe and organize
the component quality characteristics that will be
evaluated. So, to measure the quality of a software
component it is necessary to develop a quality model
which represent the characteristics that will be considered
to evaluate a component. Thus, we aim to investigate a
Component Quality Model, identifying its characteristics
and the sub-characteristics that compose the model.

3. Towards a Component Quality Model

3.1 The Motivation

According to [22], there is a lack of an effective
assessment of software components. Besides, the
international standards that address the software products’
quality issues (in particular, those from ISO and IEEE)
have shown to be too general for dealing with the specific
characteristics of software components. While some of
their characteristics are appropriate to the evaluation of
software components, others are not well suited for that
task.

Even so, the software engineering community has
expressed many and often diverging requirements to
Component-Based Software Engineering (CBSE) and
trustworthy components. A unified and prioritized set of
CBSE requirements for trustworthy components is a
challenge in itself [23]. Still, as cited early, there are
several difficulties in the development of component
quality model, such as (i) which quality characteristics
should be considered, (ii) how we can evaluate them and
(iii) who should be responsible for such evaluation [2]. In
this way, there is still no well-defined standard and
component quality model to perform component
certification [13, 14]. This fact is due also to the relatively
novelty of this area [21].

Although recent, we found into literature some
component quality models. The promising works are based
on ISO 9126 [24]. This standard is a generic software
quality model and it can be applied to any software
product by tailoring it to a specific purpose. The main
drawback of the existing international standards is that
they provide very general quality models and guidelines,
and are very difficult to apply to specific domains such as

COTS components and Component-Based Software
Development.

Even so, the works found into literature try to analyze
the ISO 9126 and propose such one model that are specific
for software components [2, 22, 25]. The researchers aim
to verify if each characteristics of ISO 9126 are adequate
to the components context or if new characteristics need to
be added into the model or removed. Thus, the component
quality models were proposed based on the component
technology and software quality experience of the
researchers.

However, these models were not evaluated into
academic or industrial scenario. In this way, the real
efficiency to evaluate software components using these
methods remains unknown. Additionally, two works [2,
25] did not specified the metrics that should be used to
measure the characteristics proposed in the model.

3.2 The Model applied to the industry

As could be noted previously, still does not exist in the
literature a well-defined component quality model that
should be adopted. The most models were just theoretical
proposes and were not applied an industrial or academic
scale.

In this context, we are investigating effective ways to
demonstrate that component certification is not only
possible and practically viable, but also directly applicable
in the software industry. And, through certification, some
benefits can be achieved, such as: higher quality levels,
reduced maintenance time, investment return, reduced
time-to-market, among others. According to Weber &
Nascimento [26], the need for quality assurance in
software development has exponentially increased in the
past few years. This fact could be seen through a
nationwide project launched by the Brazilian government2,
whose main concerns are: developing a robust framework
for software reuse [27], in order to establish a standard to
the component development; and defining and developing
a repository system and a component certification process.
This project has been developed in conjunction with the
industry and academia (RiSE group3 and other
universities) in order to generate a well-defined model that
will be capable of developing, evaluating quality, storing
and, after that, making possible for software factories to
reuse these components.

Given these motivations, a Software Component
Certification framework is being investigated, with the
objective of acquiring quality in software components that
will be stored in repository systems. Basically, the
framework that we intend to develop is composed of four

2 http://www.finep.gov.br
3 RiSE – Reuse in Software Engineering group
 http://www.cin.ufpe.br/~rise

modules (Figure 1): (i) a Component Quality Model,
with the purpose of determining which quality
characteristics should be considered and which sub-
characteristics are necessary; (ii) a Key CBD Quality
Characteristics, defining the essential CBD
characteristics for an effective certification process in
order to complement the component quality model; (iii) a
Metrics Framework, responsible for defining a set of
metrics to track the properties of the components in a
controlled way; and (iv) a Certification Process,
responsible for defining a group of techniques and models
to evaluate and certificate software components, aiming to
establish a well-defined component certification standard.

