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ABSTRACT 
According to its proponents, open source style software 
development has the capacity to compete successfully, and 
perhaps in many cases displace, traditional commercial 
development methods. In order to begin investigating such 
claims, we examine the development process of a major 
open source application, the Apache web server. By using 
email archives of source code change history and problem 
reports we quantify aspects of developer participation, core 
team size, code ownership, productivity, defect density, and 
problem resolution interval for this OSS project. This 
analysis reveals a unique process, which performs well on 
important measures. We conclude that hybrid forms of 
development that borrow the most effective techniques 
from both the OSS and commercial worlds may lead to 
high performance software processes. 

Keywords 
software process, defect density, repair interval, code 
ownership, open source 

1 INTRODUCTION 
The open source software "movement" has received 
enormous attention in the last several years. It is often 
characterized as a fundamentally new way to develop 
software [6, 151 that poses a serious challenge [16] to the 
commercial software businesses that dominate most 
software markets today. The challenge is not the sort posed 
by a new competitor that operates according to the same 
rules but threatens to do it faster, better, cheaper. The OSS 
challenge is often described as much more fundamental, 
and goes to the basic motivations, economics, market 
structure, and philosophy of the institutions that develop, 
market, and use software. 

The basic tenets of OSS development are clear enough, 
although the details can certainly be difficult to pin down 
precisely (see 1141). OSS, most people would agree, has as 
its underpinning certain legal and pragmatic arrangements 
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that ensure that the source code for an OSS development 
will be generally available. Open source developments 
typically have a central person or body that selects some 
subset of the developed code for the "official" releases and 
makes them widely available for distribution. 

These basic arrangements to ensure freely available source 
code have led to a development process that is radically 
different, according to OSS proponents, from the usual, 
industrial style of development. The main differences 
usually mentioned are 

OSS systems are built by potentially large numbers 
(i.e., hundreds or even thousands) of volunteers. 
Work is not assigned; people undertake the work they 
choose to undertake. 
There is no explicit system-level design, or even 
detailed design [16]. 
There is no project plan, schedule, or list of 
deliverables. 

Taken together, these differences suggest an extreme case 
of geographically distributed development, where 
developers work in arbitrary locations, rarely or never meet 
face to face, and coordinate their activity almost 
exclusively by means of email and bulletin boards. What is 
perhaps most surprising about the process is that it lacks 
many of the traditional mechanisms used to coordinate 
software development, such as plans, system-level design, 
schedules, and defined processes. These "coordination 
mechanisms" are generally considered to be even more 
important for geographically distributed development than 
for co-located development [9] ,  yet here is an extreme case 
of distributed development that appears to eschew them all. 
Despite the very substantial weakening of traditional ways 
of coordinating work, the results from OSS development 
are often claimed to be equivalent, or even superior to 
software developed more traditionally. It is claimed, for 
example, that defects are found and fixed very quickly 
because there are "many eyeballs" looking for the problems 
(Eric Raymond calls this "Linus's Law" [15]). Code is 
written with more care and creativity, because developers 
are working only on things for which they have a real 
passion [15]. 
It can no longer be doubted that OSS development has 
produced software of high quality and functionality. The 
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Linux operating system has recently enjoyed major 
commercial success, and is regarded by many as a serious 
competitor to commercial operating systems such as 
Windows [lo]. Much of the software for the infrastructure 
of the internet, including the well known bind, Apache, 
and sendmail programs, were also developed in this 
fashion. 
The Apache server (the OSS software under consideration 
in this case study) is, according to the Netcraft survey [13] 
the most widely deployed web server at the time of this 
writing. It accounts for over half of the 7 million or so web 
sites queried in the Netcraft data collection. In fact, the 
Apache server has grown in "market share" each year since 
it first appeared in the survey in 1996. By any standard, 
Apache is very successful. 

While this existence proof means that OSS processes can, 
beyond a doubt, produce high quality and widely deployed 
software, the exact means by which this has happened, and 
the prospects for repeating OSS successes, are frequently 
debated (see, e.g., [12, 31). Proponents claim that OSS 
software stacks up well against commercially developed 
software both in quality and in the level of support that 
users receive, although we are not aware of any convincing 
empirical studies that bear on such claims. If OSS really 
does pose a major challenge to the economics and the 
methods of commercial development, it is vital to 
understand it and to evaluate it. 

This paper presents a case study of the development and 
maintenance of a major OSS project, the Apache server. 
We address key questions about the Apache development 
process, and about the software that is the result of that 
process. In the remainder of this section, we present our 
specific research questions. In Section 2, we describe our 
research methodology, followed by a description of the 
Apache development process in Section 3. Section 4 
presents our quantitative results on participant and 
developer roles, product defect density, and user 
perspective of the Apache process and product. Finally, we 
present our conclusions and our hypotheses for future 
research in Section 5. 

