
A Case Study of Open Source Software Development:
The Apache Server

Audris Mockus Roy T. Fielding James Herbsleb
Bell Labs, 263 Shuman Blvd. Information & Computer Science

Naperville, IL 60566 USA University of California, Irvine
+16307134070 Irvine, CA 92697-3425 USA 4-1630713 1869

audris @research.bell-labs.com fielding @ics.uci.edu herbsleb @research. bell-labs.com

Bell Labs, 263 Shuman Blvd.
Naperville, IL 60566 USA

ABSTRACT
According to its proponents, open source style software
development has the capacity to compete successfully, and
perhaps in many cases displace, traditional commercial
development methods. In order to begin investigating such
claims, we examine the development process of a major
open source application, the Apache web server. By using
email archives of source code change history and problem
reports we quantify aspects of developer participation, core
team size, code ownership, productivity, defect density, and
problem resolution interval for this OSS project. This
analysis reveals a unique process, which performs well on
important measures. We conclude that hybrid forms of
development that borrow the most effective techniques
from both the OSS and commercial worlds may lead to
high performance software processes.

Keywords
software process, defect density, repair interval, code
ownership, open source

1 INTRODUCTION
The open source software "movement" has received
enormous attention in the last several years. It is often
characterized as a fundamentally new way to develop
software [6, 151 that poses a serious challenge [16] to the
commercial software businesses that dominate most
software markets today. The challenge is not the sort posed
by a new competitor that operates according to the same
rules but threatens to do it faster, better, cheaper. The OSS
challenge is often described as much more fundamental,
and goes to the basic motivations, economics, market
structure, and philosophy of the institutions that develop,
market, and use software.

The basic tenets of OSS development are clear enough,
although the details can certainly be difficult to pin down
precisely (see 1141). OSS, most people would agree, has as
its underpinning certain legal and pragmatic arrangements

Pelmission to make digital or hard copies of all or' part of this work for
personal or classrooill use is granted withoiit fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
othenvise, to rcpublish, to post on servcrs or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE 2000 Limerick Ireland
Copyright ACM 2000 1-581 13-206-9/00/6 ... $5.00

that ensure that the source code for an OSS development
will be generally available. Open source developments
typically have a central person or body that selects some
subset of the developed code for the "official" releases and
makes them widely available for distribution.

These basic arrangements to ensure freely available source
code have led to a development process that is radically
different, according to OSS proponents, from the usual,
industrial style of development. The main differences
usually mentioned are

OSS systems are built by potentially large numbers
(i.e., hundreds or even thousands) of volunteers.
Work is not assigned; people undertake the work they
choose to undertake.
There is no explicit system-level design, or even
detailed design [16].
There is no project plan, schedule, or list of
deliverables.

Taken together, these differences suggest an extreme case
of geographically distributed development, where
developers work in arbitrary locations, rarely or never meet
face to face, and coordinate their activity almost
exclusively by means of email and bulletin boards. What is
perhaps most surprising about the process is that it lacks
many of the traditional mechanisms used to coordinate
software development, such as plans, system-level design,
schedules, and defined processes. These "coordination
mechanisms" are generally considered to be even more
important for geographically distributed development than
for co-located development [9] , yet here is an extreme case
of distributed development that appears to eschew them all.
Despite the very substantial weakening of traditional ways
of coordinating work, the results from OSS development
are often claimed to be equivalent, or even superior to
software developed more traditionally. It is claimed, for
example, that defects are found and fixed very quickly
because there are "many eyeballs" looking for the problems
(Eric Raymond calls this "Linus's Law" [15]). Code is
written with more care and creativity, because developers
are working only on things for which they have a real
passion [15].
It can no longer be doubted that OSS development has
produced software of high quality and functionality. The

263

mailto:research.bell-labs.com
mailto:ics.uci.edu
http://bell-labs.com

Linux operating system has recently enjoyed major
commercial success, and is regarded by many as a serious
competitor to commercial operating systems such as
Windows [lo]. Much of the software for the infrastructure
of the internet, including the well known bind, Apache,
and sendmail programs, were also developed in this
fashion.
The Apache server (the OSS software under consideration
in this case study) is, according to the Netcraft survey [13]
the most widely deployed web server at the time of this
writing. It accounts for over half of the 7 million or so web
sites queried in the Netcraft data collection. In fact, the
Apache server has grown in "market share" each year since
it first appeared in the survey in 1996. By any standard,
Apache is very successful.

While this existence proof means that OSS processes can,
beyond a doubt, produce high quality and widely deployed
software, the exact means by which this has happened, and
the prospects for repeating OSS successes, are frequently
debated (see, e.g., [12, 31). Proponents claim that OSS
software stacks up well against commercially developed
software both in quality and in the level of support that
users receive, although we are not aware of any convincing
empirical studies that bear on such claims. If OSS really
does pose a major challenge to the economics and the
methods of commercial development, it is vital to
understand it and to evaluate it.

