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Series foreword 

Theoretical computer science has now undergone several decades of development. The 
"classical" topics of automata theory, formal languages, and computational complexity 
have become firmly established, and their importance to other theoretical work and to 
practice is widely recognized. Stimulated by technological advances, theoreticians have 
been rapidly expanding the areas under study, and the time delay between theoreti
cal progress and its practical impact has been decreasing dramatically. Much publicity 
has been given recently to breakthroughs in cryptography and linear programming, and 
steady progress is being made on programming language semantics, computational ge
ometry, and efficient data structures. Newer, more speculative, areas of study include 
relational databases, VLSI theory, and parallel and distributed computation. As this list 
of topics continues expanding, it is becoming more and more difficult to stay abreast 
of the progress that is being made and increasingly important that the most significant 
work be distilled and communicated in a manner that will facilitate further research and 
application of this work. By publishing comprehensive books and specialized monographs 
on the theoretical aspects of computer science, the series on Foundations of Computing 
provides a forum in which important research topics can be presented in their entirety 
and placed in perspective for researchers, students, and practitioners alike. 

Michael R. Garey 
Albert R. Meyer 





Preface 

In giving a formal semantics to a programming language we are concerned with building 
a mathematical model. Its purpose is to serve as a basis for understanding and reasoning 
about how programs behave. Not only is a mathematical model useful for various kinds 
of analysis and verification, but also, at a more fundamental level, because simply the 
activity of trying to define the meaning of program constructions precisely can reveal 
all kinds of subtleties of which it is important to be aware. This book introduces the 
mathematics, techniques and concepts on which formal semantics rests. 

For historical reasons the semantics of programming languages is often viewed as con
sisting of three strands: 

Operational semantics describes the meaning of a programming language by spec
ifying how it executes on an abstract machine. We concentrate on the method 
advocated by Gordon Plotkin in his lectures at Aarhus on "structural operational 
semantics" in which evaluation and execution relations are specified by rules in a 
way directed by the syntax. 

Denotational semantics is a technique for defining the meaning of programming 
languages pioneered by Christopher Strachey and provided with a mathematical 
foundation by Dana Scott. At one time called "mathematical semantics," it uses 
the more abstract mathematical concepts of complete partial orders, continuous 
functions and least fixed points. 

Axiomatic semantics tries to fix the meaning of a programming contruct by giv
ing proof rules for it within a program logic. The chief names associated with 
this approach are that of R.W.Floyd and C.A.R.Hoare. Thus axiomatic semantics 
emphasises proof of correctness right from the start. 

It would however be wrong to view these three styles as in opposition to each other. They 
each have their uses. A clear operational semantics is very helpful in implementation. 
Axiomatic semantics for special kinds of languages can give strikingly elegant proof sys
tems, useful in developing as well as verifying programs. Denotational semantics provides 
the deepest and most widely applicable techniques, underpinned by a rich mathematical 
theory. Indeed, the different styles of semantics are highly dependent on eachother. For 
example, showing that the proof rules of an axiomatic semantics are correct relies on an 
underlying denotational or operational semantics. To show an implementation correct, 
as judged against a denotational semantics, requires a proof that the operational and 
denotational semantics agree. And, in arguing about an operational semantics it can 
be an enormous help to use a denotational semantics, which often has the advantage of 
abstracting away from unimportant, implementation details, as well as providing higher
level concepts with which to understand computational behaviour. Research of the last 
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few years promises a unification of the different approaches, an approach in which we 
can hope to see denotational, operational and logics of programs developed hand-in-hand. 
An aim of this book has been to show how operational and denotational semantics fit 
together. 

The techniques used in semantics lean heavily on mathematical logic. They are not 
always easily accessible to a student of computer science or mathematics, without a good 
background in logic. There is an attempt here to present them in a thorough and yet as 
elementary a way as possible. For instance, a presentation of operational semantics leads 
to a treatment of inductive definitions, and techniques for reasoning about operational 
semantics, and this in turn places us in a good position to take the step of abstraction 
to complete partial orders and continuous functions-the foundation of denotational 
semantics. It is hoped that this passage from finitary rules of the operational semantics, 
to continuous operators on sets, to continuous functions is also a help in understanding 
why continuity is to be expected of computable functions. Various induction principles 
are treated, including a general version of well-founded recursion, which is important 
for defining functions on a set with a well-founded relation. In the more advanced work 
on languages with recursive types the use of information systems not only provides an 
elementary way of solving recursive domain equations, but also yields techniques for 
relating operational and denotational semantics. 

Book description: This is a book based on lectures given at Cambridge and Aarhus 
Universities. It is introductory and is primarily addressed to undergraduate and graduate 
students in Computer Science and Mathematics beginning a study of the methods used 
to formalise and reason about programming languages. It provides the mathematical 
background necessary for the reader to invent, formalise and justify rules with which to 
reason about a variety of programming languages. Although the treatment is elementary, 
several of the topics covered are drawn from recent research. The book contains many 
exercises ranging from the simple to mini projects. 

Starting with basic set theory, structural operational semantics (as advocated by 
Plotkin) is introduced as a means to define the meaning of programming languages along 
with the basic proof techniques to accompany such definitions. Denotational and ax
iomatic semantics are illustrated on a simple language of while-programs, and full proofs 
are given of the equivalence of the operational and denotational semantics and soundness 
and relative completeness of the axiomatic semantics. A proof of G6del's incompleteness 
theorem is included. It emphasises the impossibility of ever achieving a fully complete 
axiomatic semantics. This is backed up by an appendix providing an introduction to the 
theory of computability based on while programs. After domain theory, the foundations 
of denotational semantics is presented, and the semantics and methods of proof for sev-
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eral functional languages are treated. The simplest language is that of recursion equations 
with both call-by-value and call-by-name evaluation. This work is extended to languages 
with higher and recursive types, which includes a treatment of the eager and lazy A
calculi. Throughout, the relationship between denotational and operational semantics 
is stressed, and proofs of the correspondence between the operational and denotational 
semantics are provided. The treatment of recursive types-one of the more advanced 
parts of the book-relies on the use of information systems to represent domains. The 
book concludes with a chapter on parallel programming languages, accompanied by a 
discussion of methods for verifying nondeterministic and parallel programs. 

How to use this book 

The dependencies between the chapters are indicated below. It is hoped that this is a 
help in reading, reference and designing lecture courses. For example, an introductory 
course on "Logic and computation" could be based on chapters 1 to 7 with additional 
use of the Appendix. The Appendix covers computability, on the concepts of which 
Chapter 7 depends-it could be bypassed by readers with a prior knowledge of this topic. 
Instead, a mini course on "Introductory semantics" might be built on chapters 1 to 5, 
perhaps supplemented by 14. The chapters 8, 10 and 12 could form a primer in "Domain 
theory"-this would require a very occasional and easy reference to Chapter 5. Chapters 
8-13 provide "A mathematical foundation for functional programming." Chapter 14, 
a survey of "Nondeterminism and parallelism," is fairly self-contained relying, in the 
main, just on Chapter 2; however, its discussion of model checking makes use of the 
Knaster-Tarski Theorem, of which a proof can be found in Chapter 5. 

Some of the exercises include small implementation tasks. In the course at Aarhus 
it was found very helpful to use Prolog, for example to enliven the early treatment of 
the operational semantics. The use of Standard ML or Miranda is perhaps even more 
appropriate, given the treatment of such languages in the later chapters. 

Acknowledgements 
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The Formal Semantics of Programming Languages 





1 Basic set theory 

This chapter presents the informal, logical and set-theoretic notation and concepts we 
shall use to write down and reason about our ideas. It simply presents an extension 
of our everyday language, extended to talk about mathematical objects like sets; it is 
not to be confused with the formal languages of programming languages or the formal 
assertions about them that we'll encounter later. 

This chapter is meant as a review and for future reference. It is suggested that on a 
first reading it is read fairly quickly, without attempting to absorb it fully. 

1.1 Logical notation 

We shall use some informal logical notation in order to stop our mathematical statements 
getting out of hand. For statements (or assertions) A and B, we shall commonly use 
abbreviations like: 

• A & B for (A and B), the conjunction of A and B, 

• A=> B for (A implies B), which means ~if A then B), 

• A <===> B to mean (A iff B), which abbreviates (A if and only if B), and expresses 
the logical equivalence of A and B. 

We shall also make statements by forming disjunctions (A or B), with the self-evident 
meaning, and negations (not A), sometimes written -,A, which is true iff A is false. There 
is a tradition to write for instance 7 I- 5 instead of -,(7 < 5), which reflects what we 
generally say: "7 is not less than 5" rather than "not 7 is less than 5." 

The statements may contain variables (or unknowns, or place-holders), as in 

(x :::; 3) & (y :::; 7) 

which is true when the variables x and y over integers stand for integers less than or 
equal to 3 and 7 respectively, and false otherwise. A statement like P(x, y), which 
involves variables x, y, is called a predicate (or property, or relation, or condition) and it 
only becomes true or false when the pair x, y stand for particular things. 

We use logical quantifiers 3, read "there exists", and V, read" for all". Then you can 
read assertions like 

3x. P(x) 

as abbreviating "for some x, P(x)" or "there exists x such that P(x)", and 

Vx. P(x) 
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as abbreviating" for all x, P(x)" or "for any x, P(x)". The statement 

3x,y,···,z. P(x,y,···,z) 

abbreviates 
3x3y ... 3z P(x y ... z) . " ) , 

and 
"Ix, y,' .. , z. P(x, y, ... , z) 

abbreviates 
VxVy· .. Vz. P(x, y, ... , z). 

Later, we often wish to specify a set X over which a quantifier ranges. Then one 
writes "Ix E X. P(x) instead of "Ix. x E X =* P(x), and 3x E X. P(x) instead of 
3x. x E X & P(x). 

There is another useful notation associated with quantifiers. Occasionally one wants 
to say not just that there exists some x satisfying a property P(x) but also that x is the 
unique object satisfying P(x). It is traditional to write 

3!x. P(x) 

as an abbreviation for 

(3x. P(x)) & (Vy, z. P(y) & P(z) =* y = z) 

which means that there is some x satisfying the property P and also that if any y, z 

both satisfy the property P they are equal. This expresses that there exists a unique x 

satisfying P(x). 

1.2 Sets 

Intuitively, a set is an (unordered) collection of objects, called its elements or members. 
We write a E X when a is an element of the set X. Sometimes we write e.g. {a, b, c, ... } 
for the set of elements a, b, c, .. '. 
A set X is said to be a subset of a set Y, written X ~ Y, iff every element of X is an 
element of Y, i. e. 

X ~ Y -¢=} Vz E X. z E Y. 

A set is determined solely by its elements in the sense that two sets are equal iff they 
have the same elements. So, sets X and Yare equal, written X = Y, iff every element 
of A is a element of B and vice versa. This furnishes a method for showing two sets X 

and Yare equal and, of course, is equivalent to showing X ~ Y and Y ~ X. 
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1.2.1 Sets and properties 

Sometimes a set is determined by a property, in the sense that the set has as elements 
precisely those which satisfy the property. Then we write 

x = {x I P(x)}, 

meaning the set X has as elements precisely all those x for which P(x) is true. 
When set theory was being invented it was thought, first of all, that any property P(x) 

determined a set 
{x I P(x)}. 

It came as a shock when Bertrand Russell realised that assuming the existence of certain 
sets described in this way gave rise to contradictions. 

Russell's paradox is really the demonstration that a contradiction arises from the liberal 
way of constructing sets above. It proceeds as follows: consider the property 

xf/:.x 

a way of writing "x is not an element of x". If we assume that properties determine sets, 
just as described, we can form the set 

R={xlx~x}. 

Either R E R or not. If so, i.e. R E R, then in order for R to qualify as an element of 
R, from the definition of R, we deduce R rJ. R. So we end up asserting both something 
and is negation-a contradiction. If, on the other hand, R rJ. R then from the definition 
of R we see R E R-a contradiction again. Either R E R or R rJ. R lands us in trouble. 

We need to have some way which stops us from considering things like R as a sets. In 
general terms, the solution is to discipline the way in which sets are constructed, so that 
starting from certain given sets, new sets can only be formed when they are constructed 
by using particular, safe ways from old sets. We shall not be formal about it, but state 
those sets we assume to exist right from the start and methods we allow for constructing 
new sets. Provided these are followed we avoid trouble like Russell's paradox and at the 
same time have a rich enough world of sets to support most mathematics. 

1.2.2 Some important sets 

We take the existence of the empty set for granted, along with certain sets of basic 
elements. 
Write 0 for the null, or empty set, and 
w for the set of natural numbers 0,1,2, .... 
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We shall also take sets of symbols like 

{ "a" "b" "c" "d" "e" ... "z"} , , , , , , 

for granted, although we could, alternatively have represented them as particular num
bers, for example. The equality relation on a set of symbols is that given by syntactic 
identity; two symbols are equal iff they are the same. 

1.2.3 Constructions on sets 

We shall take for granted certain operations on sets which enable us to construct sets 
from given sets. 

Comprehension: If X is a set and P(x) is a property, we can form the set 

{x E X I P(x)} 

which is another way of writing 

{x I x E X & P(x)}. 

This is the subset of X consisting of all elements x of X which satisfy P(x). 

Sometimes we'll use a further abbreviation. Suppose e(x I, ... ,xn ) is some expression 
which for particular elements Xl E Xl,'" Xn E Xn yields a particular element and 
P(XI' ... ,xn ) is a property of such Xl, ... ,Xn- We use 

to abbreviate 

For example, 

{2m + 1 I mEw & m > I} 

is the set of odd numbers greater than 3. 

Powerset: We can form a set consisting of the set of all subsets of a set, the so-called 
powerset: 

Pow(X) = {Y I Y ~ X}. 

Indexed sets: Suppose I is a set and that for any i E I there is a unique object Xi, 

maybe a set itself. Then 

{Xi liE I} 

is a set. The elements Xi are said to be indexed by the elements i E I. 
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Union: The set consisting of the union of two sets has as elements those elements 
which are either elements of one or the other set. It is written and described by: 

Xu Y = {a I a E X or a E Y}. 

Big union: Let X be a set of sets. Their union 

Ux = {a I 3x E X. a E x} 

is a set. When X = {Xi liE I} for some indexing set I we often write UX as UiE1 Xi. 

Intersection: Elements are in the intersection X nY, of two sets X and Y, iff they 
are in both sets, i. e. 

X n Y = {a I a E X & a E Y}. 

Big intersection: Let X be a nonempty set of sets. Then 

nX = {a II::/x E X. a EX} 

is a set called its intersection. When X = {X iii E I} for a non empty indexing set I we 

often write n X as niEI Xi· 

Product: Given two elements a, b we can form a set (a, b) which is their ordered pair. 
To be definite we can take the ordered pair (a, b) to be the set {{a}, {a, b} }-this is 
one particular way of coding the idea of ordered pair as a set. As one would hope, two 
ordered pairs, represented in this way, are equal iff their first components are equal and 
their second components are equal too, i.e. 

(a,b) = (a',b') -¢=} a = a' & b = b'. 

In proving properties of ordered pairs this property should be sufficient irrespective of 
the way in which we have represented ordered pairs as sets. 

Exercise 1.1 Prove the property above holds of the suggested representation of ordered 
pairs. (Don't expect it to be too easy! Consult [39], page 36, or [47], page 23, in case of 
difficulty.) D 

For sets X and Y, their product is the set 

X x Y = {(a, b) I a E X & bEY}, 

the set of ordered pairs of elements with the first from X and the second from Y. 
A triple (a, b, c) is the set (a, (b, c)), and the product X x Y x Z is the set of triples 

{(x, y, z) I x E X & y E Y & Z E Z}. More generally XIX X 2 X ... X Xn consists of the 
set ofn-tuples (Xl,X2, ... ,Xn ) = (Xl, (X2, (X3,"')))' 
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Disjoint union: Frequently we want to join sets together but, in a way which, unlike 
union, does not identify the same element when it comes from different sets. We do this 
by making copies of the elements so that when they are copies from different sets they 
are forced to be distinct. 

Xo ttl Xl ttl··· ttl Xn = ({O} x Xo) U ({I} x Xd u··· U ({n} x Xn). 

In particular, for X ttl Y the copies ({O} x X) and ({I} x Y) have to be disjoint, in the 
sense that 

({O} x X) n ({I} x Y) = 0, 
because any common element would be a pair with first element both equal to 0 and 1, 
clearly impossible. 

Set difference: We can subtract one set Y from another X, an operation which re
moves all elements from X which are also in Y. 

X \ Y = {x I x E X & x ~ Y}. 

1.2.4 The axiom of foundation 

A set is built-up starting from basic sets by using the constructions above. We remark 
that a property of sets, called the axiom of foundation, follows from our informal un
derstanding of sets and how we can construct them. Consider an element b I of a set boo 
lt is either a basic element, like an integer or a symbol, or a set. If b l is a set then it 
must have been constructed from sets which have themselves been constructed earlier. 
Intuitively, we expect any chain of memberships 

... bn E ... E bl E bo 

to end in some bn which is some basic element or the empty set. The statement that any 
such descending chain of memberships must be finite is called the axiom of foundation, 
and is an assumption generally made in set theory. Notice the axiom implies that no set 
X can be a member of itself as, if this were so, we'd get the infinite descending chain 

···X E··· E X E X, 

-a contradiction. 

1.3 Relations and functions 

A binary relation between X and Y is an element of Pow(X x Y), and so a subset of 
pairs in the relation. When R is a relation R ~ X x Y we shall often write xRy for 
(x,y) E R. 
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A partial function from X to Y is a relation f ~ X x Y for which 

'v'x,y,y'. (x,y) E f & (x,y') E f =? Y = y'. 

We use the notation f(x) = y when there is a y such that (x,y) E f and then say f(x) 
is defined, and otherwise say f(x) is undefined. Sometimes we write f : x t--> y, or just 
x t--> y when f is understood, for y = f(x). Occasionally we write just fx, without the 
brackets, for f(x). 

A (total) function from X to Y is a partial function from X to Y such that for all 
x E X there is some y E Y such that f(x) = y. Although total functions are a special 
kind of partial function it is traditional to understand something described as simply a 
function to be a total function, so we always say explicitly when a function is partial. 

Note that relations and functions are also sets. 
To stress the fact that we are thinking of a partial function f from X to Y as taking 

an element of X and yielding an element of Y we generally write it as f : X ~ Y. To 
indicate that a function f from X to Y is total we write f : X --> Y. 

We write (X ~ Y) for the set of all partial functions from X to Y, and (X --> Y) for 
the set of all total functions. 

Exercise 1.2 Why are we justified in calling (X ~ Y) and (X --> Y) sets when X, Y 
are sets? D 

1.3.1 Lambda notation 

It is sometimes useful to use the lambda notation (or A-notation) to describe functions. It 
provides a way of refering to functions without having to name them. Suppose f : X --> Y 
is a function which for any element x in X gives a value f(x) which is exactly described 
by expression e, probably involving x. Then we sometime write 

AX E x'e 

for the function f. Thus 
AX E x'e = {(x,e) I x EX}, 

so AX E X.e is just an abbreviation for the set of input-output values determined by the 
expression e. For example, AX E w.(x + 1) is the successor function. 

1.3.2 Composing relations and functions 

We compose relations, and so partial and total functions, R between X and Y and S 
between Y and Z by defining their composition, a relation between X and Z, by 

SoR=def {(x,z) E X x Z 13y E Y. (x,y) E R & (y,z) E S}. 
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Thus for functions f : X --+ Y and g : Y --+ Z their composition is the function go f : X --+ 

Z. Each set X is associated with an identity function Id x where Idx = {(x, x) I x EX}. 

Exercise 1.3 Let R ~ X x Y, S ~ Y x Z and T ~ Z x W. Convince yourself that 
To (S 0 R) = (T 0 S) 0 R (i. e. composition is associative) and that R 0 Id x = I dy 0 R = R 
(i. e. identity functions act like identities with respect to composition). 0 

A function f : X --+ Y has an inverse g : Y --+ X iff g(f(x)) = x for all x E X, and 
f(g(y)) = y for all y E Y. Then the sets X and Yare said to be in 1-1 correspondence. 
(Note a function with an inverse has to be total.) 

Any set in 1-1 correspondence with a subset of natural numbers w is said to be count
able. 

Exercise 1.4 Let X and Y be sets. Show there is a 1-1 correspondence between the set 
of functions (X --+ Pow(Y)) and the set of relations Pow(X x Y). 0 

Cantor's diagonal argument 
Late last century, Georg Cantor, one of the pioneers in set theory, invented a method 

of argument, the gist of which reappears frequently in the theory of computation. Cantor 
used a diagonal argument to show that X and Pow (X) are never in 1-1 correspondence 
for any set X. This fact is intuitively clear for finite sets but also holds for infinite sets. 
He argued by reductio ad absurdum, i. e., by showing that supposing otherwise led to a 
contradiction: 

Suppose a set X is in 1-1 correspondence with its powerset Pow(X). Let e : X --+ 

Pow(X) be the 1-1 correspondence. Form the set 

Y = {x E X I x ~ e(x)} 

which is clearly a subset of X and therefore in correspondence with an element y E X. 
That is e(y) = Y. Either y E Y or y ~ Y. But both possibilities are absurd. For, if 
y E Y then y E e(y) so y ~ Y, while, if y ~ Y then y ~ e(y) so y E Y. We conclude 
that our first supposition must be false, so there is no set in 1-1 correspondence with its 
powerset. 

Cantor's argument is reminiscient of Russell's paradox. But whereas the contradiction 
in Russell's paradox arises out of a fundamental, mistaken assumption about how to 
construct sets, the contradiction in Cantor's argument comes from denying the fact one 
wishes to prove. 

To see why it is called a diagonal argument, imagine that the set X, which we suppose is 
in 1-1 correspendence with Pow(X), can be enumerated as Xo, Xl, X2,···, x n ,···. Imagine 
we draw a table to represent the 1-1 correspondence e along the following lines. In the 
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ith row and jth column is placed 1 if Xi E 8(xj) and 0 otherwise. The table below, for 
instance, represents a situation where Xo rJ. 8(xo), Xl E 8(xo) and Xi E 8(Xj). 

8(xo) 8(xd 8(X2) 8(xj) 

Xo 0 1 1 1 

Xl 1 1 1 0 
X2 0 0 1 0 

Xi 0 1 0 1 

The set Y which plays a key role in Cantor's argument is defined by running down the 
diagonal of the table interchanging O's and 1 's in the sense that X n is put in the set iff 
the nth entry along the diagonal is a O. 

Exercise 1.5 Show for any sets X and Y, with Y containing at least two elements, that 
there cannot be a 1-1 correspondence between X and the set of functions (X --> Y). D 

1.3.3 Direct and inverse image of a relation 

We extend relations, and thus partial and total functions, R : X x Y to functions on 
subsets by taking 

RA = {y E Y I 3x E A. (x, y) E R} 

for A ~ X. The set RA is called the direct image of A under R. We define 

R-IB={xEX 13yEB. (x,y)ER} 

for B ~ Y. The set R- I B is called the inverse image of B under R. Of course, the same 
notions of direct and inverse image also apply in the special case where the relation is a 
function. 

1.3.4 Equivalence relations 

An equivalence relation is a relation R ~ X x X on a set X which is 

• reflexive: 'Ix E X. xRx, 

• symmetric: 'Ix, y E X. xRy => yRx and 

• transitive: 'Ix, y, z E X. xRy & yRz => xRz. 

If R is an equivalence relation on X then the (R-)equivalence class of an element x E X 
is the subset {xh =def {y E X I yRx}. 
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Exercise 1.6 Let R be an equivalence relation on a set X. Show if {x} R n {y h -=1= 0 
then {xh = {Y}w for any elements X,Y E X. 0 

Exercise 1. 7 Let xRy be a relation on a set of sets X which holds iff the sets x and y 

in X are in 1-1 correspondence. Show that R is an equivalence relation. 0 

Let R be a relation on a set X. Define RO = I dx , the identity relation on the set X, 
and Rl = R and, assuming Rn is defined, define 

So, Rn is the relation R 0 ... 0 R, obtained by taking n compositions of R. Define the 
transitive closure of R to be the relation 

Define the transitive, reflexive closure of a relation R on X to be the relation 

nEw 

so R* = I dx U R+ . 

Exercise 1.8 Let R be a relation on a set X. Write ROP for the opposite, or converse, 
relation ROP = {(y, x) I (x, y) E R}. Show (R U ROP)* is an equivalence relation. Show 
R* U (ROP)* need not be an equivalence relation. o 

1.4 Further reading 

Our presentation amounts to an informal introduction to the Zermelo-Fraenkel axioma
tisation of set theory but with atoms, to avoid thinking of symbols as being coded by 
sets. If you'd like more material to read I recommend Halmos's "Naive Set Theory" [47] 
for a very readable introduction to sets. Another good book is Enderton's "Elements of 
set theory" [39], though this is a much larger work. 



2 Introduction to operational semantics 

This chapter presents the syntax of a programming language, IMP, a small language 
of while programs. IMP is called an "imperative" language because program execution 
involves carrying out a series of explicit commands to change state. Formally, IMP's 
behaviour is described by rules which specify how its expressions are evaluated and its 
commands are executed. The rules provide an operational semantics of IMP in that they 
are close to giving an implementation of the language, for example, in the programming 
language Prolog. It is also shown how they furnish a basis for simple proofs of equivalence 
between commands. 

2.1 IMP-a simple imperative language 

Firstly, we list the syntactic sets associated with IMP: 

• numbers N, consisting of positive and negative integers with zero, 

• truth values T = {true, false}, 

• locations Loc, 

• arithmetic expressions Aexp, 

• boolean expressions Bexp, 

• commands Com. 

We assume the syntactic structure of numbers and locations is given. For instance, 
the set Loc might consist of non-empty strings of letters or such strings followed by 
digits, while N might be the set of signed decimal numerals for positive and negative 
whole numbers-indeed these are the representations we use when considering specific 
examples. (Locations are often called program variables but we reserve that term for 
another concept.) 

For the other syntactic sets we have to say how their elements are built-up. We'll use 
a variant of BNF (Backus-Naur form) as a way of writing down the rules of formation of 
the elements of these syntactic sets. The formation rules will express things like: 

If ao and al are arithmetic expressions then so is ao + al. 

It's clear that the symbols ao and al are being used to stand for any arithmetic expression. 
In our informal presentation of syntax we'll use such metavariables to range over the 
syntactic sets-the metavariables ao, al above are understood to range over the set of 
arithmetic expressions. In presenting the syntax of IMP we'll follow the convention that 
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• n, m range over numbers N, 

• X, Y range over locations Loc, 

• a ranges over arithmetic expressions Aexp, 

• b ranges over boolean expressions Bexp, 

• c ranges over commands Com. 

The metavariables we use to range over the syntactic categories can be primed or sub
scripted. So, e.g., X, X', X o, XI, Y" stand for locations. 

We describe the formation rules for arithmetic expressions Aexp by: 

The symbol "::=" should be read as "can be" and the symbol "I" as "or". Thus an 
arithmetic expression a can be a number n or a location X or ao + al or ao - al or 
ao x a1, built from arithmetic expressions ao and a1· 

Notice our notation for the formation rules of arithmetic expressions does not tell us 
how to parse 

2 + 3 x 4 - 5, 

whether as 2 + ((3 x 4) - 5) or as (2 + 3) x (4 - 5) etc .. The notation gives the so-called 
abstract syntax of arithmetic expressions in that it simply says how to build up new 
arithmetic expressions. For any arithmetic expression we care to write down it leaves us 
the task of putting in enough parentheses to ensure it has been built-up in a unique way. 
It is helpful to think of abstract syntax as specifying the parse trees of a language; it is 
the job of concrete syntax to provide enough information through parentheses or orders 
of precedence between operation symbols for a string to parse uniquely. Our concerns 
are with the meaning of programming languages and not with the theory of how to write 
them down. Abstract syntax: suffices for our purposes. 

Here are the formation rules for the whole of IMP: 
For Aexp: 

For Bexp: 

b ::= true I false I ao = a1 I ao ::; al I -,b I bo /\ b1 I bo V b1 

For Com: 

c ::= skip I X := a I co; Cl I if b then Co else C1 I while b do c 
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From a set-theory point of view this notation provides an inductive definition of the 
syntactic sets of IMP, which are the least sets closed under the formation rules, in a 
sense we'll make clear in the next two chapters. For the moment, this notation should 
be viewed as simply telling us how to construct elements of the syntactic sets. 

We need some notation to express when two elements eo, el of the same syntactic set 
are identical, in the sense of having been built-up in exactly the same way according to 
the abstract syntax or, equivalently, having the same parse tree. We use eo == el to mean 
eo is identical to el. The arithmetic expression 3 + 5 built up from the numbers 3 and 
5 is not syntactically identical to the expression 8 or 5 + 3, though of course we expect 
them to evaluate to the same number. Thus we do not have 3 + 5 == 5 + 3. Note we do 

have (3 + 5) == 3 + 5! 

Exercise 2.1 If you are familiar with the programming language ML (see e.g.[101]) or 
Miranda (see e.g.[22]) define the syntactic sets of IMP as datatypes. If you are familiar 
with the programming language Prolog (see e.g.[3I]) program the formation rules ofIMP 
in it. Write a program to check whether or not eo == el holds of syntactic elements eo, 
el. D 

So much for the syntax of IMP. Let's turn to its semantics, how programs behave 
when we run them. 

2.2 The evaluation of arithmetic expressions 

Most probably, the reader has an intuitive model with which to understand the be
haviours of programs written in IMP. Underlying most models is an idea of state 
determined by what contents are in the locations. With respect to a state, an arithmetic 
expression evaluates to an integer and a boolean expression evaluates to a truth value. 
The resulting values can influence the execution of commands which will lead to changes 
in state. Our formal description of the behaviour of IMP will follow this line. First we 
define states and then the evaluation of integer and boolean expressions, and finally the 
execution of commands. 

The set of states E consists of functions u : Loc --+ N from locations to numbers. Thus 
u(X) is the value, or contents, of location X in state u. 

Consider the evaluation of an arithmetic expression a in a state u. We can represent 
the situation of expression a waiting to be evaluated in state u by the pair (a, u). We 
shall define an evaluation relation between such pairs and numbers 

(a, u) --+ n 
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meaning: expression a in state a evaluates to n. Call pairs (a, a), where a is an arithmetic 
expression and a is a state, arithmetic-expression configurations. 

Consider how we might explain to someone how to evaluate an arithmetic expression 
(ao + al). We might say something along the lines of: 

1. Evaluate ao to get a number no as result and 

2. Evaluate al to get a number nl as result. 

3. Then add no and nl to get n, say, as the result of evaluating ao + al. 

Although informal we can see that this specifies how to evaluate a sum in terms of how 
to evaluate its summands; the specification is syntax-directed. The formal specification of 
the evaluation relation is given by rules which follow intuitive and informal descriptions 
like this rather closely. 

We specify the evaluation relation in a syntax-directed way, by the following rules: 
Evaluation of numbers: 

(n, a) --> n 

Thus any number is already evaluated with itself as value. 
Evaluation of locations: 

(X, a) --> a(X) 

Thus a location evaluates to its contents in a state. 
Evaluation of sums: 

(ao, a) --> no (aI, a) ---> nl 

(ao + aI, a) ---> n 
where n is the sum of no and nl. 

Evaluation of subtractions: 

(ao, a) --> no (aI, a) --> nl 

(ao - aI, a) ---> n 
where n is the result of subtracting nl from no. 

Evaluation of products: 

(ao, a) ---> no (aI, a) --> nl 

(ao x aI, a) --> n 
where n is the product of no and nl. 

How are we to read such rules? The rule for sums can be read as: 
If (ao, a) --> no and (aI, a) ---> nl then (ao + aI, a) ---> n, where n is the sum of no and nl. 
The rule has a premise and a conclusion and we have followed the common practice of 
writing the rule with the premise above and the conclusion below a solid line. The rule 
will be applied in derivations where the facts below the line are derived from facts above. 
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Some rules like those for evaluating numbers or locations require no premise. Sometimes 
they are written with a line, for example, as in 

(n, a) --; n 

Rules with empty premises are called axioms. Given any arithmetic expression a, state 
a and number n, we take a in a to evaluate to n, i.e. (a, a) --; n, if it can be derived from 
the rules starting from the axioms, in a way to be made precise soon. 

The rule for sums expresses that the sum of two expressions evaluates to the number 
which is obtained by summing the two numbers which the summands evaluate to. It 
leaves unexplained the mechanism by which the sum of two numbers is obtained. I 
have chosen not to analyse in detail how numerals are constructed and the above rules 
only express how locations and operations +, -, x can be eliminated from expressions 
to give the number they evaluate to. If, on the other hand, we chose to describe a 
particular numeral system, like decimal or roman, further rules would be required to 
specify operations like multiplication. Such a level of description can be important when 
considering devices in hardware, for example. Here we want to avoid such details-we 
all know how to do simple arithmetic! 

The rules for evaluation are written using metavariables n, X, ao, al ranging over the 
appropriate syntactic sets as well as a ranging over states. A rule instance is obtained 
by instantiating these to particular numbers, locations and expressions and states. For 
example, when ao is the particular state, with a in each location, this is a rule instance: 

So is this: 

(2, iTo) --; 2 (3, ao) --; 3 

(2 x 3, iTo) --; 6 

(2, iTo) --; 3 (3, aD) --; 4 

(2 x 3, iTo) --; 12 

though not one in which the premises, or conclusion, can ever be derived. 
To see the structure of derivations, consider the evaluation of a == (Init + 5) + (7 + 9) 

in state iTo, where Init is a location with iTo(Init) = O. Inspecting the rules we see that 
this requires the evaluation of (Init + 5) and (7 + 9) and these in turn may depend on 
other evaluations. In fact the evaluation of (a, iTo) can be seen as depending on a tree of 
evaluations: 

(Init, iTo) --; a (5, iTo) --; 5 (7, iTo) --; 7 (9, iTo) --; 9 

«(Init + 5), iTo) --; 5 (7 + 9, iTo) --; 16 

«(Init + 5) + (7 + 9), iTo) --; 21 
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We call such a structure a derivation tree or simply a derivation. It is built out of 
instances of the rules in such a way that all the premises of instances of rules which 
occur are conclusions of instances of rules immediately above them, so right at the top 
come the axioms, marked by the lines with no premises above them. The conclusion of 
the bottom-most rule is called the conclusion of the derivation. Something is said to be 
derived from the rules precisely when there is a derivation with it as conclusion. 

In general, we write (a, a-) ----> n, and say a in 17 evaluates to n, iff it can be derived from 
the rules for the evaluation of arithmetic expressions. The particular derivation above 
concludes with 

((Init + 5) + (7 + 9), (70) ----> 21. 

It follows that (Init + 5) + (7 + 9) in state 17 evaluates to 21-just what we want. 
Consider the problem of evaluating an arithmetic expression a in some state 17. This 

amounts to finding a derivation in which the left part of the conclusion matches (a, (7). 
The search for a derivation is best achieved by trying to build a derivation in an upwards 
fashion: Start by finding a rule with conclusion matching (a, (7); if this is an axiom the 
derivation is complete; otherwise try to build derivations up from the premises, and, if 
successful, fill in the conclusion of the first rule to complete the derivation with conclusion 
of the form (a, (7) ----> n. 

Although it doesn't happen for the evaluation of arithmetic expressions, in general, 
more than one rule has a left part which matches a given configuration. To guarantee 
finding a derivation tree with conclusion that matches, when one exists, all of the rules 
with left part matching the configuration must be considered, to see if they can be the 
conclusions of derivations. All possible derivations with conclusion of the right form must 
be constructed "in parallel" . 

In this way the rules provide an algorithm for the evaluation of arithmetic expressions 
based on the search for a derivation tree. Because it can be implemented fairly directly 
the rules specify the meaning, or semantics, of arithmetic expressions in an operational 
way, and the rules are said to give an operational semantics of such expressions. There 
are other ways to give the meaning of expressions in a way that leads fairly directly 
to an implementation. The way we have chosen is just one---any detailed description 
of an implementation is also an operational semantics. The style of semantics we have 
chosen is one which is becoming prevalent however. It is one which is often called 
structural operational semantics because of the syntax-directed way in which the rules 
are presented. It is also called natural semantics because of the way derivations resemble 
proofs in natural deduction-a method of constructing formal proofs. We shall see more 
complicated, and perhaps more convincing, examples of operational semantics later. 

The evaluation relation determines a natural equivalence relation on expressions. De-
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fine 
ao rv al iff (Vn E mu E E. (ao,u) -+ n «=} (al,u) -+ n), 

which makes two arithmetic expressions equivalent if they evaluate to the same value in 
all states. 

Exercise 2.2 Program the rules for the evaluation of arithmetic expressions in Prolog 
and/ or ML (or another language of your choice). This, of course, requires a representation 
of the abstract syntax of such expressions in Prolog and/or ML. 0 

2.3 The evaluation of boolean expressions 

We show how to evaluate boolean expressions to truth values (true, false) with the 
following rules: 

(true, u) -+ true 

(false, tJ) -+ false 

(ao, u) -+ n (aI, tJ) -+ m 

(ao = aI, u) -+ true 

(ao, u) -+ n (aI, u) -> m 

(ao = aI, u) -+ false 

(ao, u) -+ n (aI, u) -+ m 

(ao ::; aI, u) -+ true 

(ao, u) -+ n (aI, u) -> m 

(ao ::; aI, u) -> false 

if nand m are equal 

if nand m are unequal 

if n is less than or equal to m 

if n is not less than or equal to m 

(b, u) -+ true 

(...,b, u) -+ false 

(b, u) -+ false 

(...,b, u) -+ true 
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(bo, a) -; to (b1 , a) -; t1 

(bo 1\ b1 , a) -; t 

where t is true if to == true and t1 == true, and is false otherwise. 

(bo, a) -; to (b1, a) -; t1 

(bo V b1 , a) -; t 

where t is true if to == true or t1 == true, and is false otherwise. 

Chapter 2 

This time the rules tell us how to eliminate all boolean operators and connectives and 
so reduce a boolean expression to a truth value. 

Again, there is a natural equivalence relation on boolean expressions. Two expressions 
are equivalent if they evaluate to the same truth value in all states. Define 

bo ,...., b1 iff VNa E ~. (bo, a) -; t <¢::=} (b1 , a) -; t. 

It may be a concern that our method of evaluating expressions is not the most efficient. 
For example, according to the present rules, to evaluate a conjunction bo 1\ b1 we must 
evaluate both bo and b1 which is clearly unnecessary if bo evaluates to false before b1 is 
fully evaluated. A more efficient evaluation strategy is to first evaluate bo and then only 
in the case where its evaluation yields true to proceed with the evaluation of b 1. We can 
call this strategy left-first-sequential evaluation. Its evaluation rules are: 

(bo, a) -; false 

(bo 1\ b1 , a) -; false 

(bo, a) -; true (b1 , a) -; false 

(bo 1\ b1,a) -; false 

(bo, a) -; true (b1 , a) -; true 

(bo 1\ b1 , a) -; true 

Exercise 2.3 Write down rules to evaluate boolean expressions of the form bo V b1 , 

which take advantage of the fact that there is no need to evaluate b in true V b as the 
result will be true independent of the result of evaluating b. The rules written down 
should describe a method of left-sequential evaluation. Of course, by symmetry, there is 
a method of right-sequential evaluation. 0 

Exercise 2.4 Write down rules which express the "parallel" evaluation of bo and b1 in 
bo V h so that bo V b1 evaluates to true if either bo evaluates to true, and b1 is unevaluated, 
or b1 evaluates to true, and bo is unevaluated. 0 
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It may have been felt that we side-stepped too many issues by assuming we were given 
mechanisms to perform addition or conjunction of truth values for example. If so try: 

Exercise 2.5 Give a semantics in the same style but for expressions which evaluate to 
strings (or lists) instead of integers and truth-values. Choose your own basic operations 
on strings, define expressions based on them, define the evaluation of expressions in the 
style used above. Can you see how to use your language to implement the expression 
part of IMP by representing integers as strings and operations on integers as operations 
on strings? (Proving that you have implemented the operations on integers correctly is 
quite hard.) 0 

2.4 The execution of commands 

The role of expressions is to evaluate to values in a particular state. The role of a 
program, and so commands, is to execute to change the state. When we execute an 
IMP program we shall assume that initially the state is such that all locations are set to 
zero. So the initial state 0'0 has the property that ao(X) = 0 for all locations X. As we 
all know the execution may terminate in a final state, or may diverge and never yield a 
final state. A pair (c, a) represents the (command) configuration from which it remains 
to execute command c from state a. We shall define a relation 

(c, a) -t a' 

which means the (full) execution of command c in state a terminates in final state a'. 
For example, 

(X := 5, a) -t a' 

where a' is the state a updated to have 5 in location X. We shall use this notation: 

Notation: Let a be a state. Let mEN. Let X E Loc. We write a[mj Xl for the state 
obtained from a by replacing its contents in X by m, i.e. define 

Now we can instead write 

a[mjX](Y) = {~Y) if Y = X, 
if Y =1= X. 

(X:= 5,0') -t a[5jX]. 

The execution relation for arbitrary commands and states is given by the following rules. 
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Rules for commands 

Atomic commands: 

Sequencing: 

Conditionals: 

While-loops: 

(skip, 0") -t a 

(a,a)-tm 

(X := a, a) -t a[m/ Xl 

(co, a) -t a" (C1' a") ---> a' 

( co; Cll a) ---> a' 

(b, a) ---> true (Co, a) ---> a' 

(if b then Co else C1, a) -t a' 

(b, a) ---> false (C1' a) ---> a' 

(if b then Co else C1, a) ---> a' 

(b,a) ---> false 

(while b do c, a) ---> a 

(b, a) ---> true (c, a) ---> a" (while b do c, a") -> a' 

(while b do c, a/ ---> a' 

Again there is a natural equivalence relation on commands. Define 
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Exercise 2.6 Complete Exercise 2.2 of Section 2.2, by coding the rules for the evaluation 
of boolean expressions and execution of commands in Prolog and/or ML. 0 

Exercise 2.7 Let w == while true do skip. By considering the form of derivations, 
explain why, for any state a, there is no state a' such that (w, a) ---> a'. 0 

2.5 A simple proof 

The operational semantics of the syntactic sets Aexp, Bexp and Com has been given 
using the same method. By means of rules we have specified the evaluation relations of 
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both types of expressions and the execution relation of commands. All three relations 
are examples of the general notion of transition relations, or transition systems, in which 
the configurations are thought of as some kind of state and the relations as expressing 
possible transitions, or changes, between states. For instance, we can consider each of 

(3, a) -> 3, (true, a) -> true, (X:= 2, a) -> a[2/ Xl. 
to be transitions. 

Because the transition systems for IMP are given by rules, we have an elementary, but 
very useful, proof technique for proving properties of the operational semantics IMP. 

As an illustration, consider the execution of a while-command w := while b do c, with 
b E Bexp, c E Com, in a state a. We expect that if b evaluates to true in a' then w 

executes as c followed by w again, and otherwise, in the case where b evaluates to false, 
that the execution of w terminates immediately with the state unchanged. This informal 
explanation of the execution of commands leads us to expect that for all states a, a' 

(w,a) -> a' iff (if b then c;w else skip, a) -> a', 

i. e. , that the following proposition holds. 

Proposition 2.8 Let w := while b do c with b E Bexp, c E Com. Then 

W rv if b then c; weIse skip. 

Proof: We want to show 

(w, a) -> a' iff (if b then c; weIse skip, a) -> a', 

for all states a, a'. 
"=*": Suppose (w, a) -> a', for states a, a'. Then there must be a derivation of (w, a) -> 

a'. Consider the possible forms such a derivation can take. Inspecting the rules for 
commands we see the final rule of the derivation is either 

or 

(b, a) -> false 

(w, a) -> a 

(b, a) -> true (c, a) -> a" (w, a") -> a' 

(w, a) -> a' 

In case (1 =*), the derivation of (w,a) -> a' must have the form 

(b, a) -> false 

(w,a) -> a 

(2 =*) 
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which includes a derivation of (b, a) -'t false. Using this derivation we can build the 
following derivation of (if b then c; weIse skip, a) -'t a: 

(b, a) -'t false (skip, a) -+ a 

(if b then c; weIse skip, a) -'t a 

In case (2 =», the derivation of (w, a) -+ a' must take the form 

(b, a) -'t true (c, a) -+ a" (w, a") -'t a' 

(w, a) -> a' 

which includes derivations of (b, a) -> true, (c, a) -'t a" and (w, a") -'t a'. From these 
we can obtain a derivation of (c; w, a) -'t a', viz. 

(c, a) -'t a" (w, a") -'t a' 

(c; w, a) -+ a' 

We can incorporate this into a derivation: 

(c,a) -'t a" (w,a") -'t a' 

(b, a) -'t true (c; w, a) -'t a' 

(if b then c; weise skip, a) -'t a' 

In either case, (1 =» or (2 =», we obtain a derivation of 

(if b then c; weIse skip, a) -> a' 

from a derivation of 

Thus 
(w, a) -'t a' implies (if b then c; weise skip, a) -'t a', 

for any states a, a'. 
"{=": We also want to show the converse, that (if b then c; weise skip, a) -t a' implies 
(w,a) -'t a', for all states a,a'. 
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Suppose (if b then C; weIse skip, a) --+ a', for states a, a', Then there is a derivation 
with one of two possible forms: 

(b, a) --+ false (skip, a) --+ a 

(if b then C; weIse skip, a) --+ a 

(b, a) --+ true (c; w, a) --+ a' 

(if b then C; weIse skip, a) --+ a' 

where in the first case, we also have a' = a, got by noting the fact that 

(skip, a) --+ a 

is the only possible derivation associated with skip, 

(1 ~) 

(2 ~) 

From either derivation, (1~) or (2 ~), we can construct a derivation of (w,a) --+ a', 
The second case, (2 ~), is the more complicated, Derivation (2 ~) includes a derivation 
of (c; w, a) --+ a' which has to have the form 

(c, a) --+ a" (w, a") --+ a' 

(c; w, a) --+ a' 

for some state a", Using the derivations of (c, a) --+ a" and (w, a") --+ a' with that for 
(b, a) --+ true, we can produce the derivation 

(b, a) --+ true (c, a) ---> a" (w, a") --+ a' 

(w, a) ---> a' 

More directly, from the derivation (1 ~), we can construct a derivation of (w, a) -> a' 
(How?), 

Thus if (if b then C; weIse skip, a) -> a' then (w, a) --+ a' for any states a, a', 
We can now conclude that 

(w, a) --+ a' iff (if b then C; weIse skip, a) -> a', 

for all states a, a', and hence 

W rv if b then C; weIse skip 

as required, o 
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This simple proof of the equivalence of while-command and its conditional unfolding 
exhibits an important technique: in order to prove a property of an operational semantics 
it is helpful to consider the various possible forms of derivations. This idea will be used 
again and again, though never again in such laborious detail. Later we shall meet other 
techniques, like "rule induction" which, in principle, can supplant the technique used 
here. The other techniques are more abstract however, and sometimes more confusing 
to apply. So keep in mind the technique of considering the forms of derivations when 
reasoning about operational semantics. 

2.6 Alternative semantics 

The evaluation relations 
(a, a) -+ nand (b, a) -+ t 

specify the evaluation of expressions in rather large steps; given an expression and a 
state they yield a value directly. It is possible to give rules for evaluation which capture 
single steps in the evaluation of expressions. We could instead have defined an evaluation 
relation between pairs of configurations, taking e.g. 

(a, a) -+1 (a', a') 

to mean one step in the evaluation of a in state a yields a' in state a'. This intended 
meaning is formalised by taking rules such as the following to specify single steps in the 
left-to-right evaluation of sum. 

(aD, a) -+1 (a~, a) 

(n + a1, a) -1 (n + ai, a) 

(n + m, a) -1 (p, a) 

where p is the sum of m and n. 
Note how the rules formalise the intention to evaluate sums in a left-to-right sequential 

fashion. To spell out the meaning of the first sum rule above, it says: if one step in the 
evaluation of aD in state a leads to a~ in state a then one step in the evaluation of aD + a1 

in state a leads to a~ + a1 in state a. So to evaluate a sum first evaluate the component 
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expression of the sum and when this leads to a number evaluate the second component 
of the sum, and finally add the corresponding numerals (and we assume a mechanism to 
do this is given). 

Exercise 2.9 Complete the task, begun above, of writing down the rules for -1, one 
step in the evaluation of integer and boolean expressions. What evaluation strategy have 
you adopted (left-to-right sequential or ... ) ? 0 

We have chosen to define full execution of commands in particular states through a 
relation 

(c, fJ) - fJ' 

between command configurations. We could instead have based our explanation of the 
execution of commands on a relation expressing single steps in the execution. A single 
step relation between two command configurations 

(c, fJ) -1 (c', fJ') 

means the execution of one instruction in c from state fJ leads to the configuration in 
which it remains to execute c' in state fJ'. For example, 

(X:= 5jY:= 1,fJ) -1 (Y:= 1,fJ[5/Xj). 

Of course, as this example makes clear, if we consider continuing the execution, we need 
some way to represent the fact that the command is empty. A configuration with no 
command left to execute can be represented by a state standing alone. So continuing the 
execution above we obtain 

(X:= 5;Y:= 1,fJ) -1 (Y:= 1,fJ[5/Xj) -1 fJ[5/X][1/Y]. 

We leave the detailed presentation of rules for the definition of this one-step execution 
relation to an exercise. But note there is some choice in what is regarded as a single 
step. If 

(b, fJ) -1 (true, fJ) 

do we wish 
(if b then Co else C1,fJ) -1 (eo,fJ) 

or 
(if b then Co else C1, fJ) -1 (if true then Co else C1, fJ) 

to be a single step? For the language IMP these issues are not critical, but they become 
so in languages where commands can be executed in parallelj then different choices can 
effect the final states of execution sequences. 
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Exercise 2.10 Write down a full set of rules for --> 1 on command configurations, so 
-->1 stands for a single step in the execution of a command from a particular state, as 
discussed above. Use command configurations of the form (c, a; and a when there is no 
more command left to execute. Point out where you have made a choice in the rules 
between alternative understandings of what constitutes a single step in the execution. 
(Showing (c, a; -->i a' iff (c, a; --> a' is hard and requires the application of induction 
principles introduced in the next two chapters.) 0 

Exercise 2.11 In our language, the evaluation of expressions has no side effects-their 
evaluation does not change the state. If we were to model side-effects it would be natural 
to consider instead an evaluation relation of the form 

(a, a; --> (n, a'; 

where a' is the state that results from the evaluation of a in original state a. To introduce 
side effects into the evaluation of arithmetic expressions of IMP, extend them by adding 
a construct 

c result is a 

where c is a command and a is an arithmetic expression. To evaluate such an expression, 
the command c is first executed and then a evaluated in the changed state. Formalise 
this idea by first giving the full syntax of the language and then giving it an operational 
semantics. 0 

2.7 Further reading 

A convincing demonstration of the wide applicability of "structural operational seman
tics", of which this chapter has given a taste, was first set out by Gordon Plotkin in 
his lecture notes for a course at Aarhus University, Denmark, in 1981 [81J. A research 
group under the direction Gilles Kahn at INRIA in Sophia Antipolis, France are currently 
working on mechanical tools to support semantics in this style; they have focussed on 
evaluation or execution to a final value or state, so following their lead this particular kind 
of structural operational semantics is sometimes called "natural semantics" [26, 28, 29J. 
We shall take up the operational semantics of functional languages, and nondetermin
ism and parallelism in later chapters, where further references will be presented. More 
on abstract syntax can be found in Wikstrom's book [101], Mosses' chapter in [68J and 
Tennent's book [97J. 



3 Some principles of induction 

Proofs of properties of programs often rely on the application of a proof method, or really 
a family of proof methods, called induction. The most commonly used forms of induction 
are mathematical induction and structural induction. These are both special cases of a 
powerful proof method called well-founded induction. 

3.1 Mathematical induction 

The natural numbers are built-up by starting from 0 and repeatedly adjoining successors. 
The natural numbers consist of no more than those elements which are obtained in this 
way. There is a corresponding proof principle called mathematical induction. 

Let P(n) be a a property of the natural numbers n = 0,1,···. The principle of 
mathematical induction says that in order to show P(n) holds for all natural numbers n 
it is sufficient to show 

• P(O) is true 

• If P(m) is true then so is P(m + 1) for any natural number m. 

We can state it more succinctly, using some logical notation, as 

(P(O) & (Vm E w. P(m) =} P(m + 1)) =} Vn E w. P(n). 

The principle of mathematical induction is intuitively clear: If we know P(O) and we 
have a method of showing P(m + 1) from the assumption P(m) then from P(O) we 
know P(l), and applying the method again, P(2), and then P(3), and so on. The 
assertion P(m) is called the induction hypothesis, P(O) the basis of the induction and 
(Vm E w. P(m) =} P(m + 1)) the induction step. 

Mathematical induction shares a feature with all other methods of proof by induction, 
that the first most obvious choice of induction hypothesis may not work in a proof. 
Imagine it is required to prove that a property P holds of all the natural numbers. 
Certainly it is sensible to try to prove this with P(m) as induction hypothesis. But quite 
often proving the induction step Vm E w. (P(m) =} P(m+ 1)) is impossible. The rub can 
come in proving P(m + 1) from the assumption P(m) because the assumption P(m) is 
not strong enough. The way to tackle this is to strengthen the induction hypothesis to a 
property pl(m) which implies P(m). There is an art in finding pl(m) however, because 
in proving the induction step, although we have a stronger assumption pi (m), it is at 
the cost of having more to prove in pl(m + 1) which may be unnecessarily difficult, or 
impossible. 

In showing a property Q(m) holds inductively of all numbers m, it might be that the 
property's truth at m + 1 depends not just on its truth at the predecessor m but on 
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its truth at other numbers preceding m as well. It is sensible to strengthen Q(m) to an 
induction hypothesis P(m) standing for Vk < m. Q(k). Taking P(m) to be this property 
in the statement of ordinary mathematical induction we obtain 

Vk < O. Q(k) 

for the basis, and 

Vm E w.((Vk < m. Q(k)) '* (Vk < m + 1. Q(k))) 

for the induction step. However, the basis is vacuously true-there are no natural num
bers strictly below 0, and the step is equivalent to 

Vm E w.(Vk < m. Q(k)) '* Q(m). 

We have obtained course-oj-values induction as a special form of mathematical induction: 

(Vm E w.(Vk < m. Q(k)) '* Q(m)) '* Vn E w. Q(n). 

Exercise 3.1 Prove by mathematical induction that the following property P holds for 
all natural numbers: 

P(n) {==:} defE~=1(2i - 1) = n2 . 

(The notation E~=kSi abbreviates Sk + Sk+l + ... + Sl when k, I are integers with k < I.) 
o 

Exercise 3.2 A string is a sequence of symbols. A string ala2· .. an with n positions 
occupied by symbols is said to have length n. A string can be empty in which case it is 
said to have length O. Two strings sand t can be concatenated to form the string st. 
Use mathematical induction to show there is no string u which satisfies au = ub for two 
distinct symbols a and b. 0 

3.2 Structural induction 

We would like a technique to prove "obvious" facts like 

(a, a) --> m & (a, a) --> m' '* m = m' 

for all arithmetic expressions a, states a and numbers m, m'. It says the evaluation of 
arithmetic expressions in IMP is deterministic. The standard tool is the principle of 
structural induction. We state it for arithmetic expressions but of course it applies more 
generally to all the syntactic sets of our language IMP. 