1.1 Research Questions 
Our questions focus on two key sets of properties of OSS 
development. It is remarkable that large numbers of people 
manage to work together successfully to create high 
quality, widely used products. Our first set of questions 
(41-44) is aimed at understanding basic parameters of the 
process by which Apache came to exist. 

Ql: What was the process used to develop Apache? 
In answer to this question, we construct a brief qualitative 
description of Apache development. 

Q2: How many people wrote code for new Apache 
functionality? How many people reported problems? How 
many people repaired defects? 

We want to see how large the Apache development 
community is, and identify how many people actually 
occupied each of these traditional development and support 
roles. 

Q3: Were these functions carried out by distinct groups of 
people, i.e., did people primarily assume a single role? 
Did large numbers of people participate somewhat equally 
in these activities, or did a small number of people do most 
of the work? 
Within the Apache development community, what division 
of labor resulted from the OSS "people choose the work 
they do" policy? We want to construct a profile of 
participation in the ongoing work. 

Q4: Where did the code contributors work in the code? 
Was strict code ownership enforced on a file or module 
level? 
One worry of the "chaotic" OSS style of development is 
that people will make uncoordinated changes, particularly 
to the same file or module, that interfere with one another. 
How does the development community avoid this? 

Our second set of questions (Q5-Q6) concerns the 
outcomes of this Apache process. We examine the 
software from a customer's point of view, with respect to 
the defect density of the released code, and the time to 
repair defects, especially those likely to significantly affect 
many customers. 

Q5: What is the defect density of Apache code? 
We compute defects per thousand lines of code, and defects 
per delta in order to compare different operationalizations 
of defect density. 

Q6: How long did it take to resolve problems? Were 
higher priority problems resolved faster than low priority 
problems? Has resolution interval decreased over time ? 
We measured this interval because it is very important from 
a customer perspective to have problems resolved quickly. 

2 METHODOLOGY AND DATA SOURCES 
In order to produce an accurate description of the Apache 
development process, one of the authors (RTF), who has 
been a member of the core development team from the 
beginning of the Apache project wrote a drafi description. 
This draft was then circulated among other core members, 
who checked it for accuracy and filled in missing details. 
The description in the next section is the final product of 
this process. 

In order to address our quantitative research questions, we 
obtained key measures of project evolution from several 
sources of archival data that had been preserved throughout 
the history of the Apache project. The development and 
testing teams in OSS projects consist of individuals who 
rarely if ever meet face to face, or even via transitory media 
such as the telephone. One consequence of this is that 
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virtually all information on the OSS project is recorded in 
electronic form. Many other OSS projects archive similar 
data, so the techniques used here can be replicated on any 
such project. (A detailed description, including scripts used 
to extract the data are available from the authors on 
request.) 

We used the following archival sources of data: 

Developer email list (EMAIL). Anyone with an interest in 
working on Apache development can join the developer 
mailing list, which was archived monthly. It contains many 
different sorts of messages, including technical discussions, 
proposed changes, and automatic notification messages 
about changes in the code and problem reports. There were 
nearly 50,000 messages posted to the list during the period 
starting February, 1995. Our analysis is based on all email 
archives retrieved on May 20, 1999. 

We wrote Per1 scripts to extract date, sender identity, 
message subject, and the message body that was further 
processed to obtain details on code changes and problem 
reports (see below). Manual inspection was used to resolve 
such things as multiple email addresses in cases where all 
automated techniques failed. 

Concurrent Version Control archive (CVS). The CVS 
commit transaction represents a basic change similar to the 
Modification Request (MR) in a commercial development 
environment. (We will refer to such changes as MRs.) 
Every commit automatically generates an email message 
stored in the apache-cvs archive, which we used to 
reconstruct the CVS data (the first recorded change was 
made on February 22, 1996. The version 1.0 of Apache 
released in January 1996 had a separate CVS database). 
The message body in the CVS mail archive corresponds to 
one M R  and contains the following tuple: date and time of 
the change, developer login, files touched, numbers of lines 
added and deleted for each file, and a short abstract 
describing the change. We further processed the abstract to 
identify people who submitted and/or reviewed the change 
and to obtain the Problem Report (PR) number for changes 
made as a result of a problem report. According to a core 
participant of Apache, the information on contributors and 
PRs was entered at least 90% of the time. All changes to 
the code and documentation were used in the subsequent 
analysis. 

Problem reporting database (BUGDB). As in CVS, each 
BUGDB transaction generates a message to BUGDB stored 
in a separate BUGDB archive. We used this archive to 
reconstruct BUGDB. For each message, we extracted the 
PR number, affected module, status (open, suspended, 
analyzed, feedback, closed), name of the submitter, date, 
and comment. 