This paper presents a case study of the development and
maintenance of a major OSS project, the Apache server.
We address key questions about the Apache development
process, and about the software that is the result of that
process. In the remainder of this section, we present our
specific research questions. In Section 2, we describe our
research methodology, followed by a description of the
Apache development process in Section 3. Section 4
presents our quantitative results on participant and
developer roles, product defect density, and user
perspective of the Apache process and product. Finally, we
present our conclusions and our hypotheses for future
research in Section 5.

1.1 Research Questions
Our questions focus on two key sets of properties of OSS
development. It is remarkable that large numbers of people
manage to work together successfully to create high
quality, widely used products. Our first set of questions
(41-44) is aimed at understanding basic parameters of the
process by which Apache came to exist.

Ql: What was the process used to develop Apache?
In answer to this question, we construct a brief qualitative
description of Apache development.

Q2: How many people wrote code for new Apache
functionality? How many people reported problems? How
many people repaired defects?

We want to see how large the Apache development
community is, and identify how many people actually
occupied each of these traditional development and support
roles.

Q3: Were these functions carried out by distinct groups of
people, i.e., did people primarily assume a single role?
Did large numbers of people participate somewhat equally
in these activities, or did a small number of people do most
of the work?
Within the Apache development community, what division
of labor resulted from the OSS "people choose the work
they do" policy? We want to construct a profile of
participation in the ongoing work.

Q4: Where did the code contributors work in the code?
Was strict code ownership enforced on a file or module
level?
One worry of the "chaotic" OSS style of development is
that people will make uncoordinated changes, particularly
to the same file or module, that interfere with one another.
How does the development community avoid this?

Our second set of questions (Q5-Q6) concerns the
outcomes of this Apache process. We examine the
software from a customer's point of view, with respect to
the defect density of the released code, and the time to
repair defects, especially those likely to significantly affect
many customers.

Q5: What is the defect density of Apache code?
We compute defects per thousand lines of code, and defects
per delta in order to compare different operationalizations
of defect density.

Q6: How long did it take to resolve problems? Were
higher priority problems resolved faster than low priority
problems? Has resolution interval decreased over time ?
We measured this interval because it is very important from
a customer perspective to have problems resolved quickly.

2 METHODOLOGY AND DATA SOURCES
In order to produce an accurate description of the Apache
development process, one of the authors (RTF), who has
been a member of the core development team from the
beginning of the Apache project wrote a drafi description.
This draft was then circulated among other core members,
who checked it for accuracy and filled in missing details.
The description in the next section is the final product of
this process.

In order to address our quantitative research questions, we
obtained key measures of project evolution from several
sources of archival data that had been preserved throughout
the history of the Apache project. The development and
testing teams in OSS projects consist of individuals who
rarely if ever meet face to face, or even via transitory media
such as the telephone. One consequence of this is that

264

virtually all information on the OSS project is recorded in
electronic form. Many other OSS projects archive similar
data, so the techniques used here can be replicated on any
such project. (A detailed description, including scripts used
to extract the data are available from the authors on
request.)

We used the following archival sources of data:

Developer email list (EMAIL). Anyone with an interest in
working on Apache development can join the developer
mailing list, which was archived monthly. It contains many
different sorts of messages, including technical discussions,
proposed changes, and automatic notification messages
about changes in the code and problem reports. There were
nearly 50,000 messages posted to the list during the period
starting February, 1995. Our analysis is based on all email
archives retrieved on May 20, 1999.

We wrote Per1 scripts to extract date, sender identity,
message subject, and the message body that was further
processed to obtain details on code changes and problem
reports (see below). Manual inspection was used to resolve
such things as multiple email addresses in cases where all
automated techniques failed.

Concurrent Version Control archive (CVS). The CVS
commit transaction represents a basic change similar to the
Modification Request (MR) in a commercial development
environment. (We will refer to such changes as MRs.)
Every commit automatically generates an email message
stored in the apache-cvs archive, which we used to
reconstruct the CVS data (the first recorded change was
made on February 22, 1996. The version 1.0 of Apache
released in January 1996 had a separate CVS database).
The message body in the CVS mail archive corresponds to
one M R and contains the following tuple: date and time of
the change, developer login, files touched, numbers of lines
added and deleted for each file, and a short abstract
describing the change. We further processed the abstract to
identify people who submitted and/or reviewed the change
and to obtain the Problem Report (PR) number for changes
made as a result of a problem report. According to a core
participant of Apache, the information on contributors and
PRs was entered at least 90% of the time. All changes to
the code and documentation were used in the subsequent
analysis.

Problem reporting database (BUGDB). As in CVS, each
BUGDB transaction generates a message to BUGDB stored
in a separate BUGDB archive. We used this archive to
reconstruct BUGDB. For each message, we extracted the
PR number, affected module, status (open, suspended,
analyzed, feedback, closed), name of the submitter, date,
and comment.

We used the data elements extracted from these archival
sources to construct a number of measures on each change
to the code, and on each problem report. We used the

process description as a basis to interpret those measures.
Where possible, we then further validated the measures by
comparing several operational definitions, and by checking
our interpretations with project participants. Each measure
is defined in the following sections within the text of the
analysis where it is used.