Let P(a) be a property of arithmetic expressions a. To show P(a) holds for all arith
metic expressions a it is sufficient to show: 
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• For all numerals m it is the case that P( m) holds. 

• For all locations X it is the case that P(X) holds. 

• For all arithmetic expressions ao and aI, if P(ao) and P(al) hold then so does 
P(ao + al). 

• For all arithmetic expressions ao and aI, if P( ao) and P( al) hold then so does 
P(ao - al). 

• For all arithmetic expressions ao and aI, if P(ao) and P(ad hold then so does 
P(ao x al). 

The assertion P(a) is called the induction hypothesis. The principle says that in order to 
show the induction hypothesis is true of all arithmetic expressions it suffices to show that 
it is true of atomic expressions and is preserved by all the methods of forming arithmetic 
expressions. Again this principle is intuitively obvious as arithmetic expressions are 
precisely those built-up according to the cases above. It can be stated more compactly 
using logical notation: 

(Vm E N. P(m)) & (VX E Loc.P(X)) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao + ad) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao - ad) & 

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao x ad) 

==> 

Va E Aexp. P(a). 

In fact, as is clear, the conditions above not only imply Va E Aexp. P(a) but also are 
equivalent to it. 

Sometimes a degenerate form of structural induction is sufficient. An argument by 
cases on the structure of expressions will do when a property is true of all expressions 
simply by virtue of the different forms expressions can take, without having to use the 
fact that the property holds for sub expressions. An argument by cases on arithmetic 
expressions uses the fact that if 

(Vm E N. P(m))& 

(VX E Loc.P(X)) & 

(Vao, al E Aexp. P(ao + al)) & 

(Vao, al E Aexp. P(ao - ad) & 

(Vao, al E Aexp. P(ao x ad) 
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then Va E Aexp. P(a). 
As an example of how to do proofs by structural induction we prove that the evaluation 

of arithmetic expression is deterministic. 

Proposition 3.3 For all arithmetic expressions a, states 0' and numbers m, m' 

(a,a) -> m & (a,a) -> m' =} m = m'. 

Proof: We proceed by structural induction on arithmetic expressions a using the induc
tion hypothesis P(a) where 

P(a) iffVa,m,m'. ((a,a) -> m & (a,a) -> m' =} m = m'). 

For brevity we shall write (a,O') -> m, m' for (a, a) -> m and (a, a) -> m'. Using 
structural induction the proof splits into cases according to the structure of a: 

a == n: If (a, 0') -> m, m' then there is only one rule for the evaluation of numbers so 
m=m'=n. 
a == ao + al: If (a, a) -> m, m' then considering the form of the single rule for the 
evaluation of sums there must be mo, ml so 

(ao, a) -> mo and (aI, a) -> ml with m = mo + ml 

as well as m~, m~ so 

(ao, a) -> m~ and (aI, a) -> m~ with m' = m~ + m~ 

By the induction hypothesis applied to ao and al we obtain mo = m~ and ml = m~. 
Thus m = mo + ml = m~ + m~ = m'. 

The remaining cases follow in a similar way. We can conclude, by the principle of 
structural induction, that P(a) holds for all a E Aexp. 0 

One can prove the evaluation of expressions always terminates by structural induction, 
and corresponding facts about boolean expressions. 

Exercise 3.4 Prove by structural induction that the evaluation of arithmetic expressions 
always terminates, i. e. , for all arithmetic expression a and states a there is some m such 
that (a, a) -> m. 0 

Exercise 3.5 Using these facts about arithmetic expressions, by structural induction, 
prove the evaluation of boolean expressions is firstly deterministic, and secondly total. 

o 

Exercise 3.6 What goes wrong when you try to prove the execution of commands is 
deterministic by using structural induction on commands? (Later, in Section 3.4, we 
shall give a proof using "structural induction" on derivations.) 0 
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3.3 Well-founded induction 

Mathematical and structural induction are special cases of a general and powerful proof 
principle called well-founded induction. In essence structural induction works because 
breaking down an expression into sub expressions can not go on forever, eventually it must 
lead to atomic expressions which can not be broken down any further. 1£ a property fails 
to hold of any expression then it must fail on some minimal expression which when it is 
broken down yields subexpressions, all of which satisfy the property. This observation 
justifies the principle of structural induction: to show a property holds of all expressions 
it is sufficient to show that a property holds of an arbitrary expression if it holds of all 
its subexpressions. Similarly with the natural numbers, if a property fails to hold of all 
natural numbers then there has to be a smallest natural number at which it fails. The 
essential feature shared by both the subexpression relation and the predecessor relation 
on natural numbers is that do not give rise to infinite descending chains. This is the 
feature required of a relation if it is to support well-founded induction. 

Definition: A well-founded relation is a binary relation --< on a set A such that there 
are no infinite descending chains· .. --< ai --< ... --< al --< ao. When a --< b we say a is a 
predecessor of b. 

Note a well-founded relation is necessarily irreftexive i.e. , for no a do we have a --< a, 
as otherwise there would be the infinite decending chain· .. --< a --< ... --< a --< a. We shall 
generally write :::5 for the reflexive closure of the relation --<, i. e. 

a :::5 b ~ a = b or a --< b. 

Sometimes one sees an alternative definition of well-founded relation, in terms of min
imal elements. 

Proposition 3.7 Let --< be a binary relation on a set A. The relation --< is well-founded 
iff any nonempty subset Q of A has a minimal element, i. e. an element m such that 

m E Q & Vb --< m. b .;. Q. 

Proof: 
"if": Suppose every nonempty subset of A has a minimal element. If··· --< a i --< 
. .. --< al --< ao were an infinite descending chain then the set Q = {a iii E w} would 
be nonempty without a minimal element, a contradiction. Hence --< is well-founded. 
"only if": To see this, suppose Q is a nonempty subset of A. Construct a chain of 
elements as follows. Take ao to be any element of Q. Inductively, assume a chain of 
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elements an -< ... -< ao has been constructed inside Q. Either there is some b -< an such 
that bE Q or there is not. If not stop the construction. Otherwise take an+l = b. As -< 
is well-founded the chain· .. -< ai -< ... -< al -< ao cannot be infinite. Hence it is finite, 
of the form an -< ... -< ao with Vb -< an. b ~ Q. Take the required minimal element m to 
be an. 0 

Exercise 3.8 Let -< be a well-founded relation on a set B. Prove 

1. its transitive closure -<+ is also well-founded, 
2. its reflexive, transitive closure -< * is a partial order. 

o 

The principle of well-founded induction. 
Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. Pea) 

iff 
Va E A. ([Vb -< a. PCb)] =? Pea)). 

The principle says that to prove a property holds of all elements of a well-founded set it 
suffices to show that if the property holds of all predecessors of an arbitrary element a 

then the property holds of a. 
We now prove the principle. The proof rests on the observation that any nonempty 

subset Q of a set A with a well-founded relation -< has a minimal element. Clearly if 
Pea) holds for all elements of A then Va E A. ([Vb -< a. PCb)] =? Pea)). To show the 
converse, we assume Va E A. ([Vb -< a. PCb)] =? Pea)) and produce a contradiction by 
supposing ,pea) for some a E A. Then, as we have observed, there must be a minimal 
element m of the set {a E A I ,Pea)}. But then ,P(m) and yet Vb -< m. PCb), which 
contradicts the assumption. 

In mathematics this principle is sometimes called Noetherian induction after the al
gebraist Emmy Noether. Unfortunately, in some computer science texts (e.g. [59]) it is 
misleadingly called "structural induction" . 

Example: If we take the relation -< to be the successor relation 

n-<miffm=n+l 

on the non-negative integers the principle of well-founded induction specialises to math
ematical induction. 0 

Example: If we take -< to be the "strictly less than" relation < on the non-negative 
integers, the principle specialises to course-of-values induction. 0 
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Example: If we take -< to be the relation between expressions such that a -< b holds iff 
a is an immediate subexpression of b we obtain the principle of structural induction as a 
special case of well-founded induction. 0 

Proposition 3.7 provides an alternative to proofs by well-founded induction. Suppose 
A is a well-founded set. Instead of using well-founded induction to show every element 
of A satisfies a property P, we can consider the subset of A ~or which the property P 
fails, i.e. the subset F of counterexamples. By Proposition 3.7, to show F is 0 it is 
sufficient to show that F cannot have a minimal element. This is done by obtaining a 
contradiction from the assumption that there is a minimal element in F. (See the proof 
of Proposition 3.12 for an example of this approach.) Whether to use this approach or 
the principle of well-founded induction is largely a matter of taste, though sometimes, 
depending on the problem, one approach can be more direct than the other. 

Exercise 3.9 For suitable well-founded relation on strings, use the "no counterexample" 
approach described above to show there is no string u which satisfies au = ub for two 
distinct symbols a and b. Compare your proof with another by well-founded induction 
(and with the proof by mathematical induction asked for in Section 3.1). 0 

Proofs can often depend on a judicious choice of well-founded relation. In Chapter 10 
we shall give some useful ways of constructing well-founded relations. 

As an example of how the operational semantics supports proofs we show that Euclid's 
algorithm for the gcd (greatest common divisor) of two non-negative numbers terminates. 
Though such proofs are often less clumsy when based on a denotational semantics. (Later, 
Exercise 6.16 will show its correctness.) Euclid's algorithm for the greatest common 
divisor of two positive integers can be written in IMP as: 

Euclid:::::: while -,(M = N) do 

ifM~N 

thenN:=N-M 

else M :=M-N 

Theorem 3.10 For all states a 

a(M) ;:::: 1 & a(N) ;:::: 1 '* 3a'. (Euclid, a) -> a'. 

Proof: We wish to show the property 

P(a) <===} 3a'.(Euclid,a) -> a'. 
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holds for all states CT in S = {u E I; I CT(M) ~ 1 & CT(N) ~ I}. 
We do this by well-founded induction on the relation -< on S where 

CT' -< CT iff (CT'(M) ~ CT(M) & CT'(N) ~ CJ(N)) & 

(CT'(M) i= CT(M) or CT'(N) i= CT(N)) 

for states CT', CT in S. Clearly -< is well-founded as the values in M and N cannot be 
decreased indefinitely and remain positive. 

Let CT E S. Suppose \:ICT' -< CT. P(CT'). Abbreviate CT(M) = m and CT(N) = n. 
If m = n then (-,(M = N), CT) ~ false. Using its derivation we construct the derivation 

(-,(M = N), CT) ~ false 

(Euclid, CT) ~ CT 

using the rule for while-loops which applies when the boolean condition evaluates to false. 
In the case where m = n, (Euclid, CT) ~ CT. 

Otherwise m i= n. In this case (-,(M = N), CT) ~ true. From the rules for the 
execution of commands we derive 

where 

(if M ~ N then N := N - Meise M := M - N, CT) ~ CT" 

CT" = {CT[n - miN) 
CT[m-nIM) 

ifm~ n 
ifn<m. 

In either case CT" -< CT. Hence P( CT") so (Euclid, CT") ~ CT' for some CT'. Thus applying the 
other rule for while-loops we obtain 

(-,(M = N), CT) ~ true 

(if M ~ N then N := N - Meise M := M - N, CT)~CT" (Euclid, CTIf)~CT' 

(Euclid, CT) ~ CT' 

a derivation of (Euclid, CT) ~ CT'. Therefore P(CT). 
By well-founded induction we conclude VCT E S. P(CT), as required. o 

Well-founded induction is the most important principle in proving the termination 
of programs. Uncertainties about termination arise because of loops or recursions in a 
program. If it can be shown that execution of a loop or recursion in a program decreases 
the value in a well-founded set then it must eventually terminate. 
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3.4 Induction on derivations 

Structural induction alone is often inadequate to prove properties of operational seman
tics. Often it is useful to do induction on the structure of derivations. Putting this on a 
firm basis involves formalising some of the ideas met in the last chapter. 

Possible derivations are determined by means of rules. Instances of rules have the form 

--- or 
x x 

where the former is an axiom with an empty set of premises and a conclusion x, while the 
latter has {Xl, ... ,Xn } as its set of premises and x as its conclusion. The rules specify 
how to construct derivations, and through these define a set. The set defined by the 
rules consists precisely of those elements for which there is a derivation. A derivation of 
an element x takes the form of a tree which is either an instance of an axiom 

x 

or of the form 

x 

which includes derivations of x I, ... ,Xn , the premises of a rule instance with conclusion 

X. In such a derivation we think of ~, ... , ~ as sub derivations of the larger derivation 
Xl Xn 

of x. 
Rule instances are got from rules by substituting actual terms or values for metavari

abIes in them. All the rules we are interested in are finitary in that their premises are 
finite. Consequently, all rule instances have a finite, possibly empty set of premises and a 
conclusion. We start a formalisation of derivations from the idea of a set of rule instances. 

A set of rule instances R consists of elements which are pairs (X/y) where X is a finite 
set and y is an element. Such a pair (X/y) is called a rule instance with premises X 
and conclusion y. 

We are more used to seeing rule instances (X/y) as 

·f X rio d Xl, ... ,Xn ·f X { } 
--- 1 = 'I), an as 1 = Xl,···, Xn . 

y y 

Assume a set of rule instances R. An R-derivation of y is either a rule instance (0/y) or 
a pair ({d1 ,···, dn}/y) where ({Xl)···) xn}/y) is a rule instance and d l is an R-derivation 
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of Xl, ... , dn is an R-derivation of X n . We write d If-R Y to mean d is an R-derivation of 
y. Thus 

(0/y) If- R Y if (0/y) E R, and 

({d l ,···, dn}/y) If-R y if ({Xl,···, Xn}/Y) E R & d l If-R Xl & & dn If-R X n · 

We say y is derived from R if there is an R-derivation of y, i.e. d If- R Y for some 
derivation d. We write If- R Y to mean y is derived from R. When the rules are understood 
we shall write just d If- y and If- y. 

In operational semantics the premises and conclusions are tuples. There, 

If- (c, a) -> a', 

meaning (c, a) -> a' is derivable from the operational semantics of commands, is cus
tomarily written as just (c, a) -> a'. It is understood that (c, a) -> a' includes, as part 
of its meaning, that it is derivable. We shall only write If- (c, a) -> a' when we wish to 
emphasise that there is a derivation. 

Let d, d' be derivations. Say d' is an immediate subderivation of d, written d' -<1 d, iff 
d has the form (D/y) with d' E D. Write -< for the transitive closure of -<1, i.e. -<=-<t. 
We say d' is a proper sub derivation of d iff d' -< d. 

Because derivations are finite, both relations of being an immediate subderivation -< I 
and that of being a proper sub derivation are well-founded. This fact can be used to show 
the execution of commands is deterministic. 

Theorem 3.11 Let c be a command and aD a state. If (c, aD) -> al and (c, aD) -> a, 
then a = a1, for all states a, a1. 

Proof: The proof proceeds by well-founded induction on the proper subderivation rela
tion -< between derivations for the execution of commands. The property we shall show 
holds of all such derivations d is the following: 

P(d) {::::::} '<Ie E Com,aO,a,a1, E~. d If- (c,ao) -> a & (c,ao) -> a1 ~ a = al· 

By the principle of well-founded induction, it suffices to show '<Id' -< d. P(d') implies 
P(d). 

Let d be a derivation from the operational semantics of commands. Assume 
'<Id' -< d. P(d'). Suppose 

d If- (c, aD) -> a and If- (c, aD) -> a1. 

Then d1 If- (c, aD) -> al for some d1 · 
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Now we show by cases on the structure of c that a = al. 

C == skip: In this case 
d = d1 = -----

(skip, aD) --> aD 

c == X := a: Both derivations have a similar form: 

(a, aD) --> m 
d=--------

(X := a, aD) --> aD [m/ Xl 

(a, aD) --> ml 
d1 = ----------

(X :=a, aD) --> ao[mI/ Xl 
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where a = ao[m/Xl and al = ao[mI/Xl. As the evaluation of arithmetic expressions is 
deterministic m = ml, so a = al· 

(co, ao) --> a' (Cl' a') --> a 
d = ----------

(CO; Cl, aD) --> a 

(co,ao) --> a~ (cl,aD --> al 
d1 = ------------

(co; Cl, ao) --> al 

Let dO be the sub derivation 

and d l the sub derivation 

(Cl' a') --> a 

in d. Then dO -< d and dl -< d, so P(dO) and P(d1 ). It follows that a' = a~, and a = al 
(why?). 

c == if b then Co else Cl: The rule for conditionals which applies in this case is deter
mined by how the boolean b evaluates. By the exercises of Section 3.2, its evaluation is 
deterministic so either (b, ao) --> true or (b, ao) --> false, but not both. 

When (b, ao) --> true we have: 

d = (b, ao) --> true (co,ao) --> a 

(if b then Co else Cl, ao) --> a 

(b, ao) --> true (eo, ao) --> al 
d1 = -----------

(if b then Co else Cl, ao) --> al 
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Let d' be the subderivation of (co, aD) ----+ a in d. Then d' -< d. Hence P(d'). Thus 0'= 0'1. 

When (b, aD) ----+ false the argument is similar. 

c == while b do c: The rule for while-loops which applies is again determined by how b 
evaluates. Either (b, aD) ----+ true or (b, a) --> false, but not both. 

When (b, aD) --> false we have: 

(b, aD) --> false 
d = --------

(while b do c, aD) --> aD 

so certainly a = aD = 0'1. 

When (b, aD) --> true we have: 

(b,ao) --> false 
d1 = ---------

(while b do c, aD) --> aD 

(b, aD) ----+ true (c, aD) ----+ a' (while b do c, a') --> a 
d= ---------------------

(while b do c, aD) --> a 

(b, aD) --> true (c, aD) --> a~ (while b do c, a~) --> 0'1 
d1 = ------------------------

(while b do c, aD) --> 0'1 

Let d' be the sub derivation of (c, aD) --> a' and d" the subderivation of (while b do c, a') --> 

a in d. Then d' -< d and d" -< d so P(d') and P(d"). It follows that a' = ai, and subse
quently that 0'=0'1. 

In all cases of c we have shown d If- (c, aD) --> a and (c, aD) --> 0'1 implies a = 0'1. 

By the principle of well-founded induction we conclude that P(d) holds for all deriva
tions d for the execution of commands. This is equivalent to 

'ric E Com, aD, a, aI, E ~. (c, aD) ----+ a & (c, aD) --> 0'1 =? a = aI, 

which proves the theorem. o 

As was remarked, Proposition 3.7 provides an alternative to proofs by well-founded 
induction. Induction on derivations is a special kind of well-founded induction used to 
prove a property holds of all derivations. Instead, we can attempt to produce a contra
diction from the assumption that there is a minimal derivation for which the property is 
false. The approach is illustrated below: 
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Proposition 3.12 For all states a, ai, 

(while true do skip, a) f> a ' . 

Proof: Abbreviate w == while true do skip. Suppose (w, a) ----- a l for some states a, a' . 
Then there is a minimal derivation d such that 3a, a l E L:. d II- (w, a) ----- a' . Only one 
rule can be the final rule of d, making d of the form: 

(true, a) ----- true (c, a) ----- a" (while true do c, a") ----- a l 

d=~----------------------------------~----
(while true do c, a) ----- a' 

But this contains a proper subderivation d' II- (w, a) ----- ai, contradicting the minimality 

of d. 0 

3.5 Definitions by induction 

Techniques like structural induction are often used to define operations on the set defined. 
Integers and arithmetic expressions share a common property, that of being built-up in 
a unique way. An integer is either zero or the successor of a unique integer, while an 
arithmetic expression is either atomic or a sum, or product etc. of a unique pair of 
expressions. It is by virtue of their being built up in a unique way that we can can make 
definitions by induction on integers and expressions. For example to define the length 
of an expression it is natural to define it in terms of the lengths of its components. For 
arithmetic expressions we can define 

lengthen) = length(X) = 1, 

length(ao + at) = 1 + length(ao) + length(ar), 

For future reference we define locL(c), the set of those locations which appear on the left 
of an assignment in a command. For a command c, the function loc£Cc) is defined by 
structural induction by taking 

locL(skip) = 0, 
loc£CCoi Cl) = locL(co) U locdcl), 

loc£Cwhile b do c) = loc£Cc). 

loc£CX := a) = {X}, 

locdif b then Co else cr) = locdco) U locdcr), 

In a similar way one defines operations on the natural numbers by mathematical induc
tion and operations defined on sets given by rules. In fact the proof of Proposition 3.7, 
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that every nonempty subset of a well-founded set has a minimal element, contains an 
implicit use of definition by induction on the natural numbers to construct a chain with 
a minimal element in the nonempty set. 

Both definition by structural induction and definition by mathematical induction are 
special cases of definition by well-founded induction, also called well-founded recursion. 
To understand this name, notice that both definition by induction and structural in
duction allow a form of recursive definition. For example, the length of an arithmetic 
expression could have been defined in this manner: 

length(a) ~ { ~ength(ao) + length(a,) 

if a == n, a number 
if a == (ao + ad, 

How the length function acts on a particular argument, like (ao +al) is specified in terms 
of how the length function acts on other arguments, like ao and al. In this sense the 
definition of the length function is defined recursively in terms of itself. However this 
recursion is done in such a way that the value on a particular argument is only specified 
in terms of strictly smaller arguments. In a similar way we are entitled to define functions 
on an arbitrary well-founded set. The general principle is more difficult to understand, 
resting as it does on some relatively sophisticated constructions on sets, and for this 
reason its full treatment is postponed to Section lOA. (Although the material won't be 
needed until then, the curious or impatient reader might care to glance ahead. Despite 
its late appearance that section does not depend on any additional concepts.) 

Exercise 3.13 Give definitions by structural induction of loc( a), loc( b) and loc R (c), the 
sets of locations which appear in arithmetic expressions a, boolean expressions b and the 
right-hand sides of assignments in commands c. D 

3.6 Further reading 

The techniques and ideas discussed in this chapter are well-known, basic techniques 
within mathematical logic. As operational semantics follows the lines of natural deduc
tion, it is not surprising that it shares basic techniques with proof theory, as presented 
in [84] for example-derivations are really a simple kind of proof. For a fairly advanced, 
though accessible, account of proof theory with a computer science slant see [51, 40], 
which contains much more on notations for proofs (and so derivations). Further expla
nation and uses of well-founded induction can be found in [59] and [21], where it is called 
"structural induction", in [58] and [73]), and here, especially in Chapter 10. 
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This chapter is an introduction to the theory of inductively defined sets, of which pre
sentations of syntax and operational semantics are examples. Sets inductively defined 
by rules are shown to be the least sets closed under the rules. As such, a principle of 
induction, called rule induction, accompanies the constructions. It specialises to proof 
rules for reasoning about the operational semantics of IMP. 

4.1 Rule induction 

We defined the syntactic set of arithmetic expressions Aexp as the set obtained from 
the formation rules for arithmetic expressions. We have seen there is a corresponding 
induction principle, that of structural induction on arithmetic expressions. We have 
defined the operational semantics of while-programs by defining evaluation and execution 
relations as relations given by rules which relate evaluation or execution of terms to the 
evaluation or execution of their components. For example, the evaluation relation on 
arithmetic expressions was defined by the rules of Section 2.2 as a ternary relation which 
is the set consisting of triples (a, u, n) of Aexp x ~ x N such that (a, u) ---- n. There is 
a corresponding induction principle which we can see as a special case of a principle we 
call rule induction. 

We are interested in defining a set by rules. Viewed abstractly, instances of rules have 
the form (0 j x) or ({Xl, ... , xn } / x). Given a set of rule instances R, we write I R for the 
set defined by R consisting of precisely of those elements x for which there is a derivation. 
Put another way 

The principle of rule induction is useful to show a property is true of all the elements 
in a set defined by some rules. It is based on the idea that if a property is preserved in 
moving from the premises to the conclusion of all rule instances in a derivation then the 
conclusion of the derivation has the property, so the property is true of all elements in 
the set defined by the rules. 

The general principle of rule induction 
Let IR be defined by rule instances R. Let P be a property. Then Vx E I R . P(x) iff 

for all rule instances (Xjy) in R for which X ~ I R 

(Vx E X. P(x)) => P(y). 

Notice for rule instances of the form (X/y), with X = 0, the last condition is equivalent 
to P(y). Certainly then Vx E X. x E IR & P(x) is vacuously true because any x in 0 
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satisfies P-there are none. The statement of rule induction amounts to the following. 
For rule instances R, we have Vy E I R. P(y) iff for all instances of axioms 

x 

P(X) is true, and for all rule instances 

Xl,··· ,Xn 

X 

if Xk E IR & P(Xk) is true for all the premises, when k ranges from 1 to n, then P(x) is 
true of the conclusion. 

The principle of rule induction is fairly intuitive. It corresponds to a superficially 
different, but equivalent method more commonly employed in mathematics. (This ob
servation will also lead to a proof of the validity of rule induction.) We say a set Q is 
closed under rule instances R, or simply R-closed, iff for all rule instances (X/y) 

x ~ Q =} Y E Q. 

In other words, a set is closed under the rule instances if whenever the premises of any 
rule instance lie in the set so does its conclusion. In particular, an R-closed set must 
contain all the instances of axioms. The set IRis the least set closed under R in this 
sense: 

Proposition 4.1 With respect to rule instances R 
(i) IR is R-closed, and 
(ii) if Q is anR-closed set then IR ~ Q. 

Proof: 
(i) It is easy to see IR is closed under R. Suppose (X/y) is an instance of a rule in R 
and that X ~ I R . Then from the definition of IR there are derivations of each element 
of X. If X is nonempty these derivations can be combined with the rule instance (X/y) 
to provide a derivation of y, and, otherwise, (0/y) provides a derivation immediately. In 
either case we obtain a derivation of y which must therefore be in I R too. Hence IR is 
closed under R. 
(ii) Suppose that Q is R-closed. We want to show IR ~ Q. Any element of IR is the 
conclusion of some derivation. But any derivation is built out of rule instances (X/y). 
If the premises X are in Q then so is the conclusion y (in particular, the conclusion of 
any axiom will be in Q). Hence we can work our way down any derivation, starting at 
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axioms, to show its conclusion is in Q. More formally, we can do an induction on the 
proper sub derivation relation -< to show 

'r/y E h. d If-R Y => y E Q 

for all R-derivations d. Therefore J R s;: Q. 0 

Exercise 4.2 Do the induction on derivations mentioned in the proof above. 0 

Suppose we wish to show a property P is true of all elements of J R, the set defined by 
rules R. The conditions (i) and (ii) in the proposition above furnish a method. Defining 
the set 

Q = {x E JR 1 P(x)}, 

the property P is true of all elements of J R iff J R s;: Q. By condition (ii), to show J R s;: Q 
it suffices to show that Q is R-closed. This will follow if for all rule instances (X/y) 

(Vx E X. x E JR & P(x)) => P(y) 

But this is precisely what is required by rule induction to prove the property P holds for 
all elements of JR. The truth of this statement is not just sufficient but also necessary 
to show the property P of all elements of JR. Suppose P(x) for all x E h. Let (X/y) 
be a rule instance such that 

'r/x E X. x E JR & P(x). 

By (i), saying JR is R-closed, we get y E JR , and so that P(y). And in this way we 
have derived the principle of rule induction from (i) and (ii), saying that J R is the least 
R-closed set. 

Exercise 4.3 For rule instances R, show 

n {Q 1 Q is R-closed} 

is R-closed. What is this set? o 

Exercise 4.4 Let the rules consist of (0/0) and ({n}/(n + 1)) where n is a natural 
number. What is the set defined by the rules and what is rule induction in this case? 0 

In presenting rules we have followed the same style as that used in giving operational 
semantics. When it comes to defining syntactic sets by rules, BNF is the traditional way 
though it can be done differently. For instance, what is traditionally written as 

a ::= ... 1 ao + al I···, 
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saying that if ao and al are well-formed expressions arithmetic expressions then so is 
ao + al, could instead be written as 

ao : Aexp al: Aexp 

ao + al : Aexp 

This way of presenting syntax is becoming more usual. 

Exercise 4.5 What is rule induction in the case where the rules are the formation rules 
for Aexp? What about when the rules are those for boolean expressions? (Careful! See 
the next section.) 0 

4.2 Special rule induction 

Thinking of the syntactic sets of boolean expressions and commands it is clear that 
sometimes a syntactic set is given by rules which involve elements from another syntactic 
set. For example, the formation rules for commands say how commands can be formed 
from arithmetic and boolean expressions, as well as other commands. The formation 
rules 

C ::= ···1 X := a I·· ·1 if b then Co else Cl I"" 
can, for the sake of uniformity, be written as 

X : Loc a: Aexp 

X:= a: Com 
and 

b : Bexp Co: Com Cl: Com 

if b then Co else Cl : Com 

Rule induction works by showing properties are preserved by the rules. This means that 
if we are to use rule induction to prove a property of all commands we must make sure 
that the property covers all arithmetic and boolean expressions as well. As it stands, 
the principle of rule induction does not instantiate to structural induction on commands, 
but to a considerably more awkward proof principle, simultaneously combining structural 
induction on commands with that on arithmetic and boolean expressions. A modified 
principle of rule induction is required for establishing properties of subsets of the set 
defined by rules. 

The special principle of rule induction 
Let JR be defined by rule instances R. Let A ~ JR. Let Q be a property. Then 

Va E A. Q(a) iff for all rule instances (X/y) in R, with X ~ J Rand YEA, 

("Ix E X n A. Q(x)) =} Q(y). 
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The special principle of rule induction actually follows from the general principle. Let 
R be a set of rule instances. Let A be a subset of I R, the set defined by R. Suppose 
Q(x) is a property we are interested in showing is true of all elements of A. Define a 
corresponding property P(x) by 

P(x) ~ (x E A,* Q(x)). 

Showing Q(a) for all a E A is equivalent to showing that P(x) is true for all x E I R. By 
the general principle of rule induction the latter is equivalent to 

V(Xjy) E R. X ~ IR & ("Ix E x.(x E A '* Q(x))) '* (y E A,* Q(y)). 

But this is logically equivalent to 

V(Xjy) E R. (X ~ IR & yEA & (Vx E x.(x E A,* Q(x)))) '* Q(y). 

This is equivalent to the condition required by the special principle of rule induction. 

Exercise 4.6 Explain how structural induction for commands and booleans follows from 
the special principle of rule induction. 0 

Because the special principle follows from the general, any proof using the special 
principle can be replaced by one using the principle of general rule induction. But in 
practice use of the special principle can drastically cut down the number of rules to 
consider, a welcome feature when it comes to considering rule induction for operational 
semantics. 

4.3 Proof rules for operational semantics 

Not surprisingly, rule induction can be a useful tool for proving properties of operational 
semantics presented by rules, though then it generally takes a superficially different 
form because the sets defined by the rules are sets of tuples. This section presents the 
special cases of rule induction which we will use later in reasoning about the operational 
behaviour of IMP programs. 

4.3.1 Rule induction for arithmetic expressions 

The principle of rule induction for the evaluation of arithmetic expressions is got from 
the rules for their operational semantics. It is an example of rule induction; a property 
pea, a, n) is true of all evaluations (a, a) -> n iff it is preserved by the rules for building 
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up the evaluation relation. 

Va E Aexp, a E I:, n E N. (a, 0-) -; n =} pea, a, n) 

iff 

[\In E N, a E I:. pen, a-, n) 

& 

VX E Loc,a- E I:. P(X,a-,a-(X)) 

& 

Vao, al E Aexp, a- E I:, no, nl EN. 

(ao,a-) -+ no & P(ao,a-,no) & (al,a-) -+ nl & P(al,a,nl) 

=} P(ao + aI, a-, no + nl) 

& 

\iao,al E Aexp,a- E I:,no,nl EN. 

(ao,a-) -; no & P(ao,a,no) & (al,a-) -; nl & P(al,a,nd 

=} P(ao - aI, a-, no - nr) 

& 

\iao, al E Aexp, a- E I:, no, nl EN. 

(ao,a-) -+ no & P(ao,a,no) & (al,a-) -; nl & P(al,a-,nr) 

=} P(ao x al,a-,nO x nd]. 

Chapter 4 

Compare this specific principle with that for general rule induction. Notice how all 
possible rule instances are covered by considering one evaluation rule at a time. 

4.3.2 Rule induction for boolean expressions 

The rules for the evaluation of boolean expressions involve those for the evaluation of 
arithmetic expressions. Together the rules define a subset of 

(Aexp x L: x N) U (Bexp x I: x T). 

A principle useful for reasoning about the operational semantics of boolean expressions 
is got from the special principle of rule induction for properties P(b, a-, t) on the subset 
Bexp x L: x T. 
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Vb E Bexp, CT E 2::, t E T. (b, CT) ----+ t =} P(b, CT, t) 

iff 

[VCT E 2::. P(false, CT, false) & VCT E 2::. P(true, CT, true) 

& 

Vao, al E Aexp, CT E 2::, m, n E N. 

(ao, CT) ----+ m & (aI, CT) ----+ n & m = n =} P(ao = aI, CT, true) 

& 

VaO,al E Aexp,CT E 2::,m,n E N. 

(ao, CT) ----+ m & (aI, CT) ----+ n & m -=I- n =} P(ao = aI, CT, false) 

& 

Vao, al E Aexp, CT E 2::, m, n E N. 

(ao, CT) ----+ m & (aI, CT) ----+ n & m ::; n =} P( ao ::; al, CT, true) 

& 

Vao, al E Aexp, CT E 2::, m, n E N. 

(aO,CT) ----+ m & (al,CT) ----+ n & m 1:. n =} P(ao::; aI, CT, false) 

& 

Vb E Bexp,CT E 2::,t E T. 

(b,CT) ----+ t & P(b,CT,t) =} P(-.b,CT,-.t) 

& 

Vbo, bl E Bexp, CT E 2::, to, tl E T. 

(bo, CT) ----+ to & P(bo, CT, to) & (bl , CT) ----+ tl & P(bl , CT, td =} P(bo /I. bl , CT, to /I. tl) 

& 

Vbo, bl E Bexp, CT E 2::, to, tl E T. 

(bO,CT) ----+ to & P(bO,CT,tO) & (bl,CT) ----+ tl & P(bl,CT,td =} P(bo V bl,CT,to V tdJ. 

4.3.3 Rule induction for commands 

The principle of rule induction we use for reasoning about the operational semantics of 
commands is an instance of the special principle of rule induction. The rules for the 
execution of commands involve the evaluation of arithmetic and boolean expressions. 
The rules for the operational semantics of the different syntactic sets taken together 



48 Chapter 4 

define a subset of 

(Aexp x Ex N) U (Bexp x ExT) U (Com x E x E). 

We use the special principle for properties P(c, a, a') on the subset Com x E x E. 
(Try to write it down and compare your result with the following.) 

Vc E Com,a,a' E E. (c,a) -+ a':::::} P(c,a,a') 

iff 

[\fa E E. P(skip, a, a) 

& 

"IX E Loc, a E Aexp, a E E, mEN. (a, a) -+ m :::::} PCX := a, a, a[m/ Xl) 

& 

VCo, Cl E Com, a, a', a" E E. 

(Co, a) -+ a" & P(eo,a,a") & (cl,a") -+ a' & P(cl,a",a'):::::} P(cOjCl,a,a') 

& 

VCo, Cl E Com, b E Bexp, a, a' E E. 

(b, a) -+ true & (co, a) -+ a' & P(co, a, a') :::::} P(if b then Co else Cl, a, a') 

& 

VCO,Cl E Com,b E Bexp,a,a' E E. 

(b, a) -+ false & (Cl, a) -+ a' & P( Cll a, a') :::::} P(if b then Co else Cl, a, a') 

& 

Vc E Com,b E Bexp,a E~. 

(b, a) -+ false:::::} P(while b do c, a, a) 

& 

Vc E Com, b E Bexp, a, a', a" E E. 

(b, a) -+ true & (c, a) -+ a" & PCc, a, a") & 

(while b do c, a") -+ a' & P(while b do c, a", a') 

:::::} P(while b do c,a,a')]. 

As an example, we apply rule induction to show the intuitively obvious fact that if a 
location Y does not occur in the left hand side of an assignment in a command C then 
execution of c cannot affect its value. Recall the definition of the locations loc d c) of a 
command c given in Section 3.5. 
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Proposition 4.7 Let Y E Loc. For all commands c and states cr,cr', 

Y (j. lac£( c) & (c, cr) ---+ cr' =} cr(Y) = cr' (Y). 

Proof: Let P be the property given by: 

P(c,cr,cr') -¢:::::::::} (Y (j.loc£(c) =} cr(Y) = cr'(Y)). 

We use rule induction on commands to show that 

Vc E Com, cr, cr' E E. (c, cr) ---+ cr' =} P(c, cr, cr'). 

Clearly P(skip,a,cr) for any a E E. 
Let X E Loc, a E Aexp, cr E E, mEN. Assume (a, cr) ---+ m. If Y (j. lOCL(X := a) 

then Y t:. X, so cr(Y) = cr[m/ X](Y). Hence P(X := a, cr, a[m/ X]). 
Let co, ct E Com, cr, a' E E. Assume 

i.e., that 

(eo,a) ---+ cr" & P(eo,cr,cr") & (cI,a") ---+ cr' & P(CI,cr",cr'), 

(eo,cr) ---+ cr" & (Y (j.loc£(co) =} cr(Y) = cr"(Y)) & 

(CI' a") ---+ a' & (Y (j. 10CL(CI) =} a"(Y) = cr'(Y)). 

Suppose Y (j. loc£(eo; CI). Then, as loc£(eo; CI) = loc£(eo) U loc£(cd, we obtain Y (j. 
loc£(eo) and Y (j. loc£(cd. Thus, from the assumption, cr(Y) = cr"(Y) = cr'(Y). Hence 
P( co; el, cr, a'). 

We shall only consider one other case of rule instances. 
Let e E Com, b E Bexp, a, cr', cr" E E. Let w == while b do c. Assume 

i.e. , 

(b,cr) ---+ true & (e,cr) ---+ cr" & P(e,cr,cr") & 

(w, cr") ---+ cr' & pew, cr", cr') 

(b,cr) ---+ true & (c,cr) ---+ cr" & (Y (j.loc£(e) =} cr(Y) = cr"(Y)) & 

(w, cr") ---+ cr' & (Y (j. lac£( w) =} cr" (Y) = a' (Y)). 

Suppose Y (j. loc£(w). By the assumption cr"(Y) = cr'(Y). Also, as loc£(w) = loc£(c), 
we see Y (j. 10cL(e), so by the assumption cr(Y) = cr"(Y). Thus cr(Y) = cr'(Y). Hence 
pew, a, cr'). 

The other cases are very similar and left as an exercise. o 
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We shall see many more proofs by rule induction in subsequent chapters. In general 
they will be smooth and direct arguments. Here are some more difficult exercises on 
using rule induction. As the first two exercises indicate applications of rule induction 
can sometimes be tricky. 

Exercise 4.8 Let w == while true do skip. Prove by special rule induction that 

't/O",O"'. (w,O") -f> 0"'. 

(Hint: Apply the special principle of rule induction restricting to the set 

{(w,O",O"') 10",0"' E E} 

and take the property P( w, 0", 0"') to be constantly false. 
It is interesting to compare the proof for this exercise with that of Proposition 3.12 in 
Section 3.4-proofs by rule induction can sometimes be less intuitive than proofs in which 
the form of derivations is considered.) D 

Although rule induction can be used in place of induction on derivations it is no 
panacea; exclusive use of rule induction can sometimes make proofs longer and more 
confusing, as will probably become clear on trying the following exercise: 

Exercise 4.9 Take a simplified syntax of arithmetic expressions: 

a ::= n I X I ao + al· 

The evaluation rules of the simplified expressions are as before: 

(n,O") ---> n 

(X,O") ---> O"(X) 

(ao,O")--->no (al,O")--->nl 

(ao + aI, 0") ---> n 

where n is the number which is the sum of no and nl. 

By considering the unique form of derivations it is easy to see that (n,O") ---> m implies 
m == n. Can you see how this follows by special rule induction? Use rule induction on 
the operational semantics (and not induction on derivations) to show that the evaluation 
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of expressions is deterministic. 
(Hint: For the latter, take 

P(a, a, m) {::::::} dej'<lm' E N. (a, a) ---> m' * m = m' 
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as induction hypothesis, and be prepared for a further use of (special) rule induction.) 
An alternative proof, of Proposition 3.3 in Section 3.2, uses structural induction and 
considers the forms that derivations could take. How does the proof compare with that 
of Proposition 3.3? 0 

The next, fairly long, exercise proves the equivalence of two operational semantics. 

Exercise 4.10 (Long) One operational semantics is that of Chapter 2, based on the 
relation (c,a) ---> a'. The other is the one-step execution relation (c,a) --->1 (c',a') 
mentioned previously in Section 2.6, but where, for simplicity, evaluation of expressions 
is treated in exactly the same way as in Chapter 2. For instance, for the sequencing of 
two commands there are the rules: 

(eo, a) --->1 (C~, a') (eo, a) --->1 a' 

(CO;Cl,a) --->1 (c~;C1,a') (eo;Cl,o-) --->1 (Cl,o-') 

Start by proving the lemma 

for all commands Co, Cl and all states 0-,0-'. Prove this in two stages. Firstly prove 

by mathematical induction on n, the length of computation. Secondly prove 

by mathematical induction on n, this time the length of the execution of Co from state 
0-. Conclude that the lemma holds. Now proceed to the proof of the theorem: 

'<10-,0-'. [(C, 0-) --->i 0-' iff (c,o-) ---> 0-']. 

The "only if" direction of the proof can be done by structural induction on c, with an 
induction on the length of the computation in the case where c is a while-loop. The "if" 
direction of the proof can be done by rule induction (or by induction on derivations). 0 
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4.4 Operators and their least fixed points 

There is another way to view a set defined by rules. A set of rule instances R determines 
an operator R on sets, which given a set B results in a set 

R(B) = {y I 3X ~ B. (X/y) E R}. 

Use of the operator R gives another way of saying a set is R-closed. 

Proposition 4.11 A set B is closed under R iff R(B) ~ B. 

Proof: The fact follows directly from the definitions. o 

The operator R provides a way of building up the set I R. The operator R is monotonic 
in the sense that 

A ~ B :::} R(A) ~ R(B). 

If we repeatedly apply R to the empty set 0 we obtain the sequence of sets: 

Ao = RO(0) = 0, 

Al = RI(0) = R(0), 

A2 = R(R(0)) = R2(0), 

The set Al consists of all the conclusions of instances of axioms, and in general the 
set An+! is all things which immediately follow by rule instances with premises in An. 
Clearly 0 ~ R(0), i.e. Ao ~ AI' By the monotonicity of R we obtain R(Ao) ~ R(AI ), 
i.e. Al ~ A2 • Similarly we obtain A2 ~ A3 etc .. Thus the sequence forms a chain 

Taking A = UnEw An, we have: 

Proposition 4.12 
(i) A is R-closed. 
(ii) R(A) = A. 
(iii) A is the least R-closed set. 
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Proof: 
(i) Suppose (X/y) E R with X ~ A. Recall A = Un An is the union of an increasing 
chain of sets. As X is a finite set there is some n such that X ~ An. (The set X is 
either empty, whence X ~ Ao, or of the form {Xl, ... , xd. In the latter case, we have 
Xl E An1 ,···, Xk E Ank for some nl, ... , nk. Taking n bigger than all of nl, ... , nk we 
must have X ~ An as the sequence Ao, A!, ... , An,'" is increasing.) As X ~ An we 
obtain y E R(An) = An+l . Hence y E Un An = A. Thus A is closed under R. 
(ii) By Proposition 4.11 the set A is R-closed, so we already know that R(A) ~ A. We 
require the converse inclusion. Suppose yEA. Then YEAn for some n > O. Thus 
Y E R(An-I)' This means there is some (X/y) E R with X ~ An-I. But An- l ~ A so 
X ~ A with (X/y) E R, giving y E R(A). We have established the required converse 
inclusion, A ~ R(A). Hence R(A) = A. 
(iii) We need to show that if B is another R-closed set then A ~ B. Suppose B is closed 
under R. Then R(B) C B. We show by mathematical induction that for all natural 
numbers nEw 

An ~B. 

The basis of the induction Ao ~ B is obviously true as Ao = 0. To show the induction 
step, assume An ~ B. Then 

using the facts that R is monotonic and that B is R-closed. o 

Notice the essential part played in the proof of (i) by the fact that rule instances are 
finitary, i.e. in a rule instance (X/y), the set of premises X is finite. 

It follows from (i) and (iii) that A = I R, the set of elements for which there are R
derivations. Now (ii) says preciselr that IRis a fixed point of R. Moreover, (iii) implies 
that IR is the least fixed point of R, i.e. 

because if any other set B is a fixed point it is closed under R, so I R ~ B by Propo
sition 4.1. The set I R , defined by the rule instances R, is the least fixed point, fix( R), 
obtained by the construction 

fix(R) =def U Rn(0). 
nEw 

Least fixed points will play a central role in the next chapten 



54 Chapter 4 

Exercise 4.13 Given a set of rules R define a different operator R by 

RCA) = Au {y I :JX ~ A. (Xjy) E R}. 

Clearly R is monotonic and in addition satisfies the property 

A ~ RCA). 

An operator satisfying such a property is called increasing. Exhibit a monotonic operator 
which is not increasing. Show that given any set A there is a least fixed point of R which 
includes A, and that this property can fail for monotonic operations. 0 

Exercise 4.14 Let R be a set of rule instances. Show that R is continuous in the sense 
that 

nEw nEw 

for any increasing chain of sets Bo ~ ... ~ Bn ~ .... 
(The solution to this exercise is contained in the next chapter.) o 

4.5 Further reading 

This chapter has provided an elementary introduction to the mathematical theory of 
inductive definitions. A detailed, though much harder, account can be found in Peter 
Aczel's handbook chapter [4]--our treatment, with just finitary rules, avoids the use 
of ordinals. The term "rule induction" originates with the author's Cambridge lecture 
notes of 1984, and seems be catching on (the principle is well-known and, for instance, 
is called simply R-induction, for rules R, in [4]). This chapter has refrained from any 
recommendations about which style of argument to use in reasoning about operational 
semantics; whether to use rule induction or the often clumsier, but conceptually more 
straightforward, induction on derivations. In many cases it is a matter of taste. 



5 The denotational semantics of IMP 

This chapter provides a denotational semantics for IMP, and a proof of its equivalence 
with the previously given operational semantics. The chapter concludes with an intro
duction to the foundations of denotational semantics (complete partial orders, continuous 
functions and least fixed points) and the Knaster-Tarski Theorem. 

5.1 Motivation 

We have described the behaviour of programs in IMP in an operational manner by 
inductively defining transition relations to express evaluation and execution. There was 
some arbitrariness in the choice of rules, for example, in the size of transition steps we 
chose. Also note that in the description of the behaviour the syntax was mixed-up in the 
description. This style of semantics, in which the transitions are built out of the syntax, 
makes it hard to compare two programs written in different programming languages. 
Still, the style of semantics was fairly close to an implement ion of the language, the 
description can be turned into an interpreter for IMP written for example in Prolog, 
and it led to firm definitions of equivalence between arithmetic expressions, boolean 
expressions and commands. For example we defined 

Co rv Cl iff (Va, a'. (Co, a) -t a' -¢=* (Cl' a) -t a'). 

Perhaps it has already occurred to the reader that there is a more direct way to capture 
the semantics of IMP if we are only interested in commands to within the equivalence 
"'. Notice Co rv Cl iff 

{(a,a') I (Co, a) -t a'} = {(a, a') I (cl,a) -t a'}. 

In other words, Co rv Cl iff Co and Cl determine the same partial function on states. This 
suggests we should define the meaning, or semantics, of IMP at a more abstract level in 
which we take the denotation of a command to be a partial function on states. The style 
we adopt in giving this new description of the semantics of IMP is that from denota
tional semantics. Denotational semantics is much more widely applicable than to simple 
programming languages like IMP -it can handle virtually all programming languages, 
though the standard framework appears inadequate for parallelism and "fairness" (see 
Chapter 14 on parallelism). The approach was pioneered by Christopher Strachey, and 
Dana Scott who supplied the mathematical foundations. Our denotational semantics of 
IMP is really just an introductory example. We shall see more on the applications and 
foundations of denotational semantics in later chapters. 

An arithmetic expression a E Aexp will denote a function A[a] : E -t N. 
A boolean expression b E Bexp will denote a function B[bJ : E -t T, from the set of 

states to the set of truth values. 
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A command c will denote a partial function C[c] : E ~ E. 
The brackets [~ are traditional in denotational semantics. You see A is really a function 

from arithmetic expressions of the type Aexp -> (E -> N), and our first thought in 
ordinary mathematics, when we see an expression, is to evaluate it. The square brackets 
[a] put the arithmetic expression a in quotes so we don't evaluate a. We could have 
written e.g. A( "3 + 5")er = 8 instead of A[3 + 5]er = 8. The quotes tell that it is the 
piece of syntax "3+5" which is being mapped. The full truth is a little more subtle as 
we shall sometimes write denotations like A[ao+al~' where ao and al are metavariables 
which stand for arithmetic expressions. It is the syntactic object got by placing the sign 
"+" between the syntactic objects ao and al that is put in quotes. So the brackets [ ] 
do not represent true and complete quotation. We shall use the brackets [ ] round an 
argument of a semantic function to show that the argument is a piece of syntax. 

5.2 Denotational semantics 

We define the semantic functions 

A: Aexp -> (E -> N) 

B : Bexp -> (E -> T) 

C : Com -> (E ~ E) 

by structural induction. For example, for commands, for each command c we define the 
partial function C[c] assuming the previous definition of c' for sub commands c' of c. The 
command c is said to denote C[c], and C[c] is said to be a denotation of c. 

Denotations of Aexp: 

Firstly, we define the denotation of an arithmetic expression, by structural induction, as 
a relation between states and numbers: 

A[n] = {(er, n) I er E E} 

A[X~ = {(er, er(X)) I er E E} 

A[aa + al~ = {( er, no + nd I (U, no) E A[ao] & (er, nd E A[al]} 

A[ao - al] = {(er,na - nd I (u,no) E A[ao~ & (er,nd E A[ad} 

A[ao x al~ = {(er,no x nl) I (u,na) E A[aa] & (er,nl) E A[al]}' 

An obvious structural induction on arithmetic expressions a shows that each denotation 
A[a] is in fact a function. Notice that the signs "+", "-", "x" on the left-hand sides 
represent syntactic signs in IMP whereas the signs on the right represent operations on 
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numbers, so e.g., for any state a, 

A[3 + 5]a = A[3]a + A[5]a = 3 + 5 = 8, 

as is to be expected. Note that using A-notation we can present the definition of the 
semantics in the following equivalent way: 

A[n] = Aa E E.n 

A[X] = Aa E E.a(X) 

A[ao + al] = Aa E E.(A[ao]a + A[al]a) 

A[ao - al] = Aa E E.(A[ao]a - A[al]a) 

A[ao x al] = Aa E E.(A[ao]a x A[al]a). 

Denotations of Bexp: 

The semantic function for booleans is given in terms of logical operations conjunction 
AT, disjunction VT and negation ""T, on the set of truth values T. The denotation of a 
boolean expression is defined by structural induction to be a relation between states and 
truth values. 

B[true] = {(a, true) I a E E} 

B[false] = {(a, false) I a E E} 

B[ao = al] = {(a, true) I a E E & A[ao]a = A[ada}U 

{(a, false) I a E E & A[ao]a =1= A[ada}, 

B[ao ~ al] = {(a, true) I a E E & A[ao]a ~ A[ada}u 

{(a, false) I a E E & A[ada 1:: A[al]a}, 

B[...,b] = {(a,""Tt) I a E E & (a, t) E B[b]}, 

B[bo V bd = {(a, to VT tl) I a E E & (a, to) E B[bo] & (a, tI) E B[bd}· 

" 
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A simple structural induction shows that each denotation is a function. For example, 

!3[ ~ { true if A[ao]a ::; A[al~a, 
ao < al~a = 

- false if A[ao~a 1:. A[al~a 
for all a E ~. 

Denotations of Com: 

The definition of C[c~ for commands c is more complicated. We will first give denotations 
as relations between states; afterwards a straightforward structural induction will show 
that they are, in fact, partial functions. It is fairly obvious that we should take 

C[skip~ = {(a, a) I a E ~} 

C[X := a~ = {(a, a[n/ Xl) I a E ~ & n = A[a~a} 

C[co; cd = C[Cl~ 0 C[co~, a composition of relations, 

the definition of which explains the order-reversal in Co and Cl, 

C[if b then Co else Cl~ = 
{(a, a') I !3[b~a = true & (a, a') E C[co]} U {(a, a') I !3[b~a = false & (a, a') E C[Cl]}' 

But there are difficulties when we consider the denotation of a while-loop. Write 

w =: while b do c. 

We have noted the equivalence 

w rv if b then c; weIse skip 

so the partial function C[w] should equal the partial function C[if b then c; weIse skipl 
Thus we should have: 

C[w] ={(a, a') I !3[b]a = true & (a, a') E C[c; w]} U 

{( a, a) I !3[b]a = false} 

={(a, a') I !3[b~a = true & (a, a') E C[w] 0 C[c]} U 

{(a,a) I !3[b]a = false}. 

Writing 'P for C[w~, 13 for !3[b] and 'Y for C[c] we require a partial function 'P such that 

'P ={ (a, a') I f3(a) = true & (a, a') E ip 0 'Y}U 

{(a, a) I f3(a) = false}. 
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But this involves <p on both sides of the equation. How can we solve it to find <p? We 
clearly require some technique for solving a recursive equation of this form (it is called 
"recursive" because the value we wish to know on the left recurs on the right). Looked 
at in another way we can regard f, where 

f(<p) ={(o-, 0-') I (3(0-) = true & (0-,0-') E <p 0 ,} U 

{( 0-,0-) I (3(0-) = false} 

={ (0-,0-') I :30-". (3(0-) = true & (0-,0-") E , & (0-",0-') E <p} U 

{(o-,o-) 1(3(0-) = false}, 

as a function which given <p returns r( <p). We want a fixed point <p of r in the sense that 

<p = f(<p). 

The last chapter provides the clue to finding such a solution in Section 4.4. It is not hard 
to check that the function f is equal to R, where R is the operator on sets determined 
by the rule instances 

R ={({(o-",o-')}/(o-,o-')) 1(3(0-) = true & (0-,0-") E ,} u 
{(0/(0-,0-)) 1(3(0-) = false}. 

As Section 4.4 shows R has a least fixed point 

<p = fix(R) 

where <p is a set-in this case a set of pairs-with the property that 

We shall take this least fixed point as the denotation of the while program w. Certainly 
its denotation should be a fixed point. The full justification for taking it to be the least 
fixed point will be given in the next section where we establish that this choice for the 
semantics agrees with the operational semantics. 

Now we can go ahead and define the denotational semantics of commands in the 
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following way, by structural induction: 

where 

C[skip] = {(O", 0") 10" E E} 

C[X := a] = {(O", O"[nj Xl) I 0" E E & n = A[a] 0" } 

C[if b then Co else CI] = 

{(O",O"') I B[b]O" = true & (0',0"') E C[conU 

{(O",o") I B[b]O" = false & (0",0"') E C[CIn 

C[while b do c] = fix(r) 

r(ip) ={(O",O"') I B[b]O" = true & (0",0") E ipoC[cn U 

{(O",O") I B[b]O' = false}. 

Chapter 5 

In this way we define a denotation of each command as a relation between states. No
tice how the semantic definition is compositional in the sense that the denotation of a 
command is constructed from the denotations of its immediate subcommands, reflected 
in the fact that the definition is by structural induction. This property is a hallmark 
of denotational semantics. Notice it is not true of the operational semantics of IMP 
because of the rule for while-loops in which the while-loop reappears in the premise of 
the rule. 