We used the data elements extracted from these archival 
sources to construct a number of measures on each change 
to the code, and on each problem report. We used the 

process description as a basis to interpret those measures. 
Where possible, we then further validated the measures by 
comparing several operational definitions, and by checking 
our interpretations with project participants. Each measure 
is defined in the following sections within the text of the 
analysis where it is used. 

3 THE APACHE DEVELOPMENT PROCESS 
QI: What was the process used to develop Apache? 
The Apache software development process is a result of 
both the nature of the project and the backgrounds of the 
project leaders, as described in [SI. Apache began with a 
conscious attempt to solve the process issues first, before 
development even started, because it was clear from the 
very beginning that a geographically distributed set of 
volunteers, without any traditional organizational ties, 
would require a unique development process in order to 
make decisions. 

The Apache Group (AG), the informal organization of core 
people responsible for guiding the development of the 
Apache HTTP Server Project, consisted entirely of 
volunteers. None of the developers could devote large 
blocks of time to the project in a consistent or planned 
manner, therefore requiring a development and decision- 
making process that emphasized decentralized workspaces 
and asynchronous communication. AG used email lists 
exclusively to communicate with each other, and a minimal 
quorum voting system for resolving conflicts. 

Apache began in February 1995 as a combined effort to 
coordinate existing fixes to the NCSA httpd program 
developed by Rob McCool. After several months of adding 
features and small fixes, AG replaced the old server code 
base in July 1995 with a new architecture designed by 
Robert Thau. AG then ported all existing features, and 
many new ones, to the new architecture and made it 
available for beta test sites, eventually leading to the formal 
release of Apache httpd 1 .O in January 1996. 

The selection and roles of core developers are described in 
[8]. Each AG member can vote on the inclusion of any 
code change, and has write access to CVS (if they desire 
it). Members are people who have contributed for an 
extended period of time, usually more than 6 months, and 
are nominated for membership and then voted on by the 
existing members. We started with 8 members (the 
founders), had 12 through most of the period covered, and 
now have 25. 

The "core developers" in any period include both the subset 
of AG that are active in development (usually 4-6 in any 
given week) and the developers who are on the cusp of 
being nominated (usually 2-3). That's why the "core" 
appears as 15 people during the period studied. 

Although there is no single development process, each 
Apache developer iterates through a common series of 
actions while working on the software source. The actions 
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include discovering that a problem exists, determining 
whether a volunteer will work on it, identifying a solution, 
developing and testing the code within their local copy of 
the source, presenting the code changes to the AG for 
review, and committing the code and documentation to the 
repository. Depending on the scope of the change, this 
process may involve many iterations before reaching a 
conclusion, though it is generally preferred that the entire 
set of changes needed to solve a particular problem be 
applied in a single commit. 

There are many avenues for discovering problems. 
Problems are reported on the developer mailing list, the 
problem reporting system (BUGDB), and the USENET 
Apache newsgroups. Problems on the mailing list are 
given the highest priority. Since the reporter is likely to be 
a member of the development community, the report is 
more likely to contain sufficient information to analyze the 
problem. These messages receive the attention of all active 
developers. Common mechanical problems, such as 
compilation or build problems, are typically found first by 
one of the core developers and either fixed immediately or 
reported and handled on the mailing list. In order to keep 
track of the project status, an agenda file is stored in each 
product's repository, containing a list of high priority 
problems, open issues, and release plans. 

The second area for problem discovery is in the project's 
BUGDB, which allows anyone with Web or email access to 
enter and categorize problems by severity and topic area. 
Once entered, the problem report (PR) is posted to a 
separate mailing list and can be appended to via email 
replies, or edited directly by the core developers. 
Unfortunately, due to some annoying characteristics of the 
BUGDB technology, very few developers keep an active 
eye on the BUGDB. The project relies on one or two 
interested developers to perform periodic triage of the new 
reports: removing mistaken or misdirected reports, 
answering reports that can be answered quickly, and 
forwarding items to the developer mailing list if they are 
considered critical. When a problem from any source is 
repaired, the BUGDB is searched for reports associated 
with that problem so that they can be included in the 
change report and closed. 

Another source for problem discovery is the discussion on 
Apache-related USENET newsgroups. However, the 
perceived noise level on those groups is so high that only a 
few Apache developers ever have time to read the news. In 
general, the Apache Group relies on interested volunteers 
and the community at large to recognize when a real 
problem is discovered and to take the time to report that 
problem to the BUGDB or forward it directly to the 
developer mailing list. In general, only problems reported 
on released versions of the server are recorded in BUGDB. 

Once a problem has been discovered, the next step is to 
find a volunteer who will work on that problem. 

Developers tend to work on problems that are identified 
with areas of the code they are most familiar. Some work 
on the product's core services, while others work on 
particular features that they developed. The Apache 
software architecture is designed to separate the core 
functionality of the server, which every site needs, from the 
features, which are located in modules that can be 
selectively compiled and configured. The developers 
obtain an implicit "code ownership" of parts of the server 
that they are known to have created or to have maintained 
consistently. Although code ownership doesn't give them 
any special rights over change control, the other developers 
have greater respect for the opinions of those with 
experience in the area being changed. As a result, new 
developers tend to focus on areas where the former 
maintainer is no longer interested in working, or in the 
development of new architectures and features that have no 
preexisting claims (frontier building). 