3 THE APACHE DEVELOPMENT PROCESS
QI: What was the process used to develop Apache?
The Apache software development process is a result of
both the nature of the project and the backgrounds of the
project leaders, as described in [SI. Apache began with a
conscious attempt to solve the process issues first, before
development even started, because it was clear from the
very beginning that a geographically distributed set of
volunteers, without any traditional organizational ties,
would require a unique development process in order to
make decisions.

The Apache Group (AG), the informal organization of core
people responsible for guiding the development of the
Apache HTTP Server Project, consisted entirely of
volunteers. None of the developers could devote large
blocks of time to the project in a consistent or planned
manner, therefore requiring a development and decision-
making process that emphasized decentralized workspaces
and asynchronous communication. AG used email lists
exclusively to communicate with each other, and a minimal
quorum voting system for resolving conflicts.

Apache began in February 1995 as a combined effort to
coordinate existing fixes to the NCSA httpd program
developed by Rob McCool. After several months of adding
features and small fixes, AG replaced the old server code
base in July 1995 with a new architecture designed by
Robert Thau. AG then ported all existing features, and
many new ones, to the new architecture and made it
available for beta test sites, eventually leading to the formal
release of Apache httpd 1 .O in January 1996.

The selection and roles of core developers are described in
[8]. Each AG member can vote on the inclusion of any
code change, and has write access to CVS (if they desire
it). Members are people who have contributed for an
extended period of time, usually more than 6 months, and
are nominated for membership and then voted on by the
existing members. We started with 8 members (the
founders), had 12 through most of the period covered, and
now have 25.

The "core developers" in any period include both the subset
of AG that are active in development (usually 4-6 in any
given week) and the developers who are on the cusp of
being nominated (usually 2-3). That's why the "core"
appears as 15 people during the period studied.

Although there is no single development process, each
Apache developer iterates through a common series of
actions while working on the software source. The actions

265

include discovering that a problem exists, determining
whether a volunteer will work on it, identifying a solution,
developing and testing the code within their local copy of
the source, presenting the code changes to the AG for
review, and committing the code and documentation to the
repository. Depending on the scope of the change, this
process may involve many iterations before reaching a
conclusion, though it is generally preferred that the entire
set of changes needed to solve a particular problem be
applied in a single commit.

There are many avenues for discovering problems.
Problems are reported on the developer mailing list, the
problem reporting system (BUGDB), and the USENET
Apache newsgroups. Problems on the mailing list are
given the highest priority. Since the reporter is likely to be
a member of the development community, the report is
more likely to contain sufficient information to analyze the
problem. These messages receive the attention of all active
developers. Common mechanical problems, such as
compilation or build problems, are typically found first by
one of the core developers and either fixed immediately or
reported and handled on the mailing list. In order to keep
track of the project status, an agenda file is stored in each
product's repository, containing a list of high priority
problems, open issues, and release plans.

The second area for problem discovery is in the project's
BUGDB, which allows anyone with Web or email access to
enter and categorize problems by severity and topic area.
Once entered, the problem report (PR) is posted to a
separate mailing list and can be appended to via email
replies, or edited directly by the core developers.
Unfortunately, due to some annoying characteristics of the
BUGDB technology, very few developers keep an active
eye on the BUGDB. The project relies on one or two
interested developers to perform periodic triage of the new
reports: removing mistaken or misdirected reports,
answering reports that can be answered quickly, and
forwarding items to the developer mailing list if they are
considered critical. When a problem from any source is
repaired, the BUGDB is searched for reports associated
with that problem so that they can be included in the
change report and closed.

Another source for problem discovery is the discussion on
Apache-related USENET newsgroups. However, the
perceived noise level on those groups is so high that only a
few Apache developers ever have time to read the news. In
general, the Apache Group relies on interested volunteers
and the community at large to recognize when a real
problem is discovered and to take the time to report that
problem to the BUGDB or forward it directly to the
developer mailing list. In general, only problems reported
on released versions of the server are recorded in BUGDB.

Once a problem has been discovered, the next step is to
find a volunteer who will work on that problem.

Developers tend to work on problems that are identified
with areas of the code they are most familiar. Some work
on the product's core services, while others work on
particular features that they developed. The Apache
software architecture is designed to separate the core
functionality of the server, which every site needs, from the
features, which are located in modules that can be
selectively compiled and configured. The developers
obtain an implicit "code ownership" of parts of the server
that they are known to have created or to have maintained
consistently. Although code ownership doesn't give them
any special rights over change control, the other developers
have greater respect for the opinions of those with
experience in the area being changed. As a result, new
developers tend to focus on areas where the former
maintainer is no longer interested in working, or in the
development of new architectures and features that have no
preexisting claims (frontier building).

After deciding to work on a problem, the next step is
attempting to identify a solution. In general, the primary
difficulty at this stage is not finding a solution, it is in
deciding which of various possibilities is the most
appropriate solution. Even when the user provides a
solution that works, it may have characteristics that are
undesirable as a general solution or it may not be portable
to other platforms. When several alternative solutions
exist, the developer usually forwards the alternatives to the
mailing list in order to get feedback from the rest of the
group before developing a solution.