We have based the definition of the semantic function on while programs by the op
erational equivalence between while programs and one "unfolding" of them into a con
ditional. Not surprisingly it is straightforward to check this equivalence holds according 
to the denotational semantics. 

Proposition 5.1 Write 
w == while b do c 

for a command c and boolean expression b. Then 

C[w] = C[if b then c; weIse skip]. 



The denotational semantics of IMP 

Proof: The denotation of w is a fixed point of f, defined above. Hence 

C[wI =f(C[wI) 

=((O",O"') I 8[bIO" = true & (0",0"') E C[wI 0 C[cD U 

{( 0",0") I 8[b]0" = false} 

={(O",O"') I 8[b]0" = true & (0",0"') E C[c;wD u 
{( 0",0"') I 8[b]0" = false & (0",0"') E C[skip]} 

=C[if b then c; weise skiplD 
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Exercise 5.2 Show by structural induction on commands that the denotation C[cI is a 
partial function for all commands c. 
(The case for while-loops involves proofs by mathematical induction showing that f n(0) 
is a partial function between states for all natural numbers n, and that these form an 
increasing chain, followed by the observation that the union of such a chain of partial 
functions is itself a partial function.) 0 

In Section 5.4 we shall introduce a general theory of fixed points, which makes sense 
when the objects defined recursively are not sets ordered by inclusion. 

5.3 Equivalence of the semantics 

Although inspired by our understanding of the operational behaviour of IMP the denota
tional semantics has not yet been demonstrated to agree with the operational semantics. 
We first check the operational and denotational semantics agree on the evaluation of 
expressions: 

Lemma 5.3 For all a E Aexp, 

A[aI = {(O",n) I (a, 0") --; n}. 

Proof: We prove the lemma by structural induction. As induction hypothesis we take 

P(a) ~ defA[aI = {(O",n) I (a, 0") --; n}. 

Following the scheme of structural induction the proof splits into cases according to the 
structure of an arithmetic expression a. 
a == m: From the definition of the semantic function, in the case where a is a number m, 
we have 

(O",n) E A[mI ~ 0" E:E & n == m. 
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Clearly, if (cr, n) E A[m] then n == m and {m, cr) --> n. Conversely, if {m, cr) --> n then 
the only possible derivation is one in which n == m and hence (cr, n) E A[m]. 
a == X: Similarly, if a is a location X, 

(cr, n) E A[X] ~ (cr E E & n == cr(X)) 

~ {X, cr) --> n. 

a == ao + al: Assume P(ao) and P(ad for two arithmetic expressions ao, al. We have 

Supposing (cr, n) E A[ao +al], there are no, nl such that n = no +nl and (cr, no) E A[ao] 
and (cr,nl) E A[all From the assumptions P(ao) and P(ad, we obtain 

Thus we can derive (ao +al, cr) --> n. Conversely, any derivation of (ao + aI, cr) --> n must 
have the form 

(ao, cr) --> no (aI, cr) --> nl 

(ao + aI, cr) --> n 

for some no, nl such that n = no + nl. This time, from the assumptions P(ao) and 
P(ad, we obtain (cr,no) E A[ao] and (cr,nd E A[all Hence (cr,n) E A[a]. 

The proofs of the other cases, for arithmetic expressions of the form a 0 - al and ao x aI, 

follow exactly the same pattern. By structural induction on arithmetic expressions we 
conclude that 

A[a] = {(cr,n) I (a,cr) --> n}, 

for all arithmetic expressions a. o 

Lemma 5.4 For b E Bexp, 

8[b] = {(cr, t) I (b,a) --> t}. 

Proof: The proof for boolean expressions is similar to that for arithmetic expressions. 
It proceeds by structural induction on boolean expressions with induction hypothesis 

P(b) ~ defB[b] = {(cr,t) I (b,a) --> t} 

for boolean expression b. 



The denotational semantics of IMP 63 

We only do two cases of the induction. They are typical, and the remaining cases are 
left to the reader. 
b == (ao = al): Let ao, al be arithmetic expressions. By definition, we have 

Thus 

B[ao = al] ={ (cr, true) I cr E I; & A[ao]cr = A[al]cr}U 

{(cr, false) I cr E I; & A[ao]cr =I A[al]cr}. 

(cr, true) E B[ao = al] ~ cr E I; & A[ao]cr = A[al]cr. 

If (cr, true) E B[ao = al] then A[ao]cr = A[al]cr, so, by the previous lemma, 

(ao, cr) -> nand (aI, cr) -> n, 

for some number n. Hence from the operational semantics for boolean expressions we 
obtain 

(ao = al,cr) -> true. 

Conversely, supposing (ao = aI, cr) -> true, it must have a derivation of the form 

(ao,cr) -+ n (al,cr) -> n 

(ao = aI, a) -> true 

But then, by the previous lemma, A[ao]cr = n = A[adcr. Hence (cr, true) E B[ao = al]. 
Therefore 

(cr, true) E B[ao = al] ~ (ao = al,a) -> true. 

Similarly, 
(cr,false) E B[ao = al] ~ (ao = al,cr) -> false. 

It follows that 
B[ao = ad = {(cr, t) I (ao = aI, cr) -> t}. 

b == bo 1\ bl : Let bo, bl be boolean expressions. Assume P(bo) and P(bd. By definition, 
we have 

(cr, t) E B[bo 1\ bl ] ~ cr E I; & :lto, tl. t = to I\T tl & (cr, to) E B[b9] & (a, h) E B[bI]. 

Thus, supposing (cr, t) E B[bo 1\ bl]' there are to, tl such that (cr, to) E B[bo] and (a, td E 
B[b1 ]. From the assumptions P(bo) and P(bd we obtain 
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Thus we can derive (bo 1\ bl , a) ---* t where t = to I\T tl. Conversely, any derivation of 
(bo 1\ bl , a) ---* t must have the form 

(bo, a) ---* to (bl , a) ---* tl 

(bo 1\ bl , a) ---* t 

for some to, tl such that t = tOI\Ttl' From the P(bo) and P(bd, we obtain (a, to) E B[bo] 
and (a, td E B[bll Hence (a, t) E B[bl 

As remarked the other cases of the induction are similar. o 

Exercise 5.5 The proofs above involve considering the form of derivations. Alternative 
proofs can be obtained by a combination of structural induction and rule induction. For 
example, show 

1. {(a,n) I (a,a) ---* n} ~ A[a], 
2. A[a] ~ {(a,n) I (a,a) ---* n}, 

for all arithmetic expressions a by using rule induction on the operational semantics of 
arithmetic expressions for 1 and structural induction on arithmetic expressions for 2. 0 

Now we can check that the denotational semantics of commands agrees with their 
operational semantics: 

Lemma 5.6 For all commands c and states a, a', 

(c, a) ---* a' ::} (a, a') E C[c]. 

Proof: We use rule-induction on the operational semantics of commands, as stated in 
Section 4.3.3. For c E Com and a, a' E ~, define 

P(c, a, a') {::::::::} de/(a, a') E C[c]. 

If we can show P is closed under the rules for the execution of commands, in the sense 
of Section 4.3.3, then 

(c, a) ---* a' ::} P( c, a, a') 

for any command c and states a, a'. We check only one clause in Section 4.3.3, that 
associated with while-loops in the case in which the condition evaluates to true. Recall 
it is: 

(b, a) ---* true (c, a) ---* a" (w, a") ---* a' 

(w, a) ---* a' 
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where we abbreviate w == while b do c. Following the scheme of Section 4.3.3, assume 

(b,a) -> true & (c,a) -> a" & P(c,a,a") & (w,a") -> a' & P(w,a",a'). 

By Lemma 5.4 
B[b]a = true. 

From the meaning of P we obtain directly that 

C[c]a = a" and C[w]a" = a'. 

Now, from the definition of the denotational semantics, we see 

C[w]a = C[c; w]a = C[w] (C[c]a) = C[w]a" = a'. 

But C[w]a = a' means P(w, a, a') i.e. P holds for the consequence of the rule. Hence 
P is closed under this rule. By similar arguments, P is closed under the other rules 
for the execution of commands (Exercise!). Hence by rule induction we have proved the 
lemma. 0 

The next theorem, showing the equivalence of operational and denotational semantics 
for commands, is proved by structural induction with a use of mathematical induction 
inside one case, that for while-loops. 

Theorem 5.7 For all commands c 

C[c] = {(a,a') I (c,a) -> a'}. 

Proof: The theorem can clearly be restated as: for all commands c 

(a, a') E C[c] <¢:::::::} (c, a) -> a'. 

for all states a, a'. Notice Lemma 5.6 gives the "~" direction of the equivalence. 
We proceed by structural induction on commands c, taking 

Va, 0-' E ~.(a, a') E C[c] <¢:::::::} (c, a) -> a'. 

as induction hypothesis. 

c == skip: By definition, C[skip] = {(a,a) I a E ~}. Thus if (a,a) E,C[c] then a' = a 
so (skip, a) -> a' by the rule for skip. The induction hypothesis holds in this case. 

c == X := a : Suppose (a,a') E C[X := a]. Then a' = a[n/X] where n = A[a]a. By 
Lemma 5.3, (a, a) -> n. Hence (c, a) -> a'. The induction hypothesis holds in this case. 
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C == co; CI ; Assume the induction hypothesis holds for Co and CI. Suppose (a, a') E C[c]. 
Then there is some state a" for which (a, a") E C[Co] and (a", a') E C[Cl]. By the 
induction hypothesis for commands Co and CI we know 

Hence (co; CI, a) --+ a' for the rules for the operational semantics of commands. Thus the 
induction hypothesis holds for c. 

C == if b then Co else CI ; Assume the induction hypothesis holds for Co and CI. Recall 
that 

C[C] ={(a, a') I 8[b]a = true & (a, a') E C[co]}U 

{(a, a') I 8[b]a = false & (a, a') E C[cd}. 

So, if (a, a') E C[c] then either 
(i) 8[b]a = true and (a, a') E C[co], or 
(ii) 8[b]a = false and (a, a') E C[CI]. 

Suppose (i). Then (b, a) --+ true by Lemma 5.4, and (co, a) --+ a' because the induction 
hypothesis holds for Co. From the rules for conditionals in the operational semantics of 
commands we obtain (c, a) --+ a'. Supposing (ii), we can arrive at the conclusion in 
essentially the same way. Thus the induction hypothesis holds for c. 

c == while b do Co ; Assume the induction hypothesis holds for Co. Recall that 

where 

C[while b do co] = fix(r) 

r(ip) ={ (a, a') I 8[b]a = true & (a, a') E ip 0 C[co]} U 

{(a,a) I 8[b]a = false}. 

So, writing en for r n (0), we have 

where 

C[c] = U en 
nEw 

eo =0, 

en+l ={ (a, a') I 8[b]a = true & (a, a') E en 0 C[co]}U 

{(a,a) I 8[b]a = false.} 

We shall show by mathematical induction that 

Va, a' E I:. (a, a') E en =} (c, a) --+ a' (1) 
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for all nEw. It then follows, of course, that (u, u') E C[c] {=> (c, u) -> u' for states 

u,u'. 
We start the mathematical induction on the induction hypothesis (1). 

Base case n = 0: When n = 0, 00 = 0 so that induction hypothesis is vacuously true. 
Induction Step: We assume (1) holds for an arbitrary nEw and attempt to prove 

for any states u, u'. 
Assume (u, u') E On+!. Then either 
(i) B[b]a = true and (a, u') E On 0 C[co] , or 
(ii) B[b]a = false and u' = u. 

Assume (i). Then (b, u) -> true by Lemma 5.4. Also (a, a") E C[co] and (u", a') E On 
for some state u". From the induction hypothesis (1) we obtain (c, a") -> a'. By 
assumption of the structural induction hypothesis for Co, we have (co, a) -> u". By the 
rule for while-loops we obtain (c, u) -> u'. 
Assume (ii). As B[b] = false, by Lemma 5.4, we obtain (b, u) -> false. Also u' = u so 
(c, u) --> a. In this case the induction hypothesis holds. 

This establishes the induction hypothesis (1) for n + 1. 
By mathematical induction we conclude (1) holds for all n. Consequently: 

(a, a') E C[c] ::::} (c, a) -> u' 

for all states a, a' in the case where c == while b do Co. 
Finally, by structural induction, we have proved the theorem. o 

Exercise 5.8 Let w == while b do c. Prove that 

C[w]a = u' iff B[b]a = false & a = a' 

or 

:luo, ... ,Un E ~. 

a = aD & a' = an & B[b]an = false & 

Vi(O ~ i < n). B[b]Ui = true & C[C]Ui = ai+l. 

(The proof from left to right uses induction on the rn(0) used in building up the denota
tion of w; the proof from right to left uses induction on the length of tM chain of states.) 

o 
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Exercise 5.9 The syntax of commands of a simple imperative language with a repeat 
construct is given by 

C ::= X:= e I co; Cl I if b then Co else Cl I repeat C until b 

where X is a location, e is an arithmetic expression, b is a boolean expression and c, Co, Cl 

range over commands. From your understanding of how such commands behave explain 
how to change the semantics of while programs to that of repeat programs to give: 
(i) an operational semantics in the form of rules to generate transitions of the form 
(c, a) -7 u' meaning the execution of C from state u terminates in state u'; 
(ii) a denotational semantics for commands in which each command C is denoted by a 
partial function C[c] from states to states; 
(iii) sketch the proof of the equivalence between the operational and denotational seman
tics, that (c, u) -7 u' iff C[c~u = u', concentrating on the case where c is a repeat loop. 

o 

5.4 Complete partial orders and continuous functions 

In the last chapter we gave an elementary account of the theory of inductive definitions. 
We have shown how it can be used to give a denotational semantics for IMP. In practice 
very few recursive definitions can be viewed straightforwardly as least fixed points of 
operators on sets, and they are best tackled using the more abstract ideas of complete 
partial orders and continuous functions, the standard tools of denotational semantics. We 
can approach this framework from that of inductive definitions. In this way it is hoped 
to make the more abstract ideas of complete partial orders more accessible and show the 
close tie-up between them and the more concrete notions in operational semantics. 

Suppose we have a set ofrule instances R of the form (X / y). We saw how R determines 
an operator R on sets, which given a set B results in a set 

R(B) = {y I ~(X/y) E R. X ~ B}, 

and how the operator R has a least fixed point 

flx(R) =dej U Rn(0) 
nEw 

formed by taking the union of the chain of sets 

o ~ R(0) ~ ... ~ fin (0) ~ .... 
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It is a fixed point in the sense that 

R(flx(R)) = flx(R), 

and it is the least fixed point because flx(R) is included in any fixed point B, i.e. 

R(B) = B '* flx(R) ~ B. 

In fact Proposition 4.12 of Section 4.4 shows that flx( R) was the least R-closed set, where 
we can characterise an R-closed set as one B for which 

R(B) ~ B. 

In this way we can obtain, by choosing appropriate rule instances R, a solution to the 
recursive equation needed for a denotation of the while-loop. However it pays to be more 
general, and extract from the example above the essential mathematical properties we 
used to obtain a least fixed point. This leads to the notions of complete partial order 
and continuous functions. 

The very idea of "least" only made sense because of the inclusion, or subset, relation. 
In its place we take the more general idea of partial order. 

Definition: A partial order (p.o.) is a set P on which there is a binary relation [;;;; which 
is: 

(i) relexive: Vp E P. p [;;;; P 

(ii) transitive: Vp, q, rEP. p [;;;; q & q [;;;; r '* p [;;;; r 

(iii) antisymmetric: Vp, q E P. p [;;;; q & q [;;;; p '* p = q. 

But not all partial orders support the constructions we did on sets. In constructing 
the least fixed point we formed the union UnEw An of a w-chain Ao ~ Al ~ ... An ~ ... 
which started at 0-the least set. Union on sets, ordered by inclusion, generalises to the 
notion of least upper bound on partial orders-we only require them to exist for such 
increasing chains indexed by w. Translating these properties to partial orders, we arrive 
at the definition of a complete partial order. 

Definition: For a partial order (P, [;;;;) and subset X ~ P say p is an upper bound of X 
iff 

Vq E X. q [;;;; p. 

Say p is a least upper bound (lub) of X iff 
(i) p is an upper bound of X, and 
(ii) for all upper bounds q of X, p [;;;; q. 

When a subset X of a partial order has a least upper bound we shall write it as U X. 
We write U {db"', dm } as d1 U··· U dm . 



70 Chapter 5 

Definition: Let (D, i;;:;D) be a partial order. 
An w-chain of the partial order is an increasing chain do i;;:;D d1 i;;:;D ... [;;;D dn [;;;D ... 

of elements of the partial order. 
The partial order (D, [;;;D) is a complete partial order (abbreviated to cpo) if it has lubs 

of all w-chains do [;;;D d1 [;;;D ... [;;;D dn i;;:;D ... , i.e. any increasing chain {d n In E w} of 
elements in D has a least upper bound U {dn I nEw} in D, often written as UnEw dn · 

We say (D, [;;;D) is a cpo with bottom if it is a cpo which has a least element ..1 D (called 
"bottom"). 1 

Notation: In future we shall often write the ordering of a cpo (D, [;;;D) as simply [;;;, 
and its bottom element, when it has one, as just ..i. The context generally makes clear 
to which cpo we refer. 

Notice that any set ordered by the identity relation forms a cpo, certainly without a 
bottom element. Such cpo's are called discrete, or fiat. 

Exercise 5.10 Show (Pow(X),~) is a cpo with bottom, for any set X. Show the set 
of partial functions ~ ~ ~ ordered by ~ forms a cpo with bottom. 0 

The counterpart of an operation on sets is a function f : D ----; D from a cpo D back 
to D. We require such a function to respect the ordering on D in a certain way. To 
motivate these properties we consider the operator defined from the rule instances R. 
Suppose 

Then 

is an increasing chain of sets too. This is because R is monotonic in the sense that 

B ~ G ~ R(B) ~ R(G). 

By monotonicity, as each Bn ~ UnEw Bn, 

nEw nEw 

In fact, the converse inclusion, and so equality, holds too because of the finitary nature 
of rule instances. Suppose y E R(UnEw Bn)· Then (X/y) E R for some finite set 

IThe cpo's here are commonly called (bottomless) w-cpo's, or predomains. 



The denotational semantics of IMP 71 

x ~ UnEw Bn· Because X is finite, X ~ Bn for some n. Hence y E R(Bn). Thus 

y E UnEw R(Bn). We have proved that R is continuous in the sense that 

nEw nEw 

for any increasing chain Bo ~ ... ~ Bn ~ .... This followed because the rules are finitary 
i.e. each rule (X/y) involves only a finite set of premises X. 

We can adopt these properties to define the continuous functions between a pair of 
cpos. 

Definition: A function f : D ---> E between cpos D and E is monotonic iff 

Vd, d' E D. d ~ d' =? f(d) ~ f(d'). 

Such a function is continuous iff it is monotonic and for all chains d 0 ~ d1 ~ ... ~ dn ~ ... 

in D we have 

nEw nEw 

An important consequence of this definition is that any continuous function from a cpo 
with bottom to itself has a least fixed point, in a way which generalises that of operators 
on sets in Section 4.4. In fact we can catch the notion of a set closed under rules with the 
order-theoretic notion of a prefixed point (Recall a set B was closed under rule instances 
Riff R(B) ~ B). 

Definition: Let f : D ---> D be a continuous function on a cpo D. A fixed point of f is 
an element d of D such that f (d) = d. A prefixed point of f is an element d of D such 
that f(d) ~ d. 

The following simple, but important, theorem gives an explicit construction fix(f) of 
the least fixed point of a continuous function f on a cpo D. 

Theorem 5.11 (Fixed-Point Theorem) 
Let f : D ---> D be a continuous function on a cpo with bottom D. Define 

fix(f) = U r(J..)· 
nEw 

Then fix(f) is a fixed point of f and the least prefixed point of f i. e. 
(i) f(fix(f)) = fix(f) and (ii) if f{d) ~ d then fix(f) ~ d. Consequently fix(f) is the 

least fixed point of f. 
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Proof: 
(i) By continuity 

f(fix(f)) =f( U rei)) 
nEw 

nEw 

nEw 

nEw 

=fix(f). 

Thus fix(f) is a fixed point. 
(ii) Suppose d is a prefixed point. Certainly..1 [;;; d. By monotonicity f(..1) [;;; fed). But 
d is prefixed point, i.e. fed) [;;; d, so f(..1) [;;; d , and by induction fn(..1) [;;; d. Thus, 
fix(f) = UnEw r(..1) [;;; d. 

As fixed points are certainly prefixed points, fix(f) is the least fixed point of f. 0 

We say a little about the intuition behind complete partial orders and continuous 
functions, an intuition which will be discussed further and pinned down more precisely 
in later chapters. Complete partial orders correspond to types of data, data that can 
be used as input or output to a computation. Computable functions are modelled as 
continuous functions between them. The elements of a cpo are thought of as points of 
information and the ordering x [;;; y as meaning x approximates y (or, x is less or the 
same information as y)-so ..1 is the point of least information. 

We can recast, into this general framework, the method by which we gave a denota
tional semantics to IMP. We denoted a command by a partial function from states to 
states L:. On the face of it this does not square with the idea that the function computed 
by a command should be continuous. However partial functions on states can be viewed 
as continuous total functions. We extend the states by a new element ..1 to a cpo of 
results L:1. ordered by 

for all states a. The cpo L: 1. includes the extra element ..1 representing the undefined 
state, or more correctly null information about the state, which, as a computation pro
gresses, can grow into the information that a particular final state is determined. It is 
not hard to see that the partial functions L: ~ L: are in 1-1 correspondence with the 
(total) functions L: ----; L: 1., and that in this caSe any total function is continuous; the 
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inclusion order between partial functions corresponds to the "pointwise order" 

f I;;;; 9 iff Va E E. f(a) I;;;; g(a) 

between functions E --> E 1. . Because partial functions form a cpo so does the set of 
functions [E --> E1.) ordered pointwise. Consequently, our denotational semantics can 
equivalently be viewed as denoting commands by elements of the cpo of continuous 
functions [E --> E1.]' Recall that to give the denotation of a while program we solved a 
recursive equation by taking the least fixed point of a continuous function on the cpo of 
partial functions, which now recasts to one on the cpo [E --> E 1.). 

For the cpo [E --> E1.), isomorphic to that of partial functions, more information 
corresponds to more input/output behaviour of a function and no information at all, J.. 

in this cpo, corresponds to the empty partial function which contains no input/output 
pairs. We can think of the functions themselves as data which can be used or produced 
by a computation. Notice that the information about such functions comes in discrete 
units, the input/output pairs. Such a discreteness property is shared by a great many of 
the complete partial orders that arise in modelling computations. As we shall see, that 
computable functions should be continuous follows from the idea that the appearance of 
a unit of information in the output of a computable function should only depend on the 
presence of finitely many units of information in the input. Otherwise a computation 
of the function would have to make use of infinitely many units of information before 
yielding that unit of output. We have met this idea before; a set of rule instances 
determines a continuous operator when the rule instances are finitary, in that they have 
only finite sets of premises. 

Exercise 5.12 
(i) Show that the monotonic maps from E to E1. are continuous and in 1-1 correspondence 
with the partial functions E ~ E. Confirm the statement above, that a partial function 
is included in another iff the corresponding functions E --> E 1. are ordered pointwise. 
(ii) Let D and E be cpo's. Suppose D has the property that every w-chain do I;;;; d1 I;;;; 
... I;;;; dn I;;;; ••. is stationary, in the sense that there is an n such that d m = dn for all 
m ~ n. Show that all monotonic functions from D to E are continuous. 0 

Exercise 5.13 Show that if we relax the condition that rules be finitary, and so allow 
rule instances with an infinite number of premises, then the operator induced by a set of 
rule instances need not be continuous. 0 
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5.5 The Knaster-Tarski Theorem 

In this section another abstract characterisation of least fixed points is studied. It results 
are only used much later, so it can be skipped at a first reading. Looking back to the 
last chapter, there was another characterisation of the least fixed point of an operator 
on sets. Recall from Exercise 4.3 of Section 4.1 that, for a set of rule instances R, 

IR = n {Q I Q is R-closed}. 

In view of Section 4.4, this can be recast as saying 

fixeR) = n {Q I R(Q) ~ Q}, 

expressing that the least fixed point of the operator R can be characterised as the in
tersection of its prefixed points. This is a special case of the K naster- Tarski Theorem, a 
general result about the existence of least fixed points. As might be expected its state
ment involves a generalisation of the operation of intersection on sets to a notion dual to 
that least upper bound on a partial order. 

Definition: For a partial order (P,~) and subset X ~ P say p is an lower bound of X 
iff 

't/q E X. P ~ q. 

Say p is a greatest lower bound (glb) of X iff 
(i) P is a lower bound of X, and 
(ii) for all lower bounds q of X, we have q ~ p. 

When a subset X of a partial order has a greatest lower bound we shall write it as nX. We write n {do,dt} as dond1 · 

Just as sometimes lubs are called suprema (or sups), glbs are sometimes called infima 
(or infs). 

Definition: A complete lattice is a partial order which has greatest lower bounds of 
arbitrary subsets. 

Although we have chosen to define complete lattices as partial orders which have all 
greatest lower bounds we could alternatively have defined them as those partial orders 
with all least upper bounds, a consequence of the following exercise. 

Exercise 5.14 Prove a complete lattice must also have least upper bounds of arbitrary 
subsets. Deduce that if (L,~) is a complete lattice then so is (L, ;;;!), ordered by the 
converse relation. 0 
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Theorem 5.15 (Knaster-Tarski Theorem for minimum fixed points) 
Let (L,I;) be a complete lattice. Let f : L -; L be a monotonic function, i. e. such that if 
x ~ y then f(x) I; fey) (but not necessarily continuous). Define 

m= n{x EL [f(x) I; x}. 

Then m is a fixed point of f and the least prefixed point of f· 

Proof: Write X = {x E L [f(x) I; x}. As above, define m = nX. Let x E X. 
Certainly m I; x. Hence f(m) I; f(x) by the monotonicity of f. But f(x) I; x because 
x E X. So f(m) I; x for any x E X. It follows that f(m) I; n X = m. This makes 
m a prefixed point and, from its definition, it is clearly the least one. As f(m) I; m 
we obtain f(J(m)) ~ f(m) from the monotonicity of f. This ensures f(m) E X which 
entails m I; f(m). Thus f(m) = m. We conclude that m is indeed a fixed point and is 
the least prefixed point of f. 0 

As a corollary we can show that a monotonic function on a complete lattice has a 
maximum fixed point. 

Theorem 5.16 (Knaster-Tarski Theorem for maximum fixed points) 
Let (L, 1;) be a complete lattice. Let f : L -; L be a monotonic function. Define 

M = U {x E L [ x I; f(x)}. 

Then M is a fixed point of f and the greatest postfixed point of f. (A postfixed point is 
an element x such that x I; f(x).) 

Proof: This follows from the theorem for the minimum-fixed-point case by noticing 
that a monotonic function on (L, 1;) is also a monotonic function on the complete lattice 
(L, ~). 0 

The Knaster-Tarski Theorem is important because it applies to any monotonic function 
on a complete lattice. However most of the time we will be concerned with least fixed 
points of continuous functions which we shall construct by the techniques of the previous 
section, as least upper bounds of w-chains in a cpo. 

5.6 Further reading 

This chapter has given an example of a denotational semantics. Later chapters will 
expand on the range and power of the denotational method. Further elementary material 
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can be found in the books by Bird [21], Loeckx and Sieber [58], Schmidt [88], and Stay 
[95J (though the latter bases its treatment on complete lattices instead of complete partial 
orders). A harder but very thorough book is that by de Bakker [13J. The denotational 
semantics of IMP has come at a price, the more abstract use of least fixed points in place 
of rules. However there is also a gain. By casting its meaning within the framework of 
cpo's and continuous functions IMP becomes amenable to the techniques there. The 
book [69J has several examples of applications to the language of while programs. 



6 The axiomatic semantics of IMP 

In this chapter we turn to the business of systematic verification of programs in IMP. 
The Hoare rules for showing the partial correctness of programs are introduced and shown 
sound. This involves extending the boolean expressions to a rich language of assertions 
about program states. The chapter concludes with an example of verification conducted 
within the framework of Hoare rules. 

6.1 The idea 

We turn to consider the problem of how to prove that a program we have written in 
IMP does what we require of it. 

Let's start with a simple example of a program to compute the sum of the first hundred 
numbers, the naive way. Here is a program in IMP to compute Ll::;m::;lOo m (The 
notation Ll::;m::;100 m means 1 + 2 + ... + 100). 

S :=0; 

N:= 1; 

(while -,(N = 101) do S := S + N; N := N + 1) 

How would we prove that this program, when it terminates, is such that the value of S 
. '" 7 IS L....l::;m::;100 m. 

Of course one thing we could do would be to run it according to our operational 
semantics and see what we get. But suppose we change our program a bit, so that instead 
of "while -,(N = 101) do ... " we put "while -.(N = P + 1) do ... " and imagine 
making some arbitrary assignment to P before we begin. In this case the resulting value 
of S after execution should be Ll::;m::;P m, no matter what the value of P. As P can 
take an infinite set of values we cannot justify this fact simply by running the program 
for all initial values of P. We need to be a little more clever, and abstract, and use some 
logic to reason about the program. 

We'll end up with a formal proof system for proving properties of IMP programs, 
based on proof rules for each programming construct of IMP. Its rules are called Hoare 
rules or Floyd-Hoare rules. Historically R.W.Floyd invented rules for reasoning about 
flow charts, and later C.A.R.Hoare modified and extended these to give a treatment of 
a language like IMP but with procedures. Originally their approach was advocated not 
just for proving properties of programs but also as giving a method for explaining the 
meaning of program constructs; the meaning of a construct was specified in terms of 
"axioms" (more accurately rules) saying how to prove properties of it. For this reason, 
the approach is traditionally called axiomatic semantics. 

For now let's not be too formal. Let's look at the program and reason informally about 
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it, for the moment based on our intuitive understanding of how it behaves. Straigr taway 
we see that the commands S := 0; N := 1 initialise the values in the locations. So we 
can annotate our program with a comment: 

S:= O;N:= 1 

{S=O 1\ N=l} 

(while -.(N = 101) do S:= S + N; N := N + 1) 

with the understanding that S = 0 for example means the location S has value 0, as in 
the treatment of boolean expressions. We want a method to justify the final comment 
in: 

S:= O;N:= 1 

{S = 0 1\ N = I} 

(while -.(N = 101) do S := S + N; N := N + 1) 

{S= L m} 
l:5m:5lDO 

-meaning that if S = 0 1\ N = 1 before the execution of the while-loop then S = 

2:1:5m90o m after its execution. 
Looking at the boolean, one fact we know holds after the execution of the while-loop is 

that we cannot have N =I- 101; because if we had -.(N = 101) then the while-loop would 
have continued running. So, at the end of its execution we know N = 101. But we want 
to know S! 

Of course, with a simple program like this we can look and see what the values of S 
and N are the first time round the loop, S = 1, N = 2. And the second time round the 
loop S = 1 + 2, N = 3 ... and so on, until we see the pattern: after the i th time round 
the loop S = 1 + 2 + ... + i and N = i + 1. From which we see, when we exit the loop, 
that S = 1 + 2 + ... + 100, because when we exit N = 101. 

At the beginning and end of each iteration of the while-loop we have 

S = 1 + 2 + 3 + ... + (N - 1) (1) 

which expresses the key relationship between the value at location S and the value at 
location N. The assertion I is called an invariant of the while-loop because it remains 
true under each iteration of the loop. So finally when the loop terminates I will hold at 
the end. We shall say more about invariants later. 

For now it appears we can base a proof system on assertions of the form 

{A}c{B} 
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where A and B are assertions like those we've already seen in Bexp and c is a command. 
The precise interpretation of such a compound assertion is this: 

for all states 1.7 which satisfy A if the execution c from state 1.7 terminates in state 
1.7' then 1.7' satisfies B. 

Put another way, {A}c{B} means that any successful (i.e., terminating) execution of c 
from a state satisfying A ends up in a state satisfying B. The assertion A is called the 
precondition and B the postcondition of the partial correctness assertion {A}c{B}. 

Assertions of the form {A }c{ B} are called partial correctness assertions because they 
say nothing about the command c if it fails to terminate. As an extreme example consider 

c == while true do skip. 

The execution of c from any state does not terminate. According to the interpretation 
we give above the following partial correctness assertion is valid: 

{ true} c{ false} 

simply because the execution of c does not terminate. More generally, because c loops, 
any partial correctness assertion {A }c{ B} is valid. Contrast this with another notion, 
that of total correctness. Sometimes people write 

[A]c[B] 

to mean that the execution of c from any state which satisfies A will terminate in a state 
which satisfies B. In this book we shall not be concerned much with total correctness 
assertions. 

Warning: There are several different notations around for expressing partial and total 
correctness. When dipping into a book make doubly sure which notation is used there. 

We have left several loose ends. For one, what kinds of assertions A and B do we 
allow in partial correctness assertions {A}c{B}? We say more in a moment, and turn to 
a more general issue. 

The next issue can be regarded pragmatically as one of notation, though it can be 
viewed more conceptually as the semantics of assertions for partial correctness--see the 
"optional" Section 7.5 on denotational semantics using predicate transformers. Firstly 
let's introduce an abbreviation to mean the state 1.7 satisfies assertion A, or equivalently 
the assertion A is true at state 1.7. We abbreviate this to: 

1.7 1= A. 
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Of course, we'll need to define it, though we all have an intuitive idea of what it means. 
Consider our interpretation of a partial correctness assertion {A}c{B}. As a command 
c denotes a partial function from initial states to final states, the partial correctness 
assertion means: 

Va. (a 1= A & C[c]a is defined) =} C[c]a 1= B. 

It is awkward working so often with the proviso that C[c]a is defined. Recall Chapter 5 
on the denotational semantics of IMP. There we suggested that we use the symbol J.. 
to represent an undefined state (or more strictly, null information about the state). For 
a command c we can write C[c]a = J.. whenever C[c]a is undefined, and, in accord with 
the composition of partial functions, take C[c]J.. = J... If we adopt the convention that 
J.. satisfies any assertion, then our work on partial correctness becomes much simpler 
notationally. With the understanding that 

for any assertion A, we can describe the meaning of {A}c{B} by 

Va E 2::. a 1= A =} C[c]a 1= B. 

Because we are dealing with partial correctness this convention is consistent with our 
previous interpretation of partial correctness assertions. It's quite intuitive too; diverging 
computations denote J.. and as we've seen they satisfy any postcondition. 

6.2 The assertion language Assn 

What kind of assertions do we wish to make about IMP programs? Because we want 
to reason about boolean expressions we'll certainly need to include all the assertions in 
Bexp. Because we want to make assertions using the quantifiers "Vi· .. " and ":li· .. " we 
will need to work with extensions of Bexp and Aexp which include integer variables i 
over which we can quantify. Then, for example, we can say that an integer k is a mUltiple 
of another 1 by writing 

:li. k = i x l. 

It will be shown in reasonable detail how to introduce integer variables and quantifiers for 
a particular language of assertions Assn. In principle, everything we'll do with assertions 
can be done in Assn-it is expressive enough-but in examples and exercises we will 
extend Assn in various ways, without being terribly strict about it. (For instance, in one 
example we'll use the notation n! = n x (n - 1) x ... x 2 x 1 for the factorial function.) 
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Firstly, we extend Aexp to include integer variables i, j, k, etc .. This is done simply by 
extending the BNF description of Aexp by the additional rule which makes any integer 
variable i, j, k, ... an integer expression. So the extended syntactic category Aexpv of 
arithmetic expressions is given by: 

a ::= n I X I i I ao + al I ao - al I ao x al 

where 
n ranges over numbers, N 

X ranges over locations, Loc 

i ranges over integer variables, Intvar. 

We extend boolean expressions to include these more general arithmetic expressions 
and quantifiers, as well as implication. The rules are: 

A ::= true I false I ao = al I ao ::::: al I Ao 1\ Al I Ao V Al I ....,A I Ao => Al I Vi.A I ::li.A 

We call the set of extended boolean assertions, Assn. 
At school we have had experience in manipulating expressions like those above, though 

in those days we probably wrote mathematics down in a less abbreviated way, not using 
quantifiers for instance. When we encounter an integer variable i we think of it as 
standing for some arbitrary integer and do calculations with it like those "unknowns" 
x, y,' .. at school. An implication like Ao => Al means if Ao then AI, and will be true if 
either Ao is false or Al is true. We have used implication before in our mathematics, and 
now we have added it to our set of formal assertions Assn. We have a "commonsense" 
understanding of the expressions and assertions (and this should be all that is needed 
when doing the exercises). However, because we want to reason about proof systems 
based on assertions, not just examples, we shall be more formal, and give a theory of the 
meaning of expressions and assertions with integer variables. This is part of the predicate 
calculus. 

6.2.1 Free and bound variables 

We sayan occurrence of an integer variable i in an assertion is bound if it occurs in the 
scope of an enclosing quantifier Vi or ::li. If it is not bound we say it is free. For example, 
in 

::li. k = i x I 

the occurrence of the integer variable i is bound, while those of k and I are free-the 
variables k and I are understood as standing for particular integers even if we are not 
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precise about which. The same integer variable can have different occurrences in the 
same assertion one of which is free and another bound. For example, in 

(i + 100 -:::: 77) f\ (Vi. j + 1 = i + 3) 

the first occurrence of i is free and the second bound, while the sole occurrence of j is 
free. 

Although this informal explanation will probably suffice, we can give a formal defini
tion using definition by structural induction. Define the set FV(a) of free variables of 
arithmetic expressions, extended by integer variables, a E Aexpv, by structural induc-
tion 

FV(n) = FV(X) = 0 
FV(i) = {i} 

FV(ao + ad = FV(ao - ad = FV(ao x aI) = FV(ao) U FV(ad 

for all n E N, X E Loc, i E Intvar, and ao, al E Aexpv. Define the free variables 
FV(A) of an assertion A by structural induction to be 

FV(true) = FV(false) = 0 
FV(ao = aI) = FV(ao -:::: ad = FV(ao) U FV(ad 

FV(Ao f\ AI) = FV(Ao V AI) = FV(Ao => Ad = FV(Ao) U FV(Ad 

FVC-,A) = FV(A) 

FV(Vi.A) = FV(3i.A) = FV(A) \ {i} 

for all aO,aI E Aexpv, integer variables i and assertions Ao,Al,A. Thus we have made 
precise the notion of free variable. Any variable which occurs in an assertion A and yet 
is not free is said to be bound. An assertion with no free variables is closed. 

6.2.2 Substitution 

We can picture an assertion A as 

---i --- i--

say, with free occurrences of the integer variable i. Let a be an arithmetic expression, 
which for simplicity we assume contains no integer variables. Then 

Ala/i]:::::: ---a ---a--

is the result of substituting a for i. If a contained integer variables then it might be 
necessary to rename some bound variables of A in order to avoid the variables in a 

becoming bound by quantifiers in A-this is how it's done for general substitutions. 
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We describe substitution more precisely in the simple case. Let i be an integer variable 
and a be an arithmetic expression without integer variables, and firstly define substitution 
into arithmetic expressions by the following structural induction: 

n[a/i] == n X[a/i] == X 

j[a/i] == j i[a/i] == a 

(ao + ad [a/i] == (ao[a/i] + ada/iJ) 

(ao - at) [a/i] == (ao[a/i] - al[a/iJ) 

(ao x at) [a/i] == (ao[a/i] x al[a/iJ) 

where n is a number, X a location, j is an integer variable with j =f:. i and ao, al E Aexpv. 
Now we define substitution of a for i in assertions by structural induction-remember a 

does not have any free variables so we need not take any precautions to avoid its variables 
becoming bound: 

true[a/i] == true false[a/i] == false 

(ao = at) [a/i] == (ao[a/i] = al[a/iJ) (ao :S ad [a/i] == (ao[a/i] :S ada/iJ) 

(Ao 1\ Ad [a/i] == (Ao[a/i] 1\ Al [a/iJ) (Ao V At) [a/i] == (Ao[a/i] V AJ[a/iJ) 

(-,A)[a/i] == -,(A[a/iJ) (Ao =? Ad[a/i] == (Ao[a/i] =? Al [a/iJ) 

(Vj.A)[a/i] == Vj.(A[a/iJ) (Vi.A)[a/i] == Vi.A 

(:3j.A)[a/i] == :3j.(A[a/iJ) (:3i.A)[a/i] == :3i.A 

where ao, al E Aexpv, Ao, Al and A are assertions and j is an integer variable with 

j =f:. i. 
As was mentioned, defining substitution A[a/i] in the case where a contains free vari

ables is awkward because it involves the renaming of bound variables. Fortunately we 
don't need this more complicated definition of substitution for the moment. 

We use the same notation for substitution in place of a location X, so if an assertion 
A == ---X -- then A[a/X] = ---a --, putting a in place of X. This time the 
(simpler) formal definition is left to the reader. 

Exercise 6.1 Write down an assertion A E Assn with one free integer variable i which 
expresses that i is a prime number, i.e. it is required that: 

(J 1=1 A iff J(i) is a prime number. 

o 

Exercise 6.2 Define a formula LCM E Assn with free integer variables i, j and k, which 
means "i is the least common multiple of j and k," i.e. it is required that: 
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U 1=1 LCM iff I(k) is the least common multiple of I(i) and I(j). 

(Hint: The least common multiple of two numbers is the smallest non-negative integer 
divisible by both.) 0 

6.3 Semantics of assertions 

Because arithmetic expressions have been extended to include integer variables, we can
not adequately describe the value of one of these new expressions using the semantic 
function A of earlier. We must first interpret integer variables as particular integers. 
This is the role of interpretations. 

An interpretation is a function which assigns an integer to each integer variable i. e. a 
function I : Intvar ---> N. 

The meaning of expressions, Aexpv 

Now we can define a semantic function Av which gives the value associated with an 
arithmetic expression with integer variables in a particular state in a particular interpre
tation; the value of an expression a E Aexpv in a an interpretation I and a state u is 
written as Av[a]Iu or equivalently as (Av[a](I))(u). Define, by structural induction, 

Av[n]Iu = n 

Av[X]Iu = u(X) 

Av[i]Iu = I(i) 

Av[ao + al]Iu = Av[ao]Iu + Av[adIu 

Av[ao - adI u = Av[ao]I u - Av[al]I u 

Av[ao x al]I u = Av[ao]I u x Av[al]I u 

The definition of the semantics of arithmetic expressions with integer variables extends 
the denotational semantics given in Chapter 5 for arithmetic expressions without them. 

Proposition 6.3 For all a E Aexp (without integer variables), for all states u and for 
all interpretations I 

A[a]u = Av[a]I u. 

Proof: The proof is a simple exercise in structural induction on arithmetic expressions. 
o 



The axiomatic semantics of IMP 85 

The meaning of assertions, Assn 

Because we include integer variables, the semantic function requires an interpretation 
function as a further argument. The role of the interpretation function is solely to 
provide a value in N which is the interpretation of integer variables. 

Notation: We use the notation I[n/i] to mean the interpretation got from interpretation 
I by changing the value for integer-variable i to n i. e. 

I[n/i](j) = {;(j) if j == i, 
otherwise. 

We could specify the meanings of assertions in Assn in the same way we did for expres
sions with integer variables, but this time taking the semantic function from assertions 
to functions which, given an interpretation and state as an argument, returned a truth 
value. We choose an alternative though equivalent course. Given an interpretation I we 
define directly those states which satisfy an assertion. 

In fact, it is convenient to extend the set of states 2:; to the set 2:;.1 which includes 
the value 1.- associated with a nonterminating computation-so 2:;.1 =def 2:; U {1.-}. For 
A E Assn we define by structural induction when 

a pI A 

for a state a E 2:;, in an interpretation I, and then extend it so 1.- pIA. The relation 
a pI A means state a satisfies A in interpretation I, or equivalently, that assertion 
A is true at state a, in interpretation I. By structural induction on assertions, for an 
interpretation I, we define for all a E 2:;: 

a pI true, 

a pI (ao = ad if Av[ao]Ia = Av[al]Ia, 

a pI (ao :s: ad if Av[ao]Ia :s: Av[al]Ia, 

a pI A 1\ B if a pI A and a pI B, 

a pI A V B if a pI A or a pI B, 

a pI -,A if not a pI A, 

a pI A=} B if (not a pI A) or a pI B, 

a pI Vi.A if a pI[n/i] A for all n E N, 

a pI 3i.A if a pI[n/i] A for some n E N 

1.- pI A. 
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Note that, not 0" FI A is generally written as 0" ~I A. 
The above tells us formally what it means for an assertion to be true at a state once 

we decide to interpret integer variables in a particular way fixed by an interpretation. 
The semantics of boolean expressions provides another way of saying what it means for 
certain kinds of assertions to be true or false at a state. We had better check that the 
two ways agree. 

Proposition 6.4 For bE Bexp, 0" E L;, 

for any interpretation I. 

8[b]0" = true iff 0" FI b, and 

8[b]0" = false iff 0" ~I b 

Proof: The proof is by structural induction on boolean expressions, making use of 
Proposition 6.3. o 

Exercise 6.5 Prove the above proposition. o 

Exercise 6.6 Prove by structural induction on expressions a E Aexpv that 

Av[a]I[n/i]O" = Av[a[n/i]]IO". 

(N ote that n occurs as an element of N on the left and as the corresponding number in 
N on the right.) 
By using the fact above, prove 

0" FI Vi.A iff (J FI A[n/i] for all n E Nand 

0" FI :=Ii.A iff 0" FI A[n/i] for some n E N. 

The extension of an assertion 

o 

Let I be an interpretation. Often when establishing properties about assertions and 
partial correctness assertions it is useful to consider the extension of an assertion with 
respect to I i. e. the set of states at which the assertion is true. 

Define the extension of A, an assertion, with respect to an interpretation I to be 
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Partial correctness assertions 

A partial correctness assertion has the form 

{A}c{B} 

where A, B E Assn and c E Com. Note that partial correctness assertions are not in 
Assn. 

Let I be an interpretation. Let a E I;.L. We define the satisfaction relation between 
states and partial correctness assertions, with respect to I, by 

for an interpretation I. In other words, a state a satisfies a partial correctness assertion 
{A}c{B}, with respect to an interpretation I, iff any successful computation of c from a 
ends up in a state satisfying B. 

Validity 

Let I be an interpretation. Consider {A}c{B} . We are not so much interested in this 
partial correctness assertion being true at a particular state so much as whether or not 
it is true at all states i. e. 

Va E I;.L. a FJ {A}c{B}, 

which we can write as 
pJ {A}c{B}, 

expressing that the partial correctness assertion is valid with respect to the interpretation 
I, because {A }c{ B} is true regardless of which state we consider. Further, consider e.g. 

{i < X}X := X + l{i < X} 

We are not so much interested in the particular value associated with i by the inter
pretation I. Rather we are interested in whether or not it is true at all states for all 
interpretations I. This motivates the notion of validity. Define 

F {A}c{B} 

to mean for all interpretations I and all states a 

a FI {A}c{B}. 

When F {A}c{B} we say the partial correctness assertion {A}c{B} is valid. 
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Similarly for any assertion A, write F A iff for all interpretations I and states a, 
a F' A. Then say A is valid. 

Warning: Although closely related, our notion of validity is not the same as the notion of 
validity generally met in a standard course on predicate calculus or "logic programming." 
There an assertion is called valid iff for all interpretations for operators like +, x···, 
numerals 0, 1,···, as well as free variables, the assertion turns out to be true. We are 
not interested in arbitrary interpretations in this general sense because IMP programs 
operate on states based on locations with the standard notions of integer and integer 
operations. To distinguish the notion of validity here from the more general notion we 
could call our notion arithmetic-validity, but we'll omit the "arithmetic." 

Example: Suppose F (A::::} B). Then for any interpretation I, 

Va E ~. ((a F' A) ::::} (a FI B)) 

i. e. A I ~ B'. In a picture: 
: •••••••• w •••••••••••••••••••••••••••••••••••• o ••••••••••••••••••••••••• ~ 

tJ BI) 
~J, ................................................................. . 

So F (A::::} B) iff for all interpretations I, all states which satisfy A also satisfy B. 0 

Example: Suppose F {A}c{B}. Then for any interpretation I, 

Va E ~. ((a FI A) ::::} (C[c]a FI B)), 

i.e. the image of A under C[c] is included in B i.e. 

In a picture: 

~J, ................................................................. : 
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So F {A}c{B} iff for all interpretations J, if c is executed from a state which satisfies A 
then if its execution terminates in a state that state will satisfy B. 1 0 

Exercise 6.7 In an earlier exercise it was asked to write down an assertion A E Assn 
with one free integer variable i expressing that i was prime. By working through the 
appropriate cases in the definition of the satisfaction relation F I between states and 
assertions, trace out the argument that FI A iff J(i) is indeed a prime number. 0 

6.4 Proof rules for partial correctness 

We present proof rules which generate the valid partial correctness assertions. The proof 
rules are syntax-directed; the rules reduce proving a partial correctness assertion of a 
compound command to proving partial correctness assertions of its immediate subcom
mands. The proof rules are often called Hoare rules and the proof system, consisting of 
the collection of rules, Hoare logic. 

Rule for skip: 

Rule for assignments: 

Rule for sequencing: 

Rule for conditionals: 

Rule for while loops: 

Rule of consequence: 

{A}skip{A} 

{B[ajX]}X:= arB} 

{A}co{C} {C}Cl {B} 
{A}co; Cl {B} 

{A 1\ b}co{B} {A 1\ -,b}Cl {B} 
{A}if b then Co else cdB} 

{A 1\ b}c{A} 
{A}while b do c{A 1\ -,b} 

F (A '* A') {A'}c{B'} F (B' '* B) 
{A}c{B} 

IThe picture suggests, incorrectly, that the extensions of assertions .41 and Bl are disjoint; they will 
both always contain 1., and perhaps have other states in common. 
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Being rules, there is a notion of derivation for the Hoare rules. In this context the Hoare 
rules are thought of as a proof system, derivations are called proofs and any conclusion 
of a derivation a theorem. We shall write f-- {A}c{B} when {A}c{B} is a theorem. 

The rules are fairly easy to understand, with the possible exception of the rules for 
assignments and while-loops. If an assertion is true of the state before the execution of 
skip it is certainly true afterwards as the state is unchanged. This is the content of the 
rule for skip. 

For the moment, to convince that the rule for assignments really is the right way round, 
it can be tried for a particular assertion such as X = 3 for the simple assignment like 
X :=X +3. 

The rule for sequential compositions expresses that if {A}co{C} and {C}cdB} are 
valid then so is {A}co; Cl {B}: if a successful execution of Co from a state satisfying A 
ends up in one satisfying C and a successful execution of c 1 from a state satisfying C 
ends up in one satisfying B, then any successful execution of Co followed by Cl from a 
state satisfying A ends up in one satisfying B. 

The two premises in the rule for conditionals cope with two arms of the conditional. 
In the rule for while-loops while b do c, the assertion A is called the invariant because 

the premise, that {A 1\ b }c{ A} is valid, says that the assertion A is preserved by a full 
execution of the body of the loop, and in a while loop such executions only take place 
from states satisfying b. From a state satisfying A either the execution of the while-loop 
diverges or a finite number of executions of the body are performed, each beginning in 
a state satisfying b. In the latter case, as A is an invariant the final state satisfies A and 
also -,b on exiting the loop. 

The consequence rule is peculiar because the premises include valid implications. Any 
instance of the consequence rule has premises including ones of the form 1= (A '* A') 
and 1= (B' '* B) and so producing an instance of the consequence rule with an eye 
to applying it in a proof depends on first showing assertions (A '* A ') and (B' '* 
B) are valid. In general this can be a very hard task-such implications can express 
complicated facts about arithmetic. Fortunately, because programs often do not involve 
deep mathematical facts, the demonstration of these validities can frequently be done 
with elementary mathematics. 
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6.5 Soundness 

We consider for the Hoare rules two very general properties of logical systems: 

Soundness: Every rule should preserve validity, in the sense that if the assumptions 
in the rule's premise is valid then so is its conclusion. When this holds of a rule it is 
called sound. When every rule of a proof system is sound, the proof system itself is 
said to be sound. It follows then by rule-induction that every theorem obtained from 
the proof system of Hoare rules is a valid partial correctness assertion. (The comments 
which follow the rules are informal arguments for the soundness of some of the rules.) 

Completeness: Naturally we would like the proof system to be strong enough so that 
all valid partial correctness assertions can be obtained as theorems. We would like the 
proof system to be complete in this sense. (There are some subtle issues here which we 
discuss in the next chapter.) 

The proof of soundness of the rules depends on some facts about substitution. 

Lemma 6.8 Let I be an interpretation. Let a, ao E Aexpv. Let X E Loc. Then for all 
interpretations I and states (J 

Av[ao[a/XJ]I(J = Av[ao]I(J[Av[a]I(J/X]. 

Proof: The proof is by structural induction on ao--€xercise! o 

Lemma 6.9 Let I be an interpretation. Let B E Assn, X E Loc and a E Aexp. For 
all states (J E I; 

(J 1=1 B[a/X] iff (J[A[a](J/Xll=l B. 

Proof: The proof is by structural induction on B--€xercise! 

Exercise 6.10 Provide the proofs for the lemmas above. 

Theorem 6.11 Let {A}c{B} be a partial correctness assertion. 
Iff-- {A}c{B} then 1= {A}c{B}. 

o 

o 

Proof: Clearly if we can show each rule is sound (i. e. preserves validity in the sense 
that if its premise consists of valid assertions and partial correctness assertions then so 
is its conclusion) then by rule-induction we can see that every theorem is valid. 

The rule for skip: Clearly f= {A}skip{A} so the rule for skip is sound. 
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The rule for assignments: Assume c == (X := a). Let I be an interpretation. We have 
(11=1 B[a/X] iff (I[A[a~(I/X]1=1 B, by Lemma 6.9. Thus 

(11=1 B[a/X]:::} C[X:= a~(I 1=1 B, 

and hence 1= {B[a/X]}X:= a{B}, showing the soundness of the assignment rule. 

The rule for sequencing: Assume 1= {A}c{}OC and 1= {C}c{}lB. Let I be an in
terpretation. Suppose (I 1=1 A. Then C[co~(I 1=1 C because 1=1 {A }chOC. Also 
C[Cl~(C[CO~(I) 1=1 B because 1=1 {C}ch1B. Hence 1= {A}co; C1 {B}. 

The rule for conditionals: Assume 1= {A 1\ b}co{B} and 1= {A 1\ -,b}cI{B}. Let I be 
an interpretation. Suppose (I 1= I A. Either (I 1=1 b or (I 1=1 -,b. In the former case 
(11=1 Al\b so C[co](I 1=1 B, as 1=1 {Al\b}co{B}. In the latter case (11=1 AI\-,b so 
C[C1~(I 1=1 B, as 1=1 {A 1\ -,b}C1 {B}. This ensures 1= {A}if b then Co else C1 {B}. 

The rule for while-loops: Assume 1= {A 1\ b}c{A}, i.e. A is an invariant of 

w == while b do e. 