3.3 The Model proposal

Based on the project described previously, we are
concerned on presenting a component quality model that
will be capable of evaluating components of the software
industry. The other elements of the framework will be
discussed in future papers.

The component quality model proposed in this paper is
based on ISO 9126 and some adaptations for components
were accomplished. Still on, the model is composed of
marketing characteristics which is not supported in other
models. This model was discussed with the RiSE group
member’s, a PhD on software quality of Federal
University of Pernambuco and with quality and software
engineers that are specialists in component technologies of
a software factory located in Recife, Brazil.

Additionally, we aim to adequate the model with the
study accomplished through the current component market
available in the internet (Flashline4, Componentsource5
and Jars6) [28]. This study showed which characteristics of
the ISO 9126 could be measured through the information
available in each component of these markets. And, even
so, only a few characteristics could be completely
measured, such as: suitability, changeability and resource
behavior. This fact showed the difficulty of evaluating
software components and the complexity of defining such
a model to evaluate software components.

4 http://www.flashline.com
5 http://www .componentsource.com
6 http://www.jars.com

In this way, after analyzing this study and the ISO
9126, we developed the model. Table 1 shows the
component quality model proposed, which is composed of
six characteristics, as follows:

• Functionality: This characteristic express the
ability of a software component to provide the
required services and functions, when used under
specified conditions;

• Reliability: This characteristics express the ability
of the software component to maintain a specified
level of performance when used under specified
conditions;

• Usability: This characteristic express the ability of
a software component to be understood, learned,
used, configured, and executed, when used under
specified conditions;

• Efficiency : This characteristic express the ability
of a software component to provide appropriate
performance, relative to the amount of resources
used;

• Maintainability: This characteristic describes the
ability of a software component to be modified;

• Portability: This characteristic is defined as the
ability of a software component to be transferred
from one environment to another; and

• Business: This characteristic express the marketing
characteristics of a software component,
complementing the quality characteristics of this
model.

Although the model is proposed following the ISO
9126 standard, some changes were made in order to
develop a consistent model to evaluate software
components. As defined next, we identified some
characteristics relevant to the component context,
eliminated another characteristic that we think is not
interesting to evaluate components, changed the name of
one characteristic in order to adequate it to the component
context, put another level of characteristics that contain
relevant marketing information for a component
certification process and established some characteristics
that complement the component quality model with
important component information’s.

The new sub-characteristics identified are represented
in bold. These sub-characteristics are added because we
think necessary to evaluate certain properties that were not
covered on ISO 9126. The Self-contained sub-
characteristic is intrinsic of a component and must be
analyzed.

The Configureability become essential to the developer
analyze if the component can be easily configured. Thus,
the developer verify the ability of configure a component
in order to determine the complexity to deploy the
component into a certain application.

Fig. 1. Software Component Certification framework.

On the other hand, the Scalability is relevant to the
model because express the capacity of the component to
support major data volumes. So, the developer will know
if the component support’s the demand of data of his/her
application.

Still on, the main concern that software factories has
adopted the component technology is due to the fact that
they can be reused. Thus, the Reusability sub-
characteristics is very important to be considered in this
model.

Table 1. Towards a Component Quality Model.

Characteristics Sub-Characteristics
Functionality Suitability

Accuracy
Interoperability
Security
Compliance
Self-contained

Reliability Maturity
Recoverability
Fault Tolerance

Usability Understandability
Configureability
Learnability
Operability

Efficiency Time Behavior
Resource behavior
Scalability

Maintainability Stability
Changeability
Testability

Portability Deployability
Replaceability
Adaptability
Reusability

Business Development time
Cost
Time to market
Targeted market
Affordability

A brief description of each new sub-characteristics is

presented, as follows:
• Self-contained: The function that the component

performs must be fully performed within itself;
• Configureability: The ability of the component be

configurable (e.g. through a XML file or a text file,
the number of parameters, among others);

• Scalability: The ability of the component to
accommodate major data volumes without changing
its implementation; and

• Reusability: The ability of the component be
reused. This characteristic evaluate the reusability

level through the abstraction level, if it is platform
specific, if the business role are crosscutting with
interface code or sql code, among others points.