Once a solution has been identified, the developer makes
changes to a local copy of the source code, tests the
changes on their own server, and either commits the
changes directly (if the Apache guidelines [l] call for a
commit-then-review process) or produces a "patch" and
posts it to the developer mailing list for review. If
approved, the patch can be committed to the source by any
of the developers, though in most cases it is preferred that
the originator of the change also perform the commit.

As described above, each CVS commit results in a
summary of the changes being automatically posted to the
apache-cvs mailing list, including the commit log and a
patch demonstrating the changes. All of the core
developers are responsible for reviewing the apache-cvs
mailing list to ensure that the changes are appropriate. In
addition, since anyone can subscribe to the mailing list, the
changes are reviewed by many people outside the core
development community, which often results in useful
feedback before the software is formally released as a
package.

When the project nears a product release, one of the core
developers volunteers to be the release manager,
responsible for identifying the critical problems (if any)
that prevent the release, determining when those problems
have been repaired and the software has reached a stable

266

point, and controlling access to the repository so that
developers don't inadvertently change things that should
not be changed just prior to the release. The release
manager creates a forcing effect in which many of the
outstanding problem reports are identified and closed,
changes suggested from outside the core developers are
applied, and most loose ends are tied up. In essence, this
amounts to "shaking the tree before raking up the leaves."
The role of release manager is rotated among the core
developers with the most experience with the project.

In summary, this description helps to address some of the
questions about how Apache development was organized,
and provides essential background for understanding our
quantitative results. In the next section, we take a closer
look at the distribution of development, defect repair, and
testing work in the Apache project, as well as the code and
process from the point of view of customer concerns.

4 QUANTITATIVE RESULTS
In this section we present results from several quantitative
analyses of the archival data from the APACHE project.
The measures we derive from these data are well-suited to
address our research questions [2]; however, they may be
unfamiliar to many readers since they are not software
metrics that are in wide use, e.g., [4,7]. For this reason, we
provide data from several commercial projects, to give the
reader some sense of what kinds of results might be
expected. Although we picked several commercial projects
that are reasonably close to APACHE, none is a perfect
match, and the reader should not infer that the variation
between these commercial projects and APACHE is due
entirely to differences between commercial and OSS
development processes.

It is important to note that the server is designed so that
new functionality need not be distributed along with the
core server. There are well over 100 feature-filled modules
distributed by third parties, and thus not included in our
study. Many of these modules include more lines of code
than the core server.

4.1 The size of the Apache development community.
Q2: How many people wrote code for new Apache
functionality? How many people reported problems? How
many people repaired defects?

The participation in Apache development overall was quite
wide, with almost 400 individuals contributing code that
was incorporated into a comparatively small product. In
order to see how many people contributed new
functionality and how many were involved in repairing
defects, we distinguished between changes that were made
as a result of a problem report (PR changes) and those that
were not (non-PR changes). We found that 182 people
contributed to 695 PR changes, while 249 people
contributed to 6092 non-PR changes.

We examined the BUCDB to determine the number of

people who submitted problem reports. The problem
reports come from a much wider group of participants. In
fact, around 3060 different people submitted 3975 problem
reports. 458 individuals submitted 591 reports that
subsequently caused a change to the Apache code or
documentation. 2654 individuals submitted 3384 reports
that did not result in a change.

4.2 How was work distributed within the development
community?
Q3: Were these functions carried out by distinct groups of
people, i.e., did people primarily assume a single role?
Did large numbers of people participate somewhat equally
in these activities, or did a small number of people do most
of the work?

First, we examine participation in generating code. Figure
1 plots the cumulative proportion of code changes (vertical
axis) versus the top -N -contributors to the code
(horizontal axis).

base

1 5 10 15 50 100 388
Number of individuals

Figure 1. The cumulative distribution of contributions to
the code base.

The contributors are ordered by the number of MRs from
largest to smallest. The solid line in Figure 1 shows the
cumulative proportion of changes against the number of
contributors. The dotted and dashed lines show the
cumulative proportion of added and deleted lines and the
proportion of delta (an MR generates one delta for each of
the files it changes). These measures capture various
aspects of code contribution.

Figure 1 shows that the top 15 developers contributed more
than 83% of the MRs and deltas, 88% of added lines and
91% of deleted lines. Very little code and, presumably,
correspondingly small effort is spent by non-core
developers (for simplicity, in this section we refer to all the
developers outside the top 15 group as non-core). The MRs
done by core developers are substantially larger than those
done by the non-core group. This difference is statistically
significant; the distribution of MR fraction is significantly

267

(p < 0.01) different from the distribution of added lines
using Kolmogorov-Smirnov test.

Next, we looked separately at PR changes only. There was
a large (p-value < 0.01) difference between distributions of
PR and non-PR contributions. PR contributions are shown
in Figure 2. The scales and developer order are the same as
in Figure 1.