After deciding to work on a problem, the next step is 
attempting to identify a solution. In general, the primary 
difficulty at this stage is not finding a solution, it is in 
deciding which of various possibilities is the most 
appropriate solution. Even when the user provides a 
solution that works, it may have characteristics that are 
undesirable as a general solution or it may not be portable 
to other platforms. When several alternative solutions 
exist, the developer usually forwards the alternatives to the 
mailing list in order to get feedback from the rest of the 
group before developing a solution. 

Once a solution has been identified, the developer makes 
changes to a local copy of the source code, tests the 
changes on their own server, and either commits the 
changes directly (if the Apache guidelines [l] call for a 
commit-then-review process) or produces a "patch" and 
posts it to the developer mailing list for review. If 
approved, the patch can be committed to the source by any 
of the developers, though in most cases it is preferred that 
the originator of the change also perform the commit. 

As described above, each CVS commit results in a 
summary of the changes being automatically posted to the 
apache-cvs mailing list, including the commit log and a 
patch demonstrating the changes. All of the core 
developers are responsible for reviewing the apache-cvs 
mailing list to ensure that the changes are appropriate. In 
addition, since anyone can subscribe to the mailing list, the 
changes are reviewed by many people outside the core 
development community, which often results in useful 
feedback before the software is formally released as a 
package. 

When the project nears a product release, one of the core 
developers volunteers to be the release manager, 
responsible for identifying the critical problems (if any) 
that prevent the release, determining when those problems 
have been repaired and the software has reached a stable 
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point, and controlling access to the repository so that 
developers don't inadvertently change things that should 
not be changed just prior to the release. The release 
manager creates a forcing effect in which many of the 
outstanding problem reports are identified and closed, 
changes suggested from outside the core developers are 
applied, and most loose ends are tied up. In essence, this 
amounts to "shaking the tree before raking up the leaves." 
The role of release manager is rotated among the core 
developers with the most experience with the project. 

In summary, this description helps to address some of the 
questions about how Apache development was organized, 
and provides essential background for understanding our 
quantitative results. In the next section, we take a closer 
look at the distribution of development, defect repair, and 
testing work in the Apache project, as well as the code and 
process from the point of view of customer concerns. 

4 QUANTITATIVE RESULTS 
In this section we present results from several quantitative 
analyses of the archival data from the APACHE project. 
The measures we derive from these data are well-suited to 
address our research questions [2]; however, they may be 
unfamiliar to many readers since they are not software 
metrics that are in wide use, e.g., [4,7]. For this reason, we 
provide data from several commercial projects, to give the 
reader some sense of what kinds of results might be 
expected. Although we picked several commercial projects 
that are reasonably close to APACHE, none is a perfect 
match, and the reader should not infer that the variation 
between these commercial projects and APACHE is due 
entirely to differences between commercial and OSS 
development processes. 

It is important to note that the server is designed so that 
new functionality need not be distributed along with the 
core server. There are well over 100 feature-filled modules 
distributed by third parties, and thus not included in our 
study. Many of these modules include more lines of code 
than the core server. 

4.1 The size of the Apache development community. 
Q2: How many people wrote code for  new Apache 
functionality? How many people reported problems? How 
many people repaired defects? 

The participation in Apache development overall was quite 
wide, with almost 400 individuals contributing code that 
was incorporated into a comparatively small product. In 
order to see how many people contributed new 
functionality and how many were involved in repairing 
defects, we distinguished between changes that were made 
as a result of a problem report (PR changes) and those that 
were not (non-PR changes). We found that 182 people 
contributed to 695 PR changes, while 249 people 
contributed to 6092 non-PR changes. 

We examined the BUCDB to determine the number of 

people who submitted problem reports. The problem 
reports come from a much wider group of participants. In 
fact, around 3060 different people submitted 3975 problem 
reports. 458 individuals submitted 591 reports that 
subsequently caused a change to the Apache code or 
documentation. 2654 individuals submitted 3384 reports 
that did not result in a change. 

4.2 How was work distributed within the development 
community? 
Q3: Were these functions carried out by distinct groups of 
people, i.e., did people primarily assume a single role? 
Did large numbers of people participate somewhat equally 
in these activities, or did a small number of people do most 
of the work? 

First, we examine participation in generating code. Figure 
1 plots the cumulative proportion of code changes (vertical 
axis) versus the top -N -contributors to the code 
(horizontal axis). 

base 

1 5 10 15 50 100 388 
Number of individuals 

Figure 1. The cumulative distribution of contributions to 
the code base. 