Additionally, we removed one sub-characteristics in
order to adequate the model to the component context. In
the Maintainability characteristic, the Analizability sub-
characteristic disappeared. In the context of components,
we think that the result of the evaluation of this sub-
characteristic will be insignificant, because a component is
developed to attend certain functionalities of the
application and, rarely are developed methods for its auto-
analyze or to identify parts to be modified (which is the
main concern of Analizability characteristic). For this
reason, we tailored this sub-characteristic. Other
component quality models [2, 22], removed this sub-
characteristics too.

Concurrently, a sub-characteristic has changed its name
and meaning in this new context. We identified just one
sub-characteristic that should change its name, the
Installability. Thus, we rename it as Deployability. After
developed, the components are deployed (not installed) in
an execution environment to make it possible their usage
by others component-based applications that will be
developed further. Through this modification, the
understandability of this sub-characteristics become more
clear to the component context.

Another characteristic that changed its meaning was
Usability. The reason is that the end-users of components
are the application developer and designers that have to
build new applications with them, more than the people
that have to interact with them. Thus, the usability of a
component should be interpreted as its ability to be used
by the application developer when constructing a software
product or a system with it.

Basically, the other characteristics of the model
maintain the same meaning for software component than
for software products.

Besides concentrating on quality characteristics only,
we also created other characteristics level called Business
(the name Business for this characteristic will be better
analyzed and could be changed further). This characteristic
presents some sub-characteristics that we think important
to a certification process, such as:

• Development time: The time it takes to develop a
component;

• Cost: The cost of the component;
• Time to market: The time it takes to make the

component available on the market;
• Targeted market: The targeted market volume;

and
• Affordability: How affordable is the component.

These information are not important to evaluate to
quality of a component, but are important to analyze some

factors that bring credibility to the component customers
(i.e. developers and designers).

Still on, we identified some characteristics that bring
relevant information for new customers, such as
Productivity, Satisfaction and Effectiveness. According the
ISO 9126, theses characteristics are called Quality in Use
characteristics. This is the user’s view (i.e. developer’s or
designer’s) of the component, obtained when they use a
certain component in a execution environment and analyze
the results according their expectation. These
characteristics show if the developers or designers can
trust in a component. Thus, Quality in Use characteristics
are useful to show the component behavior in different
environments.

These characteristics are measured through the
customer’s feedback. In this way, the customers should be
encouraged to buy a certain component that is well
recommended.

Finally, as show in Table 2, we identified some
additional characteristics that are interesting to the
certification process. These characteristics are called
Considerable Information’s and are composed of:
Technical Information and Responsible.

Table 2. Considerable Information’s.

Considerable
Information’s

Technical Information
• Component Version
• Programming Language
• Patterns Usage
• Lines of Code
• Technical Support

Responsible

Technical Information is important to the developers

analyze the actual state of the component (i.e. if the
component has evolved, if any patterns was used in the
implementation, etc.). It is composed of some elements,
such as: Component Version, Programming Language,
Patterns Usage, Lines of Code and Technical Support.
Besides, it is interesting to the customer know who is the
responsible for that component, i.e. who maintain that
component. Thus, we identifying the necessity of the
Responsible information.

The idea is that the Considerable Information’s and
Business characteristics should be “pre-requirements” to
the component quality model proposed here. In this way,
we think that the basic component information’s are
available and the model will complement these
information’s with the component evaluation.

Once we have discussed the general points
added/changed/removed in the model, we will describe the
other quality characteristics proposed for evaluating

software components (excluding the characteristics
described early), as follows:

Functionality:
• Suitability: This characteristic express how well

the component fits the specified requirements;
• Accuracy: This characteristic evaluates the

percentage of results obtained with correct
precision level demanded;

• Interoperability: The ability of a component to
interact with another component (data
compatibility);

• Security: This characteristic indicates how the
component is able to control the access to its
provided services; and

• Compliance: This characteristic indicates if a
component is conforming to any standard (e.g.
international standard, certificated in any
organization, etc.).