Let I be an interpretation. Recall that C[w~ = UnEw On where 

00 = 0, 
OnH = {((I, (I') I 13 [b] (I = true & ((I, (I') E On 0 C[en U {((I, (I) I 13[b]CJ = false.} 

We shall show by mathematical induction that Pen) holds where 

Pen) ¢=:} det'V(I, (I' E E. ((I, (I') E On & 

(I 1=1 A :::} (I' 1=1 A 1\ -,b 

for all nEw. It then follows that 

for all states (I, and hence that 1= {A}w{A 1\ -,b}, as required. 
Base case n = 0: When n = 0, 00 = 0 so that induction hypothesis P(O) is vacuously 
true. 
Induction Step: We assume the induction hypothesis Pen) holds for n :::: ° and attempt 
to prove Pen + 1). Suppose ((I, (I') E On+1 and (I 1=1 A. Either 

(i) 13[b](I = true and ((I, (I') E On 0 C[c], or 
(ii) 13[b](I = false and (I' = (I. 
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We show in either case that a ' 1=1 A A ---,b. 
Assume (i). As 8[b]a = true we have a 1=1 b and hence a 1=1 A A b. Also (a, a") E C[c] 
and (a", u' ) E en for some state a". We obtain a" 1=1 A, as 1= {A A b }c{ A}. From the 
assumption P(n), we obtain u' 1=1 A A ---,b. 
Assume (ii). As 8[b]a = false we have a 1=[ ---,b and hence a 1=1 A A ---,b. But a' = a. 

This establishes the induction hypothesis P(n + 1). By mathematical induction we 
conclude P(n) holds for all n. Hence the rule for while loops is sound. 

The consequence rule: Assume 1= (A =} A') and 1= {A'}C{B'} and 1= (B' =} B). Let I 
be an interpretation. Suppose u 1=1 A. Then a 1=1 A', hence C[c]a 1=1 B' and hence 
C[c]a 1=1 B. Thus 1= {A}c{B}. The consequence rule is sound. 

By rule-induction, every theorem is valid. o 

Exercise 6.12 Prove the above using only the operational semantics, instead of the 
denotational semantics. What proof method is used for the case of while-loops? 0 

6.6 Using the Hoare rules-an example 

The Hoare rules determine a notion of formal proof of partial correctness assertions 
through the idea of derivation. This is useful in the mechanisation of proofs. But in 
practice, as human beings faced with the task of verifying a program, we need not be 
so strict and can argue at a more informal level when using the Hoare rules. (Indeed 
working with the more formal notion of derivation might well distract from getting the 
proof; the task of producing the formal derivation should be delegated to a proof assistant 
like LCF or HOL [74], [43].) 

As an example we show in detail how to use the Hoare rules to verify that the command 

w == (while X > 0 do Y:= X x Y; X := X-I) 

does indeed compute the factorial function n! = n x (n - 1) x (n - 2) x ... x 2 x 1, with 
O! understood to be 1, given that X = n, a nonnegative number, and Y = 1 initially. 2 

More precisely, we wish to prove: 

{X = nAn ~ 0 A Y = l}w{Y = n!}. 

To prove this we must clearly invoke the proof rule for while-loops which requires an 
invariant. Take 

1== (Y x X! = n! A X ~ 0). 

2For this example, we imagine our syntax of programs and assertions to be extended to include> and 
the factorial function which strictly speaking do not appear in the boolean and arithmetic expressions 
defined earlier. 
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We show f is indeed an invariant i. e. 

{I AX> O}Y:= X x Y;X:= X -1{I}. 

From the rule for assignment we have 

{f[(X - l)/X]}X:= X - 1{I} 

where f[(X - 1)/ Xl == (Y x (X - I)! = n! A (X - 1) ~ 0). Again by the assignment rule: 

{X x Y x eX -I)! = n! A (X -1) ~ O}Y:= X x Y{f[(X -l)jX]}. 

Thus, by the rule for sequencing, 

Clearly 

{X x Y x (X - I)! = n! A (X -1) ~ O}Y := X x Y; X := eX - 1){I}. 

fAX > 0 =}Y x X! = n! A X ~ 0 A X> 0 

=}YxX!=n!AX~l 

=}X x Y x (X - I)! = n! A (X - 1) ~ o. 
Thus by the consequence rule 

{I AX> O}Y:= X x Y;X:= (X -1){I} 

establishing that f is an invariant. 
Now applying the rule for while-loops we obtain 

{I}w{I A X 1 O}. 

Clearly (X = n) A (n ~ 0) A (Y = 1) =} f, and 

fAX10=}YxX!=n!AX~OAX10 

=}YxX!=n!AX=O 

=}Y x O! = Y = n! 

Thus by the consequence rule we conclude 

{(X = n) A (Y = l)}w{Y = n!}. 

There are a couple of points to note about the proof given in the example. Firstly, in 
dealing with a chain of commands composed in sequence it is generally easier to proceed 



The axiomatic semantics of IMP 95 

in a right-to-left manner because the rule for assignment is of this nature. Secondly, our 
choice of I may seem unduly strong. Why did we include the assertion X ;:::: 0 in the 
invariant? Notice where it was used, at (*), and without it we could not have deduced 
that on exiting the while-loop the value of X is O. In getting invariants to prove what 
we want they often must be strengthened. They are like induction hypotheses. One 
obvious way to strengthen an invariant is to specify the range of the variables and values 
at the locations as tightly as possible. Undoubtedly, a common difficulty in examples 
is to get stuck on proving the "exit conditions". In this case, it is a good idea to see 
how to strengthen the invariant with information about the variables and locations in 
the boolean expression. 

Thus it is fairly involved to show even trivial programs are correct. The same is true, 
of course, for trivial bits of mathematics, too, if one spells out all the details in a formal 
proof system. One point of formal proof systems is that proofs of properties of programs 
can be automated as in e.g. [74][41]-see also Section 7.4 on verification conditions in the 
next chapter. There is another method of application of such formal proof systems which 
has been advocated by Dijkstra and Gries among others, and that is to use the ideas 
in the study of program correctness in the design and development of programs. In his 
book "The Science of Programming" [44], Gries says 

"the study of program correctness proofs has led to the discovery and elucidation 
of methods for developing programs. Basically, one attempts to develop a program 
and its proof hand-in-hand, with the proof ideas leading the way!" 

See Gries' book for many interesting examples of this approach. 

Exercise 6.13 Prove, using the Hoare rules, the correctness of the partial correctness 
assertion: 

{I :S N} 

P:=O; 

C:= 1; 

(while C:S N do P:= P + M; C:= C + 1) 

{P = M x N} 
o 

Exercise 6.14 Find an appropriate invariant to use in the while-rule for proving the 
following partial correctness assertion: 

{i = Y}while -'(Y = 0) do Y:= Y -l;X:= 2 x X{X = 2i} 

o 
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Exercise 6.15 Using the Hoare rules, prove that for integers n, m, 

{X = m /I. Y = n /I. Z = l}c{Z = mn} 

where c is the while-program 

while .(Y = 0) do 

((while even(Y) do X := X x X; Y := Y/2); 

Z:= Z x X;Y:= Y -1) 

Chapter 6 

with the understanding that Y /2 is the integer resulting from dividing the contents of Y 
by 2, and even(Y) means the content of Y is an even number. 
(Hint: Use mn = Z x X Y as the invariants.) 0 

Exercise 6.16 
(i) Show that the greatest common divisor, gcd(n, m) of two positive numbers n, m 
satisfies: 

(a) n > m =} gcd(n, m) = gcd(n - m, m) 

(b) gcd(n, m) = gcd(m, n) 

(c) gcd(n, n) = n. 

(ii) Using the Hoare rules prove 

where 

{N = n/l. M = m/l.l:-:; n 1\ 1:-:; m}Euclid{X = gcd(n,m)} 

Euclid == while .(M = N) do 

if M:-:; N 

then N:= N-M 

else M := M - N. 

Exercise 6.17 Provide a Hoare rule for the repeat construct and prove it sound. 

o 

(cf. Exercise 5.9.) 0 

6.7 Further reading 

The book [44] by Gries has already been mentioned. Dijkstra's "A discipline of pro
gramming" [36] has been very influential. A more elementary book in the same vein 
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is Backhouse's "Program construction and verification" [12J. A recent book which is 
recommended is Cohen's "Programming in the 1990's" [32J. A good book with many 
exercises is Alagic and Arbib's "The design of well-structured and correct programs" [5J. 
An elementary treatment of Hoare logic with a lot of informative discussion can be found 
in Gordon's recent book [42J. Alternatives to this book's treatment, concentrating more 
on semantic issues than the other references, can be found in de Bakker's "Mathemat
ical theory of program correctness" [13J and Loeckx and Sieber's "The foundations of 
program verification" [58J. 





7 Completeness of the Hoare rules 

In this chapter it is discussed what it means for the Hoare rules to be complete. Codel's 
Incompleteness Theorem implies there is no complete proof system for establishing pre
cisely the valid assertions. The Hoare rules inherit this incompleteness. However by 
separating incompleteness of the assertion language from incompleteness due to inade
quacies in the axioms and rules for the programming language constructs, we can obtain 
relative completeness in the sense of Cook. The proof that the Hoare rules are relatively 
complete relies on the idea of weakest liberal precondition, and leads into a discussion of 
verification-condition generators. 

1.1 Godel's Incompleteness Theorem 

Look again at the proof rules for partial correctness assertions, and in particular at the 
consequence rule. Knowing we have a rule instance of the consequence rule requires that 
we determine that certain assertions in Assn are valid. Ideally, of course, we would 
like a proof system of axioms and rules for assertions which enabled us to prove all the 
assertions of Assn which are valid, and none which are invalid. Naturally we would 
like the proof system to be effective in the sense that it is a routine matter to check 
that something proposed as a rule instance really is one. It should be routine in the 
sense that there is a computable method in the form of a program which, with input 
a real rule instance, returns a confirmation that it is, and returns no confirmation on 
inputs which are not rule instances, without necessarily even terminating. Lacking such 
a computable method we might well have a proof derivation without knowing it because 
it uses a step we cannot check is a rule instance. We cannot claim that the proof system 
of Hoare rules is effective because we do not have a computable method for checking 
instances of the consequence rule. Having such depends on having a computable method 
to check that assertions of Assn are valid. But here we meet an absolute limit. The 
great Austrian logician Kurt Codel showed that it is logically impossible to have an 
effective proof system in which one can prove precisely the valid assertions of Assn. 
This remarkable result, called Codel's Incompleteness Theorem 1 is not so hard to prove 
nowadays, if one goes about it via results from the theory of computability. Indeed a 
proof of the theorem, stated now, will be given in Section 7.3 based on some results from 
computability. Any gaps or shortcomings there can be made up for by consulting the 
Appendix on computability and undecidability based on the language of while programs, 
IMP. 

IThe Incompleteness Theorem is not to be confused with Godel's Completeness Theorem which says 
that the proof system for predicate calculus generates precisely those assertions which are valid for all 
interpretations. 
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Theorem 7.1 Cadel's Incompleteness Theorem {1931}: 
There is no effective proof system for Assn such that the theorems coincide with the valid 
assertions of Assn. 

This theorem means we cannot have an effective proof system for partial correctness 
assertions. As F B iff F {true}skip{B}, if we had an effective proof system for partial 
correctness it would reduce to an effective proof system for assertions in Assn, which is 
impossible by G6del's Incompleteness Theorem. In fact we can show there is no effective 
proof system for partial correctness assertions more directly. 

Proposition 7.2 There is no effective proof system for partial correctness assertions 
such that its theorems are precisely the valid partial correctness assertions. 

Proof: Observe that F {true }c{ false} iff the command c diverges on all states. If we 
had an effective proof system for partial correction assertions it would yield a computable 
method of confirming that a command c diverges on all states. But this is known to be 
impossible-see Exercise A.13 of the Appendix. 0 

Faced with this unsurmountable fact, we settle for the proof system of Hoare rules 
in Section 6.4 even though we know it to be not effective because of the nature of 
the consequence rule; determining that we have an instance of the consequence rule is 
dependent on certain assertions being valid. Still, we can inquire as to the completeness 
of this system. That it is complete was established by S. Cook in [33]. If a partial 
correctness assertion is valid then there is a proof of it using the Hoare rules, i. e. for any 
partial correctness assertion {A }c{ B}, 

F {A}c{B} implies f-- {A}c{B}, 

though the fact that it is a proof can rest on certain assertions in Assn being valid. It is 
as if in building proofs one could consult an oracle at any stage one needs to know if an 
assertion in Assn is valid. For this reason Cook's result is said to establish the relative 
completeness of the Hoare rules for partial correctness-their completeness is relative to 
being able to draw from the set of valid assertions about arithmetic. In this way one 
tries to separate concerns about programs and reasoning about them from concerns to 
do with arithmetic and the incompleteness of any proof system for it. 

7.2 Weakest preconditions and expressiveness 

The proof of relative completeness relies on another concept. Consider trying to prove 

{A}co; C1 {B}. 
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In order to use the rule for composition one requires an intermediate assertion C so that 

{A}co{C} and {C}ct{B} 

are provable. How do we know such an intermediate assertion C can be found? A 
sufficient condition is that for every command c and postconditions B we can express 
their weakest precondition 2 in Assn. 

Let c E Com and B E Assn. Let I be an interpretation. The weakest precondition 
wpI[c, B] of B with respect to c in I is defined by: 

wl[c,B] = {O" E 2:.L I C[c]O" 1=1 B}. 

It's all those states from which the execution of c either diverges or ends up in a final 
state satisfying B. Thus if 1=1 {A}c{B} we know 

AI ~ wpI[c, B] 

and vice versa. Thus 1=1 {A }c{ B} iff A I ~ wpI [c, Ell. 
Suppose there is an assertion Ao such that in all interpretations I, 

Then 
1=1 {A}c{B} iff 1=1 (A "* Ao), 

for any interpretation I i. e. 

1= {A}c{B} iff 1= (A "* Ao). 

So we see why it is called the weakest precondition, it is implied by any precondition 
which makes the partial correctness assertion valid. However it's not obvious that a 
particular language of assertions has an assertion Ao such that A& = wpI[c, B]. 

Definition: Say Assn is expressive iff for every command c and assertion B there is an 
assertion Ao such that A& = wpI[c, B] for any interpretation I. 

In showing expressiveness we will use G6del's (3 predicate to encode facts about se
quences of states as assertions in Assn. The (3 predicate involves the operation a mod b 
which gives the remainder of a when divided by b. We can express this notion as an 
assertion in Assn. For x = a mod b we write 

2What we shall call weakest precondition is generally called weakest liberal precondition, the term 
weakest precondition referring to a related notion but for total correctness. 
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a:::::O 1\ b:::::O 1\ 

:Jk.[k ::::: 0 1\ k X b 5, a 1\ (k + 1) x b> a 1\ x = a - (k x b)]. 

Lemma 7.3 Let f3(a, b, i, x) be the predicate over natural numbers defined by 

f3(a, b, i, x) {=}de! X = a mod(l + (1 + i) x b). 

For any sequence no, ... ,nk of natural numbers there are natural numbers n, m such 

that for all j, 0 5, j 5, k, and all x we have 

f3(n,m,j,x) {=} x = nj. 

Proof: The proof of this arithmetical fact is left to the reader as a small series of exercises 
at the end of this section. 0 

The f3 predicate is important because with it we can encode a sequence of k natural 
numbers no," " nk as a pair n, m. Given n, m, for any length k, we can extract a 
sequence, viz. that sequence of numbers no, ... ,nk such that 

for 0 ~ j 5, k. Notice that the definition of f3 shows that the list no,'" ,nk is uniquely 
determined by the choice of n, m. The lemma above asserts that any sequence no, ... ,nk 

can be encoded in this way. 
We must now face a slight irritation. Our states and our language of assertions can 

involve negative as well as positive numbers. We are obliged to extend Godel's f3 predicate 
so as to encode sequences of positive and negative numbers. Fortunately, this is easily 
done by encoding positive numbers as the even and negative numbers as the odd natural 
numbers. 

Lemma 7.4 Let F(x,y) be the predicate over natural numbers x and positive and neg

ative numbers y given by 

Define 

F(x, y) 

:Jz ::::: O. 

x::::: 0 & 

[(x = 2 x z =? Y = z) & 

(x = 2 x z + 1 =? Y = -z)] 

f3±(n,m,j,y) {=}de! 3x.(f3(n,m,j,x) I\F(x,y)). 
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Then for any sequence no, ... ,nk of positive or negative numbers there are natural num
bers n, m such that for all j, 0 ::; j ::; k, and all x we have 

f3±(n,m,j,x) {o} x = nj. 

Proof: Clearly F(n, m) expresses the 1-1 correspondence between natural numbers m E 

wand n E N in which even m stand for non-negative and odd m for negative numbers. 
The lemma follows from Lemma 7.3. 0 

The predicate f3± is expressible in Assn because f3 and F are. To avoid introducing a 
further symbol, let us write f3± for the assertion in Assn expressing this predicate. This 
assertion in Assn will have free integer variables, say n, m, j, x, understood in the same 
way as above, i. e. n, m encodes a sequence with jth element x. We will want to use 
other integer variables besides n, m, j, x, so we write f3± (n', m', j', x') as an abbreviation 
for f3±[n'/n,m'/m,j'fj,x'/x], got by substituting the the integer variable n' for n, m' 
for m, and so on. We have not give a formal definition of what it means to substitute 
integer variables in an assertion. The definition of substitution in Section 6.2.2 only 
defines substitutions A[a/i] of arithmetic expressions a without integer variables, for an 
integer variable i in an assertion A. However, as long as the variables n', m' , l' ,x' are 
"fresh" in the sense of their being distinct and not occurring (free or bound) in f3 ±, the 
same definition applies equally well to the substitution of integer variables; the assertion 
f3± [n' In, m' /m, j' fj, x' /x] is that given by f3± [n' /n][m' /m][j' fj][x' /x] using the definition 
of Section 6.2.2.3 

Now we can show: 

Theorem 7.5 Assn is expressive. 

Proof: We show by structural induction on commands c that for all assertions B there 
is an assertion w[c, B] such that for all interpretations I 

WpI [c, B] = w[c, B] I, 

for all commands c. 
Note that by the definition of weakest precondition that, for I an interpretation, the 

equality wpI[c, B] = w[c, B]f amounts to 

a- pJ w[c, B] iff C[c]a- FI B, 

3To illustrate the technical problem with substitution of integer variables which are not fresh, consider 
the assertion A == (:li'. 2 x i' = i) which means "i is even." The naive definition of A[i'li] yields the 
assertion (:li'. 2 x i' = i') which happens to be valid, and so certainly does not mean "i is even." 
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holding for all states 0-, a fact we shall use occasionally in the proof. 

C == skip: In this case, take w[skip, B~ == B. Clearly, for all states 0- and interpretations 
I, 

0- E wpI [skip, BD iff C[skip~o- pI B 

iff 0- pI B 

iff 0- pI w[skip, Bl 

C == (X := a) : In this case, define w[X := a, Bn == B[a/ X]. Then 

0- E wpI[X := a, ED iff o-[A[ano-/ X] pI B 

iff 0- pI B[a/ X] by Lemma 6.9 

iff 0- pI w[X := a, Bl 

C == co; Cl : Inductively define w[co; Cl, Bn == w[co, W[Cl' BnD- Then, for 0- E ~ and 
interpretation I, 

0- E wpI [Co; Cl, Bn iff C[co; Clno- pI B 

iff C[ClTI(C[COno-) pI B 

iff C[cono- pI W[Cl, Bn, by induction, 

iff 0- pI w[co, W[Cl' Bn], by induction, 

iff 0- pI W[Co; Cl, Bn. 

C == if b then Co else Cl : Define 

w[if b then Co else Cl, B] == [(b A w[co, Bm V (-,b A W[Cl' Bn)]. 

Then, for 0- E ~ and interpretation I, 

0- E wpI [c, Bn iff C[c]o- 1=1 B 

iff ([8[b]0- = true & C[co]o- pI B] or 

[8[b]o- = false & C[Cl]o- 1=1 BD 

iff ([0- 1=1 b & 0- 1=1 w[co, B]) or 

[0- 1=1 -,b & 0- 1=1 W[Cl, Bm, by induction, 

iff 0-1=1 [(bA w[cQ,B]]) V (-,bA W[Cl' Bn)] 

iff 0- 1=1 w[c, B]. 
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c == while b do co: This is the one difficult case. For a state a and interpretation I, we 
have (from Exercise 5.8) that a E wpI[c,B] iff 

'Vk 'Vao, ... ,ak E ~. 

[a = ao & 

'Vi(O :::; i < k). ( ai FI b & 

(1) 

As it stands the mathematical characterisation of states a in wpI[c, B] is not an as
sertion in Assn; in particular it refers directly to states ao,"', ak. However we show 
how to replace it by an equivalent description which is. The first step is to replace all 
references to the states ao, ... , ak by references to the values they contain at the locations 
mentioned in c and B. Suppose X = Xl, ... ,Xl are the locations mentioned in c and 
B-the values at the remaining locations are irrelevant to the computation. We make 
use of the following fact: 
Suppose A is an assertion in Assn which mentions only locations from X = Xl, ... , Xl. 

For a state a, let Si = a(Xi ), for 1 :::; i :::; t, and write S = Sl,"', Sl. Then 

for any interpretation I. The assertion A[s/ Xl is that obtained by the simultaneous 
substitution of s for X in A. This fact can be proved by structural induction (Exercise!). 

Using the fact (*) we can convert (1) into an equivalent assertion about sequences. For 
i 2: 0, let Si abbreviate Si1, ... , Sil, a sequence in N. We claim: a E wpI[c, B] iff 

'Vk'VSO, ... ,Sk EN. 
[a FI X = So & 

'Vi (0:::; i < k). (F I b[sdXl & 

We have used X = So to abbreviate Xl = SOl /I. ... /I. Xl = SOL. 

(2) 
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To prove the claim we argue that (1) and (2) are equivalent. Parts of the argument 
are straightforward. For example, it follows directly from (*) that, assuming state 0" i has 
values Si at X, 

for an interpretation I. The hard part hinges on showing that assuming 0" i and O"i+l have 
values Si and Si+l, respectively, at X and agree elsewhere, we have 

for an interpretation I. To see this we first observe that 

C[CO]O"i = O"i+l iff O"i E wpl[cO, X = Si+d & C[CO]O"i is defined. 

(Why?) From the induction hypothesis we obtain 

I - -
O"i E wp [co, X = si+d 
C[CO]O"i is defined iff 

iff O"i 1=1 (w[co, X = si+d, and 

O"i 1=1 ...,w[co, false] 

-recall that O"i E wpl [co, false] iff Co diverges on O"i. Consequently, 

This covers the difficulties in showing (1) and (2) equivalent. 
Finally, notice how (2) can be expressed in Assn, using the Godel predicate j3 ±. For 

simplicity assume I = 1 with X = X. Then we can rephrase (2) to get: 0" E wpI[c, B] iff 

0" FI VkVm,n ~ 0. 

[j3±(n,m,O,X) /I. 

Vi (0:::; i < k). ("Ix. j3±(n,m,i,x) ==} b[x/X]) /I. 

"Ix, y. (j3±(n, m,i,x) /I. j3±(n, m, i + 1, y) ==} 

(w[co,X = y] /I.""w[co,false])[x/X])] 

==} (j3± (n, m, k, x) ==} (b V B)[x / Xl) 

This is the assertion we take as w[c, B] in this case. (In understanding this assertion 
compare it line-for-line with (2), bearing in mind that j3±(n,m,i,x) means that x is the 
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ith element of the sequence encoded by the pair n, m.) The form of the assertion in the 
general case, for arbitrary I, is similar, though more clumsy, and left to the reader. 

This completes the proof by structural induction. D 

As Assn is expressive for any command c and assertion B there is an assertion w[c, B] 
with the property that 

for any interpretation I. Of course, the assertion w[c, B] constructed in the proof of 
expressiveness above, is not the unique assertion with this property (Why not?). However 
suppose Ao is another assertion such that Al = wpI [c, B] for all I. Then 

F (w[c,B] {::::::::> Ao)· 

So the assertion expressing a weakest precondition is unique to within logical equivalence. 
The useful key fact about such an assertion w[c, B] is that, from the definition of weakest 
precondition, it is characterised by: 

a FI w[c, B] iff C[c]a FI B, 

for all states a and interpretations I. 
From the expressiveness of Assn we shall prove relative completeness. First an im

portant lemma. 

Lemma 7.6 For c E Com and B E Assn, let w[c, B] be an assertion expressing the 
weakest precondition i. e. w[c, B] I = wpI [c, B] (the assertion w[c, B] need not be neces
sarily that constructed by Theorem 7.5 above). Then 

f- {w[c,B]}c{B}. 

Proof: Let w[c, B] be an assertion which expresses the weakest precondition of a com
mand c and postcondition B. We show by structural induction on c that 

f- {w[c, B]}c{B} for all B E Assn, 

for all commands c. 
(In all but the last case, the proof overlaps with that of Theorem 7.5.) 

c == skip : In this case F w[skip, B] {::::::::> B, so f- {w[skip, B]}skip{ B} by the 
consequence rule. 
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c == (X := a) : In this case 

CT E wpI[c,B] iff CT[.A[a]CT/X] FI B 

iff CT FI B[a/ X]. 

Chapter 7 

Thus F (w[c, B] ~ B[a/ Xl). Hence by the rule for assignment with the consequence 
rule we see f-- {w[c, B]}c{ B} in this case. 

c == co; Cl : In this case, for CT E ~ and interpretation I, 

CT FI w[co; Cl, B] iff C[co; Cl]CT FI B 

iff C[cI](C[CO]CT) FI B 

iff C[CO]CT FI W[C1, B] 

iff CT FI w[co, W[Cl, Bn 
Thus F w[co; C1, B] ~ w[co, W[Cl, B]]. By the induction hypothesis 

f-- {w[co, W[Cl, B]nco{ W[Cl, Bn and 

f-- {w[cl,B]}cdB}. 

Hence, by the rule for sequencing, we deduce 

f-- {w[co, W[Cl, B]] }co; C1 {B} 

By the consequence rule we get 

C == if b then Co else Cl : In this case, for CT E ~ and interpretation I, 

Hence 

CT FI w[c, B] iff C[C]CT FI B 

iff ([8[b]CT = true & C[CO]CT FI B] or 

[8[b]CT = false & C[CI]CT FI BD 

iff ([CT FI b & CT FI w[co, B]] or 

[CT FI -.b & CT FI W[Cl, Bm 

iff CT FI [(b A w[co, B]]) V (-.b A W[Cl, B])]. 

F w[c,B] ~ [(bA w[co,B]]) V (-.bA w[cl,B])]. 
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Now by the induction hypothesis 

I- {w[eo, Bneo{B} and I- {w[el' BnCl {B}. 

But 
1= (w[e,B]t\b) {:==} w[eo,B] and 

F (w[e, B] t\ .....,b) {:==} w[el' B]. 

So by the consequence rule 

I- {w[e, B] t\ b}eo{B} and I- {w[e, B] t\ .....,b }et{ B}. 

By the rule for conditionals we obtain I- {w[e, Bne{ B} in this case. 

Finally we consider the case: 
c == while b do Co : Take A == w[e, B]. We show 

(1) 1= {A t\ b}eo{A}, 
(2) 1= (A t\ .....,b) =? B. 
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Then, from (1), by the induction hypothesis we obtain I- {A t\ b}co{A}, so that by the 
while-rule I- {A}e{A t\ .....,b}. Continuing, by (2), using the consequence rule, we obtain 
I- {A}c{B}. Now we prove (1) and (2). 

(1) Let 0' 1=1 A t\ b, for an interpretation I. Then 0' 1=1 w[e, B] and 0' 1=1 b, i.e. 
C[e]O' 1=1 Band 0' 1=1 b. But C[e] is defined so 

C[e] = C[if b then Co; c else skip], 

which makes C[eo; e]O' 1=1 B, i.e. C[e](C[eo]O') 1=1 B. Therefore C[eo]O' 1=1 w[e, B], i.e. 
C[eo]O' 1=1 A. Thus 1= {A t\ b}eo{A}. 

(2) Let 0' 1=1 A t\ .....,b, for an interpretation I. Then C[e]O' 1=1 Band 0' 1=1 .....,b. Again 
note C[e] = C[if b then co; e else skip], so C[e]O' = 0'. Therefore 0' 1=1 B. It follows 
that 1=1 A t\.....,b =? B. Thus 1= A t\.....,b =? B, proving (2). 

This completes all the cases. Hence, by structural induction, the lemma is proved. 0 

Theorem 7.7 The proof system for partial correctness is relatively complete, i. e. for 
any partial correctness assertion {A}e{B}, 

I- {A}e{B} if 1= {A}e{B}. 
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Proof: Suppose 1= {A}c{B}. Then by the above lemma f-- {w[c, B]}c{B} where w[c, B] I :::: 
wpI[c, B] for any interpretation I. Thus as 1= (A =? w[c, B]), by the consequence rule, 
we obtain f-- {A}c{B}. 0 

Exercise 7.8 (The G6del f3 predicate) 

(a) Let no, ... ,nk be a sequence of natural numbers and let 

m = (max {k,no, .. · ,nd)! 

Show that the numbers 

Pi = 1 + (1 + i) x m, for 0 :::; i :::; k 

are coprime (i.e., gcd(Pi,pj) = 1 for i f. j) and that ni < Pi· 
(b) Further, define 

Ci = Po x ... X Pk/pi, for 0 :::; i :::; k. 

Show that for all i, 0 :::; i :::; k, there is a unique di , 0 :::; di < Pi, such that 

(c) In addition, define 

Show that 

when 0 :::; i :::; k. 
(d) Finally prove lemma 3. 

k 

n = L Ci X di x ni· 
i=O 

ni = nmodpi 

7.3 Proof of Godel's Theorem 

o 

G6del's Incompleteness Theorem amounts to the fact that the subset of valid assertions 
in Assn is not recursively enumerable (i. e. , there is no program which given assertions 
as input returns a confirmation precisely on the valid assertions-see the Appendix on 
computability for a precise definition and a more detailed treatment). 

Theorem 7.9 The subset of assertions {A E Assn I 1= A} is not recursively enumer

able. 
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Proof: Suppose on the contrary that the set {A E Assn I 1= A} is recursively enumer
able. Then there is a computable method to confirm that an assertion is valid. This 
provides a computable method to confirm that a command c diverges on the zero-state 
<70, in which each location X has contents 0: 
Construct the assertion w[c, false] as in the proof of Theorem 7.5. Let X consist of all 
the locations mentioned in w[c, false]. Let A be the assertion w[c, false] [0/ XL obtained 
by replacing the locations by zeros. Then the divergence of c on the zero-state can be 
confirmed by checking the validity of A, for which there is assumed to be a computable 
method. 
But it is known that the commands c which diverge on the zero-state do not form 
a recursively enumerable set-see Theorem A.12 in the Appendix. This contradiction 
shows {A E Assn I 1= A} to not be recursively enumerable. D 

As a corollary we obtain Godel's Incompleteness Theorem: 

Theorem 7.10 (Theorem 7.1 restated) (Gadel's Incompleteness Theorem): 
There is no effective proof system for Assn such that its theorems coincide with the 

valid assertions of Assn. 

Proof: Assume there were an effective proof system such that for an assertion A, we 
have A is provable iff A is valid. The proof system being effective implies that there is a 
computable method to confirm precisely when something is a proof. Searching through 
all proofs systematically till a proof of an assertion A is found provides a computable 
method of confirming precisely when an assertion A is valid. Thus there cannot be an 
effective proof system. D 

Although we have stated Godel's Theorem for assertions Assn the presence of locations 
plays no essential role in the results. Godel's Theorem is generally stated for the smaller 
language of assertions without locations-the language of arithmetic. The fact that 
the valid assertions in this language do not form a recursively enumerable set means 
that the axiomatisation of arithmetic is never finished-there will always be some fact 
about arithmetic which remains unprovable. Nor can we hope to have a program which 
generates an infinite list of axioms and effective proof rules so that all valid assertions 
about arithmetic follow. If there were such a program there would be an effective proof 
system for arithmetical assertions, contradicting Godel's Incompleteness Theorem. 

Godel's result had tremendous historical significance. Godel did not have the concepts 
of computability available to him. Rather his result stimulated logicians to research dif
ferent formulations of what it meant to be computable. The original proof worked by 
expressing the concept of provability of a formal system for assertions as an assertion 
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itself, and constructing an assertion which was valid iff it was not provable. It should 
be admitted that we have only considered Godel's First Incompleteness Theorem; there 
is also a second which says that a formal system for arithmetic cannot be proved free of 
contradiction in the system itself. It was clear to Godel that his proofs of incompleteness 
hinged on being able to express a certain set of functions on the natural numbers by 
assertions-the set has come to be called the primitive recursive functions. The reali
sation that a simple extension led to a stable notion of computable function took some 
years longer, culminating in the Church-TUring thesis. The incompleteness theorem dev
astated the programme set up by Hilbert. As a reaction to paradoxes like Russell's in 
mathematical foundations, Hilbert had advocated a study of the finitistic methods em
ployed when reasoning within some formal system, hoping that this would lead to proofs 
of consistency and completeness of important proof systems, like one for arithmetic. 
Godel's Theorem established an absolute limit on the power ot finitistic reasoning. 

7.4 Verification conditions 

In principle, the fact that Assn is expressive provides a method to reduce the demonstra
tion that a partial correctness assertion is valid to showing the validity of an assertion in 
Assn; the validity of a partial correctness assertion of the form {A }c{ B} is equivalent to 
the validity of the assertion A =? w[c, B], from which the command has been eliminated. 
In this way, given a theorem prover for predicate calculus we might hope to derive a the
orem prover for IMP programs. Unfortunately, the method we used to obtain w[c, B] 
was convoluted and inefficient, and definitely not practical. 

However, useful automated tools for establishing the validity of partial correctness 
assertions can be obtained along similar lines once we allow a little human guidance. Let 
us annotate programs by assertions. Define the syntactic set of annotated commands by: 

c ::=skip I X := a I co; (X := a) I co; {D}cl I 
if b then Co else Cl I while b do {D}c 

where X is a location, a an arithmetic expression, b is a boolean expression, c, co, Cl 

are annotated commands and D is an assertion such that in co; {D}cl, the annotated 
command Cl, is not an assignment. The idea is that an assertion at a point in an 
annotated command is true whenever flow of control reaches that point. Thus we only 
annotate a command of the form co; CI at the point where control shifts from Co to CI. 

lt is unnecessary to do this when Cl is an assignment X := a because in that case an 
annotation can be derived simply from a postcondition. An annotated while-loop 

while b do {D}e 
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contains an assertion D which is intended to be an invariant. 
An annotated partial correctness assertion has the form 

{A}c{B} 

where c is an annotated command. Annotated commands are associated with ordinary 
commands, got by ignoring the annotations. It is sometimes convenient to treat an
notated commands as their associated commands. In this spirit, we sayan annotated 
partial correctness assertion is valid when its associated (unannotated) partial correctness 
assertion is. 

An annotated while-loop 

{A}while b do {D}c{B} 

contains an assertion D, which we hope has been chosen judiciously so D is an invariant. 
Being an invariant means that 

{D 1\ b}c{D} 

is valid. In order to ensure 

{A} while b do {D}c{B} 

is valid, once it is known that D is an invariant, it suffices to show that both assertions 

A =? D, D 1\ -,b =? B 

are valid. A quick way to see this is to notice that we can derive {A }while b do c{ B} 
from {D 1\ b}c{D} using the Hoare rules which we know to be sound. As is clear, not 
all annotated partial correctness assertions are valid. To be so it is sufficient to establish 
the validity of certain assertions, called verification conditions for which all mention of 
commands is eliminated. Define the verification conditions (abbreviated to vc) of an 
annotated partial correctness assertion by structural induction on annotated commands: 

vc( {A}skip{B}) 

vc({A}X:= a{B}) 

vc({A}co;X:= a{B}) 

vc( {A }co; {D}CI {B}) 

vc( {A }if b then Co else CI {B}) 

vc({A}while b do {D}c{B}) 

{A =? B} 

{A =? B[a/X]} 

vc( {A}co{B[a/ X]}) 

vc( {A }co{ D}) U vc( {D}CI {B}) 

where clis not an assignment 

vc( {A 1\ b }co{ B}) U vc( {A 1\ -,b }CI {B}) 

vc( {D 1\ b}c{D}) U {A =? D} 

U{DI\-,b=?B} 
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Exercise 7.11 Prove by structural induction on annotated commands that for all an
notated partial correctness assertions {A }c{ B} if all assertions in vc( {A }c{ B}) are valid 
then {A }c{ B} is valid. (The proof follows the general line of Lemma 7.6. A proof can 
be found in [42], Section 3.5.) D 

Thus to show the validity of an annotated partial correctness assertion it is sufficient 
to show its verification conditions are valid. In this way the task of program verification 
can be passed to a theorem prover for predicate calculus. Some commercial program
verification systems, like Gypsy [41], work in this way. 

Note, that while the validity of its verification conditions is sufficient to guarantee 
the validity of an annotated partial correctness assertion, it is not necessary. This can 
occur because the invariant chosen is inappropriate for the pre and post conditions. For 
example, although 

{true }while false do {false }skip{ true} 

is certainly valid with false as an invariant, its verification conditions contain 

true =} false, 

which is certainly not a valid assertion. 
We conclude this section by pointing out a peculiarity in our treatment of annotated 

commands. Two commands, built up as (Ci X := al)i X := a2 and Ci (X := ali X := a2), 
are understood in essentially the same waYi indeed in many imperative languages they 
would both be written as: 

C· , 
X :=ali 

X :=a2 

However the two commands support different annotations according to our syntax of 
annotated commands. The first would only allow possible annotations to appear in 
C whereas the second would be annotated as Ci {D}(X := aliX := a2). The rules 
for annotations do not put annotations before a single assignment but would put an 
annotation in before any other chain of assignments. This is even though it is still easily 
possible to derive the annotation from the postcondition, this time through a series of 
substitutions. 

Exercise 7.12 Suggest a way to modify the syntax of annotated commands and the 
definition of their verification conditions to address this peculiarity, so that any chain of 
assignments or skip is treated in the same way as a single assignment is presently. D 
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Exercise 7.13 A larger project is to program a verification-condition generator (e.g.in 
standard ML or prolog) which, given an annotated partial correctness assertion as input, 
outputs a set, or list, of its verification conditions. (See Gordon's book [42] for a program 
in lisp.) 0 

7.5 Predicate transformers 

This section is optional and presents an abstract, rather more mathematical view of 
assertions and weakest preconditions. Abstractly a command is a function f : L; ---> L;.l 
from states to states together with an element .1, standing for undefined; such functions 
are sometimes called state transformers. They form a cpo, isomorphic to that of the 
partial functions on states, when ordered pointwise. Abstractly, an assertion for partial 
correctness is a subset of states which contains..1, so we define the set of partial correctness 
predicates to be 

Pred(L;) = {Q I Q ~ L;.l & ..1 E Q}. 

We can make predicates into a cpo by ordering them by reverse inclusion. The cpo of 
predicates for partial correctness is 

(Pred(L;), 2). 

Here, more information about the final state delivered by a command configuration 
corresponds to having bounded it to lie within a smaller set provided its execution halts. 
In particular the very least information corresponds to the element ..1 Pred = L; U {..1}. 
We shall use simply Pred(L;) for the cpo of partial-correctness predicates. 

The weakest precondition construction determines a continuous function on the cpo of 
predicates-a predicate transformer. 4 

Definition: Let f : ~ ---> L;.l be a partial function on states. Define 

W f : Pred(L;) ---> Pred(L;); 

(W f)(Q) = U- 1Q) U {..1} 

i.e., (W f)(Q) = {a E ~.l I f(O') E Q} U {..1}. 

A command c can be taken to denote a state transformer C[c] : ~ ---> L;.l with the 
convention that undefined is represented by ..i. Let B be an assertion. According to this 
understanding, with respect to an interpretation I, 

(W(C[C]))(BI) = wl[c, B]. 

4This term is generally used for the corresponding notion when considering total correctness. 
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Exercise 7.14 Write ST for the cpo of state transformers [E 1- -1- E1-] and PT for the 
cpo of predicate transformers [Pred(E) - Pred(E)]. 
Show W : ST - 1- PT and W is continuous (Care! there are lots of things to check here). 
Show W(Id~.J = IdPred(~) i.e., W takes the identity function on the cpo of states to 
the identity function on predicates Pred(E). 
Show W(f 0 g) = (Wg) 0 (WI). 0 

In the context of total correctness Dijkstra has argued that one can specify the meaning 
of a command as a predicate transformer [36]. He argued that to understand a command 
amounts to knowing the weakest precondition which ensures a given postcondition. We 
do this for partial correctness. As we now have a cpo of predicates we also have the cpo 

[Pred(E) - Pred(E)] 

of predicate transformers. Thus we can give a denotational semantics of commands 
in IMP as predicate transformers, instead of as state transformers. We can define a 
semantic function 

Pt: Com - [Pred(E) - Pred(E)] 

from commands to predicate transformers. Although this denotational semantics, in 
which the denotation of a command is a predicate transformer is clearly a different 
denotational semantics to that using partial functions, if done correctly it should be 
equivalent in the sense that two commands denote the same predicate transformer iff 
they denote the same partial function. You may like to do this as the exercise below. 

Exercise 7.15 (Denotations as predicate transformers) 
Define a semantic function 

by 

Pt: Com- PT 

Pt[X := a]Q = {a E E1- I a[A[a]a / X] E Q} 

Pt[skip]Q = Q 

Pt[eo; Cl]Q = Pt[Co] (Pt[Cl]Q) 

Pt[if b then Co else Cl]Q = Pt[co](iJ n Q) U Pt[Cl]( ...,b n Q) 

where b = {a I a = ..1 or 8[b]a = true} for any boolean b 

Pt[while b do c]Q = fix(G) 

where G : PT - PT is given by G(p)(Q) = (b n Pt[eo] (P(Q)) U (...,b n Q). 
Show G is continuous. 
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Show W(C[clJ = Pt[c] for any command c. Observe 

WJ=WJ'=>J=J' 

for two strict continuous functions J, J' on 2:.L. Deduce 

C[c] = C[c'] iff Pt[c] = Pt[c'] 

for any commands c, c' . 
Recall the ordering on predicates. Because it is reverse inclusion: 

nEw 

This suggests that if we were to allow infinite conjunctions in our language of assertions, 
and did not have quantifiers, we could express weakest preconditions directly. Indeed 
this is so, and you might like to extend Bexp by infinite conjunctions, to form another 
set of assertions to replace Assn, and modify the above semantics to give an assertion, 
of the new kind, which expresses the weakest precondition for each command. Once we 
have expressiveness a proof of relative completeness follows for this new kind of assertion, 
in the same way as earlier in Section 7.2. 0 

1.6 Further reading 

The book "What is mathematical logic?" by Crossley et al [34] has an excellent expla
nation of Godel's Incompleteness Theorem, though with the details missing. The logic 
texts by Kleene [54], Mendelson [61] and Enderton [38] have full treatments. A treatment 
aimed at Computer Science students is presented in the book [11] by Kfoury, Moll and 
Arbib. Cook's original proof of relative completeness in [33] used "strongest postcondi
tions" instead of weakest preconditions; the latter are used instead by Clarke in [23] and 
his earlier work. The paper by Clarke has, in addition, some negative results showing 
the impossibility of having sound and relatively complete proof systems for programming 
languages richer than the one here. Apt's paper [8] provides good orientation. Alter
native presentations of the material of this chapter can be found in [58], [13]. Gordon's 
book [42] contains a more elementary and detailed treatment of verification conditions. 





8 Introduction to domain theory 

Domain theory is the mathematical foundation of denotational semantics. This chap
ter extends the work on complete partial orders (domains) and continuous functions 
with constructions on complete partial orders which are important for the mathematical 
description of programming languages. It provides the mathematical basis for our subse
quent work on denotational semantics. A metalanguage to support semantic definitions 
is introduced; functions defined within it are guaranteed to be continuous. 

8.1 Basic definitions 

In denotational semantics a programming construct (like a command, or an expression) 
is given a meaning by assigning to it an element in a "domain" of possible meanings. 
The programming construct is said to denote the element and the element to be a 
denotation of the construct. For example, commands in IMP are denoted by elements 
from the "domain" of partial functions, while numerals in IMP can denote elements of 
N. As the denotational semantics of IMP in Chapter 5 makes clear it can sometimes 
be necessary for "domains" to carry enough structure that they enable the solution of 
recursive equations. Chapter 5 motivated complete partial orders as structures which 
support recursive definitions, and these are reasonable candidates to take as "domains" 
of meanings. Of course, the appropriateness of complete partial orders can only be 
justified by demonstrating their applicability over a range of programming languages and 
by results expressing their relation with operational semantics. However, experience and 
results have born out their importance; while it is sometimes necessary to add structure 
to complete partial orders, it appears they underlie any general theory capable of giving 
compositional l semantic definitions to programming languages. Recall the definition 
from Chapter 5: 

Definition: A partial order (D, 1;:;;) is a complete partial order (abbreviated to cpo) if it 
has has a least upper bound U nEw dn in D of any w-chain do I;:;; d1 I;:;; ••• I;:;; dn I;:;; ..• of 
elements of D. 
We say (D,I;:;;) is a cpo with bottom if it is a cpo which has a least element -L (called 
"bottom" ).2 

Occasionally we shall introduce a cpo as e.g.(D, I;:;; D) and make explicit to which cpo 
the order I;:;;D and bottom element -LD belong. More often however we will write I;:;; and 
-L because the context generally makes clear to which cpo we refer. Often, when it is 
clear what we mean, we will write Un dn instead of UnEw dn. 

1 Recall from Chapter 5 that a semantics is compositional if the meaning of a programming expression 
is explained in terms of the meaning of its immediate subexpressions. 

2The cpo's here are commonly called (bottomless) w-cpo's, or predomains. 
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We have already encountered several examples of cpo's: 

Example: 
(i) Any set ordered by the identity relation forms a discrete cpo. 
(ii) A powerset Pow(X) of any set X, ordered by ~, or by 2, forms a cpo as indeed does 
any complete lattice (see Section 5.5). 
(iii) The two element cpo 1. ~ T is called O. Such an order arises as the powerset of a 
singleton ordered by ~. 
(iv) The set of partial functions X ~ Y ordered by inclusion, between sets X, Y, is a 
cpo. 
(v) Extending the nonnegative integers w by 00 and ordering them in a chain 

yields a cpo, called n. o 

Complete partial orders give only half the picture. Only by ensuring that functions be
tween cpo's preserve least upper bounds of w-chains do we obtain a framework supporting 
recursive definitions. 

Definition: A function f : D ---; E between cpo's D and E is monotonic iff 

Vd, d' E D. d ~ d' =:} f(d) ~ f(d'). 

Such a function is continuous iff it is monotonic and for all chains d 0 ~ d1 ~ ... ~ dn ~ ... 

in D we have 

nEw nEw 

Example: 
(i) All functions from discrete cpo's, i.e. sets, to cpo's are continuous. 
(ii) Let the cpo's nand 0 be as in the above example. For n E n, define the function 
f n : n ---; 0 to be 

fn(x) = {T if n ~ ~, 
1. otherwIse. 

The continuous functions n ---; 0 consist of the constantly 1. function, AX.1., together 
with all fn where nEw. Note, however, that the function foo is not continuous. (Why 
not?) 0 

Proposition 8.1 The identity function Id D on a cpo D is continuous. Let f : D -> E 
and 9 : E ---; F be continuous functions on cpo's D, E, F. Then their composition 
9 0 f : D -> F is continuous. 
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Exercise 8.2 Prove the previous proposition. o 

In Section 5.4 we showed a central property of a cpo with .1.; any continuous function 
on it has a least fixed point: 

Theorem 8.3 (Fixed-Point Theorem) 
Let f : D --> D be a continuous function on D a cpo with bottom .1.. Define 

fix(f) = U r(.1.)· 
nEw 

Then fix(f) is a fixed point of f and the least prefixed point of f i. e. 
(i) f(fix(f)) = fix(f) and (ii) if fed) ~ d then fix(f) [;:; d. Consequently fixC!) is the least 

fixed point of f· 

8.2 Streams-an example 

Complete partial orders and continuous functions have been motivated in Chapter 5 
from the viewpoint of inductive definitions associated with finitary rules, by extracting 
those properties used to obtain least fixed points of operators on sets. Given that an 
operational semantics can generally be presented as a set of finitary rules, the relevance of 
continuity to computation is not surprising. However, the significance of continuity can 
be understood more directly, and for this we will consider computations on sequences, 
as an example. 

As input values we take finite and infinite sequences of O's and 1 's where in addition we 
allow, but don't insist, that a finite sequence can end with a special symbol "$". The idea 
is that the sequences represent the possible input, perhaps from another computation 
or a user; a sequence of O's or l's is delivered with the option of explicity notifying by 
$ that the sequence is now ended. The sequence can grow unboundedly in length over 
time unless it has been terminated with $. The sequences can remain finite without 
being terminated; perhaps the inputting device breaks down, or goes into a diverging 
computation, or, in the case of a user, gets bored, before inputting the next element of 
the sequence or terminating it with $. 

These sequences are sometimes called streams, or lazy lists or "stoppered sequences" 
($ is the "stopper"). They admit an intuitive partial order. Say one sequence 8 is below 
another 8' if 8 is a prefix of 8'. Increasing in the partial order is associated with sequences 
containing increasing information. With respect to this partial order there is then a least 
sequence, the empty sequence f. There are maximal sequences which are "stoppered", 
like 

OlOl$ 
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and infinite sequences, like 
000···00·· . 

which we abbreviate to Ow. In fact the sequences form a cpo with bottom element f. 

Call the cpo S. 
Imagine we wish to detect whether or not 1 appears in the input. It seems we would 

like a function 
isone : S ~ {true, false} 

that given a sequence returned true if the sequence contained 1 and false if not. But this 
is naive. What if the sequence at some stage contained no 1 's and then at a later time 
1 appeared, as could happen through starting at the empty sequence f and becoming 10 
say? We would have to update our original output of false to true? We would prefer 
that when the isone returns false on some input it really means that no 1 's can appear 
there. Whereas we require isone(OOO$) = false, because 1 certainly can't appear once 
the sequence is terminated, we want isone (000) to be different from false, and certainly 
it can't be true. We have two options: either we allow isone to be a partial function, 
or we introduce a "don't know" element standing for undefined in addition to the truth 
values. It is technically simpler to follow the latter course. 

The new "don't know" value can be updated to false or true as more of the input 
sequence is revealed. We take the "don't know" value to be ..1 below both true and 
false, as drawn here: 

Write {true, false}.L for this simple cpo with least element ..i. Now more information 
about the input is reflected in more information about the output. Put in mathematical 
terms, isone should be a monotonic function from S to {true, false} .L. 

Deciding that 
isone : S -------'; {true, false} .L 

is monotonic does not fully determine it as a function, even when constraining it so 

isone (Is) 
isone (Os) 

true, 
isone (s), 

isone ($) 
isone (f) 

false, 
..1, 

for any sequence s. What about isone (OW)? The constraints allow either isone (OW) = 
false or isone (OW) =..1. However the former is not computationally feasible; outputting 
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false involves surveying an infinite sequence and reporting on the absence of 1 'so Its 
computational infeasibility is reflected by the fact that taking isone (OW) to be false 
yields a function which is not continuous. Any finite subsequence of 0 W takes the form 
on consisting of nO's. The infinite sequence Ow is the least upper bound UnEw On. We 
have isone (on) =1. and so 

U is one (on) =1. 
nEw 

and continuity forces isone (OW) =1.. 

Exercise 8.4 Cpo's can be viewed as topological spaces and continuous functions as 
functions which are continuous in the traditional sense of topology (You need no knowl
edge of topology to do this exercise however). Given a cpo (D,~) define a topology 
(called the Scott topology after Dana Scott) as follows. Say U <::;: D is open iff 

'rid, e E D. d ~ e & dE U =} e E U 

and for all chains do ~ d1 (:;:; ... (:;:; dn (:;:; ... in D 

U dn E U =} ::In E w. dn E U. 
nEw 

(i) Show this does indeed determine a topology on a cpo D (i.e. that 0 and D itself are 
open and that any finite intersection of open sets is open and that the union of any set 
of open sets is open.) 
(ii) Show that for any element d of a cpo D, the set {x E D I x g d} is open. 
(iii) Show that f : D ---. E is a continuous function between cpo's D, E iff f is 
topologically-continuous. (Such a function f is topologically-continuous iff for any open 
set V of E the inverse image I -1 V is an open set of D.) 
(iv) Show that in general the open sets of a cpo D can be characterised as precisely 
those sets I-I {T} for a continuous function I : D ---. O. Describe the open sets of the 
particular cpo of streams considered in this section. 0 

8.3 Constructions on cpo's 

Complete partial orders can be formed in a rich variety of ways. This richness is im
portant because it means that cpo's can be taken as the domains of meaning of many 
different kinds of programming constructs. This section introduces various constructions 
on cpo's along with particular continuous functions which are associated with the con
structions. These will be very useful later in the business of giving denotational semantics 
to programming languages. 
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Sometimes in giving the constructions it is a nuisance to specify exactly what sets are 
built in the constructions; there are many different ways of achieving essentially the same 
construction. There was a similar awkwardness in the first introductory chapter on basic 
set theory; there were several ways of defining products of sets depending on how we 
chose to realise the notion of ordered pair, and, of course in forming disjoint unions we 
first had to make disjoint copies of sets-we chose one way but there are many others. In 
this section we will take a more abstract approach to the constructions. For example, in 
forming a sum of cpo's Dl + ... + Dk, intuitively got by juxtaposing disjoint copies of the 
cpo's D 1 , .. . , D k , we shall simply postulate that there are functions ini, for 1 s:; i s:; k, 
which are 1-1 and ensure the elements inl(dl) and inm(dm ) are distinct whenever Ii: m. 
Of course, it is important that we know such functions exist; in this case they do because 
one possibility is to realise ini(X) as (i, x). There is nothing lost by this more abstrart 
approach because the sum construction will be essentially the same no matter how we 
choose to realise the functions ini provided that they satisfy the distinctness conditions 
required of them. 

The mathematical way of expressing that structures are "essentially the same" is 
through the concept of isomorphism which establishes when structures are isomorphic. 
A continuous function f : D ---+ E between cpo's D and E is said to be an isomorphism 
if there is a continuous function 9 : E ---+ D such that go f = IdD and fog = IdE-SO 
f and 9 are mutual inverses. This is actually an instance of a general definition which 
applies to a class of objects and functions between them (cpo's and continuous functions 
in this case). It follows from the definition that isomorphic cpo's are essentially the same 
but for a renaming of elements. 

Proposition 8.5 Let (D, !:D) and (E, !:E) be two cpo's. A function f : D ---+ E is an 
isomorphism iff f is a 1-1 correspondence such that 

X [:;;D Y iff f(x) !:E f(y) 

for all x,y E D. 

8.3.1 Discrete cpo's 

The simplest cpo's are simply sets where the partial ordering relation is the identity. An 
w-chain has then to be constant. Cpo's in which the partial order is the identity relation 
are said to be discrete. Basic values, like truth values or the integers form discrete cpo's, 
as do syntactic sets. We remarked that any function from a discrete cpo to a cpo is always 
continuous (so, in particular, semantic functions from syntactic sets are continuous). 

Exercise 8.6 Precisely what kinds of functions are continuous from a cpo with ..1 to a 
discrete cpo? 0 
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8.3.2 Finite products 

Assume that D1, ... ,Dk are cpo's. The underlying set of their product is 

consisting of k-tuples (d1,·· . , dk) for d l E D I, ... ,dk E Dk. The partial order is deter
mined "coordinatewise", i.e. 