A

B

Fraction of Lines Deleted _I-

I

3.3 129 5,000 3 101

2.5 18 1,000 1.5 91

I I - Fractionof MRs
Fraction of Delta
Fraction of Lines Added I _ . _

Z J , , , I , , , I
1 5 10 15 50 100 388

Number of individuals

Figure 2 . Cumulative distribution of PR related changes.

Figure 2 shows that participation of wider development
community is more significant in defect repair than in the
development of new functionality. Only 66% of the PR
related changes were produced by the top 15 contributors.
The participation rate was 26 developers per 100 PR
changes and 4 developers per 100 non-PR changes, i.e.,
more than six times lower for PR changes. These results
indicate that despite broad overall participation in the
project, almost all new functionality is implemented and
maintained by the core group.

We inspected the regularity of developer participation by
considering two time intervals: before and after Jan 1,
1998. Forty-nine distinct developers contributed more than
one PR change in the first period, and the same number
again in the second period. Only 20 of them contributed at
least two changes in both the first and second periods. One
hundred and forty developers contributed at least one non-
PR change in first period, and 120 in the second period. Of
those, only 25 contributed during both periods. This
indicates that only a few developers beyond the core group
submit changes with any regularity.

Although developer contributions vary significantly in a
commercial project, our experience has been that the
variations are not as large as in the APACHE project. Since
the cumulative fraction of contribution is not commonly
available in the programmer productivity literature we
present examples of several commercial projects that had a
number of deltas within an order of magnitude of the
number Apache had, and were developed over a similar

period. Table 1 presents basic data about this comparison
group. All projects come from the telecommunications

Table 1. Statistics on Apache andfive commercial projects.

Apache 220 388

1.7

1.5 16

domain. Project A is code for a wireless base station,
project B is “a port of legacy code for an optical network
element, and projects C, D, and E represent various
applications for operations, administration, and
maintenance. The first two projects were written mostly in
the C language, and the last three mostly in C++.

1 5 10 YI 100

Number of developers

Figure 3.Cumulative distribution of the contributions in two
commercial projects.

Figure 3 shows the cumulative fraction of changes for
commercial projects A and B. To avoid clutter, and because
they do not give additional insights, we do not show the
curves for projects C, D, or E.

The top 15 developers in project A contributed 77 percent
of the delta (compared to 83% for Apache) and 68 percent
of the code (compared to 88%). Even more extreme
differences emerge in porting of a legacy product done by
project B. Here, only 46 and 33 percent of the delta and
added lines are contributed by the top 15 developers.

We defined “top” developers in the commercial projects as
groups of the most productive developers that contributed
83% of MRs (in the case of KMR/developer/year) and 88%

268

of lines added (in the case of KLOC/developer/year). We
chose these proportions because they were the proportions
we observed empirically for the summed contributions of
the 15 core Apache developers.

Table 2. Comparison of code productivity of the top Apache
developers and the top developers in several commercial
projects.

KMWdevelo
perlyear

KLOC/devel

. l I .03 .03 .09 .02 .06

4.3 38.6 11.7 6.1 5.4 10
opedyear I

If we look at the amount of code produced by the top
Apache developers versus the top developers in the
commercial projects, the Apache core developers appear to
be very productive, given that Apache is a voluntary, part
time activity and the relatively “lean” code of Apache.
Measured in KLOC per year, they achieve a level of
production that is within a factor of 1.5 of the top full-time
developers in projects C and D. Moreover, the Apache core
developers handle more MRs per year than the core
developers on any of the commercial projects. (For reasons
we do not fully understand, MRs are much smaller in
Apache than in the commercial projects we examined.)

Given the many differences among these projects, we do
not want to make strong claims about how productive the
Apache core has been. Nevertheless, one is tempted to say
that the data suggest rates of production that are at least in
the same ballpark as commercial developments, especially
considering the part-time nature of the undertaking.

Who reports problems?
Problem reporting is an essential part of any software
project. In commercial projects the problems are mainly
reported by build, test, and customer support teams. Who is
performing these tasks in an OSS project?

The BUGDB had 3975 distinct problem reports. The top 15
problem reporters submitted only 213 or 5% of PRs.
Almost 2600 developers submitted one report, 306
submitted two, 85 submitted three, and the maximum
number of PRs submitted by one person was 32.

Of the top 15 problem reporters only three are also core
developers. Because all problems that might affect end
users tend to be reported in BUGDB, it shows that the
significant role of system tester of the released code is
reserved almost exclusively to the wide community of
Apache users.

One would expect that some users, like administrators of
web hosting shops, would be reporting most of the
problems. Given the total number of websites (domain
names) of over four million (according to the NetCraft
survey [7]), this might indeed be so. The three thousand

individuals reporting problems represent less than one
percent of all Apache installations if we assume the number
of actual servers to be one tenth of the number of websites
(each server may host several websites).

4.3 Code Ownership
Q4: Where did the code contributors work in the code?
Was strict code ownership enforced on a file or module
level?