Reliability:
• Maturity: This characteristic evaluate the

component evolution when it is launched to the
market (e.g. number of versions launched to correct
bugs, number of bugs corrected, time to make the
versions available, etc.);

• Recoverability: This characteristic indicates
whether the component can handle error situations,
and the mechanism implemented in that case (e.g.
exceptions); and

• Fault Tolerance: This characteristic indicates
whether the component can maintain a specified
level of performance in case of faults.

Usability:
• Understandability: This characteristic measure the

degree of easiness to understand the component
(e.g. documentation, descriptions, demos, API’s,
tutorials of the component);

• Learnability: This characteristic try to measure the
time and effort needed to master some specific tasks
(e.g. usage, configuration, administration of the
component); and

• Operability: This characteristic measure the ease to
operate an component and the ease to integrate the
component into the final system.

Efficiency:
• Time Behavior: This characteristic indicates the

ability to perform a specific task at the correct time,
under specified conditions; and

• Resource behavior: This characteristic indicates
the amount of the resources used, under specified
conditions.

Maintainability:
• Stability: This characteristic indicates the stability

level of the component in preventing unexpected
effect caused by modifications;

• Changeability: This characteristic indicates
whether specified changes can be accomplished and
if the component can easily be extended with new
functionalities; and

• Testability: This characteristic measures the effort
required to test a component in order to ensure that
it performs its intended function.

Portability:

• Replaceability: This characteristic indicates
whether the component is “backward compatible”
with its previous versions; and

• Adaptability: This characteristic indicates whether
the component can be adapted to different specified
environments.

Additionally, the moment in which a characteristic can
be observed or measured also allows establishing another
classification. Thus, the characteristics can be observable
at runtime (that are discernable at component execution
time) and observable during the product life-cycle (that are
discernable at component and component-based systems
development). However, the Business characteristic is not
applied in this kind of representation because it is
statically measured through the component information’s.
So, the Table 2 shows the component quality model
classified into two classes.

Table 2. Component Quality Model.

Characteristics Sub-
Characteristics

(Runtime)

Sub-
Characteristics

(Life cycle)
Functionality Accuracy

Security

Suitability
Interoperability
Compliance
Self-contained

Reliability Fault Tolerance
Recoverability

Maturity

Usability Configureability Understandability
Learnability
Operability

Efficiency Time Behavior
Resource Behavior
Scalability

Maintainability Stability

Changeability
Testability

Portability Deployability

Replaceability
Adaptability
Reusability

3.4 Component Quality Attributes

Once discussed the general points of the component
quality model, in this section we will describe the quality
attributes for measuring the sub-characteristics of
components.

The metrics that will be used for measuring the
attributes are the following:

• Presence: This metric identifies whether an
attribute is present in a component or not. It consist
of a boolean value and a string. The boolean value
is used to indicates whether the attribute is present
and, if so, the string describes how the attribute is
implemented by the component;

• IValues: This metric is used to indicates exact
values of the component information’s. It is
described by an integer variable and a string to
indicates the unit (e.g. kb, mb, khtz, etc.); and

• Ratio: This metric is used to describe percentages.
It is measured by an integer variable with values
between 0 and 100.

Table 3 shows the quality attributes for components
observable at runtime grouped by sub-characteristics and
indicating the kind of metrics used.

Table 3. Component Quality Attributes for Sub-
Characteristics measured at Runtime.