The contributors are ordered by the number of MRs from 
largest to smallest. The solid line in Figure 1 shows the 
cumulative proportion of changes against the number of 
contributors. The dotted and dashed lines show the 
cumulative proportion of added and deleted lines and the 
proportion of delta (an MR generates one delta for each of 
the files it changes). These measures capture various 
aspects of code contribution. 

Figure 1 shows that the top 15 developers contributed more 
than 83% of the MRs and deltas, 88% of added lines and 
91% of deleted lines. Very little code and, presumably, 
correspondingly small effort is spent by non-core 
developers (for simplicity, in this section we refer to all the 
developers outside the top 15 group as non-core). The MRs 
done by core developers are substantially larger than those 
done by the non-core group. This difference is statistically 
significant; the distribution of MR fraction is significantly 
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(p < 0.01) different from the distribution of added lines 
using Kolmogorov-Smirnov test. 

Next, we looked separately at PR changes only. There was 
a large (p-value < 0.01) difference between distributions of 
PR and non-PR contributions. PR contributions are shown 
in Figure 2. The scales and developer order are the same as 
in Figure 1. 

A 

B 

Fraction of Lines Deleted _I- 

I 

3.3 129 5,000 3 101 

2.5 18 1,000 1.5 91 

I I - Fractionof MRs 
Fraction of Delta 
Fraction of Lines Added I _ . _  

Z J ,  , , I , , , I  
1 5 10 15 50 100 388 

Number of individuals 

Figure 2 .  Cumulative distribution of PR related changes. 

Figure 2 shows that participation of wider development 
community is more significant in defect repair than in the 
development of new functionality. Only 66% of the PR 
related changes were produced by the top 15 contributors. 
The participation rate was 26 developers per 100 PR 
changes and 4 developers per 100 non-PR changes, i.e., 
more than six times lower for PR changes. These results 
indicate that despite broad overall participation in the 
project, almost all new functionality is implemented and 
maintained by the core group. 

We inspected the regularity of developer participation by 
considering two time intervals: before and after Jan 1, 
1998. Forty-nine distinct developers contributed more than 
one PR change in the first period, and the same number 
again in the second period. Only 20 of them contributed at 
least two changes in both the first and second periods. One 
hundred and forty developers contributed at least one non- 
PR change in first period, and 120 in the second period. Of 
those, only 25 contributed during both periods. This 
indicates that only a few developers beyond the core group 
submit changes with any regularity. 

Although developer contributions vary significantly in a 
commercial project, our experience has been that the 
variations are not as large as in the APACHE project. Since 
the cumulative fraction of contribution is not commonly 
available in the programmer productivity literature we 
present examples of several commercial projects that had a 
number of deltas within an order of magnitude of the 
number Apache had, and were developed over a similar 

period. Table 1 presents basic data about this comparison 
group. All projects come from the telecommunications 

Table 1. Statistics on Apache andfive commercial projects. 

Apache 220 388 

1.7 

1.5 16 

domain. Project A is code for a wireless base station, 
project B is “a port of legacy code for an optical network 
element, and projects C, D, and E represent various 
applications for operations, administration, and 
maintenance. The first two projects were written mostly in 
the C language, and the last three mostly in C++. 

1 5 10 YI 100 

Number of developers 

Figure 3.Cumulative distribution of the contributions in two 
commercial projects. 

Figure 3 shows the cumulative fraction of changes for 
commercial projects A and B. To avoid clutter, and because 
they do not give additional insights, we do not show the 
curves for projects C, D, or E. 

The top 15 developers in project A contributed 77 percent 
of the delta (compared to 83% for Apache) and 68 percent 
of the code (compared to 88%). Even more extreme 
differences emerge in porting of a legacy product done by 
project B. Here, only 46 and 33 percent of the delta and 
added lines are contributed by the top 15 developers. 

We defined “top” developers in the commercial projects as 
groups of the most productive developers that contributed 
83% of MRs (in the case of KMR/developer/year) and 88% 
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of lines added (in the case of KLOC/developer/year). We 
chose these proportions because they were the proportions 
we observed empirically for the summed contributions of 
the 15 core Apache developers. 

Table 2. Comparison of code productivity of the top Apache 
developers and the top developers in several commercial 
projects. 

KMWdevelo 
perlyear 

KLOC/devel 

. l  I .03 .03 .09 .02 .06 

4.3 38.6 11.7 6.1 5.4 10 
opedyear I 

If we look at the amount of code produced by the top 
Apache developers versus the top developers in the 
commercial projects, the Apache core developers appear to 
be very productive, given that Apache is a voluntary, part 
time activity and the relatively “lean” code of Apache. 
Measured in KLOC per year, they achieve a level of 
production that is within a factor of 1.5 of the top full-time 
developers in projects C and D. Moreover, the Apache core 
developers handle more MRs per year than the core 
developers on any of the commercial projects. (For reasons 
we do not fully understand, MRs are much smaller in 
Apache than in the commercial projects we examined.) 