Given the informal, distributed way in which Apache has
been built, we wanted to investigate whether some form of
“code ownership” has evolved. We thought it likely, for
example, that for most of the Apache modules, a single
person would write the vast majority of the code, with
perhaps a few minor contributions from others. The large
proportion of code written by the core group contributed to
our expectation that these 15 developers most likely
arranged something approximating a partition of the code,
in order to keep from making conflicting changes.

An examination of persons making changes to the code
failed to support this expectation. Out of 42 “.c” files with
more than 30 changes, 40 had at least two (and 20 had at
least four) developers making more than 10% of the
changes. This pattern strongly suggests some other
mechanism for coordinating contributions. It seems that
rather than any single individual writing all the code for a
given module, those in the core group have a sufficient
level of mutual trust that they contribute code to various
modules as needed.

This finding verifies the previous qualitative description of
code “ownership” to be more a matter of recognition of
expertise than one of strictly enforced ability to make
commits to partitions of the code base.

4.4 Defects
Q5: What is the defect density of Apache code?

First we discuss issues related to measuring defect density
in an OSS project and then present the results, including
comparison to four commercial projects.

4.4.1 How to Measure Defect Density.
One frequently used measure is post-release defects per
thousand lines of delivered code. This measure has at least
three major problems, however. First, ”bloaty” code is
generally regarded as bad code, but it will have an
artificially low defect rate. Second, many incremental
deliveries contain most of the code from previous releases,
with only a small fraction of the code being changed. If all
the code is counted, this will artificially lower the defect
rate. Third, it fails to take into account how thoroughly the
code is exercised. If there are only a few instances of the
application actually installed, or if it is exercised very
infrequently, this will dramatically reduce the defect rate,
which again produces an anomalous result.

We know of no general solution to this problem, but we

269

strive to present a well-rounded picture by calculating two
different measures, and comparing Apache to several
commercial projects on each of them. To take into account
the incremental nature of deliveries we emulate the
traditional measure with defects per thousand lines of code
added (KLOCA) (instead of delivered code). To deal with
the “bloaty” code issue we also compute defects per
thousand deltas. To a large degree, the second measure
ameliorates the “bloaty” code problem, because even if
changes are unnecessarily verbose, this is less likely to
affect the number of deltas (independent of size of delta).
We do not have usage intensity data, but it is reasonable to
assume that usage intensity was much lower for all the
commercial applications. Hence we expect that our
presented defect density numbers for Apache are somewhat
higher than they would have been if the usage intensity of
Apache was more similar to that of commercial projects.
Defects, in all cases, are reported problems that resulted in
actual changes to the code.

If we take a customer’s point of view, we should be
concerned primarily with defects visible to customers, i.e.,
post-release defects, and not build and testing problems.
The Apache PRs are very similar in this respect to counts
of post-release defects, in that they were raised only against
official, stable releases of Apache, not against interim
development “releases.”

However, if we are looking at defects as a measure of how
well the development process functions, a slightly different
comparison is in order. There is no provision for
systematic system test in OSS generally, and for the
Apache project in particular. So the appropriate
comparison would be to pre-system test commercial
software. Thus, the defect count would include all defects
found during the system test stage or after (all defects
found after “feature test complete” in the jargon of the
quality gate system).

4.4.2 Defect Density Results
Table 3 compares Apache to the previous commercial
projects. Project B did not have enough time in the field to
accumulate customer-reported problems and we do not
have pre-system test defects for Project A.

We see that the two defect density measures in commercial
projects A, C, D, and E are in good agreement (the defect
density itself varies substantially, though). While the user-
perceived defect density of the Apache product is inferior
to that of the commercial products, the defect density of the
code before system test is much lower. This latter
comparison may indicate that fewer defects are injected
into the code, or that other defect-finding activities such as
inspections are conducted more frequently or more
effectively. It is also possible that the diversity of
backgrounds of the developers participating in the OSS
project have reduced the probability of defects (see, e.g.,
t111).

Table 3 . Comparison of defect density measures.

Measure

Post-release
DefectdKLOCA

DefectdKDelta

DefectdKLOC A

DefecWKDelta

6.0

4.5 Time to resolve problem reports
Q6: How long did it take to resolve problems? Were high
priority problems resolved faster than low priority
problems? Has resolution interval decreased over time?

The distribution of PR resolution interval is approximated
by its empirical distribution function that maps interval in
days to proportion of PRs resolved within that interval.
Fifty percent of PRs are resolved within a day, 75% within
42 days, and 90% within 140 days. Further investigation
showed that these numbers depend on priority, time period,
and whether or not the PR causes a change to the code.

Priority. We operationalized priority in two ways. First we
used the priority field reported in the BUGDB database.
Priority defined in this way has no effect on interval. This
is very different from commercial development, where
priority is usually strongly related to interval. In Apache
BUGDB, the priority field is entered by a person reporting
the problem and often does not correspond to the priority as
perceived by the core developer team.