Sub-
Characteristics

(Runtime)

Attributes Metric

Accuracy 1. Correctness Ratio
Security 2. Data Encryption

3. Controllability
4. Auditability

Presence
Ratio

Presence
Recoverability 5. Error Handling Presence
Fault Tolerance 6. Mechanism available

7. Efficiency
Presence

Ratio
Configureability 8. Effort for configure Ratio
Time Behavior 9. Response time

10. Latency
a. Throughput (“out”)
b. Processing Capacity

(“in”)

IValues

IValues
IValues

Resource Behavior 11. Memory utilization
12. Disk utilization

IValues
IValues

Scalability 13. Processing capacity Ratio
Stability 14. Modifiability Ratio
Deployability 15. Complexity level Ratio

 Now, a brief description of each quality attributes will
be presented, as follows:

1. Correctness: This attribute evaluates the
percentage of the results obtained with precision,
specified by the user requirements;

2. Data Encryption: This attribute express the ability
of a component to deal with encryption in order to
protect the data it handles;

3. Controllability: This attribute indicates how the
component is able to control the access to its
provided interfaces;

4. Auditability: This attribute shows whether a
component implements any auditing mechanism,
with capabilities for recording users access to the
system and to its data;

5. Error Handling: This attribute indicates whether
the component can handle error situations, and the
mechanism implemented in that case (e.g.
exceptions in Java);

6. Mechanism available: This attribute indicates the
fault-tolerance mechanism implemented in the
component;

7. Efficiency: This attributed measure the real
efficiency of the fault-tolerance mechanism
available in the component;

8. Effort for configure: This attribute measures the
ability for the component to be configured;

9. Response time: This attribute measures the time
taken since a request is received until a response has
been sent;

10. Latency:
• Throughput (“out”): This attribute

measures the output that can be successfully
produced over a given period of time;

• Processing Capacity (“in”): This attribute
measures the amount of input in-formation
that can be successfully processed by the
component over a given period of time;

11. Memory utilization: The amount of memory
needed by a component to operate;

12. Disk utilization: This attribute specifies the disk
space used by a component;

13. Processing capacity: This attribute measures the
capacity of the component support a vast volume
of data with the same implementation;

14. Modifiability: This attribute indicates the
component behavior when accomplished some
modification on it; and

15. Complexity level: This attribute indicates the
effort for deploy a component in a specified
environment.

Concomitantly, the quality attributes for components
observable during life cycle are summarized in Table 4.
These attributes could be measured during the component
or component-based system development, collecting
relevant information’s for the model.

Table 4. Component Quality Attributes for Sub-
Characteristics measured at Life cycle.

Sub-
Characteristics

(Life cycle)

Attributes Metric

Suitability 1. Coverage
2. Completeness
3. Pre-conditioned and

Post-conditioned
4. Proofs of pre-

conditions and post-
conditions

Ratio
Ratio

Presence

Presence

Interoperability 5. Data Compatibility Presence
Compliance 6. Standardization

7. Certification
Presence
Presence

Self-contained 8. Dependability Ratio
Maturity 9. Volatility

10. Failure removal
IValues
IValues

Understandability 11. Documentation
available

12. Documentation quality

Presence

Presence
Learnability 13. Time and effort to

(use, configure, admin
and expertise) the
component.

IValues

Operability 14. Complexity level
15. Provided Interfaces
16. Required Interfaces
17. Effort for operating

Ratio
IValues
IValues

Presence
Changeability 18. Extensibility

19. Customizability
Ratio

Presence
Testability 20. Test suit provided

21. Extensive component
test cases

22. Component tests in a
specific environment

23. Proofs the components

Presence
Presence

Presence

Presence

Adaptability 24. Mobility
25. Configuration capacity

Presence
Ratio

Replaceability 26. Backward
Compatibility

Presence

Reusability 27. Domain abstraction
level

28. Crosscutting concerns
level

29. Architecture
compatibility

30. Modularity

Ratio

Ratio

Ratio

Ratio

 In order to comprehend each quality attributes, a brief
description is presented:

1. Coverage: This attribute tries to measure how
much of the required functionality is covered by the
component implementation;

2. Completeness: It is possible that some
implementations do not completely cover the
services specified. This attribute tries to measure
the number of implemented operations compared to
the total number of specified operations;

3. Pre-conditioned and Post-conditioned: This
attribute indicates if the component has pre- and
post-conditions in order to determine more exactly
“what” requires and “what” provides.

4. Proofs of pre-conditions and post-conditions:
This attribute indicates if the pre and post-
conditions are formal proved in order to guarantee
its correctness.