Given the many differences among these projects, we do 
not want to make strong claims about how productive the 
Apache core has been. Nevertheless, one is tempted to say 
that the data suggest rates of production that are at least in 
the same ballpark as commercial developments, especially 
considering the part-time nature of the undertaking. 

Who reports problems? 
Problem reporting is an essential part of any software 
project. In commercial projects the problems are mainly 
reported by build, test, and customer support teams. Who is 
performing these tasks in an OSS project? 

The BUGDB had 3975 distinct problem reports. The top 15 
problem reporters submitted only 213 or 5% of PRs. 
Almost 2600 developers submitted one report, 306 
submitted two, 85 submitted three, and the maximum 
number of PRs submitted by one person was 32. 

Of the top 15 problem reporters only three are also core 
developers. Because all problems that might affect end 
users tend to be reported in BUGDB, it shows that the 
significant role of system tester of the released code is 
reserved almost exclusively to the wide community of 
Apache users. 

One would expect that some users, like administrators of 
web hosting shops, would be reporting most of the 
problems. Given the total number of websites (domain 
names) of over four million (according to the NetCraft 
survey [7]), this might indeed be so. The three thousand 

individuals reporting problems represent less than one 
percent of all Apache installations if we assume the number 
of actual servers to be one tenth of the number of websites 
(each server may host several websites). 

4.3 Code Ownership 
Q4: Where did the code contributors work in the code? 
Was strict code ownership enforced on a file or module 
level? 

Given the informal, distributed way in which Apache has 
been built, we wanted to investigate whether some form of 
“code ownership” has evolved. We thought it likely, for 
example, that for most of the Apache modules, a single 
person would write the vast majority of the code, with 
perhaps a few minor contributions from others. The large 
proportion of code written by the core group contributed to 
our expectation that these 15 developers most likely 
arranged something approximating a partition of the code, 
in order to keep from making conflicting changes. 

An examination of persons making changes to the code 
failed to support this expectation. Out of 42 “.c” files with 
more than 30 changes, 40 had at least two (and 20 had at 
least four) developers making more than 10% of the 
changes. This pattern strongly suggests some other 
mechanism for coordinating contributions. It seems that 
rather than any single individual writing all the code for a 
given module, those in the core group have a sufficient 
level of mutual trust that they contribute code to various 
modules as needed. 

This finding verifies the previous qualitative description of 
code “ownership” to be more a matter of recognition of 
expertise than one of strictly enforced ability to make 
commits to partitions of the code base. 

4.4 Defects 
Q5: What is the defect density of Apache code? 

First we discuss issues related to measuring defect density 
in an OSS project and then present the results, including 
comparison to four commercial projects. 

4.4.1 How to Measure Defect Density. 
One frequently used measure is post-release defects per 
thousand lines of delivered code. This measure has at least 
three major problems, however. First, ”bloaty” code is 
generally regarded as bad code, but it will have an 
artificially low defect rate. Second, many incremental 
deliveries contain most of the code from previous releases, 
with only a small fraction of the code being changed. If all 
the code is counted, this will artificially lower the defect 
rate. Third, it fails to take into account how thoroughly the 
code is exercised. If there are only a few instances of the 
application actually installed, or if it is exercised very 
infrequently, this will dramatically reduce the defect rate, 
which again produces an anomalous result. 

We know of no general solution to this problem, but we 
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strive to present a well-rounded picture by calculating two 
different measures, and comparing Apache to several 
commercial projects on each of them. To take into account 
the incremental nature of deliveries we emulate the 
traditional measure with defects per thousand lines of code 
added (KLOCA) (instead of delivered code). To deal with 
the “bloaty” code issue we also compute defects per 
thousand deltas. To a large degree, the second measure 
ameliorates the “bloaty” code problem, because even if 
changes are unnecessarily verbose, this is less likely to 
affect the number of deltas (independent of size of delta). 
We do not have usage intensity data, but it is reasonable to 
assume that usage intensity was much lower for all the 
commercial applications. Hence we expect that our 
presented defect density numbers for Apache are somewhat 
higher than they would have been if the usage intensity of 
Apache was more similar to that of commercial projects. 
Defects, in all cases, are reported problems that resulted in 
actual changes to the code. 

If we take a customer’s point of view, we should be 
concerned primarily with defects visible to customers, i.e., 
post-release defects, and not build and testing problems. 
The Apache PRs are very similar in this respect to counts 
of post-release defects, in that they were raised only against 
official, stable releases of Apache, not against interim 
development “releases.” 