(d l , ... , dk) !;;; (d~, ... , dU iff d l !;;; d~ and ... and dk !;;; d~ 

It is easy to check that an w-chain (dIn,···, dkn), for nEw, of the product has least 
upper bound calculated coordinatewise: 

nEw nEw nEw 

Thus the product of cpo's is itself a cpo. Important too are the useful functions associated 
with a product DI x ... X Dk. 

The projection function 1fi DI x ... X Dk -+ Di , for i = 1,···, k, selects the ith 
coordinate of a tuple: 

1fi(d1,···, dk) = di 

Because least upper bounds of chains are got in a coordinatewise fashion, the projection 
functions are easily seen to be continuous. 

We can extend tupling to functions. Let II : E -+ DI, ... ,fk : E -+ Dk be continuous 
functions. Define the function 

by taking 
(h,···, /k)(e) = (h(e),···, fn(e)). 

The function (II,·· ., fn) clearly satisfies the property that 

1fi 0 (h,···, fk) = Ii for i = 1,···, k, 

and, in fact, (II,···, fn) is the unique function E ---+ Dl X ... X Dk with this property. 
This function is easily seen to be monotonic. It is continuous because for any w-chain 
eo !;;; el !;;; ... !;;; en !;;; ... in E we have 

(h, ... , fk)(UnEw en) (fdUnEw en), ... ,/k (UnEw en)) 
(UnEw h (en), ... ,UnEw fk(en)) 
UnEw(h (en), ... ,fk(en)) 

by definition, 
as each Ii is continuous, 
as lubs of products are 
formed coord 'wise, 
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We can extend the product construction on cpo's to functions. For f 1 

E 1,"', fk : Dk -. Ek define 

by taking 

In other words h x··· x!k = (h 07r1,"',!k 07rk). Each component fi 07ri is continuous, 
being the composition of continuous functions, and, as we have seen, so is the tuple 
(h 0 7r1,"', fk 07rk). Hence h x '" x !k is a continuous function. 

Example: As an example of a product of complete partial orders consider T J. X T J. = 
Tl which is most conveniently drawn from an "aerial" view: 

(J, t) t+--_--'-(.=1.r-:-t-'---)_ ..... (t, t) 

(J, 1.) t+---~p-'l ( 1.=--=1.,-,--)...., ( t, 1.) 

(J,J) (1., J) (t, J) 

We have used t and f to stand for the truth values true and false. o 

Exercise 8.7 Draw the products 0 0 , 0 1 , 0 2 , and 0 3 . o 

There are two easy-t(}-prove but important properties of products one of which we 
shall make great use of later. (The first is an instance of a general fact from topology.) 

Lemma 8.8 Let h : E -. D1 X ... X Dk be a function from a cpo E to a product of cpo's. 

It is continuous iff for all i, 1 ::::; i ::::; k, the functions 7r i 0 h : E -. Di are continuous. 

Proof: 
"only if": follows as the composition of continuous functions is continuous. 
"if": Suppose 7ri 0 h is continuous for all i with 1 ::::; i ::::; k. Then for any x E E 

h(x) = (7rI(h(x)),···, 7rk(h(x))) = (7rl 0 h(x),"', 7rk 0 h(x)) = (7r1 0 h,"', 7rk 0 h)(x) 

Therefore h = (7r1 0 h, ... ,7rk 0 h) which is continuous as each 7ri 0 h is continuous. 0 
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The second more useful lemma relies on the order. Its proof uses a little, but important, 
result about least upper bounds of an "array" of elements of a cpo: 

Proposition 8.9 Suppose en,m are elements of a cpo E for n, mEw with the property 

that en,m ~ en' ,m' when n ::; n' and m ::; m'. Then the set {en,m I n, mEw} has a least 
upper bound 

n,mEw nEw mEw mEw nEw nEw 

Proof: The proposition follows by showing that all of the sets 

{en,m I n,mEw}, {U en,m I nEw}, {U en,m I mEw}, {en,n I nEw} 
mEw nEw 

have the same upper bounds, and hence the same least upper bounds. For example, it 
is easy to see that {en,m I n, mEw} and {en,n I nEw} have the same upper bounds 
because any element en,m can be dominated by one of the form en,n' Certainly the lub 
of an w-chain Un en,n exists, and hence the lub Un,m en,m exists and is equal to it. Any 
upper bound of {Urn en,m In E w} must be an upper bound of {en,m I n,m E w}, and 
conversely any upper bound of {en,m I n, mEw} dominates any lub Um en,m for any 
mEw. Thus we see {en,m I n, mEw} and {UmEwen,m I nEw} share the same upper 
bounds, and so have equal lubs. The argument showing Um CUn en,m) = Un,m en,m is 
similar. D 

Lemma 8.10 Let f : Dl x ... X Dk ---+ E be a function. Then f is continuous iff 
f is "continuous in each argument separately", i. e. for all i with 1 ::; i ::; k for any 

dl, ... ,di-l,di+1, ... ,dk thefunctionD; ---+ E given bydi f-----> f(d 1 , ... ,di1 ... ,dk) is 
continuous. 

Proof: 
"=}" obvious. (Why?) 
"~" For notational convenience assume k = 2 (the proof easily generalises to more 
arguments). Let (xo, Yo) ~ ... ~ (xn, Yn) ~ ... be a chain in the product Dl x D2 . Then 

fCU X P ' U Yq) as lubs are determined coordinatewise, 
n p q 

U fCx p, U Yq) as f is continuous in its 1st argument, 
p q 
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Hence f is continuous. 

U U f(xp, Yq) as f is continuous in its 2nd argument, 
p q 

U f(xn, Yn) by Proposition 8.9 above. 
n 

o 

This last fact is very useful; on numerous occasions we will check the continuity of a 
function from a product by showing it is continuous in each argument separately. 3 

One degenerate case of a finite product is the empty product {O} consisting solely of 
the empty tuple O. We shall often use 1 to name the empty product. 

8.3.3 Function space 

Let D, E be cpo's. It is a very important fact that the set of all continuous functions 
from D to E can be made into a complete partial order. The function space [D -+ El 
consists of elements 

{f If: D -+ E is continuous} 

ordered pointwise by 
f ~ 9 iffVd ED. fed) ~ g(d). 

This makes the function space a complete partial order. Note that, provided E has a 
bottom element .lE, such a function space of cpo's has a bottom element, the constantly 
.lE function .l[D-+El which acts so 

.l[D-+E] (d) = .lE, for all d ED. 

Least upper bounds of chains of functions are given pointwise i. e. a chain 

fa ~ h ~ ... ~ fn ~ ... 

of functions has lub UnEw fn which 

n n 

3 A property corresponding to Lemma 8.10 does not hold of functions in analysis of real and complex 
numbers where a verification of the continuity of a function in several variables can be much more 
involved. For example: 

p(x) = { i'ly2 if (x, y) i- (0,0), 
if x = y = o. 
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for dE D. The fact that this lub exists as a function in [D ~ EJ requires that we check 
its continuity. 

Suppose do ~ d1 ~ ... ~ dm ~ ... is a chain in D. Then 

U fn(U dm) by the definition of lubs of functions, 
n m m 

U(U fn(dm )) as each fn is continuous, 
n m 

U(U fn(dm )) by Proposition 8.9, 
m n 

U((U fn)(dm )) by the definition of lubs of functions. 
m n 

Special function spaces of the form [1 ~ DJ, for 1 a set and D a cpo, are called powers 
and will often be written as DI. Elements of the cpo DI can be thought of as tuples 
(di)iEl ordered coordinatewise (though these tuples can be infinite if the set is infinite). 
When 1 is the finite set {I, 2,···, k}, the cpo DI is isomorphic to the product D x· .. x D, 
the product of k cpo's D, generally written D k. 

There are two key operations associated with the function space construction, appli
cation and currying. 4 Define 

apply: [D ~ EJ x D ~ E 

to act as apply(f, d) = f(d). Then apply is continuous by Lemma 8.10 because it is 
continuous in each argument separately: 
Let fo ~ ... ~ fn ~ ... be a chain of functions. Then 

apply (Un fn, d) Un fn(d) 
Un apply(fn, d) 

because lubs are given pointwise, 
by the definition of apply. 

Let do ~ ... ~ dn ~ ... be a chain in D. Then 

n n n n 

Assume F is a cpo and that 
g:FxD~E 

is continuous. Define 
curry(g) : F ~ [D ~ EJ 

4The operation of currying is named after the American logician Haskell Curry. 
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to be the function 
curry(g) = AV E FAd E D.g(v, d) 

So (curry(g))(v) is the function which takes d E D to g(v,d). So writing h for curry(g) 
we have 

(h(v))(d) =g(v,d) 

for any v E F, d ED. Of course, we need to check that each such h( v) is a continuous 
function and that curry (g) is itself a continuous function F --> [D --> EJ: 
Firstly assume v E F. We require that h( v) = Ad E D .g( v, d) is continuous. However 
9 is continuous and so continuous in each argument separately making h( v) continuous. 
Secondly, let 

va G VI G ... G vn G ... 

be an w-chain of elements in F. Let d ED. Then 

g(U vn , d) by the definition of h, 
n n 

U g(vn, d) by the continuity of g, 
n 

U(h(vn)(d)) by the definition of h, 
n 

(U h( vn )) (d) by the definition of lub of a sequence of functions. 
n 

Thus h(Un vn ) = Un h(vn ) so h is continuous. In fact, curry(g) is the unique continuous 
function h : F --> [D --> EJ such that 

apply (h(v) , d) = g(v,d), for all v E F, dE D 

Exercise 8.11 A power is a form of, possibly infinite, product with elements of a cpo 
DI, for D a cpo and I a set, being thought of as tuples (di)iEI ordered coordinatewise 
(these tuples are infinite if the set is infinite). As such, the notion of a function being 
continuous in a particular argument generalises from Lemma 8.10. Show however that 
the generalisation of Lemma 8.10 need not hold, i.e. a function from a power cpo D I 
with the set I infinite need not be continuous even when continuous in each argument 
separately. (Hint: Consider functions Ow --> 0.) 0 
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8.3.4 Lifting 

We have already met situations where we have adjoined an extra element 1- to a set to 
obtain a cpo with a bottom element (see, for example, Section 5.4 where the set of states 
was extended by an "undefined state" to get a cpo ~.L)' It is useful to generalise this 
construction, called lifting, to all cpo's. Lifting adjoins a bottom element below a copy 
of the original cpo. 

Let D be a cpo. The lifting construction assumes an element 1- and a function l -J 
with the properties 

ldoJ = ldd =} do = d1 , and 

1-;;6 ldJ 
for all d, do, d1 E D. The lifted cpo D.L has underlying set 

D.L = {ldJ IdE D} U {1-}, 

and partial order 

d~ ~ d~ iff (d~ =1-) or 

(::Ido, d1 E D.d~ = ldoJ & d~ = ld1J & do ~D dd· 

It follows that ldoJ ~ ldd in D.L iff do ~ d1 , so D.L consists of a copy of the cpo D below 
which a distinct bottom element 1- is introduced. Clearly the function l -J : D -> D.L 
is continuous. Although there are different ways of realising l -J and 1- they lead to 
isomorphic constructions. 

We can picture the lifting construction on a cpo D as: 

D 

1-
A continuous function f : D -> E, from a cpo D to a cpo E with a bottom element, 

can be extended to a continuous function 

by defining 

j*(d') = { ~(d) if d' = ldJ for some d ED, 
otherwise. 
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Suppose the function f is described by a lambda expression Ax.e. Then we shall write 

let x {::: d'. e 

for the result 
(Ax.e)*(d') 

of applying 1* to an element d' E D 1.. This notation is suggestive; only if d' is a non-..l 
value is this used in determining a result from e, and otherwise the result is .1.. E. 

The operation ( - ) * is continuous: Let d' be an arbitrary element of D 1. and suppose 
fo I;;;; ••• I;;;; fn I;;;; ... is an w-chain of functions in [D ----+ E]. In the case where d' = .1.. we 
directly obtain that both (Un fn)*(d') and (Un f~)(d') are ..lE. Otherwise d' = ldJ and 
we see 

n n 

= UUn(d)) as lubs are determined pointwise, 
n 

= U((f~)(d')) by the definition of (- )*, 
n 

= (U f~)(d') as lubs are determined pointwise. 
n 

As d' was arbitrary, we obtain (Un fn)* = UnU~), i.e. the operation (-)* is continuous. 
We shall abbreviate 

let Xl {::: CI· (let X2 {::: C2· (- .. (let Xk {::: Ck. e)···) 

to 
let Xl {::: CI, ... ,Xk {::: Ck. e 

Operations on sets S can be extended to their liftings S 1. using the let-notation. For 
example the or-function V TxT ----+ T, on truth values T = {true, false}, can be 
extended to 

by taking 

Xl V 1. X2 =def (let tr {::: Xl, t2 {::: X2· l tr V t2J). 

This extension is often called strict because if either X I is .1.. or X2 is .1.. then so is Xl V 1. X2. 

There are other computable ways of extending V so e.g. trueV .1..= true (see the exercise 
below). Similarly, arithmetic operations on N can be extended strictly to operations on 
N 1.. For example, 
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Exercise 8.12 Describe in the form of "truth tables" all of the continuous extensions 
of the usual boolean or-operation V. D 

8.3.5 Sums 

It is often useful to form disjoint unions of cpo's, for example to adjoin error values to the 
usual values of computations. The sum construction on cpo's generalises that of disjoint 
unions on sets. Let D1,"', Dk be cpo's. A sum Dl + ... + Dk has underlying set 

and partial order 

where all we need assume of the functions ini is that they are 1-1 such that 

for all dEDi, d' E D j where i i= j. It is easy to see that Dl + ... + Dk is a cpo, 
consisting as it does of disjoint copies of the cpo's D 1, ... ,Dk and that the injection 
functions ini : Di ---t Dl + ... + Dk, for i = 1", . k, are continuous. Although there are 
different ways of realising the functions ini they lead to isomorphic constructions. 

Suppose h : Dl ---t E,"', ik : Dk ---t E are continuous functions. They can be 
combined into a single continuous function 

given by 

for i = 1, ... ,k. In other terms, 

for i = 1"", k, and this property on functions Dl +-. +Dk ---> E characterises [h,' ", fkJ 
uniquely. 

Exercise 8.13 Show the operation yielding [h,"', ikJ from h E [Dl ---> E],···, fk E 
[Dk ---> EJ is continuous. (Use Lemma 8.lO.) D 
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The truth values T = {true, false} can be regarded as the sum of the two singleton 
cpo's {true} and {false} with injection functions in 1 : {true} --+ T taking true I---> true 
and, similarly, in2 : {false} --+ T taking false I---> false. Let 

AXl.el ; {true} --+ E and 

AX2.e2 ; {false} --+ E 

be two, necessarily continuous, functions to a cpo E. Then it is not hard to see that 

behaves as a conditional, i. e. 

if t = true, 
if t = false 

with arguments t E T and el, e2 E E. Because the truth value in a conditional will often 
be the result of a computation we will make more use of a conditional where the test lies 
in T.l. Assume that the cpo E has a bottom element .lE. The conditional defined as 

acts so 
if b = l true J , 
if b = l false J , 
if b = .l 

where bET J. and el, e2 E E. The demonstration that both these conditionals are 
continuous is postponed to the Section 8.4. 

Exercise 8.14 Verify that the operations cond and (- --+ - I -) defined above do indeed 
behave as the conditionals claimed. 0 

The sum construction and its associated functions enable us to define a general cases
construction which yields different results according to which component of a sum an 
element belongs. Assume that E is a cpo. Let (Dl + ... + D k) be a sum of cpo's with 
an element d. Suppose 

AXi .ei ; Di --+ E 

are continuous functions for 1 :::: i :::: k. The intention is that a cases construction 
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should yield ei in the case where d = ini(di) for some di E Di. This is achieved by 
defining the cases-construction to be 

Exercise 8.15 Why? o 

Finally, we remark that the empty cpo 0 is a degenerate case of a finite sum, this time 
with no components. 

8.4 A metalanguage 

When defining the semantics of programming languages we shall often require that func
tions are continuous in order to take their least fixed points. This raises the issue that 
we don't want always to interrupt definitions in order to check that expressions are well
defined and do indeed represent continuous functions. A great deal of tedious work can 
be saved by noticing, once and for all, that provided mathematical expressions fit within 
a certain informal syntax then they will represent continuous functions. Its expressions 
constitute a metalanguage within which we can describe the denotational semantics of 
particular programming languages. 

We have already encountered an occasional use of lambda notation. In domain theory 
we shall make frequent use of it. Let e be an expression which represents an element of 
the cpo E, whenever x is an element of the cpo D. For example, e might be a conditional 
"cond(x, 0,1)" where D is T, the truth values, and E is w, the natural numbers. We 
write 

.Ax E D. e 

for the function h : D -+ E such that h(d) = e[d/x] for all d E D. Often we abbreviate 
it to .Ax.e when x is understood to range over elements of D. Suppose e is an expression 
which refers to elements x E Dl and y E D 2 . Instead of writing the somewhat clumsy 

we can write 
).,(x, y) E Dl X D 2 . e. 

More usually though this function will be written as 

or just 
).,x,y. e. 
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We would like to use lambda notation as freely as possible and yet still be assured that 
when we do so we define continuous functions. We shall typically encounter expressions e 
which represent an element of a cpo E and depend on variables like x in a cpo D. Say such 
an expression e is continuous in the variable xED iff the function .Ax E D. e : D ---; E 
is continuous. Say e is continuous in its variables iff e is continuous in all variables. Of 
course, the expression e will depend on some variables and not on others; if a variable 
xED does not appear in e then the function .Ax E D.e is constant, and so certainly 
continuous. 

We can build up expressions for elements of cpo's in the following ways, using the 
operations we have seen, and be assured by the results of this chapter that the expressions 
will be continuous in their variables: 

Variables: An expression consisting of a single variable x ranging over elements of a 
cpo E is continuous in its variables because, for y E D the abstraction .Ay.x is either the 
identity function .Ax.x (if y is the variable x) or a constant function. 

Constants: We have met a number of special elements of cpo's, for example, .1 D E D a 
cpo with bottom, truth values true, false E T, projection functions like 7r1 E [D1 X D2 ---; 
D1] associated with a product, apply E [[D ---; E] x D ---; E] with a function space, the 
function ( - ) * associated with lifting, injection functions and the operation [ , ... , ] with 
a sum, and several others including fix E [[D ---; D] ---; D] (though the justification that 
fix is a continuous function, and so indeed an element of the cpo claimed, is postponed 
to the end of this section). Such constant expressions give fixed elements of a cpo and 
so are continuous in their variables. 

Tupling: Given expressions e 1 E E1, ... ,ek E Ek of cpo's E 1, ... ,Ek we can form the 
tuple (e1,"', ek) in the product cpo E1 x ... X E k. Such a tuple is continuous in a 
variable xED iff 

.Ax.(e1,···, ek) is continuous 

{::::::} 7ri 0 (.Ax.(e1,···, ek)) is continuous for 1 ::; i ::; k (by Lemma 8.8) 

{::::::} .Ax.ei is continuous for 1 ::; i ::; k 

{::::::} ei is continuous in x for 1 ::; i ::; k. 

Hence tuples are continuous in their variables provided their components are. 

Application: Given a fixed continuous function K of the kind discussed above (in 
"Constants") we can apply it to an appropriate argument expression e. The result K(e) 
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is continuous in x iff 

AX. K (e) is continuous 

{=;. K 0 (Ax.e) is continuous 

{= Ax.e is continuous (by Proposition 8.1) 

{=;. e is continuous in x. 
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Hence such applications are continuous in their variables provided their arguments are. 
In particular, it follows that general applications of the form e 1 (e2) are continuous in 
variables if el,e2 are; this is because ede2) = apply(el,e2) the result of applying the 
constant apply to the tuple (el' e2). 

A-abstraction: Suppose e E E is continuous in its variables. Then choosing a particular 
variable y ranging over a cpo D we can form the necessarily continuous function Ay.e : 
D -+ E. We would like that this abstraction is itself continuous in its variables x. 
Certainly if x happens to be the variable y this is assured, the result being a function 
which is constantly Ay.e. Otherwise Ay.e is continuous in x iff 

AX. Ay. e is continuous 

{=;. curry (AX, y. e) is continuous 

{= AX, y. e is continuous (as curry preserves continuity) 

{=;. e is continuous in X and y. 

Hence abstractions are continuous in their variables provided their bodies are. 5 In par
ticular, we obtain that function composition preserves the property of being continuous 
in variables because: 

el 0 e2 = AX. el(e2(x)). 

Note that more general abstractions like AX, y E Dl X D2 . e are also admissible because 
they equal AZ E Dl X D2. e[1l"1(z)/X,1l"2(Z)/yj. 

Thus any expression is continuous in its variables when built up from fixed continuous 
functions or elements in the ways above. It follows that other constructions preserve this 
property, other important ones being: 

let-construction: Assume D is a cpo and E is a cpo with bottom. If e lED.L and 
e2 E E are continuous in variables then we can form the expression 

5This condition is also necessary because the implication "¢o" in the argument can be replaced by an 
equivalence" ¢==? ," though this has not yet been shown. It follows by Exercise 8.16 ending this section. 
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also continuous in its variables. This is because 

and the expression on the right can be built up from eland e2 solely by the methods 
admitted above. 

case-construction: Assume that E is a cpo. Let (Dl + ... + Dk) be a sum of cpo's with 
an element e, an expression assumed continuous in its variables. Suppose expressions 
ei E E are continuous in variables for 1 ::; i ::; k. Then the cases construction 

is continuous in its variables because it is defined to be 

a form obtainable by the methods above--recall the operation [- , ... , -] associated with 
a sum has been shown to be continuous and is admitted as one of our constants. In 
particular conditional expressions of the form cond(t, e 1, e2), introduced in Section 8.3.5, 
where t is a truth value and e 1, e2 belong to the same cpo, are continuous in their variables 
because they equal [Axl.el, AX2.e2](t). The variant b ---> el[e2, also from Section 8.3.5, 
defined on cpo's with bottom elements is then continuous in its variables because it is 
definable as let t {= b. cond(t, el, e2). 

Fixed-point operators: Each cpo D with bottom is associated with a fixed-point 
operator fix : [D ---> D] ---> D. In fact the function fix is itself continuous. To see this 
note 

fix = U (AI. r(.i)), 
nEw 

i. e. fix is the least upper bound of the w-chain of the functions 

AI..l.. !;;;; AI.f(.l..) ~ AI.f(f(.l..)) ~ ... 

where each of these is continuous and so an element of the cpo [[D ---> D] ---> D] by the 
methods above. It follows that their lub fix exists in [[D ---> D] ---> D]. 

Notation: We shall often use f..J,x.e to abbreviate fix(Ax.e). 
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We shall use results like the above to show expressions are well-defined. Although we 
shall be informal we could formalise the language above, saying precisely what the types 
are, and what the constant operations are to form a particular typed A-calculus in whose 
standard interpretation terms would denote elements of cpo's-the construction rules of 
the language would ensure that no non-continuous functions could creep in. An approach 
of this kind led to Dana Scott's LCF (Logic or Computable Functions) which consists of 
a typed A-calculus like this with predicates and a proof rule (fixed-point induction, see 
Chapter 10) for reasoning about least fixed points. 

Exercise 8.16 Recall, from 8.3.3, the function curry = AgAvAd.g(v, d) from A = [F x 
D ---> E to B = [F ---> [D ---> Ell. This exercise shows curry is an isomorphism from A to 
B. Why is curry a continuous function A ---> B? Define a function uncurry : B ---> A 
inverse to curry, i. e. so curry 0 uncurry = I dB and uncurry 0 curry = IdA. Show uncurry 
is continuous and inverse to curry. 0 

8.5 Further reading 

The presentation is mainly based on Gordon Plotkin's lecture notes (both the "Pisa 
notes" [80] and his later work [83]) though the presentation, while elementary, has been 
influenced by Eugenio Moggi's work [67] and Andrew Pitts' presentation [75]. The es
sentials go back to work of Dana Scott in the late '60's. I'd also like to acknowledge 
learning from Christopher Wadworth's excellent Edinburgh lecture notes which unfortu
nately never reached print. Larry Paulson's book [74] provides background on the logic 
LCF and the proof assistant implemented in ML. Alternative introductions to denota
tional semantics can be found in: [88], [95], [91]. This chapter has in fact introduced the 
category of cpo's and continuous functions and shown that it is cartesian closed in that 
the category has products and function spaces; it also has coproducts given by the sum 
construction. Elementary accounts of category theory are given in [10], [15]. 





9 Recursion equations 

This chapter explores a simple language REC which supports the recursive definition 
of functions on the integers. The language is applicative in contrast to the imperative 
language of IMP. It can be evaluated in a call-by-value or call-by-name manner. For 
each mode of evaluation operational and denotational semantics are provided and proved 
equivalent. 

9.1 The language REC 

REC is a simple programming language designed to support the recursive definition of 
functions. It has these syntactic sets: 

• numbers n EN, positive and negative integers, 

• variables over numbers x E Var, and 

• function variables II, ... ,Ik E Fvar. 

It is assumed that each function variable Ii E Fvar possesses an arityai E w which is 
the number of arguments it takes-it is allowed for ai to be 0 when IiO, consisting of the 
function Ii of arity 0 applied to the empty tuple, is generally written as just Ii. Terms 
t, to, tl, ... of REC have the following syntax: 

For simplicity we shall take boolean expressions to be terms themselves with 0 under
stood as true and all nonzero numbers as false. (It is then possible to code disjunction as 
x, negation -,b as a conditional if b then 1 else 0 and a basic boolean like the equality 
test (to = tr) between terms as (to - tl)-see also Exercise 9.1 below.) We say a term is 
closed when it contains no variables from Var. 

The functions variables I are given meaning by a declaration, which consists of equa
tions typically of the form 

where the variables of ti are included in Xl, ... ,Xai , for i = 1, ... ,k. The equations can 
be recursive in that the terms ti may well contain the function variable Ii and indeed 
other function variables of it, ... , /k. Reasonably enough, we shall not allow two defining 
equations for the same function variable. 
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In a defining equation 
fi(Xl, ... ,Xa .} = ti 

we call the term ti the definition of li. 
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What to take as the operational semantics of REC is not so clear-cut. Consider a 
defining equation 

Jr(X) = Jr(x) + 1. 

Computational intuition suggests that h (3), say, should evaluate to the same value as 
Jr(3) + 1 which should, in turn, evaluate to the same value as (h(3) + 1) + 1, and so on. 
The evaluation of h (3) should never terminate. Indeed if the evaluation of h (3) were 
to terminate with an integer value n then this would satisfy the contradictory equation 
n = n + 1. Now suppose, in addition, we have the defining equation 

12(x) = 1. 

In evaluating 12(t), for a term t, we have two choices: one is to evaluate the argument 
t first and once an integer value n is obtained to then proceed with the evaluation of 
12 (n); another is to pass directly to the definition of 12, replacing all occurrences of 
the variable x by the argument t. The two choices have vastly different effects when 
taking the argument t to be h (3); the former diverges while the latter terminates with 
result 1. The former method of evaluation, which requires that we first obtain values for 
the arguments before passing them to the definition is called call-by-value. The latter 
method, where the unevaluated terms are passed directly to the definition, is called 
call-by-name. It is clear that if an argument is needed then it is efficient to evaluate it 
once and for all; otherwise the same term may have to be evaluated several times in the 
definition. On the other hand, as in the example of 12(Jr(3)), if the argument is never 
used its divergence can needlessly cause the divergence of the enclosing term. 

Exercise 9.1 Based on your informal understanding of how to evaluate terms in REC 
what do you expect the function s in the following declaration to compute? 

s(x) = if x then 0 else f(x, 0 - x) 

f(x,y) = if x then 1 else (if y then -1 else f(x -l,y -1)) 

Define a function It(x, y) in REC which returns 0 if x < y, and a nonzero number 
otherwise. o 
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9.2 Operational semantics of call-by-value 

Assume a declaration d of 

The term di is the definition of Ii, for i = 1, ... ,k. With respect to these we give rules 
to specify how closed terms in REC evaluate. 

We understand t ->~a n as meaning the closed term t evaluates to integer value n 
under call-by-value with respect to the declaration d. The rules giving this evaluation 
relation are as follows: 

(num) 

(op) 

(condt) 

(condf) 

(In) 

n ->d n va 

h -->~a nl t2 -->~a n2 

tl op tl -->~a nl op n2 

to ->~a no t2 ->~a n2 no t 0 

if to then tl else t2 -->~a n2 

The rules are straightforward. Notice that we distinguish a syntactic operation op 
from the associated operation on integers op; an instance of the rule (op) , in the case of 
addition, is: 

3 ->~a 3 4 ->~a 4 

3 + 4 ->~a 7 

The slightly odd rules for conditionals arise simply from our decision to regard 0 as true 
and any non-zero value as false. Notice how the rules for the evaluation of functions 
insist on the evaluation of arguments before the function definition is used. 
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The evaluation relation is deterministic: 

Proposition 9.2 If t ~~a nl and t ~~a n2 then nl == n2· 

Proof: By a routine application of rule induction. D 

9.3 Denotational semantics of call-by-value 

Terms will be assigned meanings in the presence of environments for the variables and 
function variables. An environment for variables is a function 

p:Var~N 

We shall write Envva = [Var ~ N] for the cpo of all such environments. 
An environment for the function variables il, ... , ik is a tuple ({J = (({JI,"" ({Jk) where 

We write Fenv va for [Na, ~ N.d x ... x [Na k ~ N -L], the cpo of environments for func
tion variables. As expected, a declaration determines a particular function environment. 

Given environments ({J, p for function variables and variables, a term denotes an element 
of N -L. More precisely, a term t denotes a function 

[t]va E [Fenv va ~ [Env va ~ N-Lll 

given by the following structural induction: 

[n]va 

[X]va 

[tl op t2]va 

[if to then it else t2]va 

[!i(tl, ... , ta.)]va 

A({JAp·l n J 
A({JAp·lp( x) J 
A'PAp. [tl]va({JP OP-L [t2]va({JP 

for operations op taken as +, -, x 

A({JAp. Cond([to]va({JP, [h]va({JP, [t2]va({JP) 

A({JAp. 

(let VI {= [tl]va({JP'''''Vai {= [ta;]va({JP. ({Ji(Vl, ... ,VaJ) 

The definition has used the strict extensions + -L, - -L, X -L of the usual arithmetic opera
tions on N; recall, for instance, from 8.3.4 that 

Zl = lntJ and Z2 = ln2J 
for some nl,n2 EN, 
otherwise 
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for Zl, Z2 EN. The function 

is used in defining the meaning of a conditional. It satisfies 

{ 
Zl if 

Cond(zo, Zl, Z2) = Z2 if 
.1 otherwise 

Zo = LOJ, 
Zo = LnJ for some n E N with n i= 0, 

for zo, Zl, Z2 E N.L. It can be obtained from the conditional introduced earlier in 8.3.5. 
Let is zero : N -; T take the value true on argument 0 and false elsewhere. The function 
iszero is continuous being a function between discrete cpo's, so its strict extension 

iszero.L = Az E N.L. let n -¢= £. Liszero(n)J 

is continuous and acts so 

Now we see 

{ 
LtrueJ 

iszero.L(z) = ~alseJ 
if z = LOJ, 
if z = L n J & n i= 0, 
otherwise. 

Cond(zo,Zl,Z2) = (iszero.L(zo) -; Zl[Z2) 

for Zo, Zl, Z2 E N.L. Thus certainly it is a continuous function by Section 8.4. Indeed, for 
any term t of REC, the semantic function [t]va is a continuous function. This follows 
directly from the following lemma: 

Lemma 9.3 For all terms t of REC, the denotation [t] va is a continuous function in 

[Fenvva -; [Envva -; N.LJJ. 

Proof: The proof proceeds by structural induction on terms t using the results from 
Section 8.4. 0 

We observe that the intuitively obvious fact that the result of the denotation of a term 
in an environment does not depend on the assignment of values to variables outside the 
term: 

Lemma 9.4 For all terms t of REC, if environments p,p' E Envva yield the same 

result on all variables which appear in t then, for any <p E Fenv va, 

In particular, the denotation [t]varpp of a closed term t is independent of the environment 

p. 
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Proof: A straightforward structural induction on terms t. D 

The semantics above expresses the meaning of a term with respect to a function envi
ronment 'P = ('Pl, ... ,'Pk). The exact function environment is determined by a declara
tion consisting of defining equations 

This can be understood as recursive equations in II, ... , fk which must be satisfied by 

the function environment 0 = (01'···' Ok): 

We have used some new notation for updating the environment p. Define p[n/x], where 
x E Var and n E N, to be the environment such that 

(p[n/x])(y) = { ~(y) if y "=t x, 

if y == x. 

Alternatively we can define the updated environment in the metalanguage of Section 8.4. 
Notice that the discrete cpo Var can be regarded as a sum of the singleton {x} and 
Var \ {x} in which the injection functions in 1 : {x} -+ Var and in2 : (Var \ {x}) -+ Var 
are the inclusion functions. Now we see that p[n/xJ is equal to 

>.y E Var. case y of indx). n I 

in2(w). p(w). 

We have used terms like p[no/xo, nI/xIJ etc. to abbreviate (p[no/xo])[nI/xIJ etc. 
(Note that this argument assumes nothing special about the cpo of integers, and in fact 
similar updating operations can be defined in the metalanguage when variables are bound 
to elements of other more complicated cpo's.) 

The equations will not in general determine a unique solution. However there is a least 
solution, that obtained as the least fixed point of the continuous function 

F : Fenv va -+ Fenv va 
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given by 

F(rp) (Anl, ... ,na1 EN. [dI]varpp[nl/x1, ... ,nal!Xal],"" 

AnI, .. " nak EN. [ddvarpp[nl/xI,"" nak!XaJ). 
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The function F is continuous because it is built up from the functions [dI]va,"" [dk]va, 
known to be continuous by Lemma 9.3, using the methods admitted in Section 8.4. 

Now we can define the function environment determined by the declaration d to be 
the least fixed point 

6 = fix(F). 

A closed term t denotes a result [t]va6p in NJ. with respect to this function environment, 
independent of what environment p is used. Of course, we had better check it agrees 
with the value given by the operational semantics. F~t this we do in the next section. 

We conclude our presentation of the denotational semantics for the call-by-value eval
uation of REC by considering some examples to illustrate how the semantics captures 
evaluation. 

Example: To see how the denotational semantics captures the call-by-value style of 
evaluation, consider the declaration: 

h =It + 1 

hex) =1 

(Here It is a function taking no arguments, i. e. a constant, defined recursively.) 
According to the denotational semantics, the effect of this declaration is that f 1, hare 
denoted by 6 = (61 ,82 ) E NJ. x [N -> NJ.J where 

(61 ,82) =J-trp. ([It + l]varpp, Am E N. [l]varpp[mjx]) 

=J-trp. (rpi + J. l1J, Am EN. l1J) 

In this case it is easy to see that 

(1-, Am E N. llJ) 

is the required least fixed point (it can simply be checked that this pair is a fixed point 
of Arp. (rpi + J. llJ, Am E N. llJ) and has to be the least). Thus 

81 =1-

82 =Am E N. llJ 
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from which 
[h(h)]vabp =let n1 ~ b1· b2 (nt) 

=-'-. 
o 

Example: This next example involves a more detailed analysis of a least fixed point. 
Consider the declaration 

f(x) = if x then 1 else x x f(x - 1). 

In this example we are only interested in f, so for simplicity we take the function en
vironment Fenv va to simply be [N --+ N l.]. According to the denotational semantics 
this declares f to be the function b where, letting t be the definition and p an arbitrary 
environment for variables: 

b /Lip. (Am. [t]vaipp[m/x]) 

fix(Aip. (Am. [t]vaipp[m/x])) 

U b(r). 

rEw 

Above we have taken 
F(ip) = (Am. [t]vaipp[m/x]). 

and defined 

From the denotational semantics, recalling the definition of Cond, we obtain 

F(ip)(m) =Cond(Lmj, L1j, Lmj xl. ip(m -1)) 

=iszero 1. (l m J) --+ L 1 j I L m j x 1. ip( m - 1) 

for ip E [N --+ N1.J and mEN. Now note 

F(ip)(m) = cond(iszero(m), Llj, Lmj xl. ip(m -1)) 

where we make use of the function cond : T x N l. X N 1. --+ N 1. from Section 8.3.5 on 
sums of cpo's. For an arbitrary mEN, we calculate: 

cond(iszero(m), L1j, LmJ Xl. b(O)(m - 1)) 
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Generally we have 

ifm = 0 
otherwise. 

cond(iszero(m), llj, lmj Xl. 8(1)(m - 1)) 

{ ..i
ll j if m = 0 or m = 1 

otherwise. 

8(r)(m) = F(8(r-l))(m) = cond(iszero(m), llj, lmj Xl. 8(r-l)(m -1)) 

and, by mathematical induction, we can obtain 

ifO:::;m<r 
otherwise. 

149 

As we expect the least upper bound 8 is the factorial function on non-negative integers 
and ..i elsewhere: 

8(m) = { r!j if 0:::; m 
otherwise. 

(This example is not changed substantially in moving to a call-by-name regime.) 0 

9.4 Equivalence of semantics for call-by-value 

The two semantics, operational and denotational, agree. Let 8 be the function environ
ment determined as a least fixed point of F got from the declaration d. The main result 
of this section shows that for a closed term t, and number n 

Because t is closed the environment P can be arbitrary-it does not affect the denotation. 
The proof factors into two main lemmas, one for each direction of the equivalence. 

The first's proof rests on a subsidiary fact to do with substitutions. 

Lemma 9.5 (Substitution Lemma) 
Let t be a term and n a number. Let IP E Fenvva , p E Envva . Then 

[t~vaIPp[n/xl = [t[n/xHvaIPP· 

Proof: The proof is a simple structural induction on t. o 
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Lemma 9.6 Let t be a closed term and n a number. Let p E Env va . Then 

t -+~a n ::::} [t]va 8p = lnJ. 

Proof: We use rule-induction with the property 

P(t,n) iff [t]va8p = lnJ, 

for a term t and number n. (Here p can be any environment as t is closed.) 
Consider a rule instance n -+~a n, for a number n. Certainly [n] va8p = l nJ, so pen, n) 

holds. 
Assume now the property P holds of the premises of the rule (op). Precisely, assume 

It follows that 

tl -+~a nl and [tl]vaOp = l nlJ, and 
t2 -+~a n2 and [t2]va Op = l n2J. 

[tlTIvaOP OPl. [t2TIvaop by definition, 

lndoPl.ln2J 
lnl op n2J. 

Hence P(tl op t2, nl op n2), i.e. the property holds of the conclusion of the rule (op). 
The two cases of rules for conditionals (condt), (condJ) are similar, and omitted. 
Finally, we consider a rule-instance of (fn). Assume 

[taJvaOP= lna,j, and 

[di[ndxl, ... ,na)xa,]]vaop= lnJ. 

We see 

[Ii (tl, ... , taJTIvaOP =let Vi {= [tlTIvaOp, ... , Va, {= [taJvaOp· 8i (Vi, ... , VaJ 

=Oi(nl, .. . , naJ 

=[diTIvaOp[ndxl, ... , naj XaJ by o's definition as a fixed point, 

=[di[ndxb .. ·, najxaJTIvaop by the Substitution Lemma, 

= l n J by assumption. 

Thus the property P holds of the conclusion of the rule (fn). 
We conclude, by rule induction, that P(t, n) holds whenever t -+~a n. o 
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Lemma 9.7 Let t be a closed term. Let p E Env va. For all n EN, 

Proof: We first define the functions 'Pi : Na i -+ Nl., for i = 1, ... , k, from the opera
tional semantics by taking 

if ddndxI"'.' na;/xaJ -+~a n, 
otherwise. 

We claim that 'P = ('PI, ... , 'Pk) is a prefixed point of the function F defined in 9.3, and 
hence 8 I;;;; 'P. The claim will follow from a more general induction hypothesis. 

We show by structural induction on t that provided the variables in t are included in 
the list Xl, ... , Xl of variables then 

(1) 

for all n, nl, ... , nl E N. (We allow the list of variables to be empty, which is sufficient 
when no variables appear in t.) 

t == m: In this simple case the denotational and operational semantics yield the same 
value. 

t == x, a variable: In this case X must be a variable X j, for 1 ::::: j ::::: l, and clearly the 
implication holds. 

t == tl op t2: Suppose [tl op t2]va'Pp[ndxl, ... , nt/xtJ = LnJ, with the assumption that 
all variables of h, t2 appear in Xl, ... , Xl. Then n = ml op m2 for some ml, m2 given by 

Inductively, 

whence 

[tdva'Pp[ndxI' . .. , nt/xzl = LmtJ 

[t2]va'Pp[ndxl, ... , nt/xtJ Lm2J 

tt[nl/XI' ... ' nt/xzl -+~a ml 

t2[ndxlo···, nt/xd -+~a m2 

t == if to then tl else t2: The case of conditionals is similar to that of operations above. 



152 Chapter 9 

t == !i(t1 , ... , ta,): Suppose 

and that all the variables of t are included in XI, ... , Xl. Recalling the denotational 
semantics, we see 

(let VI <:= [tl]valPp[nl/Xl, ... , nt/xd, 

But, then there must be ml, ... , ma; EN such that 

where, furthermore, 

Now, by induction, we obtain 

Note that IPi(ml, ... , maJ = lnJ means 

Combining the facts about the operational semantics, we deduce 

as was to be proved in this case. 
We have established the induction hypothesis (1) for all terms t. As a special case of 

(1) we obtain, for i = 1, ... , k, that 
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for all n, nl, ... ,nai E N, and thus by the definition of cp that 

But this makes cp a prefixed point of F as claimed, thus ensuring 8 I:;;; cpo 
Finally, letting t be a closed term, we obtain 

[t]va 8p = l n J =? [t]vaCPP = l n J 
by monotonicity of [t]va given by Lemma 9.3 

from (1) in the special case of an empty list of variables.D 

Theorem 9.8 For t a closed term, n a number, and P an arbitrary environment 
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Proof: Combine the two previous lemmas. D 

9.5 Operational semantics of call-by-name 

We give rules to specify the evaluation of closed terms in REC under call-by-name. 
Assume a declaration d consisting of defining equations 

The evaluation with call-by-name is formalised by a relation t ~ ~a n meaning that the 
closed term t evaluates under call-by-name to the integer value n. The rules giving this 
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evaluation relation are as follows: 

n -'td n na 

tl -'t~a nl t2 -'t~a n2 

h op t2 -'t~a nl Op n2 

to -'t~a no t2 -'t~a n2 no t 0 

if to then tl else t2 -'t~a n2 

ddtdxl,.'" ta)xaJ -'t~a n 

!i(tI, ... , t a,) -'t~a n 

Chapter 9 

The only difference with the rules for call-by-value is the last, where it is not necessary 
to evaluate arguments of a function before applying it. Again, the evaluation relation is 
deterministic: 

Proposition 9.9 If t -'t~a nl and t -'t~a n2 then nl == n2· 

Proof: By a routine application of rule induction. o 

9.6 Denotational semantics of call-by-name 

As for call-by-value, a term will be assigned a meaning as a value in N.L with respect 
to environments for variables and function variables, though the environments take a 
slightly different form. This stems from the fact that in call-by-name functions do not 
necessarily need the prior evaluation of their arguments. An environment for variables 
is now a function 

p : Var -'t N.L 

and we will write Env na for the cpo 
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of such environments. On the other hand, an environment for function variables f 1, ... ,fk 
consists of'P = ('PI, ... ,'Pk) where each 

'Pi : Ni' -> N1. 

is a continuous function for i = 1, ... ,k; we write Fenv na for 

the cpo of environments for function variables. 
Now, we can go ahead and define [t]na : Fenvna -> [Envna -> N1.], the denotation of 

a term t by structural induction: 

[n]na 

[X]na 

[iI op t2]na 

[if to then tI else t 2 ]na 

[fi(tI, ... , taJ]na 

A'PAp. l n J 
A'PAp. p(x) 

A'PAp. [h]na'PP op 1. [t2]na'PP 

where op is +, -, or x 

A'PAp. Cond([to]na'Pp, [tI]na'PP, [t2]na'PP) 

A'PAp. 'Pi([tl]na'PP,···, [taJna'PP) 

Again, the semantic function is continuous, and its result in an environment is inde
pendent of assignments to variables not in the term: 

Lemma 9.10 Let t be a term of REC. The denotation [t]na is a continuous function 
Fenvna -> [Envna -> N1.]. 

Proof: By structural induction using the results of Section 8.4. o 

Lemma 9.11 For all terms t of REC, if environments p, p' E Envna yield the same 
result on all variables which appear in t then, for any 'P E Fenv na, 

[t]na'PP = [t]na'PP'· 

In particular, the denotation [t] na'PP of a closed term t is independent of the environment 
p. 

Proof: A straightforward structural induction on terms t. D 



156 Chapter 9 

A declaration d determines a particular function environment. Let d consist of the 
defining equations 

Define F : Fenv na ...... Fenv na by taking 

As in the call-by-value case (see Section 9.4), the operation of updating environments is 
definable in the metalanguage of Section 8.4. By the general arguments of Section 8.4, 
F is continuous, and so has a least fixed point 8 = fix(F). 

Exrunple: To see how the denotational semantics captures the call-by-name style of 
evaluation, consider the declaration: 

II =II+l 
hex) = 1 

According to the denotational semantics for call-by-name, the effect of this declaration 
is that II, h are denoted by 8 = (81 ,82 ) E N 1. x [N 1. ...... N 1.] where 

(81 ,82 ) =f..l<p. ([II + l~na<PP, AZ E N1.. [l]na<PP[Z/X]) 

=f..l<p. ('PI +1. llJ, AZ E N1.. llJ) 
=(1., AZ E N1.. llJ) 

It is simple to verify that the latter is the required least fixed point. Thus 

We can expect that 

[t]na8p = lnJ iff t ...... ~a n 

o 

whenever t is a closed term. Indeed we do have this equivalence between the denotational 
and operational semantics. 
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9.7 Equivalence of semantics for call-by-name 

The general strategy for proving equivalence between the operational and denotational 
semantics for call-by-name follows the same general outline as that for call-by-value. One 
part of the equivalence follows by rule induction, and the other uses reasoning about fixed 
points, albeit in a different way. We start with a lemma about substitution. 

Lemma 9.12 (Substitution Lemma) Let t, t' be terms. Let'P E Fenvna and p E Envna . 

Then 
[t]na'Pp[[t']na'PP/X] = [t[t' /x]]na'PP· 

Proof: The proof is by a simple induction on t, and is left as an exercise. o 

Lemma 9.13 Letting t be a closed term, n a number, and P an environment for variables 

t ~~a n =} [t]naDP = LnJ. 
Proof: Let P be an environment for variables. The proof uses rule induction with the 
property 

P(t, n) {=}dej [t]naDP = LnJ 
over closed terms t and numbers n. The only rule causing any difficulty is 

ddtt/xl, ... , ta,lxaJ ~~a n 

fi(tI, ... , taJ ~~a n 

Suppose ddtt/Xl, ... ,ta,/xaJ ~~a n and, inductively, that P(ddtt/Xl, ... ,ta./xai],n), 
i.e. 

We deduce 

Di([tt]naDp, ... , [taJnaDP) 

[di]naOp[[tl]naOP/Xl, ... , [taJnaop/xaJ 

by the definition of 0 as a fixed point, 

[ddtt/Xl,.'.' ta,/xail]naop 

by several applications of the Substitution Lemma 9.12, 

as each tj is closed so [tj]naDP is independent of p, 

LnJ. 
Thus P(fi(tl, ... , taJ, n). Showing the other rules preserve property P is simpler. The 
lemma follows by rule induction. 0 
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The proof of the next lemma uses a mathematical induction based on the approximants 
to the least fixed point 6. Recall 6 = fix( F) so 

rEw 

where 

Write 
6(r) = FrC!-) 

for the r'th approximant. Then 6;0\Zl, ... , zaJ = .1 for all Zl, ... , zai E N.L, for 1 :::; i :::; 
k. For r > 0, 6(r) = F(6(r-1)), i.e. 

6;r) (Zl' ... ,zaJ = [di]na6(r-1) p[zI/ Xl, ... , Za) Xai ], for i = 1, ... , k, 

a recurrence relation which will be useful in the proof below. 

Lemma 9.14 Let t be a closed term, n a number and p an environment for variables. 
Then 

Proof: Let p be an environment for variables. For a closed term t, define 

res(t) = { ~nJ if t -+~a n, 
otherwise 

(This defines the result of t under the operational semantics.) 
As above, let 6(r) be the r'th approximant to the recursively-defined, function environ

ment 6. We show by induction on r E w that 

for all terms t, number n, closed terms U1, ... ,Us and variables Yl, ... ,Ys with the prop
erty that they contain all the variables appearing in t. Notice that condition (1) can be 
recast as the equivalent: 
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Basis, r = 0: For the basis of the mathematical induction, we require 

for numbers n, closed terms Ul, ... ,Us and a term t with variables inside {Yl,"" Ys}. 
This is proved by structural induction on t. One basic case is when t is a variable, 
necessarily some Yj, with 1 S; j S; s. But then 

and by definition res( Uj) = l n J implies Yj [udYl, ... ,us/Ys) == Uj ..... ~a n. In the case 
where tis fi(tl, ... , ta;) 

not a value l n J, so the implication holds vacuously. The other cases are simple and left 
to the reader. 

Induction step: Suppose r > 0 and that the induction hypothesis holds for (r - 1). We 
require 

for all numbers n, closed terms Ul,"" us, and terms t with variables in {Yl, .. . , Ys}. This 
is shown by structural induction on t, in a way similar to that above for r = 0, except in 
one case, that when t has the form fi(t l , ... , ta,). Let pi = p[res(ud/Yl"'" res(us)/Ys]. 
By the definition of 8(r), 

The variables of tj, for 1 S; j S; ai, certainly lie within {Yl,""Ys}, so by structural 
induction, 

[tj]na8(T)p[reS(Ul)/Yl, ... ,res(us)/Ys) 

C res(tj[udYl,""us/Ys])' 

Hence, by the monotonicity of the denotation [di]na-a consequence of Lemma 9.10, we 
deduce 
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where we have written tj to abbreviate tj [udYI' ... ,us/Ys], for 1 :::; j :::; ai. But now we 
observe, by mathematical induction, that 

-by our assumption about declarations, the variables of di lie within Xl, ... ,Xa ,. We 
note from the operational semantics that 

It follows that 

[!i(tl, ... , ta.)]naO(r) p[res( UI) /YI, ... , res( us) /Ys] 

~ res(J;(t l , ... , ta.)[udYI' ... , us/Ys]). 

Thus, the induction hypothesis is established in this case. 
The result of the mathematical induction permits us to conclude 

for all r E w, for any closed term t. Now 

r 

r 

by continuity of the semantic function (Lemma 9.10). Thus [t] naop 
[t]nao(r)p = lnJ for some r E w, and hence that t -->~a n, as required. 

lnJ implies 
o 

Combining the two lemmas we obtain the equivalence of the operational and denota
tional semantics for call-by-name. 

Theorem 9.15 Let t be a closed term, and n a number. Then 

Exercise 9.16 The method used in the proof of Lemma 9.14 above can be used instead 
of that earlier in the call-by-value case. Give an alternative proof of Lemma 9.7 using 
mathematical induction on approximants. 0 
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9.8 Local declarations 

From the point of view of a programming language REC is rather restrictive. In partic
ular a program of REC is essentially a pair consisting of a term to be evaluated together 
with a declaration to determine the meaning of its function variables. Most functional 
programming languages would instead allow programs in which function variables are 
defined as they are needed, in other words they would allow local declarations of the 
form: 

let rec f(Xl,"', x a, ) = din t. 

This provides a recursive definition of f with respect to which the term t is evaluated. 
The languages generally support simultaneous recursion of the kind we have seen in 
declarations and allow more general declarations as in 

let rec !I(Xl,""Xa, ) 

in t 

This simultaneously defines a tuple of functions f 1, ... , fk recursively. 
To understand how one gives a denotational semantics to such a language, consider 

the denotation of 
S == let rec A ~ t and B ~ U in v 

where A and B are assumed to be distinct function variables of arity O. For definiteness 
assume evaluation is call-by-name. The denotation of S in a function environment i.p E 

Fenv na and environment for variables p E Env na can be taken to be 

[S]i.pp = [v]i.p[aol A, ,801 Bjp 

where (ao, ,80) is the least fixed point of the continuous function 

(a,,8) f-> ([t]i.p[al A,,8 I B]p, [u]i.p[al A,,8 I B]p). 

Exercise 9.17 Write down a syntax extending REC which supports local declarations. 
Tty to provide a denotational semantics for the extended language under call-by-name. 
How would you modify your semantics to get a semantics in the call-by-value case? D 

In fact, perhaps surprisingly, the facility of simultaneous recursion does not add any 
expressive power to a language which supports local declarations of single functions, 
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though it can increase efficiency. For example, the program S above can be replaced by 

T == let rec B <= (let rec A <= t in u) 
in(let rec A <= t in v). 

where A and B are assumed to be distinct function variables of arity o. The proof that 
this is legitimate is the essential content of BekiC's Theorem, which is treated in the next 
chapter. 

9.9 Further reading 

Alternative presentations of the language and semantics of recursion equations can be 
found in [59], [21], [13J and [58J(the latter is based on [13]) though these concentrate 
mainly on the call-by-name case. Zohar Manna's book [59J incorporates some of the thesis 
work of Jean Vuillemin on recursion equations [99J. This chapter has been influenced by 
some old lecture notes of Robin Milner, based on earlier notes of Gordon Plotkin, (though 
the proofs here are different). The proof in the call-by-value case is like that in Andrew 
Pitts' Cambridge lecture notes [75J. The operational semantics for the language extended 
by local declarations can become a bit complicated, as, at least for static binding, it is 
necessary to carry information about the environment at the time of declaration--see 
[lOlJ for an elementary account. 



1 0 Techniques for recursion 

This chapter provides techniques for proving properties of least fixed points of continuous 
functions. The characterisation of least fixed points as least prefixed points gives one 
method sometimes called Park induction. It is used to establish Bekic's Theorem, an 
important result giving different methods for obtaining least fixed points in products of 
cpo's. The general method of Scott's fixed-point induction is introduced along with the 
notion of inclusive property on which it depends; methods for the construction of inclusive 
properties are provided. A section gives examples of the use of well-founded induction 
extending our earlier work and, in particular, shows how to build-up well-founded rela
tions. A general method called well-founded recursion is presented for defining functions 
on sets with a well-founded relation. The chapter concludes with a small but nontrivial 
exercise using several of the techniques to show the equality of two recursive functions 
on lists. 

10.1 Bekic's Theorem 

The Fixed-Point Theorem, Theorem 5.11, of Chapter 5 tells us that if D is a cpo with 
..l and F : D --> D is continuous then jix( F) is the least prefixed point of F. In other 
words, 

F(d) r;::: d =? jix(F) r;::: d 

for any d ED. Of course, fix(F) is a fixed point, i.e. 

F(jix(F)) = jix(F) 

(fixl) 

(fix2) 

Facts (fixl) and (fix2) characterise jix(F), and are useful in proving properties of fixed 
points generallyl The fact (fixl) states a principle of proof sometimes called Park in
duction, after David Park. We will use (fixl) and (fix2) to establish an interesting result 
due to Bekic. Essentially, BekiC's Theorem says how a simultaneous recursive definition 
can be replaced by recursive definitions of one coordinate at a time. 