5. Data Compatibility: This attribute indicates
whether the format of the data handled by the
component is compliant with any international
standard or convention (e.g. XML);

6. Standardization: This attribute indicates the
component conformance to international standards;

7. Certification: This attribute indicates if the
component is certified by any internal or external
organization;

8. Dependability: This attribute indicates if the
component is not self-contained, i.e. if the
component depend of other component to provide
its specified services;

9. Volatility: This attribute measures the average time
between commercial versions;

10. Failure removal: This attribute indicates the
number of bugs fixed in a given version of the
component. This number of bugs fixed in a version
could indicates that the new version is more stable
or that the component contain a lot of bugs that will
emerge;

11. Documentation available: This attributes deal
with the component documentation, descriptions,
demos, and tutorials available, which have a
direct impact on the understandability of the
component;

12. Documentation quality: This attribute indicates
the quality of the documents found into a
component;

13. Time and effort to (use, configure, admin and
expertise) the component: This attribute tries to
measure the time and effort needed to master
some specific tasks (such as usage, configuration,
administration, or expertise the component);

14. Complexity level: This attribute indicates the
capacity of the user operate a component;

15. Provided Interfaces: This attribute counts the
number of provided interfaces by the component
as an indirect measure of its complexity;

16. Required Interfaces: This attribute counts the
number of interfaces that the component requires
from other components to operate;

17. Effort for operating: This attribute shows the
average number of operations per provided per
provided interface (operations in all provided
interfaces / total of the provided interfaces);

18. Extensibility: This attributes indicates the
capacity to extend a certain component
functionality (i.e. which is the percentage of the
functionalities that could be extended);

19. Customizability: This attribute measures the
number of customizable parameters that he
component offers (e.g. number of parameters to
configure each interface provided);

20. Test suit provided: This attribute indicates
whether some test suites are provided for
checking the functionality of the component
and/or for measuring some of its properties (e.g.
performace);

21. Extensive component test cases: This attributes
indicates if the component was extensive tested
until be available to the market;

22. Component tests in a specific environment:
This attributes indicates in which environments a
certain component was tested;

23. Proofs the components: This attributed indicates
if the component was formal tested;

24. Mobility: This attribute indicates which
platforms this components was executed and
which platforms the component was transferred ;

25. Configuration capacity: This attribute indicates
the percentage of the changes needed to
transferred a component to other environment;

26. Backward Compatibility: This attribute is used
to indicating whether the component is
“backward compatible” with its previous versions
or not;

27. Domain abstraction level: This attribute
measures the abstraction level of a component
related to its specified business domain;

28. Crosscutting concerns level: This attribute
indicates the code of the component, looking for
analyze the code interlacement of business role,
interface and SQL’s;

29. Architecture compatibility: This attribute
indicates the level of dependability of a specified
architecture; and

30. Modularity: This attribute indicates the
modularity level of the component, if it has
modules, packages or all the source files are only
grouped.

This section presented the initial version of the
Component Quality Model, show its quality attributes and
the its associated metrics. During the project (mentioned in
section 3.2) this model can change in order to support the
necessities of the software factories involved into the

project and we attempt to capture the characteristics that
will be really necessary to the model.

4. Related Work

Besides the works cited in section 3.1 [2, 22], in [20],
Meyer define a direction, called “low road”, leading to
qualification of existing components (e.g. defining a
component quality model, determining the main
characteristics to component achieve a certain level of
quality). Meyer was concerned in establishing the main
requirements that the component must have, in crescent
order of importance. Meyer’s intention is to define a
component quality model, in order to provide a
certification service for existing components – COM, EJB,
.NET, OO libraries. This model - still under development -
contains five categories with certain properties in each of
these categories. Once all properties in one category are
achieved, the component obtains a certain quality level.

In [25], Simao & Belchior presented a quality model
and a guide that can help identifying and documenting the
quality level of general software components. The
proposed model presents a set of quality characteristics
and sub-characteristics for software components based on
ISO 9126 standard. From this set, a quality guide for
software components was proposed based on a field
research accomplished with developers of components and
component-based application.