The second approach for operationalizing priority
categorized the modules into groups according to how
many users depend on them. PRs were then categorized by
the module to which they pertain. Such categories tend to
reflect priorities since they reflect number of users (and
developers) affected. Figure 4 shows comparisons among
such groups of modules. The horizontal axis shows interval
in days and the vertical axis shows proportion of MRs
resolved within that interval. “Core” represents the kernel,
protocol, and other essential parts of the server that must be
present in every installation. “Most Sites” represents
widely-deployed features that most sites will choose to
include. PRs affecting either “Core” or “Most Sites” should
be given higher priority because they potentially involve
many (or all) customers and could potentially cause major
failures. On the other hand, “OS” includes problems
specific to certain operating systems, and “Major Optional”
include features that are not as widely deployed. From a
customer’s point of view, “Core” and “Most Sites” P R s ~
should be solved as quickly as possible, while the “OS” and
“Major Optional” should generally receive lower priority.

270

. . , I

0 5 10 50 100 500

Days open

Figure 4. Proportion of changes closed within given
number of days,

The data (Figure 4) show exactly this pattern, with much
faster close times for the higher-priority problems. The
differences between the trends in the two different groups
are significant (p-value<.Ol using Kolmogorov-Smirnov
test), while the trends within groups do not differ
significantly. The documentation PRs show mixed
behavior, with “low priority” behavior for intervals under 5
days and “high priority” behavior, otherwise. This may be
explained by the fact that documentation problems are not
extremely urgent (the product still operates), yet very
important.

Reduction in resolution interval. To investigate if the
problem resolution interval improves over time, we broke
the problems into two groups according to the time they
were posted (before or after Jan 1, 1997). The interval was
significantly shorter in the second period (p-value<.Ol).
This indicates that this important aspect of customer
support improved over time, despite the dramatic increase
in the number of users.

5 HYPOTHESES AND REPLICATION
In this case study, we reported results relevant to each of
our research questions. Specifically, we reported on

the basic structure of the development process,
the number of participants filling each of the major
roles,
the distinctiveness of the roles, and the importance of
the core developers,
suggestive, but not conclusive, comparisons of defect
density and productivity with commercial projects, and
customer support in OSS.

Case studies such as this provide excellent fodder for
hypothesis development. It is generally inappropriate to
generalize from a single case, but the analysis of a single
case can provide important insights that lead to testable
hypotheses. In this section, we cast some of our case study
findings as hypotheses, and suggest explanations of why

each hypothesis might be true of OSS in general. A11 the
hypotheses can be tested by replicating this study using
archival data from other OSS developments.

Hypotheses 1: Open source developments will have a core
lopers who control the code base. This core will be
er than 10-15 people, and will create approximately
more of the new functionality.

e base this hypothesis both on our empirical findings in
this case, and also on observations and common wisdom
about maximum team size. The core developers must work
closely together, each with fairly detailed knowledge of
what other core members are doing. Without such
knowledge they would frequently make incompatible
changes to the code. Since they form essentially a single
team, they can be overwhelmed by communication and
coordination overhead issues that typically limit the size of
effective teams to 10-15 people.

Hypothesis 2: For projects that are so large that 10-15
developers cannot write 80% of the code in a reasonable
time frame, a strict code ownership policy will have to be
adopted to separate the work of additional groups,
creating, in effect, several related OSS projects.

The fixed maximum core team size obviously limits the
output of features per unit time. To cope with this problem,
a number of satellite projects, such as Apache-SSL, were
started by interested parties. Some of these projects
produced as much or more functionality than Apache itself.
It seems likely that this pattern of core group and satellite
groups that add unique functionality targeted to a particular
group of users, will frequently be adopted in such cases.

In other OSS projects like Linux, the kernel functionality is
also small compared to application and user interface
functionalities. The nature of relationships between the core
and satellite projects remains to be investigated; yet it
might serve as an example how to break large monolithic
commercial projects into smaller, more manageable pieces.
We can see the examples where the integration of these
related OSS products is performed by a commercial
organization, e.g., RedHat for Linux, ActivePerl for Perl,
and Cygnus for GNU tools.

Hypothesis 3: In successful open source developments, a
group larger by an order of magnitude than the core will
repair defects, and a yet larger group (by another order of
magnitude) will report problems.
Hypothesis 4: Open source developments that have a
strong core of developers but never achieve large numbers
of contributors beyond that core will be able to create new
functionality but will fail because of a lack of resources
devoted to finding and repairing defects in the released
code.
Many defect repairs can be performed with only a limited
risk of interacting with other changes. Problem reporting
can be done with no risk of harmful interaction at all.

27 I

Since this work has reduced dependencies among
participants, potentially much larger groups can work on
them. In a successful development, these activities will be
performed by larger communities, freeing up time for the
core developers to develop new functionality. Where an
OSS development fails to stimulate wide participation,
either the core will become overburdened with finding and
repairing defects, or the code simply will never reach an
acceptable level of quality.