Theorem 10.1 (Bekic) 
Let F : D x E --> D and G : D x E --> E be continuous functions where D and E are 
cpo's with bottom. The least jixed point of (F, G) : D x E --> D x E is the pair with 
coordinates 

j p,f. F(f,p,g. G(p,f. F(f,g),g)) 

9 p,g. G(p,f. F(f,g),g) 

lin fact, because F is monotonic (fix2) could be replaced by F(fix(F)) [;;; fix(F). Then by mono
tonicity, we obtain F(F(fix(F))) [;;; F(fix(F)), i.e. F(fix(F)) is a prefixed point. Now from (fixl) we get 
fix(F) I:;: F(fix(F)) which yields (fix2) . 
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Proof: We first show (j, g) is a fixed point of (F, G). By definition 

j = ~f. F(f, g). 

Chapter 10 

In other words j is the least fixed point of Af. F(f, g). Therefore j = F(j, g). Also, 
from the definition of g, 

9 = G(~f. F(f,g), g) = G(j,g). 

Thus (}, g) = (F, GHj, g) i.e. (j, g) is a fixed point of (F, G). 
Letting (fo, go) be the least fixed point of (F, G) we must have 

10 [::; j and go [::; g. 

We require the converse orderings as well. As 10 = F(fo, go), 

~f. F(f, go) [::; 10· 

By the monotonicity of G 

G(~f. F(f, go), go) ~ G(fo, go) = go· 

Therefore 

9 [::; go 

as 9 is the least prefixed point of Ag. G(~f. F(f,g),g). 
By the monotonicity of F, 

F(fo, g) [::; F(fo, go) = 10· 

Therefore 
j [::; 10 

as j is the least prefixed point of Af. F(f, g). 
Combining (I), (2), (3) we see (j,g) = (fo,go), as required. 

(1) 

(2) 

(3) 

o 

The proof only relied on monotonicity and the properties of least fixed points expressed 
by (fix1) and (fix2) above. For this reason the same argument carries over to the situation 
of least fixed points of monotonic functions on lattices (see 5.5). 

BekiC's Theorem gives an asymmetric form for the simultaneous least fixed point. We 
can deduce a symmetric form as a corollary: the simultaneous least fixed point is a pair 

j = ~f. F(f, M·G(f, g» 
9 = M· G(~f.F(f,g), g) 

To see this notice that the second equation is a direct consequence of BekiC's Theorem 
while the first follows by the symmetry there is between 1 and g. 
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Example: We refer to Section 9.8 where it is indicated how to extend REC to allow 
local declarations. Consider the term 

T == let rec B ~ (let rec A ~ t in u) 
in (let rec A ~ t in v). 

where A and B are assumed to be distinct function variables of arity o. Let p, rp be 
arbitrary variable and function-variable environments. Abbreviate 

F(f,g) = [t]rp[J/A,g/Blp 

G(f,g) = [u]rp[J/A,g/Blp 

From the semantics we see that 

where 

and 

[T]rpp = [v]rp[j / A, g/ Blp 

g J.Lg. [let rec A ~ tin u]rp[g/ Blp 
J.Lg. [u]rp[g/ B, J.Lf. [t]rp[J / A, g/ Blp/Alp 
J.Lg. G(J.Lf.F(f, g), g). 

j = J.Lf. [t]rp[J/A,g/Blp 

= J.Lf. F(f,.9). 

By BekiC's Theorem this means (j,g) is the (simultaneous) least fixed point of (F,G). 
consequently we could have achieved the same effect with a simultaneous declaration; we 
have 

[T] = [let rec A ~ t and B ~ u in v]. 

The argument is essentially the same for function variables taking arguments by either 
call-by-name or call-by-value. Clearly Bekic's Theorem is crucial for establishing program 
equivalences between terms involving simultaneous declarations and others. 0 

Exercise 10.2 Generalise and state Bekic's Theorem for 3 equations. 0 

Exercise 10.3 Let D and E be cpo's with bottom. Prove that if f D -+ E and 
9 : E -+ D are continuous functions on cpo's D, E then 

fix(g 0 f) = g(fix(f 0 g)). 

(Hint: Use facts (fixl) and (fix2) above.) o 
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10.2 Fixed-point induction 

Often a property can be shown to hold of a least fixed point by showing that it holds for 
each approximant by mathematical induction. This was the case, for example, in Chapter 
5 where, in the proof of Theorem 5.7, stating the equivalence between operational and 
denotational semantics, the demonstration that 

(1, (1') E CITc] =? (c, (1) -t (1', 

for states (1, (1', in the case where the command c was a while-loop, was achieved by 
mathematical induction on the approximants of its denotation. In this case it was obvious 
that a property holding of all the approximants of a least fixed point implied that it held 
of their union, the fixed point itself. This need not be the case for arbitrary properties. 

As its name suggests fixed-point induction, a proof principle due to Dana Scott, is 
useful for proving properties of least fixed points of continuous functions. Fixed-point 
induction is a proof principle which essentially replaces a mathematical induction along 
the approximants FnCl) of the least fixed point Un Fn(..1.) of a continuous function 
F. However, it is phrased in such a way as to avoid reasoning about the integers. It 
only applies to properties which are inclusive; a property being inclusive ensures that its 
holding of all approximants to a least fixed point implies that it holds of the fixed point 
itself. 

Definition: Let D be a cpo. A subset P of D is inclusive iff for all w-chains do r:;;: d1 r:;;: 

... r:;;: dn r:;;: ... in D if dn E P for all nEw then UnEw dn E P. 

The significance of inclusive subsets derives from the principle of proof called fixed-point 
induction. It is given by the following proposition: 

Proposition 10.4 (Fixed-point induction-Scott) 
Let D be a cpo with bottom ..1., and F : D -t D be continuous. Let P be an inclusive 
subset of D. If..1. E P and t/x E D. x E P =? F(x) E P then fix(F) E P. 

Proof: We have fix(F) = Un Fn(..1.). If P is an inclusive subset satisfying the condition 
above then ..1. E P hence F(..1.) E P, and inductively Fn(..1.) E P. As we have seen, by 
induction, the approximants form an w-chain 

whence by the inclusiveness of P, we obtain fix(F) E P. o 
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Exercise 10.5 What are the inclusive subsets of n? Recall n is the cpo consisting of: 

o 

Exercise 10.6 A Scott-closed subset of a cpo is the complement of a Scott-open subset 
(defined in Exercise 8.4). Show a Scott-closed subset is inclusive. Exhibit an inclusive 
subset of a cpo which is not Scott-closed. 0 

As a first, rather easy, application of fixed-point induction we show how it implies Park 
induction, discussed in the last section: 

Proposition 10.7 Let F : D --+ D be a continuous function on a cpo D with bottom. 
Let d ED. If F(d) ~ d then fix(F) ~ d. 

Proof: (via fixed-point induction) 
Suppose d E D and F(d) ~ d. The subset 

P = {x E D I x ~ d} 

is inclusive-if each element of an w-chain do ~ ... ~ dn ~ ... is below d then certainly 
so is the least upper bound Un dn . Clearly J.. ~ d, so J.. E P. We now show x E P * 
F(x) E P. Suppose x E P, i.e. x ~ d. Then, because F is monotonic, F(x) ~ F(d) ~ d. 
So F(x) E P. By fixed-point induction we conclude fix(F) E P, i.e. fix(F) ~ d, as 
required. o 

Of course, this is a round-about way to show a fact we know from the Fixed-Point 
Theorem. It does however demonstrate that fixed-point induction is at least as strong 
as Park induction. In fact fixed-point induction enables us to deduce properties of least 
fixed points unobtainable solely by applying Park induction. 

A predicate Q(XI, ... ,Xk) with free variables Xl, ... ,Xk, ranging over a cpo's D I, ... , Dk 
respectively, determines a subset of DI x ... X Dk, viz.the set 

and we will say the predicate Q(Xl, ... , Xk) is inclusive if its extension as a subset of the 
cpo Dl x ... X Dk is inclusive. As with other induction principles, we shall generally use 
predicates, rather than their extensions as sets, in carrying out a fixed-point induction. 
Then fixed-point induction amounts to the following statement: 
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Let F : Dl x ... X Dk --+ Dl X ... X Dk be a continuous function on a product cpo 
Dl x··· X Dk with bottom element (.1.. 1, ... , .1..k)' Assuming Q(Xl,"" Xk) is an inclusive 
predicate on Dl x ... X Dk, 

if Q(.1.. l , ... , .1..k) and 

'r/Xl E D l ,'" ,Xk E Dk. Q(Xl, ... , Xk) => Q(F(Xl,"" Xk» 

then Q(fix(F». 

Fortunately we will be able to ensure that a good many sets and predicates are inclusive 
because they are built-up in a certain way: 

Basic relations: Let D be a cpo. The binary relations 

{ (x, y) E D x D I x [;;; y} and {(x, y) E D x D I x = y} 

are inclusive subsets of D x D (Why?). It follows that the predicates 

x [;;; y, x=y 

are inclusive. 

Inverse image and substitution: Let f : D --+ E be a continuous function between 
cpo's D and E. Suppose P is an inclusive subset of E. Then the inverse image 

r l P = {x E D I f(x) E P} 

is an inclusive subset of D. 
This has the consequence that inclusive predicates are closed under the substitution of 

terms for their variables, provided the terms substituted are continuous in their variables. 
Let Q(Yl, ... , Yl) be an inclusive predicate of E 1 x ... X E l . In other words, 

is an inclusive subset of El x ... X E1. Suppose el,"" el are expressions for elements of 
E l , ... , El, respectively, continuous in their variables Xl, ... , Xk ranging, in order, over 
Dl , ... , Dk-taking them to be expressions in our metalanguage of Section 8.4 would 
ensure this. Then, defining f to be 

ensures f is a continuous function. Thus f- 1 P is an inclusive subset of Dl x ... X Dk. 
But this simply means 
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is an inclusive subset, and thus that Q (e 1, ... , el) is an inclusive predicate of D 1 X ... x D k. 

For instance, taking f = .Ax E D. (x, c) we see if R(x, y) is an inclusive predicate of 
D x E then the predicate Q(x) {=> defR(x, c), obtained by fixing y to a constant c, 
is an inclusive predicate of D. Fixing one or several arguments of an inclusive predicate 
yields an inclusive predicate. 

Exercise 10.8 Show that if Q(x) is an inclusive predicate of a cpo D then 

R(x, y) {=> defQ(x) 

is an inclusive predicate of D x E, where the extra variable y ranges over the cpo E. 
(Thus we can "pad-out" inclusive predicates with extra variables. Hint: projection 
function.) 0 

Logical operations: Let D be a cpo. The subsets D and 0 are inclusive. Consequently 
the predicates "true" and "false", with extensions D and 0 respectively, are inclusive. 
Let P ~ D and Q ~ D be inclusive subsets of D. Then 

PuQ and pnQ 

are inclusive subsets. In terms of predicates, if P(Xl, ... ,Xk) and Q(Xl, ... ,Xk) are 
inclusive predicates then so are 

If Pi, i E I, is an indexed family of inclusive subsets of D then niEI Pi is an inclusive 
subset of D. Consequently, if P(Xl, ... ,Xk) is an inclusive predicate of Dl x ... X Dk 
then 't/Xi E Di. P(Xl, ... , Xk), with 1 SiS k, is an inclusive predicate of D. This is 
because the corresponding subset 

equals the intersection, 

n ((Xl, ... ,Xi-l,Xi+!, ... ,Xk) E Dl x ···Di - 1 X DHI X ... X Dk 
dEDi 

P(Xl' ... , Xi-I, d, XHl, ... ,Xk)} 

of inclusive subsets---each predicate P(XI, ... , Xi-I, d, Xi+! , ... , xd, for dEDi, is inclu
sive because it is obtained by fixing one argument. 

However, note that infinite unions of inclusive subsets need not be inclusive, and 
accordingly, that inclusive predicates are not generally closed under 3-quantification. 
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Exercise 10.9 
(i) Provide a counter example which justifies the latter claim. 
(ii) Show that the direct image f P of an inclusive subset P ~ D, under a continuous 
function f : D -+ E between cpo's, need not be an inclusive subset of E. 
(iii) Also, provide examples of inclusive subsets P ~ D x E and Q ~ E x F such that 
their relation composition 

Q 0 P =def {(d, f) I 3e E E. (d, e) E P&(e, f) E Q} 

is not inclusive. 
(Hint for (iii): Take D to be the singleton cpo {T}, E to be the discrete cpo of nonnegative 
integers wand F to be the cpo n consisting of an w-chain together with its least upper 
bound 00.) 0 

Athough the direct image of an inclusive subset under a general continuous function 
need not be inclusive, direct images under order-manics necessarily preserve inclusiveness. 
Let D, E be cpo's. A continuous function f : D -+ E is an order-monic iff 

f(d) ~ f(d') => d ~ d' 

for all d, d' E D. Examples of order-monics include the "lifting" function l- J and injec
tions ini associated with a sum. It is easy to see that if P is an inclusive subset of D 
then so is its direct image fP when f is an order-monic. This means that if Q(x) is an 
inclusive predicate of D then 

3x E D. y = f(x) & Q(x), 

with free variable y E E, is an inclusive predicate of E. 

Now we can consider inclusive subsets and predicates associated with particular cpo's 
and constructions on them: 

Discrete cpo's: Any subset of a discrete cpo, and so any predicate on a discrete cpo, 
is inclusive. 

Products: Suppose Pi ~ Di are inclusive subsets for 1 :s; i :s; k. Then 

is an inclusive subset of the product Dl x ... X D k . This follows from our earlier results, 
by noting 
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Each inverse image nil Pi is inclusive, for i = 1, ... , k, and therefore so too is their 
intersection. 
Warning: Let Db ... ,Dk be cpo's. It is tempting to believe that a predicate P(x 1, ... ,Xk), 
where Xl E D 1 ,···, Xk E Dk, is an inclusive predicate of the product Dl x ... X Dk if 
it is an inclusive predicate in each argument separately. This is not the case however. 
More precisely, say P(Xl, . .. ,Xk) is inclusive in each argument separately, if for each 
i = 1, ... , k, the predicate P(d l , ... ,di- l , Xi, di+l' ... , dk ), got by fixing all but the ith 
argument, is an inclusive predicate of D i . Certainly if P(Xl, .. . , Xk) is inclusive then it 
is inclusive in each argument separately-we can substitute constants for variables and 
preserve inclusiveness from the discussion above. The converse does not hold however. 
The fact that P(Xl, ... , Xk) is inclusive in each argument separately does not imply that 
it is an inclusive predicate of Dl x ... X D k . 

Exercise 10.10 Let n be the cpo consisting of w together with 00 ordered: 

By considering the predicate 

P(X,y) <==> def(x=y&xi=oo) 

show that a predicate being inclusive in each argument separately does not imply that 
it is inclusive. 0 

Function space: Let D and E be cpo's. Suppose P ~ D, and Q ~ E is an inclusive 
subset. Then 

P -t Q =def {f E [D -t Ell \:Ix E P. f(x) E Q} 

is an inclusive subset of the function space [D -t EJ (Why?). Consequently, the predicate 
\:Ix E D.P(x) :::::} Q(J(x)), with free variable f E [D -t EJ, is inclusive when P(x) is a 
predicate of D and Q(y) is an inclusive predicate of E. 

Lifting: Let P be an inclusive subset of a cpo D. Because the function L -J is an order
monic, the direct image L P J = {l d J IdE P} is an inclusive subset of D.l.. If Q( x) is an 
inclusive predicate of D then 

::Ix E D. y = LxJ & Q(x), 

with free variable y E D.l., is an inclusive predicate of D.l.. 

Sum: Let Pi be an inclusive subset of the cpo Di for i = 1, ... , k. Then 
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is an inclusive subset of the sum DI + ... + Dk. This follows because each injection is an 
order-monic so each iniPi is inclusive, and the finite union of inclusive sets is inclusive. 
Expressing the same fact using predicates we obtain that the predicate 

with free variable y E Dl + ... + Dk, is an inclusive predicate of the sum if each Qi(Xi) 
is an inclusive predicate of the component D i. 

The methods described above form the basis of a a language of inclusive predicates. 
Provided we build up predicates from basic inclusive predicates using the methods ad
mitted above then they are guaranteed to be inclusive. For example, any predicate 
built-up as a universal quantification over several variables of conjunctions and disjunc
tions of basic predicates of the form e 1 ~ e2 for terms el, e2 in our metalanguage will be 
inclusive. 

Proposition 10.11 Any predicate of the form 

is inclusive where Xl, ... ,Xn are variables ranging over specific cpo's, and P is built up 

by conjunctions and disjunctions of basic predicates of the form e 0 ~ el or eo = el, where 

eo and el are expressions in the metalanguage of expressions from Section 8.4. 

Unfortunately, such syntactic means fail to generate all the predicates needed in proofs 
and the manufacture of suitable inclusive predicates can become extremely difficult when 
reasoning about recursively defined domains. 

Example: Let T.L be the usual complete partial order of truth values {true, false} .L. 
Abbreviate ltrueJ to tt and lfalseJ to ff. Let p: D ---> T.L and h : D ---> D be continuous 
with h strict (i. e. h(..l) = ..l). Let f : D x D ---> D be the least continuous function such 
that 

f(x, y) = p(x) ---> y I h(f(h(x), y)) 

for all X, y E D. We prove 

(i) h(b ---> die) = b ---> h(d)lh(e) for all bET.L and d, e E D, and 
(ii) h(f(x, y)) = f(x, h(y)) for all X, y E D. 

Part (i) follows easily by considering the three possible values ..l, tt, ff for bET .L. 
If b =..l then h(b ---> die) = h(..l) = ..l = b ---> h(d)lh(e) 

If b = tt then h(b ---> die) = h(d) = b ---> h(d)lh(e) 

If b = ff then h(b ---> die) = h(e) = b ---> h(d)lh(e) 
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Hence the required equation holds for all possible values of the boolean b. 

Part (ii) follows by fixed-point induction. An appropriate predicate is 

P(g) {o}deJ VX,y E D. h(g(x,y)) =g(x,h(y)) 

The predicate peg) is inclusive because it can be built-up by the methods described 
earlier. Because h is strict we see that P(..L) is true. To apply fixed-point induction we 
require further that 

peg) =? P(F(g)) 

where F(g) = .Ax, y. p(x) -> y I (h(g(h(x), V))· 
Assume peg). Let x, y E D. Then 

h«F(g))(x, V)) h(p(x) -> y I h(g(h(x), V))) 

p(x) -> hey) I h2(g(h(x), v)), by (i) 

p(x) -> hey) I h(g(h(x), hey))), by the assumption peg) 

(F(g))(x, hey)) 

Thus P(F(g)). Hence peg) =? p(F(g)). 
By fixed-point induction, we deduce P(fix(F)) i.e. P(J) i.e. 'Ix, y E D. h(J(x, y)) = 

f(x, hey)) as required. 0 

Exercise 10.12 Define h : N -> N.l recursively by 

hex) = hex) +.1 LIJ 

Show h = ..1, the always-..L function, using fixed-point induction. o 

Exercise 10.13 Let D be a cpo with bottom. Let p : D -> T.l be continuous and strict 
(i. e. p(..L) = ..L) and h : D -> D be continuous. Let f : D -> D to be the least continuous 
function which satisfies 

f(x) = p(x) -> x I f(J(h(x))) 

for all xED. Prove 
'Ix E D. f(J(x)) = f(x). 

(Hint:Take as induction hypothesis the predicate 

peg) ~ deJVX E D. f(g(x)) = g(X).) 

o 



174 Chapter 10 

Exercise 10.14 Let h, k : D ~ D be continuous functions on a cpo D with bottom, 
with h strict. Let p : D ~ T 1- be a continuous function. Let f, 9 be the least continuous 
functions D x D ~ D satisfying 

f(x, y) = p(x) ~ y I h(f(k(x), y)) 

g(x, y) = p(x) ~ y I g(k(x), h(y)) 

for all x, y E D. Using fixed-point induction show f = g. 

(Hint: Regard the solutions as simultaneous fixed points and take the inclusive predicate 
to be 

P(f,g) {::::::::> de/'<:fx,y. [f(x,y) = g(x,y) & g(x,h(y)) = h(g(x,y))].) 

o 

It is probably helpful to conclude this section with a general remark on the use of fixed
point induction. Faced with a problem of proving a property holds of a least fixed point 
it is often not the case that an inclusive property appropriate to fixed point induction 
suggests itself readily. Like induction hypotheses, or invariants of programs, spotting a 
suitable inclusive property frequently requires fairly deep insight. The process of obtain
ing a suitable inclusive property can often make carrying out the actual proof a routine 
matter. It can sometimes be helpful to start by exploring the first few approximants 
to a least fixed point, with the hope of seeing a pattern which can be turned into an 
induction hypothesis. The proof can then be continued by mathematical induction on 
approximants (provided the property holding of each approximant implies it holds of the 
least fixed point), or, often more cleanly, by fixed-point induction (provided the property 
is inclusive). 

10.3 Well-founded induction 

Fixed-point induction is inadequate for certain kinds of reasoning. For example, suppose 
we want to show a recursively defined function on the integers always terminates on 
integer inputs. We cannot expect to prove this directly using fixed-point induction. To 
do so would involve there being an inclusive predicate P which expressed termination 
and yet was true of .1, the completely undefined function. An extra proof principle is 
needed which can make use of the way data used in a computation is inductively defined. 
An appropriate principle is that of well-founded induction. Recall from Chapter 3 that a 
well-founded relation on a set A is a binary relation ~ which does not have any infinite 
descending chains. Remember the principle of well-founded induction says: 
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Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. P(a) 
iff 

Va E A. ([Vb -< a. P(b)] =?- P(a)). 

Applying the principle often depends on a judicious choice of well-founded relation. 
We have already made use of well-founded relations like that of proper subexpression on 
syntactic sets, or < on natural numbers. Here some well-known ways to construct further 
well-founded relations are given. Note that we use x j y to mean (x -< y or x = y). 

Product: If -<1 is well-founded on A1 and -<2 is well-founded on Az then taking 

determines a well-founded relation -<= (j \1 Al xA 2 ) in A1 x A2 . However product 
relations are not as generally applicable as those produced by lexicographic orderings. 

Lexicographic products: Let -<1 be well-founded on A1 and -<2 be well-founded on 
A2 . Define 

Inverse image: Let f : A -> B be a function and -<B a well-founded relation on B. 
Then -<A is well-founded on A where 

a -<A a' {:}dej f(a) -<B f(a') 

for a, a' EA. 

Exercise 10.15 Let -< be a well-founded relation on a set X such that -< is a total 
order. Show it need not necessarily satisfy 

{x E X I x -< y} 

is finite for all y EX. 
(A total order is a partial order:::; such that x :::; y or y :::; x for all its elements x, y.) 
(Hint: Consider the lexicographic product of < and < on w x w.) 0 

Exercise 10.16 Show the product, lexicographic product and inverse image construc
tions do produce well-founded relations from well-founded relations. 0 

Example: A famous example is Ackermann's function which can be defined in REC by 
the declaration: 
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A(x, y) = if x then y + 1 else 
if y then A(x - 1,1) else 

A(x - 1, A(x, y - 1)) 

Under the denotational semantics for call-by-value, this declares A to have denotation 
the least function a in [N 2 ----> N.l] such that 

{ 
In + IJ 

a(m, n) = a(m - 1,1) 
let l ¢= a(m, n - 1). a(m - 1, l) 

if m = 0 
if m i- O,n = 0 
otherwise 

for all m, n E N. The fact that Ackermann's function a(m, n) terminates on all integers 
m, n :::: 0 is shown by well-founded induction on (m, n) ordered lexicographically. 0 

Exercise 10.17 Prove Ackermann's function a(m, n) terminates on all integers m, n :::: 0 
by well-founded induction by taking as induction hypothesis 

P(m,n) {c}dej (a(m,n) i- J.. and a(m,n):::: 0) 

for m,n:::: o. o 

Exercise 10.18 The 91 function of McCarthy is defined to be the least function in 
[N ----> N.l] such that 

f(x) = cond(x > 100, lx - 10J, let y ¢= f(x + 11). f(y))· 

(This uses the conditional of 8.3.5) 
Show this implies 

f(x) = cond(x > 100, lx -lOJ, 191J) 

for all nonnegative integers x. Use well-founded induction on w with relation 

n -< m {c} m < n S; 101, 

for n, mEw. First show -< is a well-founded relation. 

10.4 Well-founded recursion 

o 

In Chapter 3 we noticed that both definition by induction and structural induction allow a 
form of recursive definition, that the length of an arithmetic expression can, for instance, 
be defined recursively in terms of the lengths of its strict subexpressions; how the length 
function acts on a particular argument, like (al + a2) is specified in terms of how the 
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length function acts on strictly smaller arguments, like a 1 and a2. In a similar way 
we are entitled to define functions on an arbitrary well-founded set. Suppose B is a set 
with a well-founded relation -<. Definition by well-founded induction, called well-founded 
recursion, allows the definition of a function f from B by specifying its value feb) at an 
arbitrary b in B in terms of feb') for b' -< b. We need a little notation to state and justify 
the general method precisely. Each element b in B has a set of predecessors 

-<-1 {b} = {b' E Bib' -< b}. 

For any B' ~ B, a function f : B -> C restricts to a function f f B' : B' -> C by taking 

f f B' = {(b, feb)) I bE B'}. 

Definition by well-founded recursion is justified by the following theorem: 

Theorem 10.19 (Well-founded recursion) 

Let -< be a well-founded relation on a set B. Suppose F(b, h) E C, for all b E Band 
functions h : -< -1 {b} -> C. There is a unique function f : B -> C such that 

Vb E B. feb) = F(b,f H- 1 {b}). (*) 

Proof: The proof has two parts. We first show a uniqueness property: 

Vy -<* x. fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v}) 

'* f(x) = g(x), 

for any x E B. This uniqueness property P(x) is proved to hold for all x E B by well
founded induction on -<: For x E B, assume P(z) for every z -< x. We require P(x). To 
this end suppose 

fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v}) 

for all y -<* x. If z -< x, then as P(z) we obtain 

fez) = g(z). 

Hence 

It now follows that 

f(x) = F(x,f H-1 {x}) = F(x,g H-1 {x}) = g(x). 
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Thus P(x). 
It follows that there can be at most one function I satisfying (*). We now show that 

there exists such a function. We build the function by unioning together a set of functions 
Ix : -(*-l{X} - C, for x E B. To show suitable functions exist we prove the following 
property Q(x) holds for all x E B by well-founded induction on -(: 

31x :-(*-1{X} _ C. 

Vy -(* x. Ix(Y) = F(y, Ix [-<-1 {y}). 

Let x E B. Suppose Vz -< x. Q(z). Then we claim 

h = U {Iz I z -( x} 

is a function. Certainly it is a relation giving at least one value for every argument z -( x. 
The only difficulty is in checking the functions I z agree on values assigned to common 
arguments y. But they must--otherwise we would violate the uniqueness property proved 
above. Taking 

Ix = h U {(x, F(x, h))} 

gives a function Ix: -< * -1 { x} - C such that 

Vy -<* x. Ix(Y) = F(y, Ix H-1 {y}). 

This completes the well-founded induction, yielding "Ix E B. Q(x). 
Now we take I = UXEB Ix. By the uniqueness property, this yields I : B - C, and 

moreover I is the unique function satisfying (*). 0 

Well-founded recursion and induction constitute a general method often appropriate 
when functions are intended to be total. For example, it immediately follows from the 
recursion theorem that that there is a unique total function on the nonnegative integers 
such that 

{ 
n + 1 if m = 0 

ack(m,n)= ack(m-l,l) if m:r!=O,n=O 
ack(m - 1, ack(m, n - 1)) otherwise 

for all m, n 2: 0; observe that the value of ack at the pair (m, n) is defined in terms of its 
values at the lexicographically smaller pairs (m - 1,1) and (m, n - 1). In fact, a great 
many recursive programs are written so that some measure within a well-founded set 
decreases as they are evaluated. For such programs often the machinery of least fixed 
points can be replaced by well-founded recursion and induction. 
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10.5 An exercise 

We round off this chapter with an exercise showing that two recursive functions on lists 
are equal. The solution of this single problem brings together many of the techniques 
for reasoning about recursive definitions. We have tended to concentrate on arithmetical 
and boolean operations. Here we look instead at operations on finite lists of integers. An 
integer-list is typically of the form 

consisting of k elements from N. The empty list is also a list which will be written as: 

[ J 

There are two basic operations for constructing lists. One is the constant operation 
taking the empty tuple of arguments 0 to the empty list [ J. The other is generally called 
cons and prefixes an integer m to the front of a list l, the result of which is written as: 

m:: ( 

Thus, for example, 
1 :: [2; 3; 4J = [1; 2; 3; 4J. 

The set of integer-lists forms a discrete cpo which we will call List. It is built up as 
the sum of two discrete cpo's 

List = in! {()} U in2(N x List) = {()} + (N x List) 

with respect to the injection functions which act so: 

ind) = [J and 

in2(m, I) = m :: l. 

That lists can be regarded as a sum in this way reflects the fact that the discrete cpo of 
integer-lists is isomorphic to that of all tuples of integers including the o. 

The sum is accompanied by a cases construction 

case { of [J. ell 
x:: ('. e2. 

Its use is illustrated in a recursive definition of a function 

append: List x List --+ (List) 1-
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which performs the operation of appending two lists: 

append = Ma. AI, Is E List. 

case I of []. llsJI 
x:: l'. (let r {= a(l',ls). Lx:: rJ). 

The function append is the least a function in the cpo [List x List ---t (List).d which 
satisfies 

a([ ], ls) = LlsJ 

a(x :: l', ls) = (let r {= a(l', ls). Lx :: r J). 

An induction on the size of list in the first argument ensures that append is always 
total. Relating lists by l' -< I iff the list l' is strictly smaller than the list I, we might 
instead define a slightly different append operation on lists @ : List x List ---t List by 
well-founded recursion. By the well-founded recursion, Theorem 10.19, @ is the unique 
(total) function such that 

l@ls = case l of [ J. ls I 
x:: l'. x:: (l'@ls) 

for alll, ls E List. The two functions can be proved to be related by 

append(l,ls) = ll@lsJ, 

for all lists I, ls, by well-founded induction. 
Now we can state the problem: 

Exercise 10.20 Assume functions on integers s : N x N ---t Nand r : N x N ---t List. 
Let f be the least function in [List x N ---t N.lJ satisfying 

f([ ], y) = lyJ 
f(x :: xs, y) = f(r(x, y)@xs,s(x,y)). 

Let 9 be the least function in [List x N ---t N.lJ satisfying 

g([ ], y) = lyJ 
g(x :: xs, y) = let v {= g(r(x, y), sex, y)). g(xs, v). 

Prove f = g. 

Hints: First show 9 satisfies 

g(l@xs,y) = let v {= gel, y). g(xs, v) 
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by induction on the size of list l. Deduce f ~ g. Now show f satisfies 

(let u {:= f(l, y). f(xs, u)) ~ f(l@xs, y) 

by fixed-point induction-take as inclusive predicate 

P(F) ~ def [lyIxs,l,y. (let u {:= F(l,y). f(xs,u)) ~ f(l@xs,y)]. 

Deduce 9 ~ f. o 

10.6 Further reading 

The presentation of this chapter has been influenced by [80], [59], and [89]. In particular, 
Manna's book [59] is a rich source of exercises in fixed point and well-founded induc
tion (though unfortunately the latter principle is called "structural induction" there). I 
am grateful to Larry Paulson for the problem on lists. The reader is warned that the 
terminology for the concept of "inclusive" property and predicate is not universal. The 
term "inclusive" here is inherited from Gordon Plotkin's lecture notes [80]. Others use 
"admissible" but there are other names too. The issue of terminology is complicated by 
option of developing domain theory around directed sets rather than w-chains-within 
the wide class of w-algebraic cpo's this yields an equivalent notion, although it does 
lean on the terminology used. Other references are [13], [58] and [21] (though the latter 
wrongly assumes a predicate on a product cpo is inclusive if inclusive in each argument 
separately). Enderton's book [39] contains a detailed treatment of well-founded recursion 
(look up references to "recursion" in the index of [39], and bear in mind his proofs are 
with respect to a "well ordering," a transitive well-founded relation.) 





11 Languages with higher types 

We explore the operational and denotational semantics of languages with higher types, in 
the sense that they explicitly allow the construction of types using a function space con
structor; functions become "first-class" values and can be supplied as inputs to functions 
or delivered as outputs. Again, we will be faced with a choice as to whether evaluation 
should proceed in a call-by-value or call-by-name fashion. The first choice will lead to a 
language behaving much like the eager language Standard ML, the second to one closely 
similar in behaviour to lazy languages Miranda 1, Orwell or Haskell. This begins a study 
of the semantics of functional programming languages such as these. As an application 
of the semantics it is studied how to express fixed-point operators in the eager and lazy 
cases. This leads to a discussion of the adequacy of the denotational semantics with 
respect to the operational semantics and to the concept of full abstraction. The main 
constructions on types considered are products and function space, though the chapter 
concludes by indicating how its results can be extended to include sums. 

11.1 An eager language 

In the context of functional programming, call-by-value evaluation is often called eager. 

For efficiency, call-by-name evaluation is implemented in a call-by-need, or lazy way; 
through careful sharing the implementation arranges that an argument is evaluated at 
most once. Whether we choose a call-by-value (eager) or call-by-name (lazy) mode of 
evaluation will influence the syntax of our language a little in the manner in which we 
permit recursive definitions. We begin by studying call-by-value. 

As in the language REC we will have terms which evaluate to basic printable values 
like numbers. Such terms can be built up using numerals, variables, conditionals and 
arithmetic operations and will yield numbers as values or diverge. However in addition 
there will be terms which can yield pairs or even functions as values. (We will see shortly 
how to make sense operationally of a computation yielding a function as a value.) 

To take account of the different kinds of values terms can evaluate to, we introduce 
types into our programming language. A term which evaluates to a number provided it 
does not diverge, will receive the type into A term which evaluates to a pair as value will 
have a product type of the form 71 * 72. A term which evaluates to a function will have 
a function type of shape 71 - > 72. To summarise type expressions 7 will have the form 

To simplify the language, we will assume that variables x, y, ... in Var are associated 
with a unique type, given e.g. by type(x). (In practice, this could be achieved by building 

1 Miranda is a trademark of Research Software Ltd 
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the type 7 into the variable name, so variables x have the form x : 7). The syntax of 
terms t, to, h, ... is given by 

t ::= x I 

n I t1 + t2 I t1 - t2 I t1 X t2 I if to then t1 else t2 I 
(t1' t2) I fst(t) I snd(t) I 
Ax.t I (h t2) I 
let x {= h in t2 I 

recy·(Ax.t) 

The syntax describes how 

• to write arithmetical expressions in a manner familiar from the language REC 
of Chapter 9. Like there, the conditional branches according to an arithmetical 
rather than a boolean term. However, unlike REC the branches need not evaluate 
to numbers. 

• to construct pairs (t1' t2), and project to first and second components with fst(t) 
and snd(t). 

• to define functions using A-abstraction and apply them-(h t2) stands for the 
application of a function t 1 to t2. 

• to force the prior evaluation of a term t1 before its value is used in the evaluation 
of t2 with let x {= t1 in t2. 

• to define a function y recursively to be Ax.t using rec y.(Ax.t)-the term t can 
involve Y of course. Note, that in this eager language, any recursive definition has 
to have a function type, i.e. if recy.(Ax.t) : 7 then 7 == 71-> 72 for types 71, T2. 
With this choice of syntax, the treatment remains faithful to Standard ML. 

We can write down arithmetical terms of the kind we saw in REC. However, it is 
also possible to write down nonsense: to try to add two functions, or give a function too 
many, or too few, arguments. The well-formed terms t are those which receive a type 7, 

written t : 7. 

We will say a term t is typable when t : 7 for some type 7, according to the following 
rules: 
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Typing rules 

Variables: x : 7 if type( x) = 7 

Operations: n: int 

Products: 

Functions: 

let: 

rec: 

t1 : int t2 :. int where op is +, -, or x 
t1 op t2 : mt 

to : int t1 : 7 t2 : 7 

if to then t1 else t2 : 7 

t1 : 71 t2: 72 

(t11t2): 71 *72 

x: 71 t: 72 

AX.t : 71-> 72 

t : 71 * 72 t : 71 * 72 

fst(t) : 71 snd(t): 72 

t1 : 71 - > 72 t2: 71 

(t1 t2) : 72 

X : 7) t) : 71 t2: 72 

let x ~ h in t2 : 72 

y : 7 AX.t: 7 

rec y.(AX.t) : 7 

Exercise 11.1 Say a term t is uniquely typed if 

t : 7 and t : 7' implies 7,7' are the same type. 

Show this property holds of all terms which are typable. 

185 

o 

The set of free variables FV(t) of a term t can be defined straightforwardly by struc
tural induction on t: 

FV(n) 

FV(x) 

FV(t1 op h) 

FV(if to then h else t2) 

FV((t1, t2)) 

FV(fst(t)) 

o 
{x} 

FV(td U FV(t2) 

= FV(to) U FV(t1) U FV(t2) 

FV(td u FV(t2) 

FV(snd(t)) = FV(t) 
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FV(AX.t) 

FV((tl t2)) 

FV( let x <¢= tl in t2) 

FV(rec y.(AX.t)) 

FV(t)\{x} 

FV(td U FV(t2) 

FV(tl) U (FV(t2)\{X}) 

FV(AX.t)\{y} 

Chapter 11 

The clause for the let-construction is a little tricky: the variable x in t 2 is bound in the 
let-construction. A term t is closed iff FV(t) = 0, i.e. a term t is closed when it has no 
free variables. 

The operational semantics will require in some cases that we substitute a closed term s 

for a free variable x in a term t. We write t[s/x] for such a substitution. The reader will 
have no difficulty formalising substitution. More generally, we write t[s I/xl,"" Sk/Xk] 
for the simultaneous substitution of closed terms 81 for Xl,"" 8k for Xk in t-it is 
assumed that Xl, ... , X k are distinct. 

11.2 Eager operational semantics 

So far the intended behaviour of the programming language has only been explained 
informally. We consider a call-by-value, or eager, method of evaluation. Just as in the 
case for REe, this means that to evaluate a function applied to certain arguments we 
should first evaluate the arguments to obtain values on which the function can then act. 
But what are values in this more general language? Certainly we expect numerals to be 
values, but in the case where a function is applied to functions as arguments when do we 
stop evaluating those argument functions and regard the evaluation as having produced 
a function value? There is a choice here, but a reasonable decision is to take a term as 
representing a function value when it is a A-abstraction. More generally, it can be asked 
of every type which of its terms represent values. Traditionally, such terms are called 
canonical forms. The judgement t E C~ that a term t is a canonical form of type, is 
defined by the following structural induction on ,: 

Ground type: 

Product type: 

numerals are canonical forms, i.e. n E Cint. 

pairs of canonical forms are canonical, i. e. 

(Cl,C2) E C~1*T2 if Cl E C~l & C2 E C;'2' 

Function type: closed abstractions are canonical forms, i. e. 

AX.t E C;'1->T2 if AX.t : '1->'2 and AX.t is closed. 

Note that canonical forms are special kinds of closed terms. 
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Now we can give the rules for the evaluation relation of the form 

where t is a typable closed term and c is a canonical form, meaning t evaluates to c. 

Evaluation rules 

Canonical forms: C -->e C where C E C~ 

Operations: 

Product: 

Function: 

let: 

rec: 

h -->e Cl t2 -->e C2 

(tt, t2) -->e (CI' C2) 

t -->e (Cl' C2) 
fst(t) -->e CI 

t -->e (Cl' C2) 

snd(t) -->e C2 

tl -->e AX.tt t2 -->e C2 tt [cd xl -->e C 

(tr t2) -->e C 

tl _e Cl t2 [cd xl -->e C2 

let x -¢= tl in t2 -->e C2 

rec y. (AX.t) -->e AX. (t[rec y.(AX.t) /yj) 
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The rule for canonical forms expresses, as is to be expected, that canonical forms eval
uate to themselves. The rules for arithmetical operations and conditionals are virtually 
the same as those for REC in Chapter 9. In this eager regime to evaluate a pair is 
to evaluate its components, and the projection function fst and snd can only act once 
their arguments are fully evaluated. A key rule is that for the evaluation of applications: 
the evaluation of an application can only proceed once its function part and argument 
have been evaluated. Notice how the rule for the evaluation of let x -¢= t 1 in t2 forces 
the prior evaluation of tl. The rule for recursive definitions "unfolds" the recursion 
recy.(Ax.t) once, leading immediately to an abstraction Ax.(t[recy.(Ax.t)/y]), and so a 
canonical form. Note that to be typable, y: 71-> 72 with x: 71, for types 71,72. This 
ensures that y and X are distinct so that we could just as well write (Ax.t)[rec (AX.t)/y] 
instead of Ax. (t[rec y.(h.t)/yJ). 
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It is straightforward to show that the evaluation relation is deterministic and respects 
types: 

Proposition 11.2 If t ___.e C and t ___.e c' then c == c' (i.e. evaluation is deterministic). 
If t ---. e C and t : 7 then c : 7 (i. e. evaluation respects types). 

Proof: Both properties follow by simple rule inductions. o 

Exercise 11.3 Let fact == ree f.()..x.if x then 1 else xx f(x-l)). Derive the evaluation 
of (fact 2) from the operational semantics. 0 

11.3 Eager denotational semantics 

The denotational semantics will show, for instance, how to think of terms of type 71 - > 72 

as functions, so justifying the informal understanding one has in programming within 
a functional language. Through interpreting the language in the framework of cpo's 
and continuous functions, the programming language will become amenable to the proof 
techniques of Chapter 10. 

It should first be decided how to interpret type expressions. A closed term t of type r 
can either evaluate to a canonical form of type r or diverge. It seems reasonable therefore 
to take t to denote an element of (V;h where V; is a cpo of values of type 7, which 
should include the denotations of canonical forms. With this guiding idea, by structural 
induction on type expressions, we define: 

Vi~t = N 

V~*T2 V e X V e 
1"1 1"2 

V~->T2 = [V~ ---. (V~ hl 

The final clause captures the idea that a function value takes a value as input and delivers 
a value as output or diverges. 

In general, terms contain free variables. Then denotational semantics requires a notion 
of environment to supply values to the free variables. An environment for this eager 
language is typically a function 

p : Var ---. U{V': I 7 a type } 

which respects types in that 
x: r =? p(x) E V': 
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for any x E Var and type 7. Write Enve for the cpo of all such environments. 
Now we can give the denotational semantics for the eager language; a term t, with 

typing t : 7, will denote an element [t]ep E (V.,."h in an environment p. 

Denotational semantics 
The denotation of typable terms t is given by the following structural induction: 

[x]e Ap.lp(x)J 

[n]e Ap.lnJ 

[tl op t2]e = Ap.([tl]ep OP..l. [t2]e p) where op is +, -, x 

= Ap.Cond([to]ep, [tlrp, [t2]e p) [if to then tl else t2]e 

[(tl, t2W = 

[fst(tW 

Ap.let VI <= [td eP,V2 <= [t2]e p. l(vI,V2)J 

Ap.let V <= [t]e p. l7rI(V)J 

[snd(tW = Ap.let V <= [t]e p. l7r2(V)J 

[AX·W Ap·lAV E V'T~ . [Wp[v/xlJ 

[(h t2W 

[ let x <= h in t2]e 

[rec y.(AX.t)]e 

where AX.t: 71-> 72 

Ap.let r.p <= [tdep, v <= [t2]e p. r.p(v). 

Ap.let v <= [tl]ep. [t2]e p[V/x] 

Ap·lJ.Lr.p·(AV·[W p[v/x, r.p/ylJ 

We have used a generalisation of the conditional Cond of Section 9.3 in the clause giving 
the denotational semantics of conditionals. For a cpo D with bottom, the function 

Cond : N..l. X D x D -t D 

satisfies 

{ 

ZI if 
Cond(zQ, Zl, Z2) = Z2 if 

1.. otherwise 

Zo = lOJ, 
Zo = lnJ for some n E N with n f= 0, 

for Zo E N..l., ZI, Z2 E D. It can be shown to be continuous, as in Section 9.3. Notice 
that the semantics is expressible in the metalanguage of Section 8.4 ensuring that it is 
sensible to take fixed points. 

Exercise 11.4 According to the denotational semantics, terms let x <= t I in t2 are 
definable purely using the other constructions (and not let). How? 0 
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Lemma 11.5 Let t be a typable term. Let p, p' be environments which agree on the free 
variables oft. Then [t]e p = [Wp'. 

Proof: A simple structural induction left to the reader. D 

Lemma 11.6 (Substitution Lemma) Let s be a closed term with s: T such that [s]e p = 

lvJ. Let x be a variable with x: T. Assume t : T'. Then t[s/x] : T' and [t[s/xWp = 
[Wp[v/x]. 

Proof: A tedious structural induction. D 

Exercise 11.7 Perform the induction steps in the proof of the Substitution Lemma 
where t is an abstraction or a let construct. D 

As is to be expected a general term of type T has a denotation in (V;h, while deno
tations of canonical forms are associated with values: 

Lemma 11.8 (i) 1ft: T then [t]e p E (V;).l, for any p. 
(ii) If c E C;. then [c]e p -I- .1.., the bottom element of (v;h, for any p. 

Proof: The proof of (i) is by a simple structural induction on t. The proof of (ii) is by 
structural induction on canonical forms c. D 

Exercise 11.9 Prove part (ii) of Lemma 11.8. D 

11.4 Agreement of eager semantics 

Do the operational and denotational semantics agree? We shall see that they do, though 
perhaps not to the extent one might at first expect. Previously the operational and 
denotational semantics have matched each other rather closely, possibly leading us to 
expect, incorrectly, that 

for a closed term t and canonical form c. The "~" direction does not hold at any type 
involving function spaces. The reason is essentially because there can be many canonical 
forms with the same denotation and the evaluation of a term can yield at most one of 
them (see the exercise below). We can however show the "=?" direction of this equivalence 
does hold, no matter what the type of t: 

(1) 
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In addition, the two styles of semantics, operational and denotational, do agree on 
whether or not the evaluation of a closed term converges. 

Consider a typable closed term t. Operationally, according to the evaluation rules, t 
can either diverge or yield a canonical form. Define operational convergence of t by 

t 1 e iff 3c. t -+ e c. 

Denotationally, the computation of t is modelled as an element [t] € P of (V;).l, where 
T is the type of t and p can be an arbitrary environment because t is closed-the idea 
being that the denotation of t is J.. if t diverges or l v J, for some v, if t converges. Define 
denotational convergence by taking 

We can rightly hope that the two notions of convergence coincide, that 

(2) 

Indeed the "=:>" direction follows from (1) by using Lemma 1l.8(ii), which says that 
canonical forms converge denotationally. 

It follows, from (1) and (2), that if t : int then 

(3) 

To see that the last claim (3) is entailed by (1) and (2), notice that the "=:>" direction 
is just a special case of (1) and that the converse "{:::" direction is entailed by the fact 
that two canonical forms of type int which have the same denotation must be identical 
numerals. It is said that (1) and (2) express the adequacy of the denotational semantics 
with respect to the operational semantics. They justify our being able to reason from 
the denotational semantics about results of the operational, evaluation relation. 

Exercise 11.10 Show that for types in general the converse of (1), viz. 

does not hold. (Hint: Take t == Ax.x, c == Ax.x + 0 where x = int.) o 

We now prove (1) of the claims above, that the denotational semantics respects the 
evaluation relation. 

Lemma 11.11 1ft -+e C then [t]€p = [c]e p, for any environment p. 
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Proof: The proof proceeds by rule induction on the rules for evaluation. Most rules 
are seen straightforwardly to preserve the property above. Here we present the more 
interesting cases. 

Consider the rule: 
t ---+e (CI' C2) 
fst(t) ---+e CI 

Assume [t]e p = [(CI' C2)]e p, for an arbitrary p. Then 

[Wp = [(CI' C2)]e p 

= let VI -¢= [Cd ep,V2 -¢= [C2]e p. L(VI,V2)J 

= L(VI, V2)J where [Cl]ep = LVIJ and [cdep = LV2J 

as (CI' C2) .u-e by Lemma 11.8. Hence 

Consider the rule 

[fst(tWp = let v -¢= [trp, L7rI(V)J 

= LvIJ 
= [CI]e p . 

h ---+e Ax.ti t2 ---+e C2 tUc21 x] ---+e C 

(tl t2) ---+e C 

Assume [tl]e p = [AX.tUep, [t2]e p = [C2]e p and [ti[C2IxWp = [c]e p. Whence 

[tl t 2 ]e p = let tp -¢= [tl]e p, v -¢= [t2]e p. tp(v) 

Consider the rule 

= let tp <= [AX.t~]e p, v <= [C2]e p. tp( v) 

= let tp <= LAV.[t~]ep[vlxlJ,v <= [C2]e p. tp(v) 

= [t~]ep[vlx] where [C2]e p = LvJ, using Lemma 1l.8 

= [t~[c2/x]]ep by the substitution Lemma 1l.6 

= [c]e p 

rec y. (AX.t) ---+ e AX. (t[rec y. (AX.t) I y]) 

By definition [recy.(AX.t)]e p = LtpJ where tp is the least solution of 

tp = Av·[Wp[vlx, tply]· 
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Now by the substitution Lemma 11.6, 

[Ax.(t[recy·(Ax.t)/y]Wp = [AX.Wp[4'/Y]' recalling y and x are distinct, 

= LAV·[Wp[v/x,4'/y]J 

= L4' J 
= [recy.(AX.t)]ep. 0 

From Lemma 11.8 and Lemma 11.11 it follows that 

t 1 e implies t .1J. e 
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for any typable closed term t. The proof of the converse uses a new idea, the technique 
of logical relations. We want to prove that 

t .1J. e implies t 1 e 

for any typable closed term t. An obvious strategy is to use structural induction on t. So 
let's proceed naively, with (*) as induction hypothesis. Consider the critical case where 
t is an application (t 1 t2) and, inductively, assume 

Suppose t .1J. e with the aim of establishing (*) for this case. BAcause 

this ensures h .1J. e and t2 .1J. e, and so, by induction, 

for appropriate canonical forms. Thus [t] e p = 4'( v) where 4' 
Lv J = [C2]e p. Hence 

[t]e p = [t~]e p[v / x] 

= [t~[c2/XWp 

by the Substitution Lemma. Because t.1J.e it follows that ti[C2/X].1J.e. At this point we'd 
like to conclude that ti [C2/X] 1 e so tifC2/X] -4e C, and therefore, from the operational 
semantics, that t -4e c. But we can't yet justify doing this, simply because ti [C2/ x] 
bears no obvious structural relationship to t which would make the application of the 
structural induction hypothesis legitimate. 
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The solution to this difficulty is, as usual, to strengthen the induction hypothesis. 
Instead of trying to show that the denotational convergence of a term implies its op
erational convergence we show a stronger, more detailed, relation of "approximation" 
holds between the denotational and operational behaviour of a term. This is expressed 
through relations ;S.,., for type T, between elements of the cpo (V:h and closed terms 
of type T. The relations are defined by structural induction on the types of terms by 
a method which is often useful in reasoning about higher types; the technique is called 
that of logical relations. (Of course, we should also take better care of free variables than 
we did when trying naively to verify (*) by structural induction.) 

We will define a relation ;S~ ~ V: x C; on types T. We extend these principal relations 
to relations between elements d of (V:h and closed terms t by defining 

d ;S.,. t iff 

Vv E V:. d = l v J '* 3c. t ---. e C & v;S~ c. 

The principal relations ;S~ are defined by structural induction on types T: 

Ground type: n ;Sint n, for all numbers n. 

Function types: tp ;S~'->"'2 AX.t iff Vv E V~, c E C;,.V ;S~, c'* tp(v) ;S"'2 t[c/x]. 

The key property is expressed by the final clause which says that two representations of 
functions (denotational and operational) are related iff they take related arguments to 
related results. This property makes the family ;S.,., for types T, an example of a logical 
relation. 

It is important for the proof later to note some basic properties of the relations ;S.,.; in 
particular, they are inclusive. 

Lemma 11.12 Let t : T. Then 

(i) l.(v.,').l ;S.,. t. 
(ii) If d ~ d' and d' ;S.,. t then d ;S.,. t. 

(iii) If do ~ d1 ~ ... ~ dn ~ ... is an w-chain in (v:h such that dn ;S.,. t for all nEw 

then UnEw dn ;S.,. t. 

Proof: Property (i) follows directly by definition. Properties (ii) and (iii) are shown 
to hold for all terms by structural induction on types. Certainly they both hold at the 
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ground type into To illustrate the inductions we prove the induction step in the case 
of a function type. Suppose do ~ ... ~ dn ~ ... is an w-chain in (VT~ _ >T2).L such 
that dn ;ST1->T2 t for all nEw. Either dn = .1 for all nEw or we have t -t e AX.t' 
and some n for which whenever m 2:: n dm = l¥?mJ and ¥?m ;S~'->T2 AX.t'. In the 
former case Un dn = .1 ;STl->T2 t. In the latter case, assuming v ;S~, c we obtain 
¥?m(v) ;ST2 t'[C/X] for m 2:: n. It follows inductively that Um(¥?m(v)) ;ST2 t'[c/x], and 
so (Um ¥?m)(V) ;ST2 t'[C/X] whenever v ;S~, C. In other words (Um ¥?m) ;S~'->T2 AX.t' 
whence Um dm = LUm ¥?mJ ;STI->T2 t, as required. 0 

Exercise 11.13 Prove the remaining induction steps for (ii) and (iii) in Lemma 11.12. 
o 

The reader may find it instructive to compare the proof below in the case of application 
with the naive attempt described above. 

Lemma 11.14 Let t be a typable closed term. Then 

t .IJ. e implies t 1 e . 

Proof: We shall show by structural induction on terms that for all terms t : T with free 

variables among Xl : Tl, ... ,Xk : Tk that if l VlJ ;STI Sl,·· . l vd ;STk Sk then 

Taking t closed, it follows from the definition of;ST that ift.IJ.e then [t]€p = lvJ for some 
v, and hence that t -t € C for some canonical form c, i. e. t 1 e . 

First note that by Lemma 11.5, in establishing the induction hypothesis for a term t, 
it suffices to consider the list of precisely those variables which are free in t. 

t == X, a variable of type T: Suppose lvJ ;ST S. Then from the semantics, [x]ep[v/x] = 

lvJ ;ST S == x[s/x], as required. 

t == n, a number: By definition n;S~ tn, so the induction hypothesis holds. In 

t == tl op t2: Suppose Xl : Tl,'" ,Xk : Tk are all the free variables of t. Suppose 
lvIJ ;STI sl,···,lvkJ ;STk Sk· Assume [tl opt2]ep[vI/xl, ... ,Vk/Xk] = lnj. Then, from 
the denotational semantics, 

[hrp[vI/xl,"" Vk/Xk] = lnIJ and 

[t2]e p[vI/ xl,'" ,Vk/Xk] = ln2J 
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for integers nl, n2 with n = nl op n2. By induction, 

[tdep[V!/Xl, ... , Vk/Xk] ;Sint tdS!/Xl,"" Sk/Xk]' and 

[t2]e p[V!/Xl, ... ,Vk/Xk] ;Sint t2[S!/Xl, ... ,Sk/Xk]' 

From the definition of ;Sint' we see 

tdSl/Xl,"" Sk/Xk] ...... e n1, and 

t2[sl/X1,"" Sk/Xk] ...... € n2· 

Hence from the operational semantics 

Thus 

t == if to then t1 else t2: This case is similar to that when t == hop h above. 

t == (t1' t2): Assume h : a1, t2 : a2. Suppose Xl : T1, ... , Xk : Tk are all the free variables 
oft and that LVIJ;ST Sl,···, LVkJ ;STk Sk· Assume [(tl,t2Wp[vl/Xl, ... ,Vk/Xk] = luJ. 
Then from the denotational semantics, there are u 1, U2 such that 

[tdep[vdxl"'" Vk/Xk] = LUIJ 
[t2]e p[vd Xl, ... ,Vk/ Xk] = L U2J 

with U = (UI,U2)' By induction, 

lU1J ;S0"1 tdS!/XI, ... , Sk/Xk] 

lU2J ;S0"2 t2[S!/XI, ... , Sk/Xk] 

and so there are canonical forms ClJ C2 such that 

U1 ;S~I C1 & tdS!/XI, ... , Sk/Xk] ...... e ClJ and 

U2 ;S~2 C2 & t2[Sl/XI,"" Sk/Xk] ...... e C2. 