However, if we are looking at defects as a measure of how 
well the development process functions, a slightly different 
comparison is in order. There is no provision for 
systematic system test in OSS generally, and for the 
Apache project in particular. So the appropriate 
comparison would be to pre-system test commercial 
software. Thus, the defect count would include all defects 
found during the system test stage or after (all defects 
found after “feature test complete” in the jargon of the 
quality gate system). 

4.4.2 Defect Density Results 
Table 3 compares Apache to the previous commercial 
projects. Project B did not have enough time in the field to 
accumulate customer-reported problems and we do not 
have pre-system test defects for Project A. 

We see that the two defect density measures in commercial 
projects A, C, D, and E are in good agreement (the defect 
density itself varies substantially, though). While the user- 
perceived defect density of the Apache product is inferior 
to that of the commercial products, the defect density of the 
code before system test is much lower. This latter 
comparison may indicate that fewer defects are injected 
into the code, or that other defect-finding activities such as 
inspections are conducted more frequently or more 
effectively. It is also possible that the diversity of 
backgrounds of the developers participating in the OSS 
project have reduced the probability of defects (see, e.g., 
t111). 

Table 3 .  Comparison of defect density measures. 

Measure 

Post-release 
DefectdKLOCA 

DefectdKDelta 

DefectdKLOC A 

DefecWKDelta 

6.0 

4.5 Time to resolve problem reports 
Q6: How long did it take to resolve problems? Were high 
priority problems resolved faster than low priority 
problems? Has resolution interval decreased over time? 

The distribution of PR resolution interval is approximated 
by its empirical distribution function that maps interval in 
days to proportion of PRs resolved within that interval. 
Fifty percent of PRs are resolved within a day, 75% within 
42 days, and 90% within 140 days. Further investigation 
showed that these numbers depend on priority, time period, 
and whether or not the PR causes a change to the code. 

Priority. We operationalized priority in two ways. First we 
used the priority field reported in the BUGDB database. 
Priority defined in this way has no effect on interval. This 
is very different from commercial development, where 
priority is usually strongly related to interval. In Apache 
BUGDB, the priority field is entered by a person reporting 
the problem and often does not correspond to the priority as 
perceived by the core developer team. 

The second approach for operationalizing priority 
categorized the modules into groups according to how 
many users depend on them. PRs were then categorized by 
the module to which they pertain. Such categories tend to 
reflect priorities since they reflect number of users (and 
developers) affected. Figure 4 shows comparisons among 
such groups of modules. The horizontal axis shows interval 
in days and the vertical axis shows proportion of MRs 
resolved within that interval. “Core” represents the kernel, 
protocol, and other essential parts of the server that must be 
present in every installation. “Most Sites” represents 
widely-deployed features that most sites will choose to 
include. PRs affecting either “Core” or “Most Sites” should 
be given higher priority because they potentially involve 
many (or all) customers and could potentially cause major 
failures. On the other hand, “OS” includes problems 
specific to certain operating systems, and “Major Optional” 
include features that are not as widely deployed. From a 
customer’s point of view, “Core” and “Most Sites” P R s ~  
should be solved as quickly as possible, while the “OS” and 
“Major Optional” should generally receive lower priority. 
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Figure 4. Proportion of changes closed within given 
number of days, 

The data (Figure 4) show exactly this pattern, with much 
faster close times for the higher-priority problems. The 
differences between the trends in the two different groups 
are significant (p-value<.Ol using Kolmogorov-Smirnov 
test), while the trends within groups do not differ 
significantly. The documentation PRs show mixed 
behavior, with “low priority” behavior for intervals under 5 
days and “high priority” behavior, otherwise. This may be 
explained by the fact that documentation problems are not 
extremely urgent (the product still operates), yet very 
important. 

Reduction in resolution interval. To investigate if the 
problem resolution interval improves over time, we broke 
the problems into two groups according to the time they 
were posted (before or after Jan 1,  1997). The interval was 
significantly shorter in the second period (p-value<.Ol). 
This indicates that this important aspect of customer 
support improved over time, despite the dramatic increase 
in the number of users. 

5 HYPOTHESES AND REPLICATION 
In this case study, we reported results relevant to each of 
our research questions. Specifically, we reported on 

the basic structure of the development process, 
the number of participants filling each of the major 
roles, 
the distinctiveness of the roles, and the importance of 
the core developers, 
suggestive, but not conclusive, comparisons of defect 
density and productivity with commercial projects, and 
customer support in OSS. 

Case studies such as this provide excellent fodder for 
hypothesis development. It is generally inappropriate to 
generalize from a single case, but the analysis of a single 
case can provide important insights that lead to testable 
hypotheses. In this section, we cast some of our case study 
findings as hypotheses, and suggest explanations of why 

each hypothesis might be true of OSS in general. A11 the 
hypotheses can be tested by replicating this study using 
archival data from other OSS developments. 