Compared to the presented works, the component
quality model proposed in this paper will be applied,
evaluated and tested in some Brazilian software factories
that participate in the project described earlier and with
this, the model become more efficient to resolve the
necessities of the component market [4]. Still on, the
model will be evaluated at each four months by the
Brazilian software factories in order to correct some
divergences found in it. Besides this contribution, the
model proposed contain some relevant characteristics that
are not found in other models, such as Bussines
characteristic, Considerable Information’s and Quality in
Use. In this way, the model is able to support the
marketing characteristics.

5. Concluding Remarks and Future
Directions

This work presented the state-of-the-art in software
component certification research and proposed a initial
component quality model in order to establish the
requirements to a well-defined component certification
process.

Our research group, in conjunction with the industry7,
aim to investigate the component certification area in order
to: (i) establish a well-defined component quality model;
(ii) define a framework (and corresponding metrics) to
track the components properties; (iii) build a certification
method and, finally, (iv) developed a structured
component certification process.

The long term plan is, clearly, to achieve a degree of
maturity that could be used as a component certification
standard for Software Factories, making it possible to
create a Component Certification Center.

Currently, our research group is working with the
definition of a Software Component Maturity Model
(SCMM). Based on the Component Quality Model
proposed, the SCMM will be constituted of certification
levels where the components could be certified. The
intention is to develop a model in which the component
could increase its level of reliability and quality as it
evolutes (the SCMM is based on the same CMM
principles [29]). Besides, a set of metrics will be defined to
track the properties of the components in a controlled way.
This model and such metrics will be described in future
papers.

6. Acknowledgements

This work is supported by C.E.S.A.R - Recife Center
for Advanced Studies and Systems, Brazil, and,
Financiadora de Estudos e Projetos (FINEP), Brazil. The
members of RiSE group contributed with important
insights for the initial analyses of the component quality
model.

7. References

[1] C.W. Krueger, “Software Reuse”, ACM Computing Surveys,
Vol. 24, No. 02, June, 1992, pp. 131-183.
[2] M. Goulão, F.B. Abreu, “Towards a Component Quality
Model”, Work in Progress Session of the 28th IEEE Euromicro
Conference, Dortmund, Germany, 2002.
[3] J.M. Jezequel, B. Meyer, “Design by Contract: The Lessons
of Ariane”, IEEE Computer, Vol. 30, No. 2, 1997, pp. 129–130.
[4] G.T. Heineman, W.T. Councill, “Component-Based Software
Engineering: Putting the Pieces Together”, Addison-Wesley,
USA, 2001.
[5] A. Alvaro, E.S. Almeida, S.R.L. Meira, “A Software
Component Certification: A Survey”, Submitted to the 31st IEEE
Euromicro Conference, Component-Based Software Engineering
Track, 2005.
[6] J. Poore, H. Mills, D. Mutchler, “Planning and Certifying
Software System Reliability”, IEEE Computer, Vol. 10, No. 01,
January, 1993, pp. 88-99.