It follows that (U1, U2) ;S~'*0"2 (C1, C2), and (t1, t2)[sl/XlJ"" Sk/Xk] ...... e (C1, C2) from the 
operational semantics. Thus [(tl, t2)]e p[vl/xI,"" Vk/Xk] ;S0"1*0"2 (t1, t2)[S!/X1, ... , Sk/Xkj. 

t == fst(s): We are assuming fst(s) is typable, so S must have type a1 * a2. Suppose 
Xl : T1,··· ,Xk : Tk are all the free variables of t and that Lvd ;STI Sl,···, LVkJ ;STk Sk· 
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Assume [fst(s)]e p[VI/xl, ... , Vk/Xk) = l uJ. Then from the denotational semantics, u = 
Ul where [s]ep[vI/xl, ... ,Vk/Xk] = l(U1,U2)J forsomeul E V;I,U2 E V;2' By induction, 

Hence there is a canonical form (c 1, C2) such that 

as required. 

t = snd(s): Similar to the above. 

t = AX.t2: Suppose x: 0"1, t2 : 0"2. Suppose Xl : 71,"" Xk : 7k are all the free variables of t 
and that lvIJ ':srI Sl,"" lVkJ ':s'Tk Sk· Assume [AX.t2]e p[vI/x l"",Vk/Xk] = lcpJ· Then 
AV E V;1 . [t2]e p[vI/xl , ... , Vk/Xk, v/x] = cp. We require cp ':s~1->0"2 AX.t2[sI/Xl, ... , Sk/Xk]' 
However supposing v ':s~1 c, we have l v J ':s0"1 c, so by induction, we obtain 

which is precisely what is required. 

t = (t1 t2): Suppose t1 : 0"2-> 0", t2 : 0"2· Assume t has free variables Xl : 71, ... , Xk : 7k 
and that lV1J ':srI Sl,···, lVkJ ':srk sk· From the denotational semantics, we see 

[h t2]e p[vI/XI, ... ,Vk/Xk] = 

let cp {:::: [h]ep[vI/x1,'" ,Vk/Xk]'V {:::: [t2]ep[vI/xl,'" ,Vk/Xk]' cp(v) 

Assume [h t2]ep[vI/xl,'" ,Vk/Xk] = luJ, for U E V;. Then there are cp, v such that 

[tl]ep[vI/XI, ... ,Vk!Xk] = lcpJ, 
[t2]e p[vI/x l,'" ,Vk/Xk] = lvJ 

with cp( v) = l u J. It follows by induction that 

[tde p[vI/Xl, ... ,Vk/Xk] ':s0"2->0" trlSI/xl, ... ,Sk/Xk]' and 

[t2]e p[vI/x l,"" Vk/Xk) ':s0"2 t2[sI/Xl,"" Sk/Xk]' 
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Recalling the definition of ;S0"2->0" and ;S0"2 in terms of ;S~2->0" and ;S~2 we obtain the 
existence of canonical forms such that 

and 
t2[sdxl, ... , sk/xk] -+e C2 & v ;S~2 C2. 

Now, from the definition of ;S~2->0" we obtain 

As <p(v) = luJ, there is C E C;. such that 

We can now meet the premise of the evaluation rule (Function), and so deduce 
(tl t2)[sd Xl, ... , Ski Xk] -+e c. Now because u ;S~ c, we conclude 

t == let X ¢= tl in t2: Assume h : 01,t2 : 02· Let Xl: Tl,···,Xk : Tk be all the free 
variables of t and lvd ;SrI Sl,···, lVkJ ;Srk Sk· From the denotational semantics, we see 
that if [ let X ¢= tl in t2]ep[vdxl,.·., Vk/Xk] = luJ then there is Ul E V:I , with 

[h]e p[vd Xl, ... , Vk/ Xk] = l ud, and 

[t2]e p[vd x l, ... , Vk/Xk][udx] = luJ. 

(We need to write p[VdXl, ... , Vk/Xk][udx] instead of P[VdXl, ... , Vk/Xk, udx] because 
X may occur in Xl,··· ,Xk.) 
By induction there are canonical forms Cl, C2 such that 

Ul ;S~I Cl & tl[sdxl, ... , Sk/Xk]-+e Cl, and 

u ;S~2 C2 & t2[cdx][sdxl' ... , Sk/Xk] -+e C2. 

(Again, because X may occur in Xl,···, Xk, we must be careful with the substitution 

t2[cdx][sdxl' ... , Sk/Xk].) 
Thus from the operational semantics, 
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We deduce 

t == recy.(Ax.tr): Assume x : a and t1 : al· Let Xl : T1,.·. ,Xk : Tk be all the free 
variables of t and suppose lvIJ ;:SrI Sl,···, lVkJ ;:Srk Sk· Suppose 

for cp E V';->O'l' Then from its denotational definition, we see 

Thus cp = UnEw cp(n) where each cp(n) E V';->O'l is given inductively by: 

cp(O) = ..LV" 
a->CTl 

cp(n+1) = Av.[td€p[Vl/X1,"" Vk/Xk, v/x,cp(n) /y]. 

We show by induction that 

(1) 

By Lemma 11.12 it then follows that 

Because 

we can then conclude that 

as required. We now prove (1) by induction: 

Basis n = 0: We require cp(O) ;:S~->O'l Ax.tdsI/X1,"" Sk/Xk, t[SI/X1,"" Sk/XkJ/y] i.e., 
cpO (v) ;:SO'l h[sI/x1, ... , Sk/Xb t[SI/Xl,'''' Sk/Xk]/y, c/x] whenever v ;:S~ c. But this 
certainly holds, by Lemma 11.12(i), as cp(O)(v) = .1. 
Induction step: Assume inductively that 
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Then 
(2) 

We require 

i.e. for all v ~~ c 

To this end, suppose v ~~ c, so 
(3) 

Recall !p(nH) (v) = [tde p[vI/ Xl, ... , VdXk, v Ix, !pen) lyJ, so, by the main structural in
duction hypothesis, using (2) and (3), 

as was required. This completes the mathematical induction, and so the final case of the 
main structural induction. D 

As remarked early in this section, it follows that evaluation relation and denotational 
semantics match identically at the ground type into 

Corollary 11.15 Assume t is a closed term with t : into Then 

for any n E N. 

11.5 A lazy language 

We now consider a language with higher types which evaluates in a call-by-name, or 
lazy, way. Again we will give an operational and denotational semantics and establish 
their agreement. The syntax is almost the same as that for the eager language; the only 
difference is in the syntax for recursion. 

A recursive definition can now take the form 

recx.t 
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where, unlike the eager case, we do not insist that the body t is an abstraction. Accom
panying this is a slightly modified typing rule 

x: 7 t: 7 

recx.t : 7 

But for this slightly more liberal attitude to recursive definitions the syntax of the lazy 
language is the same as that for the eager one. Again, we will say a term t is typable when 
there is a type 7 for which t : 7 is derivable from the typing rules. The free variables of 
a term are defined as before but with the clause 

FV(recx.t) = FV(t) \ {x} 

for recursive definitions. A term with no free variables will be called closed. 

11.6 Lazy operational semantics 

Typable closed terms will evaluate to canonical forms. In the lazy regime canonical forms 
of ground and function types will be numerals and abstractions respectively. However, 
unlike the eager case a canonical form of product type will be any pair of typable closed 
terms, which are not necessarily canonical forms. The lazy canonical forms C ~ are given 
by induction on types 7: 

Ground type: n E into 

Function type: AX.t E C~1->T2 if AX.t : 71- > 72 with AX.t closed. 

Lazy evaluation will be expressed by a relation 

t -t1 C 

between typable closed terms t and canonical forms c. 
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Evaluation rules 

Canonical forms: 

Operations: 

Product: 

Function: 

let: 

rec: 

C -t l C 

tJ -t l nl t2 -t l n2 
h op t2 -t l nl op n2 

t -t l (tl,t2) h -t Cl 

fst(t) -t1 Cl 

tl -t1 Ax.tl t1[t2/X] -t l C 

(tl t2) -t l c 

t[rec x.t/x] -t l C 

recx.t -t l C 
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where C E C~ 

where op is +, -, x 

to -t1 n t2 -t l C2 n =t 0 
if to then h else t2 -t1 C2 

t -t l (h, t2) t2 -t C2 

snd(t) -t l C2 

A notable difference with eager evaluation occurs in the case of function application; 
in lazy evaluation it is not first necessary to evaluate the argument to a function-the 
essence of laziness. Notice too that the rules for product need no longer stipulate how to 
evaluate pairs-they are already canonical forms and so no further rules are required to 
formalise their evaluation. As the components of a pair need not be canonical, extraction 
of the first and second components requires further evaluation. Because it is no longer 
the case that one unwinding of a recursive definition yields a canonical form the rule 
for the evaluation of recursive definitions is different from that with eager evaluation. 
Here in the lazy case we have chosen to interpret the let -expression as simply a way to 
introduce abbreviations. 

For future reference we note here that lazy evaluation is deterministic and respects 
types. 

Proposition 11.16 1ft -t1 C and t -t1 C' then c == c'. 1ft -t1 C and t: T then c: T. 

Proof: By rule induction. o 
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11. 7 Lazy denotational semantics 

A typable closed term can evaluate lazily to a canonical form or diverge. Accordingly we 
will take its denotation to be an element of (V;).L where V; is a cpo of values, including 
the denotations of canonical forms of type 7. 

We define V; by structural induction on the type 7: 

Vi~t N 

V;1*T2 

V;I->T2 

= (V;lh x (V;2h 
[(V;lh --f (V;2hl 

These definitions reflect the ideas that a value of product type is any pair, even with 
diverging components, and that all that is required of a value of a function type is that it 
be recognised as a function, and indeed a function which need not evaluate its arguments 
first. 

An environment for the lazy language is a function 

p : Var --f U {(V;h 17 a type} 

which respects types, i.e. if x : 7 then p(x) E (V;).L for any variable x and type 7. We 
write Envl for the cpo of such lazy environments. 

Now we give the denotational semantics of our lazy language. A term t of type 7 will 
be denoted by a function from environments Env l to the cpo (V;h. The denotation of 
typable terms t is given by structural induction, again staying within the metalanguage 
of Section 8.4. 

[X]l 

[n]l 

[t1 op t2]1 

[if to then tl else t2]1 

[(h, t2W 

[fst(tW 

[snd(tW 

[AX.t]1 

Ap.p(X) 

Ap·lnJ 
Ap.([tl]lp OP.L [t2]lp) where op is +, -, x 

Ap. Cond([to]l p, [tl]l p, [t2]1 p) 

Ap.l([tl]lp, [t2]lp)J 

= Ap.let v <= [t]lp.lI'l(V) 

Ap.let v <= [t]lp.1I'2(V) 

Ap.lAd E (V;JJ...[t]lp[d/x]J 

where AX.t : 71- > 72 

>.p.let !.p <= [tl]lp.!.p([t2]lp) 
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[ let x {::: tl in t2]l 

[recx.t]l 

We note a few facts for later. 

}..p. [t2]l p[[tl]l pix] 

= }..p.(f.td.[t]lp[d/x]) 

Chapter 11 

Lemma 11.17 Let t be a typable term. Let p, p' be environments which agree on FV(t). 
Then [t]lp = [t]lp'. 

Proof: A simple structural induction. 0 

Lemma 11.18 (Substitution Lemma) 
Let s be a closed term with s : 7. Let x be a variable with x : 7. Assume t : 7'. Then 
t[s/x] : 7' and [t[s/x]]lp = [t]lp[[s]lp/x]. 

Proof: By structural induction. 0 

Lemma 11.19 
(i) If t : 7 then [t] 1 P E (V; h for any environment p E Envl . 

(ii) If c E C~ then [c]lp # .1, the bottom element of (v;h, for any p E Env l . 

Proof: The proof of (i) is by a simple structural induction on t, and that of (ii) is by 
structural induction on canonical forms c. 0 

11.8 Agreement of lazy semantics 

We show that the denotational semantics is adequate with respect to the operational 
semantics in the sense that it respects the evaluation relation and agrees on when terms 
converge. 

Let t be a typable closed term. Define operational convergence with respect to lazy 
evaluation by 

Define denotational convergence by 

t.ij.l iff 3v E V,!. [t]lp = LvJ 

where p is an arbitrary environment in Env l . 

Suppose t ! I. Then t -t1 C for some canonical form c. We will show it follows that 
[t]lp = [c]lp for an arbitrary environment p, and because by Lemma 11.19 c .ij.l, this will 
imply t .ij.l. We will also establish the (harder) converse that if t .ij.l then t ! I; if t denotes 
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Lv J according to the denotational semantics then its evaluation converges to a canonical 
form c, necessarily denoting Lv J. The general strategy of the proof follows that in the 
eager case quite closely. 

First we show the denotational semantics respects the evaluation relation: 

Lemma 11.20 1ft -t l C then [t]lp = [c]lp, for an arbitrary environment p. 

Proof: A proof is obtained by rule induction on the lazy evaluation rules. It follows the 
proof of Lemma 11.11 closely, and is left as an exercise. 0 

Exercise 11.21 Prove Lemma 11.20 above. o 

We turn to the proof of the harder converse that t -t I c, for some canonical form c, 
if t is closed and t.jJ.l. As in the eager case, this will be achieved by showing a stronger 
relationship, expressed by a logical relation, holds between a term and its denotation. 
We will define logical relations ;S~~ V; x C; on types T. As before we extend these 
principal relations between values and canonical forms to relations between elements d 
of (V,!h and closed terms t by defining 

d ;Sr t iff 

'<Iv E V,!. d = LvJ => 3c. t -t l C & v;S~ c. 

The principal relations ;S~ are defined by structural induction on types T: 

Ground type: n ;Sint n, for all numbers n. 

Function types: cp ;S~1->r2 AX.t iff'<ld E (V;JJ., closed u: Tl· d ;Srl U => cp(d) ;Sr2 t[u/x]. 

We observe facts analogous to those of Lemma 11.12: 

Lemma 11.22 Let t : T. Then 

(i) ..l(v.,!l.L ;Sr t. 
(ii) If d ~ d' and d' ;Sr t then d ;Sr t. 

(iii) If do ~ d1 ~ ••• ~ dn ~ ... is an w-chain in (V'!h such that dn ;Sr t for all nEw 

then UnEw dn ;Sr t. 
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Proof: The proof is like that of 11.12. Property (i) follows directly by definition. Prop
erties (ii) and (iii) are shown to hold for all terms by structural induction on types. 

o 

Lemma 11.23 Let t be a typable closed term. Then 

t JJ.I implies t 11 . 

Proof: The proof is very similar in outline to that of Lemma 11.14. It can be shown 
by structural induction on terms that for all terms t : T with free variables among 

Xl : Tl,···, Xk : Tk that if d l ~7"1 Sl,··· dk ~7"k Sk then 

Taking t closed, it follows from the definition of ~7" that if t JJ.I then [t]lp = LvJ for some 
v, and hence that t --+1 C for some canonical form c. Only the cases in the structural in
duction which are perhaps not straightforward modifications of the proof of Lemma 11.14 
for eager evaluation are presented: 

t == fst(s): We are assuming fst(s) is typable, so s must have type 0"1 * 0"2. Suppose 
Xl : Tl,···, Xk : Tk are all the free variables of t and .that d l ~7"1 Sl,···, dk ~7"k Sk. 
Assume [fst(s)]lp[dI/Xl, ... ,dk/Xk] = LVIJ. Then from the denotational semantics, 
[s]lp[dI/xl' ... ' dk/Xk] = LuJ where LvIJ = 7rl(U). By induction, 

Thus 

s[sI/Xl, .. . , Sk/Xk] --+1 (tl, t2) where u ~~'*,,2 (tl' t2)· 

From the definition of ~~, *a2 ' 

LvIJ ~al tl 
and, further, by the definition of ~al we obtain 

for some canonical form Cl. From the operational semantics we see 

fst(S)[sI/Xl' ... ' Sk/Xk] == fst(S[SI/Xl, ... , Sk/Xk]) --+1 Cl 

making [fst(s)]lp[dI/Xl' ... ' dk/Xk] ~al fst(s) [SI/Xl, ... , Sk/Xk]' as required. 
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t == tl t2: Suppose tl : (72-> CJ, t2 : CJ2. Assume t has free variables Xl : Tl,"" Xk : Tk 

and that d l ~Tl Sl, ... ,dk ~Tk Sk. Let 

From the denotational semantics, we see 

[tl t2TIlp[ddxl"'" dk/Xkj = 

let r.p ~ [tdlp[ddxl"" ,dk/Xkj. r.p(d) 

with 
r.p(d) = luJ. 

Noting that by induction we have 

we obtain 

tl[sdxl)"') Sk/Xkj -t l >'x.t~ & r.p ~~2~>(T >'x.t~ 

for a canonical form >'x.t~. Also, by induction, as d = [t2TIl p[dl/ Xl, ... , dk/ Xk], 

Now, from the definition of ~~2~>(T' we get 

As r.p(d) = luJ, there is c E C~ such that 

t~[t2[sdxl"'" Sk/Xkl/xj-tl c & u ~~ c. 

From the operational semantics we deduce 

and can conclude 
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as required. 

t :::: rec y.tl: Assume y : a and tl : a. Let Xl : 71, ... , Xk : 7k be all the free variables of t 
and suppose dl .:s7"1 S1, . .. , dk .:s7"k Sk· From the denotational semantics, we see 

Thus () = UnEw ()(n) where each ()(n) E (V;)J.. is given inductively by: 

()(O) = ..1(V;).L 

()(n+l) = [tl]l p[dl/ Xl, ... , dk/Xk, ()(n) /yj. 

We show by induction that 

(1) 

(Note that all the free variables Xl,··· ,xk of recy.tl must be distinct from y so which 
ever way we associate the substitution, as 

or as 

yields the same term.) 
By Lemma 11.22 it then follows that 

We now prove (1) by induction: 
Basis n = 0: We require rp(O).:sa recY.h[sI/Xl, ... ,Sk/Xkj. This certainly holds, by 
Lemma 11.22(i), as ()(O) = ..i. 
Induction step: Assume inductively that 

Now by structural induction 

()(n+l) =[tl]lp[dl/Xl' ... ' dk/Xk, ()(n) /yj 

.:satdSl/Xl, ... , Sk/Xk, recy.tdsl/xl, ... , Sk/Xkj/yj 

::::tdrecy.tl/y][sl/X1, ... ,Sk/Xkj. 
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From the operational semantics we see that 

for a canonical form c. Now, from the definition of ;5a we conclude 

This completes the mathematical induction required in this case. o 

As a corollary, we deduce that the evaluation relation and denotational semantics 
match at the ground type into 

Corollary 11.24 Assume t is a closed term with t : into Then 

for any n E N. 

11.9 Fixed-point operators 

The denotational semantics give mathematical models in which to reason about the 
evaluation of terms in our language with higher types. As an illustration we will study 
how fixed-point operators can be expressed in both the eager and lazy variants of the 
language. 

At first we assume evaluation is lazy. A fixed-point operator is a closed term Y of type 
(7-> 7)-> 7 which when applied to an abstraction F yields a fixed point of F i.e. 

Given that Y should satisfy this equation, a reasonable guess of a suitable definition is 

rec Y()..f.f(Y f)). 

Indeed, according to the denotational semantics this does define a fixed-point operator. 
To see this we consider the denotation of 

R == rec Y()..f.f(Yf)) 

-assumed well-typed so R : (7-> 7)-> 7. According to the denotational semantics 

/-tU.[)..f.f(Y f)]lp[U !Y] 
/-tU l )..<p. let <p' {= <po <p' (let U' {= U. U' (<p)) j 
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Before proceeding it is helpful to simplify this expression with the help of continuous 
functions 

downe : C J. ----+ C 

to a cpo C, with bottom ..le, from its lifting CJ.. Such a function is given by 

downc( rp) = let rp' ¢= rp. rp' 

or, equivalently, as 

downc(rp) = rp I rp = .rp { ' 'f l 'J 
..le otherwIse. 

We are concerned with such functions in the special case that C is a function space, say 
of the form D -> E, with E a cpo with bottom. In this case: 

Lemma 11.25 Let C be the cpo [D -> E] where E is a cpo with bottom element 1. E . 

Then 
(downc(rp))(d) = let rp' ¢= rp. rp'(d) 

for rp E C J. , d ED. 

Proof: The equality is clear in the case where rp has the form lrp' J. In the case where 
rp = ..1, the right-hand-side is ..lE which agrees with the left-hand-side which is 
()"d E D . ..lE)(d) = ..lE. 0 

Both V;_>T and V(IT_>r)_>r are cpo's with bottom, of the form required by the lemma. 
Accordingly, there are functions 

down: (V;->rh -> V;_>T and 

down: (V(lr_>T)_>Th -> V(~->T)-YT 

(where it's hoped the dropped subscripts on the two different "down" functions are 
forgiven). 
Using them we can simplify [R]lp: 

[R]l p = /LU.l )..rp.( down( rp)) (( down(U))( rp))J. 

From this simplified form of denotation of R we see that 

where UfO) ..L 

U(I) l)..rp·(down(rp)) (..l(rp))J 

l )..rp. ( down( rp)) (..1) J 
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and, inductively, 

Thus 

u(n) l )..<p.( down( <p))( (down(u(n-l)))( <p))J 

l )..<p. (down( <p)) n( 1-)J 

U u(n) 
nEw 

UnEW l )..<p.( down( <p) )n(1-)J 

= lUnEw)..<p·(down(<p))n(..l)J by the continuity of l- J, 
l )..<p. UnEw (down( <p))n (1-)J 

as lubs of functions are determined pointwise, 

l )"cp. fix( down( <p)) J by the definition of fix· 
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From this characterisation, it follows that R is a fixed-point operator. In the case 
where F is an abstraction of type T-> T we have 

for some <p' : (V;)J.. --+ (V;)J... Hence 

[F(RFWp = <p'([RF]lp) 

<p' (fix( down( l <p' J ))) 
<p' (fix( <p') ) 

fix( <p') 

= [RF]lp 

Exercise 11.26 Show even if [F]lp = 1- for F : T-> T it holds that 

The characterisation of [R] I P enables us to show that the programs 

R()..x.t) recx.t 

o 
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are equivalent in the sense of having the same denotation. We simply argue from the 
denotational semantics that 

[R(Ax.t)]lp fix(Ad. [t~l p[d/ xl) 

JLd. [t~l p[d/x] 

[rec x.t~lp 

So the definition of fixed-point operators is reasonably straightforward with lazy eval
uation. What about under eager evaluation? The same definition no longer works, as 
will now be shown. From the denotational semantics of the eager languages we see 

[R~ep lJL U.(Aip.[!(Y!Wp[ip/!,U/Yl)J 

lJL U.(Aip. let v ~ U(ip). ip(v))J. 

Now we can argue that 

JL U.(Aip. let v ~ U(ip).ip(v)) = Aip . ..1 

by considering its approximants. We know this fixed point is UnEw u(n) where 

U(O) Aip . ..1 and, inductively, 

u(n) Aip.(let v ~ u(n-l)(ip). ip(v)) for n > O. 

From this we see that 
U(1) Aip.(let v ~ ..1. ip(v)) 

Aip . ..1 

and similarly by a simple induction that 

u(n) Aip.(let v {= un-l(ip).ip(v) 
Aip . ..1 

for all n > O. It follows that 

JL U.(Aip. let v ~ U(ip). ip(v)) = Aip . ..1 

and hence that 

Hence 
[R(Ax. tWp = ..1. 
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Instead of delivering a fixed point, an application R()..x.t) yields .1, a diverging com
putation. Note the key reason why this is so: According to the denotational semantics 
the definition of u(n) involves the prior evaluation of u(n-l)(<p), on arguments <p, and 
inductively this is always .i. 

Exercise 11.27 Argue from the operational semantics that R()..x.t) diverges in the sense 
that there is no canonical form c such that R()..x.t) ---+e c. 0 

So how can we define a fixed-point operator under eager evaluation? The key idea is 
to use abstraction to delay evaluation and in this way mimic the lazy language and its 
simple expression of fixed-point operators. 

Notice an anomaly. Under either eager or lazy evaluation the two terms 

F(YF), )..x.((F(YF))x) 

are not evaluated in the same way; the latter is a canonical form and so evaluates directly 
to itself while the former involves the prior evaluation of F, and also (Y F) in the eager 
case. This is in contrast to mathematics where a mathematical function 

is always the same (i. e. the same set of ordered pairs) as the function 

)..x E x.<p(x) : X ---+ Y. 

We study how this distinction is reflected in the denotational semantics. 
Assume T is a function type of the form (J - > (J I, and that 

f : T-> T, Y: (T-> T)-> T and x : (J 

are variables. We consider the denotations of the terms 

fey!), )..x.((f(Y!))x), 

both of type T, in an environment p where p(f) = <p and p(Y) = U. The simplification 
of the denotations will make use of the function 

down: (v:h ---+ V: 
taking LvJ to v and .1 to the always .1 function in V;. As earlier, by Lemma 11.25, we 
observe that for'1/! E (V:h we have 

down('1/!) = )..w. let () ~ '1/!. O(w) 
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a fact which we will make use of shortly. Now, from the denotational semantics, we see 
on the one hand that 

[J(YfWp = let v ~ U(4').4'(v) 

which may be .1 E (v:h. On the other hand 

lAW. let {} ~ [f(YJ)]e p. {}(w)J 

lAW. (down([f(Y J)]e p)( w))J by (*) 

ldown([f(Y f)]e p)J 

a property of mathematical functions, 

ldown(let v ~ U(4'). 4'(v))J 

which is always a non-.1 element of (VTeh. This distinction is central to our obtaining a' 
fixed-point operator under eager evaluation. 

Redefine R to be 
rec Y. (Af. AX.((f(YJ))x)). 

Then, from the denotational semantics, we obtain 

We have already simplified the denotation of Ax.((f(YJ))x), and using this we obtain 

The fixed point 

JLU.A4'·ldown(let v ~ U(4')'4'(v))J 

is UnEw u(n), the least upper bound of approximants given inductively by: 

U(O) A4' . .1, 

urn) A4'.ldown(let v ~ u(n-1) (4'). 4'(v))J, for n > O. 

Thus we obtain that 

U(l) A4'.ldown(.1)J = A4'.l.1J 

U(2) A4'.ldown(4'(.1))J = A4'·l(down o 4') (.1)J 

and, by induction, that 
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It follows that 

lUnEw u(n) J 
lUnEW (Acp.l( down 0 cp) (n-I) (.1)J) J 

l Acp·lUnEw (down 0 cp) (n-I) (.1) JJ 
as lubs of functions are determined pointwise and l- J is continuous, 

l Acp·lfix( down 0 cp )JJ. 

It now can be shown that: 

[R(Ay.AX.tWp = [rec y.(AX.t)]ep 

Argue from the denotational semantics that 

[R(Ay.AX.tWp 

(Acp.lfix{ down 0 cp)J )(AO.l AV. [t] e p[v / x, O/ylJ) 

lfix( down 0 (AO.l AV. [t] e p[v / x, O/ylJ))J 

lfix{AO.AV.[t]ep[v/x,O/y])J by recalling how down acts, 

ll1 O.AV.[t]ep[v/x, O/y]j 

[rec y.(AX.t)]ep. 

11.10 Observations and full abstraction 
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We have just seen examples of reasoning within the mathematical model provided by de
notational semantics to explain the behaviour of programs. According to the denotational 
semantics certain terms behave as fixed-point operators. Such facts are hard to prove, 
or even state correctly, solely in terms of the operational semantics. One might wonder 
why it is we are justified in using the denotational semantics to make conclusions about 
how programs would run on a machine, assuming of course that the implementation is 
faithful to our operational semantics. Why are we justified? Because the operational 
and denotational semantics agree on the "observations of interest." If the denotational 
semantics says that a closed term of type int denotes a particular integer, then it will 
evaluate to precisely that integer, and conversely. For other types, if a term converges, 
in the sense of not denoting 1., then its evaluation will converge too, and again con
versely. The two semantics, denotational and operational, agree on observations telling 
whether or not a term converges, and what integer a term of type int evaluates to. This 
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agreement is the content of the results expressing the adequacy of the denotational with 
respect to the operational semantics. In fact, we can restrict the observations to just 
those of convergence. The adequacy with respect to convergence will ensure that the two 
semantics also agree on how terms of type int evaluate. The simple argument is based 
on enclosing terms in a context 

if - then 0 else Diverge 

where Diverge: int is a closed term which diverges. For a closed term t : int and number 
n, argue for both the eager and lazy semantics that: 

t -t n {::::::::? if (t - n) then 0 else Diverge! 

{::::::::? if (t - n) then 0 else Diverge.lJ. 

{::::::::? [t]p = n. 

by adequacy, 

Is the evaluation of type int and convergence a reasonable choice of observation? 
Certainly many implementations report back to the user precisely the kind of convergence 
behaviour we have discussed, only yielding concrete values for concrete datatypes like 
integers or lists. From that point of view our choice is reasonable. On the other hand, 
should one broaden one's interest to other properties, such as how long it takes to evaluate 
a term, one would expect more detailed observations, and, to respect these, more detailed 
semantics. 

It is also possible to restrict the observations, for which a cruder denotational seman
tics can suffice for a fixed operational semantics. To illustrate this we give an alternative 
denotational semantics for the lazy language. This one will ignore the convergence be
haviour at higher types in general, but still ensure that at ground type int 

t -t l n iff [t]p = lnJ 

for closed term t : int and integer n. It is concerned with observations of what printable 
values ensue from the evaluation of terms of type into 

Define Dr, the cpo of denotations at type T, by structural induction on T: 

N.L 

Dr! X Dr2 

[Dr! -t Dr21 

An environment for the lazy language is now taken to be a function 

p: Var -t U {Dr' T a type} 
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such that if x: 7 then p(x) EDT for any variable x and type To Write Env for the cpo 
of environments. As earlier, the denotation of typable terms t is an element [t~ given by 
structural induction, staying within the metalanguage of Section 8.4. 

[x] )..p.p(x) 

[n~ = )"p.lnJ 
[tl op t2] = )..p.([h]p OP.l[t2]p) where op is +, -, x 

[if to then it else t2] 

[(it, t2)] 

[fst(t)] 

[snd(t)] 

[)..x.t] 

)"p. Cond([to]p, [tl]p, [t2]p) 

)..p.([tt]p, [t2]p) 

)..p.?Tt{[t]p) 

)..p.?T2([t]p) 

= )..p.)..d E DTl.[t]p[d/x] 

where )..x.t : 71- > 72 

[(tl t2)] )..P·[tl]P([t2]p) 

[ let x {= tl in t2] = )..p.[t2]p[[h]p/x] 

[recx.t~ = )..p.(t-td.[t]p[d/x]) 

Exercise 11.28 
(1) Assume variables x : int- > int, W : int- > int, and y : into What are the 
denotations of (()..x.x) 0) and (()..x.)..y.(x y))O), where 0 == recw.w? 
(2) Show that with respect to the operational semantics of the lazy language 

t ---+1 c =:} [t]p = [c]p, 

for an arbitrary environment p. (In the argument, by rule induction, you need only do 
enough cases to be convincing. You may assume a variant of the Substitution Lemma 
but state it clearly.) 
(3) Show for a closed term t : int that 

t ---+1 n iff [t]p = lnJ 
for any n E N. It is suggested that you use logical relations .:ST' between elements of DT 
and closed terms of type 7, given by structural induction on types in the following way: 

d .:Sint t {==:} '<In E N. d = lnJ =:} t ---+1 n, 
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First show, by structural induction on types T, that 

o 

Results expressing the adequacy of a denotational semantics with respect to an oper
ational semantics, for a choice of observations, are vital to justify the use of the more 
mathematically tractible model of denotational semantics to predict and reason about 
program behaviour. There is another important criterion for a denotational semantics 
to fit well with a choice of observations. This is that the semantics be fully abstract. Full 
abstraction is often a much more difficult property for a denotational semantics to fulfil 
than adequacy, and fortunately it is less vital. But it is a useful property to have and is 
significant, in part, because attempts at obtaining fully abstract semantics have sparked 
off important lines of research. This is because achieving full abstraction for languages 
like those of this chapter, involves formalising key operational ideas like sequentiality 
within the mathematics of domain theory. 

To define full abstraction with respect to a particular choice of observations we first 
show how such a choice induces an equivalence on terms. This requires the notion of a 
context. Intuitively a context is a term C[ ] with a "hole" [ ] into which we can plug 
typable term t to obtain a typable term Crt]; formally, it can be defined to be a term 
with a distinguished free variable, which can be substituted for. With respect to some 
choice of observations, for terms t 1, t2 of the same type, write tl '" t2 iff for all contexts 
C[ ] for which C[tl] and C[t2] are closed, typable terms, the observations on C[tl] and 
C[t2] agree. For example, if the observations of interest concern just the convergence 
behaviour of terms, we would have 

for all contexts C[] for which C[td and C[t2] are closed and typable. Note, that although 
the equivalence relation rv has been defined via the operational semantics, it could equally 
well have been defined from a denotational semantics, provided it is adequate. Say a 
denotational semantics is fully abstract, with respect to the observations, iff 

In fact, the "only if" direction of the equivalence follows provided the denotational se
mantics is adequate (why?), so the extra difficulty is in obtaining the converse "if" 
direction. 
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So, in a sense, a fully abstract semantics is one which makes only those distinctions 
which are forced by differences in the observations. Unfortunately, full abstraction can be 
hard to achieve and, in particular, it does not hold of either our eager or lazy denotational 
semantics with respect to observations of convergence (or of the denotational semantics 
addressing just observations of evaluation at type int, considered in the exercise above). 

We sketch why the quest for full abstraction for languages with higher types has moti
vated a study of sequentiality at higher types. The difficulty in obtaining full abstraction 
comes about because there are terms, t 1, t2 say, which cannot be distinguished by con
texts definable in the programming language and yet which have different denotations. 
How is this? It arises because in our cpo's of denotations there are elements like "parallel 
or" 2 which cannot be defined by terms, and t 1, t2 act differently on these. The terms 
have a sequential character not shared by these "parasitic" elements. So, a method sug
gests itself: to achieve full abstraction redefine the constructions on cpo's to stop these 
undefinable elements from appearing, and in particular, instead of taking all continuous 
functions in the function space restrict to "sequential" functions. This has proved very 
hard to do, at least in a syntax-independent way, without resorting to some form of 
encoding of the operational semantics in the cpo constructions. The quest for full ab
straction has spurred on the search for a general definition of sequentiality. It should be 
born in mind that the success of this search, measured perhaps against some convincing 
operational analysis of sequentiality, might not lead automatically to a solution of the 
full abstraction problem. 

11.11 Sums 

We consider how to extend our language to include a sum on types. We include a 
construction 71 + 72 between types 71, 72. Accordingly, the language of terms is extended 
to include injections of terms, inl (t), inr (t), into the left and right of a sum. Functions 
from a sum can be described with a case construction 

Free occurrences of Xl in t1, and X2 in t2, are bound in this new construct which has free 
variables 

2 "Parallel or" is a continuous function par on T 1. extending the usual disjunction on truth values 
but with the property that por(true,~) == por(~, true) = true; it is as if the the function inspects each 
argument in parallel, and not sequentially, returning true if either argument is true. 
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Informally, such a case construction examines the form of t, and evaluates according to 
whether it lies in the left or right of a sum. There are these additional typing rules to 
ensure the well-formedness of terms: 

inlet) : 71 + 72 inr(t) : 71 + 72 

t : 71 + 72 XI: 71 X2: 72 tl: 7 t2: 7 
case t of inl (Xl).i], inr (X2).t2 : 7 

Notice that because of the typing rules for injections, a term can now have more than 
one type, for example 

inl(5) : int + int and inl(5): int + (int -. int). 

How terms involving sums are evaluated depends on whether evaluation is eager or, 
lazy. In the operational semantics of the eager case we can sayan injection like inlet) is 
a canonical form iff t is itself in canonical form. We define canonical forms of sum types 
under eager evaluation by the clauses: 

Again, such canonical forms evaluate to themselves. The rules for the operational se
mantics are extended by: 

t -.e inl (Cl) i][CI/Xl]-.e C t -.e inr (C2) t2[C2/X2] -.e C 

(case t of inl( Xl).f], inr(X2) .t2) -.e c (case t of inl (xd .tl, inr (X2). t2) -.e c 

For the denotational semantics with eager evaluation, the cpo of values of a sum type is 
just the sum of the cpo's of values of the components; i.e. 

As before, a term t in an environment p is denoted by an element of (VTeh. However, 
the extension to sums has meant that t need not have a unique type and, because 
injection functions might be represented differently as the components of the sum vary, 
the denotation of a term t is given for some typing t : 7: 

In a lazy regime, a canonical form can be an injection of a closed term which has 
not itself been evaluated. Following this idea, the canonical forms for the lazy language 
include canonical forms for sums given by adding the clauses 

inlet) E C~'+T2 if t : 71 and t is closed, 

inr(t) E C~1+T2 if t : 72 and t is closed. 
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The lazy evaluation of the cases construction is described by the rules 

t ---t1 inl (t') tIlt' /xd ---t1 C t ---t1 inr (t') t2[t' /X2] ---t 1 C 

(case t of inl(xt).h, inr(x2).t2) ---t1 C (case t of inl (Xd.t1,inr (X2).t2) ---t1 C 

Because the values of a sum type do not need the prior evaluation of the components, 
the extended denotational semantics is based on the choice of values so 

V;1+T2 = (V;J.l + (V;2h· 

Again the semantics of a typed term t : 7, in an environment p, is described by an element 

It is not hard to extend the results of this chapter to the language with sums. 

Exercise 11.29 Write down the clauses for the denotational semantics of the injection 
and case construction with respect to the typing 

inlet) : 71 + 72 

(case t ofinl(x1).t1' inr(x2).t2) : 7 

for both eager and lazy evaluation. As a check that your denotational semantics is 
correct, show by rule induction (you need only consider the new cases) that 

t ---t e C =} [t : 7~ep = [c: 7~ep and 

t ---t1 C =} [t : 7]lp = [c: 7]lp 

for closed terms t and canonical forms c of type 71, and any environment p. o 

11.12 Further reading 

Three good books on functional programming: (eager) Standard ML [101] and [73]; 
(lazy) [22]. A good survey on logical relations, their history and use can be found in [65]. 
The two classic papers on full abstraction are Plotkin's [78] and Milner's [62]. These 
are both concerned with full abstraction restricted to observations of the evaluation of 
terms at the ground types integers and booleans. Plotkin shows that full abstraction can 
be obtained, not just by cutting away the undefinable elements, but also by expanding 
the language, so that a form of parallel conditional is included. The state of the art in 
the full abstraction problem for languages like those considered here is conveyed in [94], 
[16]-the latter was written around 10 years ago but is still a good survey. A recent paper 
which is reasonably accessible is [27]. Languages like those here, and their relationship 
to intuitionistic and linear logic, are discussed in [3]. 





12 Information systems 

Information systems provide a representation of an important class of cpo's called Scott 
domains. This chapter introduces information systems and shows how they can be used 
to find least solutions to recursive domain equations, important for an understanding 
of recursive types. The method is based on the substructure relation between informa
tion systems. This essentially makes information systems into a complete partial order 
with bottom. Useful constructions like product, sum and (lifted) function space can 
be made continuous on this cpo so the solution of recursive domain equations reduces 
to the familiar construction of forming the least fixed point of a continuous function. 
There are further technical advantages to working with information systems rather than 
directly with domains. Properties of cpo's can be derived rather than postulated and the 
representation makes them more amenable mathematically. In particular we obtain ele
mentary methods for showing such properties as the correspondence between operational 
and denotational semantics with recursive types, presented in the next chapter. 

12.1 Recursive types 

To begin with let's remark on a familiar cpo satisfying a recursive domain equation. The 
equation 

X=l+X 

is to be understood as specifying those cpo's (or domains) X which are equal to them
selves summed with the one-element cpo 1. This is a recursive equation for X. One 
solution, though not the only one, is a copy of the discrete cpo of natural numbers w. 

Many programming languages allow the definition of recursive types (the next chapter 
treats such a language). Even if they don't it can often be that their semantics is most 
straightforwardly described through the use of recursively defined cpo's. Programming 
features like-dynamic binding are also conveniently modelled with help of recursively de
fined types. In fact, Dana Scott made a fundamental breakthrough with the discovery 
of a model of the A-calculus in the form of a nontrivial (i.e. non singleton) solution to 
the recursive type definition 

D~[D-tD]. 

This is not strictly speaking an equation; rather the two cpo's D and [D -t D] are 
in isomorphism with each other. It highlights the fact that we don't necessarily need 
solutions to within equality-the more tolerant relation of isomorphism will do. 

How are we to define types recursively? We have some of the machinery at hand in 
the form of inductive definitions, as can be seen through a simple example. Finite lists 
of integers (discussed in Section 10.5) can be identified with a set L satisfying 

L = {()} + (N xL). 
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The empty tuple represents the null list while the operation of "consing" an integer n 
to the beginning of a list l is represented by the operation (n, l) of pairing. Finite lists 
are not the only solution to (*). If L were taken to consists of finite and infinite lists 
of integers then this too would be a solution. However, taking L to just have finite lists 
of integers as elements yields the least set satisfying (*). To see this recognise that the 
definition of finite lists fits the pattern of inductive definitions discussed in Chapter 4. 
For L to be a solution of (*) requires precisely that L contains 0 and is closed under 
con sing with an integer, i.e. L is closed under the rules 

0/0, {l}/(n, l), 

where n EN. The set of finite lists is the least set closed under such rules. Alternatively, 
we can regard the set of finite lists as fixe '!j;) where '!j; is the monotonic and continuous 
operator on sets acting so 

'!j;(X) = {O} + (N x X). 

Quite a few recursive types can be built up in a similar way using inductive definitions. 

Exercise 12.1 Describe how to define the type of binary trees with integer leaves as an 
inductive definition. 0 

Exercise 12.2 Describe a set which is a solution to the domain equation X = 1 + X 
and is not isomorphic to the natural numbers w. 0 

There are, however, other recursive types which are not directly amenable to the 
same technique. For example, how are we to define the type of streams, or "stoppered 
sequences", of Section 8.2 which can be infinite? A reasonable guess would be that 
streams are the least solution to 

L = ({$} + N x Lh 

an equation between complete partial orders. Although tentative, we can argue that any 
complete partial order L satisfying this equation must first contain ..l, a copy l$J of the 
"stopper", and consequently also sequences like l( n, ..l) J and l (n, L $ J) J, where n EN. 
Continuing we can argue that L also contains sequences of the form 

l (n 1, L (n2 ... , L $ J) ... ) J ) J and l (n 1, L (n2 ... , ..l) ... ) J , 

where nl, n2, ... are integers. In other words, L contains all finite "stoppered" or "un
stoppered" sequences. But neither this style of argument, nor an inductive definition, 
can ever yield infinite sequences such as: 
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This limitation holds a clue as to how to define such recursive types: use the method of 
inductive definitions to construct the finite elements and then derive the infinite elements 
by some form of completion process, an infinite element being built up out of its finite 
approximations. 

An information system expresses how to build a cpo out of a notation for its finite 
elements. Because they only deal explicitly with the finite elements they are amenable to 
the technique of inductive definitions and so can be defined recursively. An information 
system can be viewed as a prescription saying how to build a cpo. In more detail, an 
information system can be thought of as consisting of assertions, or propositions, that 
might be made about a computation, which are related by entailment and consistency 
relations. An information system determines a cpo with elements those sets of tokens 
which are consistent and closed with respect to the entailment relation; the ordering is 
just set inclusion. The elements of the cpo can be thought of as the set of truths about 
a possible computation and, as such, should be logically closed and consistent sets of 
assertions. Although not all cpo's can be represented by information systems, they do 
represent a rich class, the Scott domains. 

We should note now that we cannot expect to solve all domain equations because our 
cpo's do not necessarily have bottom elements. In particular, by Cantor's argument, we 
cannot hope to have a solution to the domain equation 

x ~ [X ---7 2] 

where 2 is the discrete cpo with two elements. We get around this by only allowing a 
"lifted function space" construction in domain equations; for two cpo's D, E their lifted 
function space is [D ---7 E.d. The techniques of this chapter will yield least solutions to 
any domain equation 

X ~ F(X) 

where F is built up from the unit domain 1 (with just one element) and empty domain 
o using product, lifted function space, lifting and sum. 

12.2 Information systems 

An information system consists of a set of tokens, to be thought of as assertions, or 
propositions, one might make about a computation, which are related by consistency 
and entailment relations. The consistency relation picks out those finite subsets of tokens 
which can together be true of a computation. For example, the computation of an integer 
cannot simultaneously be 3 and 5, so tokens asserting these two outputs would not be 
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consistent. It can be that the truth of a finite set of tokens entails the truth of another. 
For instance, two tokens will entail a third if this stands for their conjunction. 

Notation: To signify that X is finite subset of a set A we shall write X ~ fin A. We write 
Fin(A) for the set consisting of all finite subsets of A, i.e. Fin(A) = {X I X ~ fin A}. 

Definition: An information system is defined to be a structure A = (A, Con, f-), where 
A is a countable set (the tokens), Con (the consistent sets) is a non-empty subset of 
Fin(A) and f- (the entailment relation) is a subset of (Con \ {0}) x A which satisfy the 
axioms: 

l. X ~ Y E Con =} X E Con 
2. a E A=}{ a} E Con 
3. X f- a =} X U {a} E Con 
4. X E Con & a EX=} X f- a 
5. (X, Y E Con & Vb E Y. X f- b & Y f- c) =} X f- c. 

The condition that f-~ (Con \ {0}) x A is equivalent to saying that 0 f- a never holds, 
that nothing is entailed by the empty set. This has a much more specific character than 
the axioms 1-5 which are reasonable assumptions about a fairly general class of logical 
systems. Its assumption does however simplify constructions such as the sum, and helps 
smooth some of the work later. As usually presented in the literature information systems 
give rise to cpo's with bottom elements. Here the usual definition is modified slightly so 
as to represent cpo's which do not necessarily have bottoms. 

An information system determines a family of subsets of tokens, called its elements. 
Think of the tokens as assertions about computations-assume that a token which is 
once true of a computation remains true of it. Intuitively an element of an information 
system is the set of tokens that can be truthfully asserted about a computation. This 
set of tokens can be viewed as the information content of the computation. As such 
the tokens should not contradict each other-they should be consistent-and should be 
closed under entailment. In order to represent cpo's which do not necessarily have a 
bottom element we insist that that elements also have to be non-empty-in this way the 
empty set is ruled out. 

Definition: The elements, IAI, of an information system A 
subsets x of A which are 

l. non-empty: x -I- 0 
2. consistent: X ~fin X =} X E Con 
3. f--closed: X ~ x & X f- a =} a E x. 

(A, Con, f-) are those 
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Thus an information system determines a family of sets. Such families have a simple 
characterisation as can be seen in the next section. These families form cpo's when 
ordered by inclusion. Notice that the empty set 0 is consistent and f--closed and so 
would be the least element but for failing to be non-empty. Because the empty set is 
removed the cpo's will not necessarily possess a bottom element. 

Proposition 12.3 The elements of an information system ordered by inclusion form a 
cpo. 

Proof: Let A = CA,Con,f-) be an information system. We show IAI is a cpo. Suppose 
Xo ~ ... ~ Xn ~ ... is an w-chain in IAI. We show Un Xn E IAI· Firstly Un Xn is non
empty as anyone of its elements is. Secondly Un Xn is consistent. Suppose X ~ fin Un X n . 

Then, because X is finite, X ~ Xn for some nEw. Therefore X E Can. Thirdly Un Xn 

is f--closed. Suppose X E Can, X f- a and X ~ Un X n . Then, as X is finite, X <;;; Xn for 
some n. However Xn E IAI so a E X n · Thus a E Un X n . Hence IAI has unions of w-chains 
and is a cpo. 0 

So, an information system determines a cpo. The subtle idea of information introduced 
by Scott in his theory of domains now has an intuitive interpretation. By representing 
a cpo as an information system we see the information associated with a computation 
as the set of tokens that are true of it and an increase in information as the addition of 
true tokens to this set. 

Not all cpo's can be generated as elements of an information system, though those cpo's 
which can be obtained from information systems form a rich and important subclass. 
Their structure is examined in the next section where elements arising as closures under 
entailment of finite, but non-empty, consistent sets will playa special role. 

Lemma 12.4 Let A = CA, Con, f-) be an information system. Suppose 0 =I- X E Can 
and let Y be a finite subset of A. 

1. If X f- b for every bEY then X U Y E Con and Y E Can. 
2. The set X = {a E A I X f- a} is an element of A. 

Proof: 
(1) Suppose X f- b for every bEY. We show Xu Y E Can and Y E Can by a simple 
induction on the size of Y. Clearly it holds when Y is empty. Suppose Y is non-empty, 
containing a token b', and X f- b for all bEY. Then X f- b for all bEY \ {b'} so 
by induction X U (Y \ {b'}) E Can. By axioms 4 and 5 on an information system, 
Xu (Y \ {b'}) f- b'. By axiom 3, Xu Y E Can. By axiom 1, Y E Can too. 
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(2) It follows from (1) that X = {a I X f- a} is consistent. It is f--closed because if 
y ~ {a I X f- a} and Y f- a' then X f- a' by axiom 5 in the definition of information 
systems. 0 

Notation: The entailment relation, between consistent sets and tokens, extends in an 
obvious way to a relation between consistent sets. Let A = (A, Con, f-) be an information 
system. Let X and Y be in ConA. We write X f-* Y as an abbreviation for Va E Y. X f- a. 
Using this notation we see that 

o f-* Y {==} Y = 0, 

a consequence of the original entailment f- being a subset of (Con \ {0}) x A. Directly 
from the definition of f-*, we obtain 

X f-* Y & X f-* y' =? X f-* (Y U Y'), 

while we can rewrite axiom 5 on information systems as 

X f-* Y & Y f-* Z =? X f-* Z, 

which makes it clear that axiom 5 expresses the transitivity of entailment. 
For X any subset of the tokens of an information system write 

X =def {a I 3Z ~ X. Z f- a}. 

Notice that 0" = 0 because X f- b only holds for non-empty X. 

12.3 Closed families and Scott predomains 

This section characterises those cpo's which arise from the elements of an information 
system. It is not essential to the remainder of the book, and so might be omitted. 
However, it does introduce the important and widely current notion of a Scott domain. 
As a beginning we characterise precisely those families of subsets which can arise as 
elements of an information system. 

Definition: A closed family of sets is a set F of subsets of a countable set which satisfies 

1. If x E F then x i= 0, 
2. If Xo ~ Xl ~ ... ~ Xn ~ ... is is a w-chain in F then UnEw Xn E F and 
3. If U is a non-empty subset of F with n U i= 0 then n U E F. 
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As we now see there is a 1-1 correspondence between information systems and closed 
families. 

Theorem 12.5 
(i) Let A be an information system. Then IAI is a closed family of sets. 
(ii) Let :F be a closed family of sets. Define 

AF = UF, 
X E ConF {==} X = 0 or (::3x E :F. X ~fin x), 

X rF a{==}0 =I X E ConF & a E AF & (\ix E :F. X ~ x =;. a EX). 

Then I( F) = (A F , ConF, r F) is an information system. 
(iii) The maps A f---+ IAI and F f---+ I(F) are mutual inverses giving a 1-1 correspondence 
between information systems and closed families: if A is an information system then 

I(IAI) = A; if F is a closed family then II(F)I = :F. 

Proof: 
(i) Let A = (A, Con, r) be an information system. We show IAI is a closed family. 
Proposition 12.3 establishes 2 above. Suppose 0 =I u ~ IAI with n U not empty. We 
show n U E IAI· Take u E U. We see n U is consistent as n U ~ u. Suppose X ~ n U 
and X r a. Then X ~ u for all u E U. Each u E U is r-closed so a E u. Thus a E n U. 

Therefore n U is non-empty, consistent and r-closed, so n U E IAI. This proves IAI is a 
closed family. 
(ii) Let F be a closed family. The check that I(F) is an information system is left to the 
reader. 
(iii) Let A = (A, Con, r) be an information system. To show I(IAI) = A we need 

A=UIAI, 
X E Con {==} X = 0 or (::3x E IAI. X ~fin x), 

X r a{==}0 =I X E Con & a E A & (\ix E IAI. X ~ x =;. a Ex). 

Obviously A = U IAI by axiom 2 on information systems. 
Let X ~fin A. If X E Con then either X = 0 or X ~ X = {a I X r a} E IAI. 
Conversely, if X = 0 or X ~ fin x, where x E IAI, then by the definition of such elements 
x we must have X E Con. 
Suppose X E Con and a E A. Clearly if X r a then from the definition of elements of 
A we must have X ~ x =;. a E x for any x E IAI. Suppose (\ix E IAI. X ~ x =;. a Ex). 
Then X = {b I X r b} E IAI so X r a. Therefore I(IAI) = A. 
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Let :F be a closed family. We show II(:F) I = F If x E :F then x E II(:F) I, directly 
from the definition of consistency and entailment in I(:F). Thus:F ~ II(:F)I. Now 
we show the converse inclusion II(:F) I ~ F Write I(:F) = (A F , ConF, f-F ) as above. 
Suppose 0 =1= X E ConF. Then U = {y E :F I X ~ y} is a non-empty subset of :F from 
the definition of ConF and X = n U from the definition f- F. As:F is a closed family 
and n U is non-empty, X E F To complete the argument, let x E II(:F) I· Assume a 
particular countable enumeration 

of the elements of the set x-possible as U:F and so x are countable sets. Now x n , for 
nEw, forms an w-chain in :F, where we define Xn = Xn in which 

Xo = {eo}, 

X n +1 = Xn U {en +1}' 

As :F is a closed family Un Xn E :F and clearly Un Xn = x. Thus II(:F) I ~ F The two 
inclusions give II(:F) I = :F. 

The facts, I(IAI) = A for all information systems A and II(:F) I = :F for all closed 
families:F, provide a 1-1 correspondence between information systems and closed families. 

o 

Exercise 12.6 Do the proof of (ii) above. o 

We turn now to consider the kinds of cpo's which can be represented by information 
systems. In fact, the cpo's with bottom which can be presented this way are exactly a 
well-known class of cpo's called Scott domains (after Dana Scott). 

Definition: An element x of a cpo D is said to be finite iff, for every w-chain do ~ ... ~ 
dn ... such that x ~ UnEw dn , there is nEw for which x ~ dn- We will let DO denote 
the set of finite elements of D. 