Hypothesis 5: Defect density in open source releases will
generally be lower than commercial code that has only
been feature-tested, i.e., received a comparable level of
testing.
Hypothesis 6: In successful open source developments, the
developers will also be users of the software.
In general, open source developers are experienced users of
the software they write. They are intimately familiar with
the features they need, and what the correct and desirable
behavior is. Since the lack of domain knowledge is one of
the chief problems in large software projects [5], one of the
main sources of error is eliminated when domain experts
write the software. It remains to be seen if this advantage
can completely compensate for the absence of system
testing. In any event, where the developers are not also
experienced users of the software, they are highly unlikely
to have the necessary level of domain expertise or the
necessary motivation to succeed as an OSS project.

Hypothesis 7: OSS developments exhibit very rapid
responses to customer problems.
This observation stems both from the “many eyeballs
implies shallow bugs” observation cited earlier [15], and
the way that fixes are distributed. In the “free” world of
OSS, patches can be made available to all customers nearly
as soon as they are made. In commercial developments, by
contrast, patches are generally bundled into new releases,
and made available according to some predetermined
schedule.

Taken together, these hypotheses, if confirmed with further
research on OSS projects, suggest that OSS is a truly
unique type of development process. It is tempting to
suggest that commercial and OSS practices might be
fruitfully hybridized in a number of ways. For example, it
might prove very attractive to commercial developers to
use the OSS style project structure. In such an
arrangement, there is a core team of recognized experts,
who alone have the power to commit code to an official
release, and a much larger group who contribute voluntarily
in various ways, and who may prove themselves diligent
and skillful enough to be added to the core. Everyone,
under this type of project management, is self-determining.
The core members can commit code where they choose, the
peripheral members submit changes of any sort they
choose. These decisions appear to be guided only by a
common desire to see the product developed successfully,

to contribute in meaningful ways, and to be seen as an
important contributor. While we are certain that this
suggestion will be met with healthy skepticism, we see no
inherent reason why commercial developments could not
operate in a similar manner, subject of course torestrictions
on size, and the necessity that developers must be users.
Assuming that this arrangement would work in a
commercial setting, there could be tremendous benefits to
pairing the high motivation, low pre-system test defect
rates, and fast response of OSS with a more commercially-
oriented system test capability. Such cross-fertilization
might pave the way to a true revolution in software
development.

6 REFERENCES
1. Apache guidelines, at <httpd/dev.apache.org/guidelines.html>.
2. V. R. Basili and D. M. Weiss, “A Methodology for Collecting
Valid Software Engineering Data,” IEEE Transactions on
Sofware Engineering, vol. 10, no. 6, 1984, pp. 728-738.
3. T. Bollinger, R. Nelson, K. M. Self, and S. J. Tumbull, “Open-
Source Methods: Peering Through the Clutter,” IEEE Soffware,
vol. July/August, no. 4, 1999, pp. 8-11.
4. A. Carleton, et al., ”Software Measurement for DoD Systems:
Recommendations for Initial Core Measures,” Software
Engineering Institute, CMU/SEI-92-TRR19, 1992.
5. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the
Software Design Process for Large Systems,” Communications of
theACM, vol. 31, no. 11, 1988, pp. 1268-1287.
6. C. DiBona, S. Ockman, and M. Stone, Open Sources: Voices
from the Open Source Revolution. Sebastopol, CA: OReiIIy,
1999.
7. Norman Fenton, “Software Measurement: A Necessary
Scientific Basis,” IEEE Transactions on Software Engineering,
vol. 20, no. 3, March 1994, pp. 199-206.
8. R. T. Fielding, “Shared Leadership in the Apache Project,”
Communications of the ACM, vol. 42, no. 4, 1999, pp. 42-43.
9. J. D. Herbsleb and R. E. Grinter, “Splitting the Organization
and Integrating the Code: Conway’s Law Revisited,” presented at
21st International Conference on Software Engineering (ICSE
99), Los Angeles, CA, 1999.
10. M. Krochmal, “Linux Interest Expanding,” in TechWeb, at
<httpd/www.techweb.com/wire/story/TWB 19990521 SO02 1>,
1999.
11. B Littlewood and D Miller, “Conceptual Modeling of
Coincident Failures in Multi-Version Software”, IEEE
Transactions on Software Engineering, vol. 15, no. 12, Dec 1989,

12. S. McConnell, “Open-Source Methodology: Ready for Prime
Time?,” IEEE Software, vol. July/August, no. 4, 1999, pp. 6-8.
13. Netcraft Survey, at <http://www.netcraft.com/survey=-.
14. B. Perens, “The Open Source Definition,” in Open Sources:
Voices from the Open Source Revolution, C. DiBona, S. Ockman,
and M. Stone, Eds. Sebastopol, CA OReilly, 1999, pp. 171-188.
15. E. S. Raymond, “The Cathedral and the Bazaar,” at
dttpilwww. tuxedo.org/-esr/writings/cathedral-bazaarb.
16. P. Vixie, “Software Engineering,” in Open Sources: Voices

from the Open Source Revolution, C. DiBona, S. Ockman, and M.
Stone, Eds. Sebastopol, CA. OReilly, 1999, pp. 91-100.

pp. 1596-1614.

272

http://www.netcraft.com/survey