7 Currently, this company has about 380 employees and is
in preparation to obtain the CMM level 3

[7] C. Wohlin, P. Runeson, “Certification of Software
Components”, IEEE Transactions on Software Engineering, Vol.
20, No. 06, June, 1994, pp 494-499.
[8] S.L. Rohde, K.A. Dyson, P.T. Geriner, D.A. Cerino,
“Certification of Reusable Software Components: Summary of
Work in Progress”, In Proceedings of the 2nd IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS), Canada, 1996, pp. 120-123.
[9] J. Sametinger, “Software Engineering with Reusable
Components”, Springer Verlag, USA, 1997.
[10] B. Meyer, “Object-Oriented Software Construction”, 2th
Edition Prentice Hall, London, 1997.
[11] J.M. Voas, “Certifying Off-the-Shelf Software
Components”, IEEE Computer, Vol. 31, No. 06, June, 1998, pp.
53-59.
[12] C. Wohlin, B. Regnell, “Reliability Certification of Software
Components”, In the Proceedings of the 5th IEEE International
Conference on Software Reuse (ICSR), Canada, 1998, pp. 56-65.
[13] J.M. Voas, J. Payne, “Dependability Certification of
Software Components”, Journal of Systems and Software, Vol.
52, No. 2-3 , June, 2000, pp. 165-172.
[14] J. Morris, G. Lee, K. Parker, G. A. Bundell, C. P. Lam,
“Software Component Certification”, IEEE Computer, Vol. 34,
No. 09, September, 2001, pp 30-36.
[15] J. Stafford, K. C. Wallnau, “Is Third Party Certification
Necessary?”, In the Proceedings of the 4th ICSE Workshop on
Component-Based Software Engineering (CBSE), Canada, May,
2001.
[16] M. Woodman, O. Benebiktsson, B. Lefever, F. Stallinger,
“Issues of CBD Product Quality and Process Quality”, In the
Proceedings of the 4th ICSE Workshop on Component-Based
Software Engineering (CBSE), Canada, May, 2001.
[17] S.A. Hissam, G.A. Moreno, J. Stafford, K.C. Wallnau,
“Enabling Predictable Assembly”, Journal of Systems and
Software, Vol. 65, No. 03, March, 2003, pp. 185-198.
[18] J.D. McGregor, J.A. Stafford, I.H. Cho, “Measuring
Component Reliability", In the Proceedings of the 6th ICSE
Workshop on Component-Based Software Engineering (CBSE),
USA, May, 2003, pp. 13-24.
[19] K.C. Wallnau, “Volume III: A Technology for Predictable
Assembly from Certifiable Components”, Software Engineering
Institute (SEI), Technical Report, Vol. 03, April, 2003.
[20] B. Meyer, “The Grand Challenge of Trusted Components”,
In the Proceedings of 25th International Conference on Software
Engineering (ICSE), USA, 2003, pp. 660–667.
[21] M. Goulao, F. Brito e Abreu, “The Quest for Software
Components Quality”, In the Proceedings of the 26th IEEE
Annual International Computer Software and Applications
Conference (COMPSAC), England, August, 2002, pp. 313-318.
[22] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS
Components”, In the Proceedings of the 6th International
ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE), Spain, 2002.
[23] H. Schmidt, “Trustworthy components: compositionality
and prediction”, Journal of Systems and Software, Vol. 65, No. 3,
March, 2003, pp. 215-225.

[24] ISO 9126, “Information Technology – Product Quality –
Part1: Quality Model”, International Standard ISO/IEC 9126,
International Standard Organization, June, 2001.
[25] R.P.S. Simão, A. Belchior, “Quality Characteristics for
Software Components: Hierarchy and Quality Guides”,
Component-Based Software Quality: Methods and Techniques,
Lecture Notes in Computer Science (LNCS) Springer-Verlag,
Vol. 2693, pp. 188-211, 2003.
[26] K.C. Weber, C.J. Nascimento, “Brazilian Software Quality
2002”, In the Proceedings of 24th International Conference on
Software Engineering (ICSE), EUA, pp. 634-638, 2002.
[27] E.S. Almeida, A. Alvaro, D. Lucrédio, V.C. Garcia, S.R.L.
Meira, “RiSE Project: Towards a Robust Framework for
Software Reuse”, In IEEE International Conference on
Information Reuse and Integration (IRI), USA, 2004.
[28] M.F Bertoa, J.M. Troya, A. Vallecillo, “A Survey on the
Quality Information Provided by Software Component Vendors”,
In the Proceedings of the 7th ECOOP Workshop on Quantitative
Approaches in Object-Oriented Software Engineering
(QAOOSE), Germany, July, 2003.
[29] M. Paulk, B. Curtis, M. Chrissis, C. Weber, “Capability
Maturity Model for Software, Version 1.1”, Software
Engineering Institute, CMU/SEI-93-TR-24, DTIC Number
ADA263403, February, 1993.