Hypotheses 1: Open source developments will have a core 
lopers who control the code base. This core will be 
er than 10-15 people, and will create approximately 
more of the new functionality. 

e base this hypothesis both on our empirical findings in 
this case, and also on observations and common wisdom 
about maximum team size. The core developers must work 
closely together, each with fairly detailed knowledge of 
what other core members are doing. Without such 
knowledge they would frequently make incompatible 
changes to the code. Since they form essentially a single 
team, they can be overwhelmed by communication and 
coordination overhead issues that typically limit the size of 
effective teams to 10-15 people. 

Hypothesis 2: For projects that are so large that 10-15 
developers cannot write 80% of the code in a reasonable 
time frame, a strict code ownership policy will have to be 
adopted to separate the work of additional groups, 
creating, in effect, several related OSS projects. 

The fixed maximum core team size obviously limits the 
output of features per unit time. To cope with this problem, 
a number of satellite projects, such as Apache-SSL, were 
started by interested parties. Some of these projects 
produced as much or more functionality than Apache itself. 
It seems likely that this pattern of core group and satellite 
groups that add unique functionality targeted to a particular 
group of users, will frequently be adopted in such cases. 

In other OSS projects like Linux, the kernel functionality is 
also small compared to application and user interface 
functionalities. The nature of relationships between the core 
and satellite projects remains to be investigated; yet it 
might serve as an example how to break large monolithic 
commercial projects into smaller, more manageable pieces. 
We can see the examples where the integration of these 
related OSS products is performed by a commercial 
organization, e.g., RedHat for Linux, ActivePerl for Perl, 
and Cygnus for GNU tools. 

Hypothesis 3: In successful open source developments, a 
group larger by an order of magnitude than the core will 
repair defects, and a yet larger group (by another order of 
magnitude) will report problems. 
Hypothesis 4: Open source developments that have a 
strong core of developers but never achieve large numbers 
of contributors beyond that core will be able to create new 
functionality but will fail because of a lack of resources 
devoted to finding and repairing defects in the released 
code. 
Many defect repairs can be performed with only a limited 
risk of interacting with other changes. Problem reporting 
can be done with no risk of harmful interaction at all. 
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Since this work has reduced dependencies among 
participants, potentially much larger groups can work on 
them. In a successful development, these activities will be 
performed by larger communities, freeing up time for the 
core developers to develop new functionality. Where an 
OSS development fails to stimulate wide participation, 
either the core will become overburdened with finding and 
repairing defects, or the code simply will never reach an 
acceptable level of quality. 

Hypothesis 5: Defect density in open source releases will 
generally be lower than commercial code that has only 
been feature-tested, i.e., received a comparable level of 
testing. 
Hypothesis 6: In successful open source developments, the 
developers will also be users of the software. 
In general, open source developers are experienced users of 
the software they write. They are intimately familiar with 
the features they need, and what the correct and desirable 
behavior is. Since the lack of domain knowledge is one of 
the chief problems in large software projects [5], one of the 
main sources of error is eliminated when domain experts 
write the software. It remains to be seen if this advantage 
can completely compensate for the absence of system 
testing. In any event, where the developers are not also 
experienced users of the software, they are highly unlikely 
to have the necessary level of domain expertise or the 
necessary motivation to succeed as an OSS project. 

Hypothesis 7: OSS developments exhibit very rapid 
responses to customer problems. 
This observation stems both from the “many eyeballs 
implies shallow bugs” observation cited earlier [15], and 
the way that fixes are distributed. In the “free” world of 
OSS, patches can be made available to all customers nearly 
as soon as they are made. In commercial developments, by 
contrast, patches are generally bundled into new releases, 
and made available according to some predetermined 
schedule. 

Taken together, these hypotheses, if confirmed with further 
research on OSS projects, suggest that OSS is a truly 
unique type of development process. It is tempting to 
suggest that commercial and OSS practices might be 
fruitfully hybridized in a number of ways. For example, it 
might prove very attractive to commercial developers to 
use the OSS style project structure. In such an 
arrangement, there is a core team of recognized experts, 
who alone have the power to commit code to an official 
release, and a much larger group who contribute voluntarily 
in various ways, and who may prove themselves diligent 
and skillful enough to be added to the core. Everyone, 
under this type of project management, is self-determining. 
The core members can commit code where they choose, the 
peripheral members submit changes of any sort they 
choose. These decisions appear to be guided only by a 
common desire to see the product developed successfully, 

to contribute in meaningful ways, and to be seen as an 
important contributor. While we are certain that this 
suggestion will be met with healthy skepticism, we see no 
inherent reason why commercial developments could not 
operate in a similar manner, subject of course torestrictions 
on size, and the necessity that developers must be users. 
Assuming that this arrangement would work in a 
commercial setting, there could be tremendous benefits to 
pairing the high motivation, low pre-system test defect 
rates, and fast response of OSS with a more commercially- 
oriented system test capability. Such cross-fertilization 
might pave the way to a true revolution in software 
development. 
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