A cpo D is w-algebraic iff the set of finite elements DO is countable and, for every 
xED, there is an w-chain of finite elements eo ~ ... ~ en ... such that x = UnEw en. 

A subset X of a cpo D is said to be bounded if there is an upper bound of X in D. A 
cpo D is bounded complete if every non-empty, bounded subset of D has a least upper 
bound. 

In the case where a cpo has a bottom element, is a bounded complete and w-algebraic 
it is often called a Scott domain. In general, when it need not have a bottom, we shall 
call a bounded complete, w-algebraic cpo a Scott predomain. 
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Exercise 12.7 Show that in a Scott predomain least upper bounds of finite sets of finite 
elements are finite, when they exist. D 

Proposition 12.8 Let A = (A, Con, f---) be an information system. Its elements, IAI, 
ordered by inclusion form a Scott predomain. Its finite elements are of the form X = 

{a E A I X f--- a}, where 0 =1= X E Con. 

Proof: Let A = (A, Con, f---) be an information system with elements IAI. As IAI is a 
closed family it is a cpo ordered by inclusion. 

We require that IAI is bounded complete i.e. if Vx E V. x ~ y, for non-empty V ~ IAI 
and y E IAI, then there is a least upper bound of V in IAI. However if Vx E v.x c:;; y 
then U = {y I Vx E v.x ~ y} is a non-empty subset of the closed family IAI. As V is 
non-empty it contains an element v, necessarily non-empty, of IAI. As v ~ n U this 
ensures that n U is non-empty. Hence by property 3 in the definition of closed family 
we have n U E IAI, and n U is clearly a least upper bound of V. 

We now show IAI ordered by inclusion is an algebraic cpo. Firstly we observe a fact 
about all elements of IAI. Let x E IAI. Take a countable enumeration ao, al,"" an,··· 
of x-possible as A is assumed countable. Define, as above, x n = X n where 

Xo = {ao}, 

X n+1 = Xn U {an+d· 

Then x = Un xn· We now go on to show that the finite elements of the cpo IAI are 
precisely those of the form X, for X E Can. Hence it will follow that every element is 
the least upper bound of an w-chain of finite elements. 

Suppose in particular that x E IAI is finite. We have x = Un Xn, as above, which 
implies x = Xn for some n. Thus x = X n for some Xn ~fin x, which is necessarily in 
Can. Conversely, assume x is an element of the form X for some X E Can. Suppose 
x c:;; U Xn for some chain Xo ~ ... ~ Xn c:;; ... of the cpo IAI· Then X c:;; Xn for some n, 
making x c:;; Xn too. This argument shows the finite elements of the cpo IAI are precisely 
those elements of the form X for 0 =1= X E Con. 

We conclude that (IAI, C:;;) is a bounded complete w-algebraic cpo and so a Scott pre-
domain. D 

An arbitrary Scott predomain is associated naturally with an information system. The 
intuition is that a finite element is a piece of information that a computation realises
uses or produces-in finite time, so it is natural to take tokens to be finite elements. 
Then the consistency and entailment relations are induced by the original domain. A 
finite set of finite elements X is consistent if it is bounded and entails an element if its 
least upper bound dominates the element. 
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Definition: Let (D,~) be a Scott predomain. Define IS(D) = (DO,Con,f-) where DO 
is the set of finite elements of D and Con and f- are defined as follows: 

X E Con ~ X c;,fin DO & (X = 0 or X is bounded), 

X f- e ~ 0 =1= X E Con & e G Ux. 

Proposition 12.9 Let D be a Scott predomain. Then IS(D) is an information system 
with a cpo of elements, ordered by inclusion, isomorphic to D. The isomorphism pair is 

B: D -> IIS(D)I given by B : d f-+ {e E DO leG d}, 

cp: IIS(D)I -> D given by cp : x f-+ Ux. 

Exercise 12.10 Prove the proposition above. o 

Thus an information system determines a Scott predomain of elements and, vice versa, 
a predomain determines an information system with an isomorphic cpo of elements. We 
are justified in saying information systems represent Scott predomains. Notice that they 
would represent Scott domains if we were to allow the empty element, which would then 
always sit at the bottom of the cpo of elements. 

The following exercise shows an important negative result: the function space of arbi
trary Scott predomains is not a Scott pre domain and therefore cannot be represented as 
an information system. (We will, however, be able to define a lifted-function-space con
struction A -> 8.1. between information systems A, 8, with cpo of elements isomorphic 

to [lAI -> 181.1.]·) 

Exercise 12.11 Let Nand T be the (discrete) Scott pre domains of numbers and truth 
values. Show that their function space, the cpo [N -> T] is not a Scott predomain and 
therefore not representable as an information system. 
(Hint: What are its finite elements? Do they form a countable set?) 0 

Exercise 12.12 Cpo's are sometimes presented using the concept of directed sets in
stead of w-chains. A directed set of a partial order D is a non-empty subset S of D for 
which, if s, t E S then there is u E S with s, t G u. Sometimes a complete partial order 
is taken to be a partial order which has least upper bounds of all directed sets. In this 
framework a finite element of a cpo is taken to be an element e such that if e GUS, for 
S a directed set, then there is s E S with e G s. An w-algebraic cpo is then said to be a 
cpo D for which, given any xED, the set S = {e G x I e is finite} is directed with least 
upper bound x; it is said to be w-algebraic if the set of finite elements is countable. Show 
the cpo's which are w-algebraic in this sense are the same as those which are w-algebraic 
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in the sense we have taken outside this exercise. Show too that if in the definition of a 
closed family we replace condition 2 by 

If S is a directed subset of (F, ~) then USE F 

then the same class of families of sets are defined. o 

12.4 A cpo of information systems 

Because we work with a concrete representation of cpo's, it turns out that we can solVE: 
recursive domain equations by a fixed-point construction on a complete partial order of 
information systems. The order on information systems, :g, captures an intuitive notion, 
that of one information system being a subsystem, or substructure, of another. 

Definition: Let A = (A,ConA,f--A) and B = (B,ConB,f-- B ) be information systems. 
Define A :g B iff 

1. A ~ B 
2. X E ConA <====> X ~ A & X E ConB 
3. X f-- A a <====> X ~ A & a E A & X f-- B a 

When A :g B, for two information systems A and B, we say A is a subsystem of B. 

Thus one information system A is a subsystem of another B if the tokens of A are 
included those of B and the relations of consistency and entailment of A are simply 
restrictions of those in the larger information system B. Observe that: 

Proposition 12.13 Let A = (A,ConA,f-- A) and B = (B,ConB,f-- B ) be information 
systems. If their token-sets are equal, i.e. A = B, and A :g B then A = B. 

Proof: Obvious from the definition of :g. o 

This definition of subsystem almost gives a cpo of information systems with a bottom 
element. There is a least information system, the unique one with the empty set as 
tokens. Each w-chain of information systems increasing with respect to :g has a least 
upper bound, with tokens, consistency and entailment relations the union of those in the 
chain. But information systems do not form a set and for this reason alone they do not 
quite form a cpo. We could say they form a large cpo. This is all we need. 
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Theorem 12.14 The relation::::! is a partial order with 0 =def (0, {0}, 0) as least ele
ment. Moreover if Ao ::::! At ::::! ... ::::! Ai ::::! ... is an w-chain of information systems 
Ai = (Ai, Coni, f- i) then there exists a least upper bound given by 

(Here and henceforth we use the union sign to denote the least upper bound of information 
systems.) 

Proof: That ~ is reflexive and transitive is clear from the definition. Antisymmetry of 
::::! follows from the Proposition 12.13 above. Thus::::! is a partial order and 0 is easily 
seen to be the ~-least information structure. 

Let Ao ::::! Al ::::! ... ::::! A ::::! ... be an increasing w-chain of information systems 
A = (Ai,Coni,f-i)· Write A = (A,Con,f-) = (UiAi,UiConi,Ui f- i). It is routine to 
check that A is an information system. 

It is an upper bound of the chain: Obviously each A i is a subset of the tokens A; 
obviously Coni ~ Con while conversely, if X ~ Ai and X E Con then X E Conj for 
some j ~ i but then X E Coni as Ai ::::! Aj; obviously f-i~f- while conversely if X ~ Ai, 
a E Ai and X f- a then X f-j a for some j ~ i but then X f-i a as Ai ::::! A j . 

It is a least upper bound of the chain: Assume B = (B, Con B, f- B) is an upper bound 
of the chain. Clearly then A = Ui Ai ~ B. Clearly Con = Ui Coni ~ ConB. Also if 
X ~ A and X E ConB then as X is finite, X ~ Ai for some i. So X E Coni ~ Con as 
A ~ B. Thus X E Con ¢==? X ~ A & X E ConB. Similarly X f- a ¢=:> X ~ A & a E 

A & X f- B a. Thus A ::::! B making A the least upper bound of the chain. 0 

We shall be concerned with continuous operations on information systems and using 
them to define information systems recursively. We proceed just as before-the argu
ments are unaffected by the fact that information systems do not form a set. An operation 
F on information systems is said to be monotonic (with respect to ::::!) iff 

A ::::! B '* F(A) ::::! F(B) 

for all information systems A, B. The operation F is said to be continuous (with respect 
to ::::!) iff it is monotonic and for any increasing w-chain of information systems 

we have that 

U F(A) = F(U A). 
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(Since F is monotonic Ui F(Ai) exists.) Using the same arguments as before for least 
fixed points for cpo's we know that any continuous operation, F, on information systems 
has a least fixed point fix(F) given by the least upper bound, Ui Fi(O), of the increasing 
w-chain 0 Sl F(O) Sl F2(O) Sl ... Sl Fn(O) Sl .... 

The next lemma will be a great help in proving operations continuous. Generally it is 
very easy to show that a unary operation is monotonic with respect to Sl and continuous 
on the token sets, a notion we now make precise. 

Definition: Say a unary operation F on information systems is continuous on token 
sets iff for any w-chain, Ao Sl Al Sl ... Sl A Sl ... , each token of F(Ui Ai) is a token of 

Ui F(Ai). 

LemIlila 12.15 Let F be a unary operation on information systems. Then F is contin
uous iff F is monotonic with respect to Sl and continuous on token sets. 

Proof: 
"only if": obvious. 
"if": Let Ao Sl Al Sl ... Sl Ai Sl ... be an w-chain of information systems. Clearly 
Ui F(Ai) Sl F(Ui Ad since F is assumed monotonic. Thus from the assumption the 
tokens of Ui F(Ai) are the same as the tokens of F(U i A). Therefore they are the same 
information system by Proposition 12.13. 0 

In general, operations on information systems can take a tuple of information systems 
as argument and deliver a tuple of information systems as result. But again, just as before 
for ordinary cpo's, in reasoning about the monotonicity and continuity of an operation 
we need only consider one input and one output coordinate at a time. Lemma 8.8 and 
Lemma 8.10 generalise straightforwardly. This means that such a general operation on 
information systems is continuous with respect to Sl iff it is continuous in each argument 
separately (i. e. , considered as a function in anyone of its argument, holding the others 
fixed). Similarly it is continuous iff it is continuous considered as a function to each 
output coordinate. Thus the verification that an operation is continuous boils down to 
showing certain unary operations are continuous with respect to the subsystem relation 

Sl· 
The order Sl is perhaps not the first that comes to mind. Why not base the cpo of 

information systems on the simpler inclusion order 

We do not do so because the lifted-function-space construction on information systems, 
introduced in the next section, is not even monotonic in its left argument (see Exer
cise 12.34). 
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Exercise 12.16 This exercise relates the subsystem relation on information systems 
to corresponding relations on families of sets and cpo's. Let A = (A, ConA, f- A) and 
8 = (B, ConE, f- B ) be information systems. 
(i) Assume A :::] 8. Show the maps 0 : IAI ---- 181 and t.p : 181 ---- IAI u {0}, where 

O(x) = {b E B I 3X ~ x. X f- B b} and 

t.p(y) = y n A, 

are continuous with respect to inclusion and satisfy 

t.poO(x)=x and OOt.p(y)~y 

for all x E IAI and y E 181. 
(ii) For information systems A and 8, show 

A:::] 8 ~ IAI = {y n A lyE 181 & y n A =1= 0}. 
(This indicates another approach to solving recursive domain equations using inverse 
limits of embedding-projection pairs of continuous functions 0 : D ---- E and t.p : E ---- D J.. 

between cpo's with the property that 

t.p 0 O(d) = ldJ and OJ..t.p*(e') [;;; e' 

for all d E D,e' E EJ... Recall, from 8.3.4, that t.p* : EJ.. ---- DJ.. satisfies t.p*(e') = let e «:= 
e'.t.p(e), while OJ.. : DJ.. ---- EJ.. is defined so that OJ..(d') = let d «:= d'.lO(d)J.) 0 

In the next section we shall see many examples of operations on information systems 
and how we can use cpo of the subsystem relation to obtain solutions to recursively 
defined information systems. Because the machinery works for operations taking more 
than one information system as argument it can be used to define several information 
systems simultaneously. 

12.5 Constructions 

In this section we give constructions of product, lifted-function space, lifting and sum 
information systems. They induce the corresponding constructions on cpo's. We choose 
them with a little care so that they are also continuous with respect to :::]. In this way 
we will be able to produce solutions to recursive equations for information systems, and 
so for cpo's, written in terms of these constructions. In fact, lifting D J.. of domains D 
can be obtained to within isomorphism from other constructions, viz. [1 ---- D J..] where 
we have used the lifted function space and the empty product 1 which we can define 
on information systems. However, some work becomes a little smoother with the more 
direct definition given here. 
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12.5.1 Lifting 

Our aim is to define lifting on information systems which reflects lifting on cpo's. 

Definition: Define lifting on information systems A = (A, Con, f-) by taking A J. 

(A', Con', f-') where: 

1. A' = Con, 
2. X E Con' ~ X c;:; Con & U'X E Con, 
3. X f-' b ~ 0 1= X E Con' & U X f-* b. 
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Intuitively, lifting extends the original set of tokens to include a token, the empty set in 
the above construction, true even in the absence of an original value as output. Lifting, 
as hoped, prefixes the family by an element, in fact an element consisting of the single 
extra token 0. 

Definition: Define 1 = 0 J. . 

The information system 1 has one token 0, consistent sets 0 and {0}, and entailment 
relation {0} f- 0. Its only element is {0}. 

Proposition 12.17 Let A be an information system. Then AJ. is an information system 
with 

Y E IAJ.I ~ y = {0} or::lx E IAI. y = {b I b c;:;fin x}. 

Proof: Let A = (A, Con, f-) be an information system. 
It is routine to check that AJ. = (A', Con', f-') is an information system. Of the axioms, 

here we shall only verify that axiom 5 holds. Assume X f-' b for all bEY and Y f-' c. 
Note first that X 1= 0 because if it were empty so would Y be, making Y f-' c impossible. 
Now observe U X f-* b for all bEY. Therefore U X f-* U Y. As Y f-' c we obtain 
U Y f-* c. Hence as axiom 5 holds for A we deduce U X f-* c. Recalling X 1= 0 we 
conclude X f-' c. 

Now we show 

yEIAJ.1 ~ y={0}or::lxEIAI·y={blbc;:;fin x }. 

"~": It is easily checked that {0} is consistent and f-'-closed; hence if y = {0} then 
y E IAJ.I. Now suppose y = {b I b c;:;fin x} for x E IAI· Certainly 0 E Y so y 1= 0. 
Suppose X c;:;fin y. Clearly U X c;:;fin x. Then X c;:; Con and U X E Con and hence 
X E Con'. Suppose X c;:; y and X f-' b. Then U X f-* band U Xc;:; x. Hence b c;:;fin x. 
Therefore bEy. We have thus shown that y E IAJ.I. 
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"*": Suppose y E IA.l1 and y =I- {0}. Take x = Uy. We must check x E IAI and 
y={blb~finx}. 

First observe that x =I- 0 as y is neither empty nor {0}. Note if Z ~ fin X then 
Z ~ U X for some X ~fin y. It follows that if Z ~fin X then Z E Can. Assume Z ~ x 

and Z f- a-so Z =I- 0. Then again Z ~ U X for some X ~fin y where, as Z =I- 0, we 
also have X =I- 0. Therefore X f-' {a}. Hence we must have {a} E y so a E x. We have 
checked that x E IAI. 

Clearly y ~ {b I b ~fin x}. We require the converse inclusion too. As y =I- 0 there is 
some bEy. By definition {b} f-' 0. Hence 0 E y. Suppose 0 =I- b ~fin x. Then b ~ UX 
for some X ~fin y. As b =I- 0 so must X =I- 0. Clearly UX f-* b. Thus X f-' b so bEy. 
This establishes the converse inclusion, and we can conclude that y = {b I b ~ fin X}. 0 

It follows that lifting on information systems induces lifting on the the cpo of its 
elements: 

Corollary 12.18 Let A be an information system. Then there is an isomorphism of 

cpo's 

given by 
if x = {0}, 
otherwise. 

Theorem 12.19 The operation A 1-+ A.l is a continuous operation on information sys

tems ordered by :::). 

Proof: We use Lemma 12.15. We first show lifting is monotonic. Assume A :::) B for 
two information systems A = (A, ConA, f- A) and B = (B, ConB, f-B). Write A.l = 
(A',ConA',f-A') and B.l = (B',ConB',f-B'). Let us check A.l:::) B.l: 

Obviously A' = ConA ~ ConB = B'. We argue: 

Similarly, 

X E ConA' ~ X ~ ConA & U X E ConA 

~ X ~ ConA & U X E ConB 

~ X ~ A' & X E ConB'. 

Xf- A' c ~ X ~ A' & X =I- 0 & c E A' & U X rA c 

~ X ~ A' & X =I- 0 & c E A' & U X r'B c 

~ X~A' &cEA' &XrB'c. 
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Thus A..L s:) B 1.. Therefore (-) 1. is monotonic. It remains to show that it acts continu
ously on token-sets. Let Ao s:) Al s:) ... s:) Ai s:) ... be an w-chain of information systems 
Ai = (Ai, Coni, I-i)' However, the set of tokens of (Ui A) 1. and Ui (Ail.) are both clearly 
equal to Ui Coni. Thus by Lemma 12.15 we know lifting is a continuous operation on 
information systems ordered by s:). 0 

Exercise 12.20 Draw the domains of elements of 11.1. and 11.1.1.' o 

Exercise 12.21 Because lifting is continuous with respect to s:) it has a least fixed point 
n = D1.' Work out the set of tokens and show that its cpo of elements Inl is isomorphic to 
the cpo (seen previously with the same name) consisting of an w-chain with an additional 
"infinity" element as least upper bound. 0 

Exercise 12.22 Let A be an information system. Let X be a consistent set of A1. and 
b a token of A. Show 

o 

12.5.2 Sums 

We have already seen a special case of sum construction, that of the empty sum O. In 
general, we can reflect sums of Scott predomains by sums of information systems which 
are formed by juxtaposing disjoint copies of the two information systems. The tokens 
then correspond to assertions about one component or the other. 

The construction will rely on these simple operations. 

Notation: For two sets A and B, let A ttl B be the disjoint union of A and B, given by 
A ttl B = ({I} x A) u ({2} x B). Write injl : A ........ A ttl Band inh : B ........ A ttl B be the 
injections taking injl : a f--> (1, a) for a E A and inj2 : b f--> (2, b) for bE B. 

Definition: Let A = (A, ConA, I-A) and B = (B, ConB, I-B ) be information systems. 
Define their sum, Al + A 2 , to be C = (C, Con, 1-) where: 

1. C=AttlB 
2. X E Con ~ :3Y E ConA.X = inj1Y or:3Y E ConB·X = inj2Y' 
3. X I- c ~ 

(:3Y, a. X = injl Y & c = injl (a) &Y I-A a) or 

(:3Y, b. X = inj2Y & c = injz(b) & Y I- B b). 
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Example: Let T be the sum 1 + 1. Then ITI is isomorphic to the discrete cpo of truth 
values; its tokens are (1, O) and (2, O) with elements consisting of precisely the singletons 
{(1,0)} and {(2,0)}. D 

Proposition 12.23 Let A and 8 be information systems. Then their sum A + 8 is an 
information system such that 

x E IA + 81 ~ (3y E IAI· x = injlY) or (3y E IBI· x = inj2Y)' 

Proof: It is necessary to verify that if A and 8 are information systems then so is their 
sum A + 8. That A + B satisfies the properties 1 to 5 follows, property for property, from 
the fact that A and 8 satisfy 1 to 5. It is a routine matter to check that the elements of 
A + B consist of disjoint copies of elements of A and B (exercise!). D 

It follows that the cpo of elements of a sum of information systems is the same to 
within isomorphism as the sum of the cpo's of elements: 

Corollary 12.24 Let A and B be information systems. There is an isomorphism of 
cpo's 

IA+81 ~ IAI + 181 
given by 

if x = injlY, 
if x = ini2Y· 

Theorem 12.25 The operation + is a continuous operation on information systems 
ordered by :9. 

Proof: We show that + is continuous with respect to :9. By definition of continuity we 
must show that + is continuous in each argument. We prove + continuous in its first 
argument. Then, by symmetry, it is easy to see that + will be continuous in its second 
argument too. 

First we show + is monotonic in its first argument. Let A = (A, ConA, f--- A), A' = 
(A',COnA',f---A') and 8 = (B,ConB,f---B) be information systems with A :9 A'. Write 
C = (G, Con, f---) = A + Band C' = (G' , Con', f---/) = A' + 8. We require C :9 C' i.e. 

1. G ~ G' 
2. XECon ~ X~G&XECon' 
3. X f--- a ~ X ~ G & a E G & X f--- 'a 
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l. From the definition of + and the assumption A <":::J A' we get C <:;,; C'. 
2. "=>". Let X E Con. Then X = {I} X Xl for some Xl E ConA or X = {2} X X 2 for 
some X 2 E ConB. Assume X = {I} X Xl. Then clearly X <:;,; C and Xl E ConA' since 
A <":::J A'. Therefore by the definition of +, X E Con'. Now assume X = {2} X X 2 where 
X 2 E ConB. Then directly from the definition of + we have X E Con'. 
2. "{=". Suppose X E Con' and X <:;,; C. Then either X = {I} x X I for some X I E Con A' 

or X = {I} X X 2 for some X 2 E ConB. In the former case Xl <:;,; A so, as A :<":::J A', we 
obtain X I E Con A . In the latter case X E Con trivially. 
3. is very similar to 2. 

This shows + monotonic in its first argument. It remains to show that + acts contin
uously on the token-sets. Let Ao <":::J Al <":::J ••• <":::J Ai <":::J .•• be an w-chain of information 

systems Ai = (Ai, Coni, f-i). The set of tokens of (Ui Ai) + B is ((UiEw Ai) ttJ B which is 
equal to UiEw(Ai ttJ B) the set of tokens of Ui(A + B). 

Thus + is continuous in its first and, symmetrically, in its second argument, and is 
therefore continuous. o 

Example: Because + is continuous we can construct the least information system N 
such that N = 1 + N. Its elements form a discrete cpo isomorphic to the integers, with 
tokens: 

(1, {0}), (2, (1, {0} )), ... , (2, (2,··· (2, (1, {0}))·· .), ... 

o 

12.5.3 Product 

The product construction on cpo's is the coordinatewise order on pairs of their elements. 
The desired effect is obtained on information systems by forming the product of the 
token sets and taking finite sets to be consistent if their projections are consistent and a 
consistent set to entail a token if its projections entail the appropriate component. 

The construction will rely on these simple operations. 

Notation: We use the product A x B of sets, A and B, consisting of pairs, together 
with projections Projl : A x B -+ A and Proj2 : A x B -+ B acting so Projl (a, b) = a and 

proj2(a, b) = b. 

Definition: Let A = (A,ConA,f- A) and B = (B,ConB,f-B) be information systems. 
Define their product, A x B, to be the information system C = (C, Con, f-) where: 

l. C=AxB 
2. X E Con {==> projlX E ConA & proj2X E ConB 
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As intended the elements of the product of two information systems have two com
ponents each corresponding to an element from each information system. Intuitively a 
token of the product Al x A2 is a pair of assertions about the two respective components. 

Proposition 12.26 Let A and B be information systems. Then A x B is an information 
system and 

Proof: It is routine to check that the product of two information systems is an infor
mation system. 

It remains to show 
x E IA x BI ~ x = Xl X X2 

for some Xl E IAI, X2 E IBI· 
"{=": If Xl E IAI and X2 E IBI it follows straightforwardly that their product X I X X2 E 

IAxBI· 
"=}": Suppose X E IA x BI. Define Xl = Projlx and X2 = Proj2x, It is easy to check 
that Xl E IAI and X2 E IBI· Clearly X ~ Xl X X2. To show the converse inclusion assume 
(a, b) E Xl X X2. Then there must be a', b' such that (a, b' ), (a', b) Ex. By the definition 
of entailment in the product we see {(a, b' ), (a', b)} f- (a, b) from which it follows that 
(a,b) Ex. Thus X = Xl X x2. 0 

Consequently the cpo of elements of the product of information systems is isomorphic 
to the product of their cpo's of elements: 

Corollary 12.27 Let A and B be information systems. There is an isomorphism of 
cpo's 

IA x BI ~ IAI x IBI 

Theorem 12.28 The operation x is a continuous operation on information systems 
ordered by :'9. 

Proof: We show that the product operation is monotonic and continuous on token-sets. 
Then by Lemma 12.15 we know it is continuous with respect to :'9. 
Monotonic: Let A:'9 A' and B be information systems. The tokens of A x B obviously 
form a subset of the tokens of A' x B. Suppose X is a subset of the tokens of A x B. 
Then X is consistent in A x B iff Projl X and prohX are both consistent in A and B 
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respectively. Because A SI A' this is equivalent to X being consistent in A' x 8. Suppose 
X is a finite set of tokens of Ax 8 and c is a token of A x 8. Then X I- c in A x 8 iff 
c = (aI, a2) and Projl X I- A al and proj2X I- B a2· Because A ::9 A' this is equivalent to 
X I- c in A' x 8. Thus A x 8 ::9 A' x 8. Thus x is monotonic in its first argument. 
Continuous on token-sets: Now let Ao ::9 Al ::9 ... ::9 Ai ::9 ... be an w-chain of informa
tion systems. A token of (Ui Ai) x 8 is clearly a token in Ai x 8 for some i E w, and so 
a token of Ui(A x 8). 

Thus by Lemma 12.15, x is continuous in its first argument. Similarly it is continuous 
in its second argument. Thus x is a continuous operation on information systems with 
respect to ::9. 0 

The information system 1, representing a singleton domain, can be taken to be the 
empty product of information systems, a special case of the product construction. 

12.5.4 Lifted function space 

Let A and 8 be information systems. It is not possible to represent the space of contin
uous functions IAI - 181 for arbitrary 8 (see Exercise 12.11 above). Nor can we hope to 
solve domain equations such as 

X~ [X-2] 

where 2 is the two element discrete cpo. However, the function spaces which arise in 
denotational semantics most often have the form D - E 1- where the range is lifted. 
This operation can be mimicked on arbitrary information systems: 

Definition: Let A = (A, ConA, I-A) and 8 = (B, ConB, I-B ) be information systems. 
Their lifted function space, A - 81-, is the information system (C, Con, 1-) given by: 

1. C = ((ConA \ {0}) x ConB) U {(0, 0)} 
2. {(Xl, YI ), ... , (Xn' Yn )} E Con -¢=} 

VI ~ {1, ... , n}. U {Xi liE I} E ConA =::;, U {Yi liE I} E ConB 
3. {(Xl, YI ), ... , (Xn' Yn)} I- (X, Y) -¢=} 

{(Xl, Yr), ... , (Xn, Yn )} '" 0 & U {Yi I X 1-:4 Xd r-8 Y. 

The intention is that tokens (X, Y) of the function space assert of a function that if its 
input satisfies X then its output satisfies Y. We check that this construction does indeed 
give an information system and give an alternative characterisation of the elements of 
the function space of information systems. 

Lemma 12.29 LetA=(A,ConA,I-A) and8=(B,ConB,I-B ) be information systems. 
Then A - 81- is an information system. 
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We have r E IA -+ 8..L I iff r S;;; ConA x ConE, so r is a relation, which we write in an 
infix way, which satisfies 

(a) 0rY ~ Y = 0, 
(b) XrY & XrY' =} Xr(Y U Y') 
(c) X' 1-:4 X & XrY & Y 1-3 Y' =} X'rY' 

for all X,X' E ConA, Y, Y' E ConE· 

Proof: Let A and 8 be information systems. We should first check that A -+ 8..L is an 
information system. The more difficult conditions are axioms 3 and 5 in the definition 
of information system, which we verify, leaving the others to the reader: 

Axiom 3. Suppose {(Xl, Yd, ... , (Xn' Yn)} I- (X, Y). We require 

Thus we require that if J S;;; {I, ... , n} and U {Xj I j E J} U X E Con A then 

U {Yj I j E J} U Y E ConE. 

Assume U {Xj I j E J} U X E ConA. Then 

U {Xj I j E J} U U {Xi I X 1-:4 X;} E ConA· 

But U {Yi I X 1-:4 X;} 1-3 Y, because {(Xl, Yd,···, (Xn, Yn)} I- (X, Y). Consequently 

so U {Yj I j E J} U Y E ConE, as required to verify 3. 

Axiom 5. Suppose 

We require {(Xl, Yd, ... , (Xn' Yn)} I- (U, W) i.e. 

U {Yi I U 1-:4 Xi} 1-3 w. 
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Suppose U f-:4. Zj. Then because U {Yi I Zj f-:4. Xd f-:B Vj we have U {Yi I U f-:4. Xi} f-:B 
Vj . Therefore 

U {1'i I U f-:4. Xd f-:B U {Vj I U f-:4. Zj} f-:B w. 
By the transitivity of f-:B we obtain the required result, and have verified 5. 

It remains to verify the characterisation of the elements of A ----> B 1. as those relations 
satisfying (a), (b) and (c) above: 
"only if": Suppose r is an element of A ----> B 1.. Then r is nonempty and so contains 
some (X, Y). By 3 in the definition of entailment of A ----> B 1. we obtain that (0,0) E r. 
This establishes (a) "~." The converse, (a) "=>", holds as the only token of form (0, Y) 
in the lifted function space is (0,0). The properties (b) and (c) follow fairly directly from 
2 and 3 in the definition of A ----> B 1.. 

"if": Assume r ~ ConA x ConB satisfies (a), (b) and (c). Then certainly r is a nonempty 
subset of (ConA \ {0}) x ConB U {(0,0)}. In order that r E IA ----> B1.I, we also require 
that r is consistent and f--closed. 

Suppose {(X1,Yd, ... ,(Xn,Yn)} ~ r. Assume I ~ {1,···,n} and that X =deJ 

U {Xi liE I} E ConA. Then for all i E I we have X f-:4. Xi which with (Xi, Yi) E r en
sures (X, Yi) E r by (c). Using (b), we see U {Yi liE I}) E ConB. Hence r is consistent. 

Now we show r is closed under f-. Suppose 

We require that (X, y) E r. By (c), if X f-:4. Xi then (X, Yi) E r, as (Xi, Yi) E r. It 
follows by several applications of (b) that (X, Y') E r where Y' =deJ U {Yi I X f-:4. Xi}. 
But now by the definition of f- we see Y' f-:B Y. Hence, by (c), we obtain (X, Y) E r. 0 

Scott calls relations like those above approximable mappings. Intuitively, an approx
imable mapping expresses how information in one information system entails information 
in another. For an approximable mapping r E IA ----> B 1.1, the situation that XrY can 
be read as saying information X in A entails Y in B. In particular the relation r might 
be induced by a computation which given input from A delivers output values in B. In 
fact such approximable mappings, which coincide with the elements of 

are in 1-1 correspondence with continuous functions 

the correspondence determines an order isomorphism between the elements IA ----> B 1.1 
ordered by inclusion and the continuous functions [IAI ----> IBI1.J ordered pointwise. 
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The correspondence is most easily shown for a particular way of representing lifting 
on cpo's of elements of information systems. Recall from Section 8.3.4 that the lifting 
construction D 1. on a cpo D assumes an element 1. and a 1-1 function l- J with the 
property that 

1.# lxJ 
for all xED. The lifted cpo D 1. is then a copy of D, consisting of elements l x J , for xED, 
below which the element 1. is adjoined. When lifting a cpo IAI, formed from elements 
of an information system, we can take advantage of the fact that the elements of A are 
always nonempty, and choose ..1 = 0 and lxJ = x. The following proposition assumes 
this particular choice of interpretation for lifting. The choice simplifies the associated 
operation (-)*, introduced in Section 8.3.4. Suppose f : IAI ~ 1811. is a continuous 
function between cpo's of elements of information systems A and 8. The function f 
extends to a function 

which with our choice of ..1 and l -J, is given by 

j*() {0 if z = 0, 
z = f(z) otherwise. 

Theorem 12.30 Let A and 8 be information systems. Define 

by taking 

I-I : IA ~ 81.1 ~ [lAI ~ 1811.], 
'-': [lAI ~ 1811.] ~ IA ~ 81.1, 

Irl = AX E IAI. U {Y I 3X ~ x. (X, Y) E r}, 

'f'= {(X,Y) E ConA x ConB I Y ~ j*(X)}. 

Then I -I, '- ' are mutual inverses, giving an isomorphism IA ~ 8 1.1 ~ [lAI ~ 181.1]· 
The function '- ' satisfies: 

'f' = {(X, Y) I 0 # X E ConA & Y ~fin f(X)} U {(0, 0)}. 

Proof: It is easy to check that I-I is well-defined-that 1- I gives values which are con
tinuous functions. Showing that '- ' yields elements of A ~ 81. is left as an instructive 
exercise (see Exercise 12.31). It is clear from their definitions that both I-I and '-' are 
monotonic. 

We claim 
(X, Y) E r *=> Y ~ Irl*(X) 
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for r E 1.4 ---- B.1I, X E ConA and Y E ConE. The direction "=?" follows directly 
from the definition of I-I. The direction "<=" follows from Lemma 12.29 above, using 
properties (b) and (c) of r: 
Assume Y ~ Irl*(X) for X E ConA, Y E ConE. By the definition of Ir/ there must be 

such that 
Xl"",Xn~X, i.e., Xr*XIU···UXn (1) 

with 
(2) 

Because X1U·· ,UXn r* Xi and XirYi we obtain by (c) that (X1U" ·UXn)rYi, whenever 
1 ::; i ::; n. Hence by repeated use of (b), 

But now by (c), from (1) and (2) we get XrY, as required to prove the claim. 
Now we have justified the claim, we can show I-I and' -' give a 1-1 correspondence. 

We see, for r E IA ---- B.1I, X E Con A and Y E ConE, that 

(X, Y) E r <==? Y ~ Ir/*(X) 

<==? (X, Y) E'lr/' 

directly from the definition of '- '. Therefore r = 'Ir/'. We also see, for J E [lAI---- IBI.1], 
X E ConA and Y E ConE, 

Y ~ reX) <==? (X, Y) E '1' <==? Y ~ 1'1'I*(X); 

this follows immediately from the definition of '-' and the claim above. A continuous 
function is determined uniquely by the values it gives on finite elements in IAI of the form 
X, for X E ConA: any dement x is a least upper bound of an w-chain X 0 ~ X 1 ~ ... 

and by continuity J(x) = Un J(Xn ). Therefore J = I'J'1-
We conclude that 1- I and '- ' determine an isomorphism. 
The alternative characterisation of '-' follows directly from the particular way the 

extension 1*, of J : I AI ---- I B 1.1, is defined. 0 

Exercise 12.31 Show that the' - ' of Theorem 12.30 above is well-defined as a function, 
i.e. , that given a continuous function 

J : IAI ---- IB/.1 
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then 
'1' = {(X, Y) E ConA x ConE I Y ~ reX)} 

is an element of A -+ B-1. 

Chapter 12 

o 

Exercise 12.32 Describe the tokens in the bottom element of A -+ B-1, for information 
systems A and B. 0 

Theorem 12.33 The operation of lifted function space is a continuous operation on 
information systems ordered by :'9. 

Proof: We show that lifted function space is a continuous operation on information 
systems in each argument separately with respect to :'9. We use Lemma 12.15. 

First we show the construction is monotonic in its first argument. Suppose A :':l A' 
and B are information systems. Write C = (C, Con, f-) = A -+ B-1 and 
C' = (C', Con', f-') = A' -+ B-1. We require C :'9 C' so we check conditions 1, 2, 3 in the 
definition of :':l hold: 

1. Clearly the tokens of C are included in those of C'. 
2. Let (Xl, Yd, ... , (Xn, Yn) be tokens of C. Because A :':l A' we have UtEI Xi E ConA 

iff UiEI Xi E ConA' , for any subset I ~ {I, ... , n}. So inspecting the definition of the 
consistency predicate for the lifted function space we see that 

{(Xl, Yd,··· (Xn, Yn )} E Con iff {(Xl, Yd,··· (Xn' Yn )} E Con'. 

3. Suppose (Xl, YI ), ... (Xn, Yn) and (X, Y) are tokens of C. Because A :'9 A' we have 
X I-A Xi iff X I-Af Xi. So inspecting the definition of the entailment relation for the 
lifted function space we see that 

{(Xl, Yd,··· (Xn, Yn )} I- (X, Y) iff {(Xl, Yd, ... (Xn, Yn )} f-' (X, Y). 

Thus C :'9 C' so lifted function space is monotonic in its first argument. 
Now we show it is continuous on token-sets in its first argument. Let Ao :':l Al :':l ... :'9 

Ai :':l ... be an w-chain of information systems Ai = (Ai, Coni, I-i). Let (X, Y) be a token 
of (Ui Ai) -+ B-1. Then X is a consistent set of Ui Ai' But then X E Coni, for some i, 
so (X, Y) is a token of A -+ B-1. Thus as required (X, Y) is a token of Ui(A -+ B i -1)' 

By Lemma 12.15 we deduce that lifted function space is continuous in its first argument. 
A similar but even simpler argument shows that it is continuous in its second argument 
too, and therefore continuous. 0 

We can now give definitions of information systems by composing the operations lifting, 
sum, product, and lifted function space, starting from the information system O. Because 
these operations are all continuous with respect to :':l the definitions can be recursive. 
These constructions can be used to give a semantics to a language with recursive types. 
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Example: The operation X f---t (X --+ X .1.) is a continuous operation on information 
systems. It has a least fixed point 12 = (12 --+ 12 .1.). This information system, has a cpo 
of elements D = 1121 such that the following chain of isomorphisms hold: 

These follow from the fact that the information-system construction of lifted function 
space achieve the same effect as the corresponding cpo constructions to within isomor
phism. Thus D ~ [D --+ D J.J. 0 

Exercise 12.34 Why do we build a large cpo from the relation :::l rather than the simpler 
relation based on coordinatewise inclusion of one information in another? This is a partial 
order and does indeed give another large cpo. Verify that it suffers a major drawback; the 
lifted-function-space construction on information systems, while being continuous in its 
right argument, is not even monotonic in its left argument with respect to this inclusion 
order. 0 

12.6 Further reading 

Informations systems were introduced by Dana Scott in [90J which is recommended read
ing, though the presentation here has been more closely based on [103J. Note that usually 
information systems are used to represent Scott domains with a bottom element. The 
recent book [87] on domain theory, for undergraduate mathematicians, is based on in
formation systems and is quite accessible. Lecture notes of Gordon Plotkin use a variant 
of information systems to represent predomains (not necessarily with bottoms) as does 
[19]. Information systems can be regarded as special kinds of locales for "pointless topol
ogy" (see [53, 98]) in which neighbourhoods rather than points are taken as primary. 
This view has uses in both topology and logic. Information systems can be given an 
even more logical character by taking the tokens to be propositions built up syntacti
cally. Such a development coupled to the duality between spaces and their presentation 
via neighbourhoods led Samson Abramsky to a "logic of domains" [2]. To handle the 
Plotkin powerdomain requires a generalisation so that a wider class of domains (SFP 
objects) can be represented. Suitable generalisations can be found in [2] and [108]. In 
the late '70's Gerard Berry discovered an alternative "stable" domain theory which gives 
another foundation for much of denotational semantics. Here the cpo's are restricted to 
special Scott domains called dI-domains and functions are stable as well as continuous. 
This alternative domain theory has its own special representation in which the role of to
kens of an information system is replaced that of "events"; the work here on information 
systems can be paralleled on "event structures" (see [104, 105]). 





13 Recursive types 

The functional languages of Chapter 11, their syntax, operational and denotational se
mantics, are extended to include recursive types. The denotational semantics makes use 
of information systems to denote such types. Recursive types of natural numbers, lists, 
and types forming models of A-calculi are considered for the eager and lazy languages. 
The use of information systems has an an extra pay-off. It yields relatively simple proofs 
of adequacy, and characterisations of fixed-point operators in the eager and lazy A-calculi. 
The treatment provides a mathematical basis from which to reason about eager func
tionallanguages like Standard ML, and lazy functional languages like Miranda, I Orwell 
or Haskell. 

13.1 An eager language 

In the last chapter we saw a way to understand recursively-defined types. With this in 
mind we introduce the facility to define types recursively into the language of Chapter 
11. Type expressions T will have the form: 

where X ranges over an infinite set of type variables, and /-LX.T is a recursively-defined 
type. There are the familiar type constructors of product, function space and sum. There 
is only one basic type 1, to be thought of as consisting of a single value, the empty tuple 
O. Other types like numbers and lists and their operations will be definable. The free 
and bound variables of a type expression are defined in the standard way and, as usual, 
we will say a type expression is closed when all its variables are bound. 

The raw (untyped) syntax of terms is given by 

t .. = 0 I (tl' t2) I fst(t) I snd(t) I 
x I Ax.t I (tl t2) I 
inl(t) I inr(t) I case t of inl(xI).tl' inr(x2).t2. I 
abs(t) I rep(t) I 
rec f.(Ax.t) 

where x, Xl, X2, f are variables in Var. The syntax includes operations familiar from 
Chapter 11. The two new operations of abs and rep accompany recursively defined 
types and will be explained shortly. The syntax does not include a construction 

let X ~ tl in t2. 

1 Miranda is a trademark of Research Software Ltd 
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But this can be defined to stand for ((AX.t2) td. 
We assume each variable x has as unique closed type, type(x). So as not to run out of 

variables we will assume 
{x E Var I type(x) = 7} 

is infinite for each closed type 7. 

The assignment of types to variables is extended to a general typing judgement t : 7 

where t is a term and 7 is a closed type, by the following rules: 

Typing rules 

Variables: 

Products: 

Function types: 

Sums: 

Recursive types: 

rec: 

if type(x) = 7 
X:7 

0:1 

t1 : 71 t2: 72 
(t1,t2): 71 *72 

t : 71 * 72 

fst(t) : 71 

t : 71 * 72 

snd(t) : 72 

x: 7) t: 72 

>'x.t ; 71-> 72 

t1 : 1) - > 72 t2: 71 

(tr t2) : 72 

inlet) : 71 + 72 inr(t) : 71 + 72 

t ; 71 + 72 Xl: 71 X2: 72 t1; 7 t2; 7 

case t of inl(xd.tl' inr(x2).t2 : 7 

t : 7 [j.lX7 j Xl 
abs(t) : j.lX7 

f : 7 >'x.t: 7 

rec f.(AX.t) : 7 

t : JLX7 
rep(t) : 7[j.lX.7jXl 

As before, a term t is said to be typable when t : 7 for some type 7. The free vari
ables FV(t) of a typable term t are defined exactly as in Chapter 11 (see Section 11.1). 
Henceforth we will restrict attention to typable terms. 
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The language allows the definition of recursive types like the natural numbers 

N =def IlX.(l + X), 

or lists of them 

L =def /LY(l + N * y), 

or more bizarre types such as 

A =def /LZ.(Z-> Z), 

which as we will see is a model of an (eager) A-calculus. The term constructors abs 
and rep serve as names of the isomorphisms between a type /LX.T and its unfolding 
T[/LX.T / Xl. They play an important role in defining useful operations on recursive types. 
The constructor rep takes an element t : /LX.T to its representing element rep(t) : 
T[/LX.T / Xl· The constructor abs takes such a representation u : T[/LX.T / Xl to its 
abstract counterpart abs(u) : /LX.T. To understand the use of abs and rep we look at 
two simple types, natural numbers and lists, and how to define functions involving them. 

Exrunple: Natural numbers 
The type of natural numbers can be defined by 

N =def /LX.(1 + X). 

For this type rep can be thought of as a map 

N 
rep 
--> l+N 

and abs as a map 

N abs 
f--- 1 +N. 

The constant Zero can be defined as: 

Zero =def abs(inl()) 

The successor operation can be defined by taking 

Succ(t) =def abs(inr(t)) 

for any term t : N. The successor function is then given as the term 

AX. Succ(x) : N-> N 
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where x is a variable of type N. These operations allow us to build up "numbers" of 
type N as 

Zero, 

Succ(Zero), 

Succ( Succ( Zero)), 

We also want to define functions on natural numbers, most often with the help of a cases 
construction 

Case x of Zero. tl, 

Succ(z). t2. 

yielding tt in the case where x is Zero and t2, generally depending on z, in the case 
where x is a successor Succ(z). This too can be defined; regard it as an abbreviation for 

case rep(x) of inr(w).tl, 

inl(z) .t2. 

Now, for example, addition is definable by: 

add =dej rec f. (AX.Ay. Case x of Zero. y, 

Succ(z). Succ((fz) y), 

a term of type (N -> (N -> N)). 

Example: Lists 
A type of lists over natural numbers N is defined by 

L =dej p,y'(l + N * Y). 

We can realise the usual list-constructions. The empty list is defined by: 

Nil =dej abs(inIO) 

The consing operation is defined by taking 

Cons(p) =dej abs(inr(p)) 

o 

for any p : N * L. The operation Cons acts on a pair (n, l) : N * L, consisting of terms 
n: Nand l : L, to produce the list Cons(n, l) with "head" n and "tail" l. It is associated 
with the function term 

AX. Cons(x) : N * L-> L 
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where x is a variable of type N * L. Functions on lists are conveniently defined with the 
help of a cases construction. The usual cases construction on lists 

Case l of Nil. tl, 

Cons(x, l'). t2 

yields tl in the case where the list l is empty and t2 in the case where it is Cons (x, l'). 
It is definable by 

case rep (l) of inl(w). tl, 

inr(z). t2 [fst(z) I x, snd(z) Il']. 
o 

13.2 Eager operational semantics 

As before, eager evaluation will be expressed by a relation 

t -+ c 

between typable closed terms t and canonical forms c. The canonical forms of type 7, 

written Cr , are closed terms given by the following rules: 

CI E CT] C2 E Cr2 

(CI' C2) E Cr, *r2 

>'x.t: 71-> 72 >'x.t closed 
>.x.t E Cr ] ->T2 

c E CT[pX.r/Xj 

abs(c) E C"X.r 

C E CT2 

The only rule producing canonical forms of recursive types is the last, expressing that 
the canonical forms of type pX.7 are copies abs(c) of canonical forms of 7[pX.7/X]. 
Because T[pX.7 I X] is generally not smaller than fLX.7, the canonical forms cannot be 
defined by structural induction on types-the reason they have an inductive definition. 
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Example: Natural numbers 
The type N == p,X.(l + X) of natural numbers has canonical forms associated with the 
two components of the sum. There is a single canonical form 

Zero ==def abs(inl()) 

associated with the left-hand-side. Associated with the right-hand-side are canonical 
forms 

abs(inr(c)) 

where c is a canonical form of N. With the abbreviation 

Succ(t) == abs inr(t) 

we obtain these canonical forms for N: Succ( Zero), Succ( Succ( Zero)), 
The canonical forms, which serve as numerals, are built-up from Zero by repeatedly 
applying the successor operation. In the denotational semantics N will denote the infor
mation system with elements isomorphic to the discrete cpo of natural numbers. 0 

Example: Lists 
The type of lists over natural numbers, defined by L == p,Y.(1 + N * Y), has canonical 
forms 

Nil == abs(inl()) : L 

Cons(n, l) == abs(inr(n, l)) 

for canonical forms n : Nand l : L. In other words, a canonical forms of type L is either 
the empty list or a finite list of natural numbers [nl' n2,· .. J built up as 

Cons(nl' Cons(n2' Cons(· .. ) ... ). 

o 

The eager evaluation relation between typable closed terms t and canonical forms c is 
defined by the following rules: 
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Evaluation rules 

if C is canonical 
C-tC 

t I -t CI t2 -t c2 

(tl' t2) ---t (CI' C2) 

t ---t (CI' C2) 
fst(t) ---t CI 

tl ---t Ax.ti 

t ---t (CI' C2) 
snd( t) ---t c2 

case t of inl(xd.tl' inr(x2).t2 ---t C 

t ---t C 

abs(t) ---t abs(c) 

t ---t abs( c) 

rep( t) ---t C 

rec f.(AX.t) ---t Ax.t[rec f. (AX.t) / fJ 

Evaluation is deterministic and respects types: 
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Proposition 13.1 Let t be a typable, closed term and c, c I and C2 canonical forms. 
Then 

(i) t ---t c & t: T =? c: T, 

(ii) t -t Cl & t ---t C2 =? Cl == C2. 

Proof: By rule induction. o 

13.3 Eager denotational semantics 

A typable, closed term can evaluate to a canonical form or diverge. Accordingly we will 
take its denotation to be an element of (VT h where VT is a cpo of values, including those 
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for canonical forms, of the type T. This time the language allows types to be defined 
recursively. We use the machinery of the last chapter to define an information system of 
values for each type. 

A type environment X is a function from type variables to information systems. By 
structural induction on type expressions, define 

V[lh (0, {0}, 0h (also called 1) 

V[TI * T2TIX (V[TlTIX) x (V[T2TIX) 
V[TI - > T2]x (V[Tlh) ---> (V[T2]x) J. 

V[TI + T2TIX (V[TIDx) + (V[T2TIX) 
V[X]X X(X) 
V[MX.Th MI.V[Th[I/ Xl 

All the operations on the right of the clauses of the semantic definition are operations 
on information systems. The type expression MX.T, in an environment X, is denoted by 
the ~-least fixed point of 

I f--> V[Th[I/ Xl 
in the cpo of information systems. 

A closed type T is thus associated with an information system 

whose elements form a cpo of values 

where the type environment X does not affect the resulting denotation and can be arbi
trary. With respect to an environment for its free variables a term of type T will denote 
an element of (Vr h. For simplicity we choose the following interpretation of .1 and the 
lifting function l -J : Vr ---> (Vr h· Because the elements of an information system are 
always non-empty, the conditions required of l- J and .1 are met if we take 

.1 = 0, the emptyset, and lxJ = x, for all x E Vr . 

The cpo of environments Env consists of 

p : Var ---> U {Vr I T a closed type expression} 

such that p(x) E vtype(x), ordered pointwise. 
In presenting the denotational semantics it helps if we make certain identifications. 

Instead of regarding the sum construction on cpo's of elements of information systems as 
merely isomorphic to the cpo of elements of the sum of information systems, as expressed 
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by Corollary 12.24, we will actually assume that the two cpo's are equal. That is, for 
information systems A and B we will take 

IAI + IBI = IA + BI 

with the injection functions inl : IAI ---> IAI + IBI, in2 : IBI ---> IAI + IBI given by 

inl(X) =def inj1x = {(l,a) I a EX}, 

in2(x) =def inj2x = {(2,b) I bE x}. 

More noteworthy is a similar identification for product. The product IAI x IBI, of cpo's 
of information systems IAI and IBI, will be taken to equal the cpo IA x BI. For emphasis: 

IAI x IBI = IA x BI 

Recall from Corollary 12.27 that a pair of elements x E IAI, y E IBI is represented as the 
element x x y E IA x BI. SO the identification of IAI x IBI with IA x BI means that the 
operation of pairing in IAI x IBI is represented as the product of sets 

(x, y) = x x y 

for elements x E IAI and y E IBI· The projection functions 7rl IAI x IBI ---> IAI and 
7r2 : IAI x IBI ---> IBI are given by2 

7rl (z) =def Projl Z = {a I ::lb. (a, b) E z} 

7r2(Z) =def Proj2 z = {b I ::la. (a,b) E z}. 

With these identifications we avoid the clutter of explicitly mentioning isomorphisms in 
the semantic definitions associated with sum and product types. We won't however iden
tify continuous functions with their representation as approximable mappings because 
this might be too confusing. We will use the isomorphisms 

I-I : IA ---> B.L I ---> [lAI ---> IBI.L], 
'- ' : [IAI ---> IBI.LJ ---> IA ---> B.L I, 

of Theorem 12.30, for information systems A and B. Recall, the functions are given by: 

Irl = AX E IAI· U{Y I::lX ~ x. (X,Y) E r}, 

'I' = {(X, Y) I ° =1= X E ConA & Y ~fin f(X)} U {(0,0)}. 

20ur convention only holds in representing pairs (x, y) in a product of cpo's of information systems 
as x x y; in particular the convention does not extend to pairs of tokens like (a, b) seen here, which is an 
example of the usual pairing operation of set theory. 
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As is to be expected, the denotational semantics on terms of nonrecursive types is 
essentially the same as that of the eager language of Chapter 11 (Section 11.3). There 
are occasional, superficial differences due to the fact that the elements associated with 
function types are not functions but instead approximable mappings representing them. 
So, sometimes the isomorphisms associated with this representation intrude into the 
semantic definition. The fact that we use information systems means that the clauses of 
the semantic definitions can be presented in an alternative, more concrete way. These 
are indicated alongside the semantic definitions. Comments and explanations follow the 
semantics. 

Denotational semantics 

[( )] =deJ )..p. L{0}J 
)..p. {0} 

[(tl, t2)] =deJ >..p. let VI ¢= [t l ]p,V2 ¢= [t2]p.L(VI,V2)J 
>..p. [tl]p x [t2]p (1) 

[fst(t)] =deJ >..p. let V ¢= [t]p. 7l'1 (v) 
>..p. Projl [t]p (2) 

[snd(t)] =deJ >..p. let v <= [t]p. 1f2(V) 
)..p. Proj2 [t]p 

[x] =def >..p. Lp(x)J 
)..p. p(x) 

[)..x.t] =deJ )..p. L'().. v E Vtype(x)' [t]p(vlx])'J 
)..p. {(U, V) 10 =I U E Contype(x) & V r;;.fin [t]p (U Ix]) u 

{(0,0)} (3) 

[tl t2] =deJ )..p. let r ¢= [tl]p, v ¢= [t2]P' Irl (v) 
>..p. U{V I 3U r;;. [t2]p. (U, V) E [ir]p} (4) 

[inl( t)] =deJ )..p. let v ¢= [t]p. Linl(V)J 
)..p. injl [t]p (5) 

[inr(t)] =deJ >..p. let v ¢= [t]p. Lin2 (v)J 
>..p. inj2 [t]p 

[case t of inl(xl).tl, inr(x2).t2] 

=deJ >..p. let v ¢= [t]p. 
case v of inl(vI).[tl]p(Vr/xrll in2(v2).[t2]p(v2Ix2J 
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[abs(t)~ 

[rep(t)~ 

=deJ [t~ 

=deJ [t~ 

[rec f.(AX.t)~ =deJ Ap. Lp,r·'(AV.[t~p[v/x,r/f])'j 
Ap. p,r.[Ax.t~p[r/ fJ 

Explanation 
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(6) 

(7) 

(1) Recall that pairing of elements VI, V2 in the product of information systems is 
represented by the product of sets VI x V2. Thus, with our understanding of lifting, 

This returns the bottom element 0 in the case where either [tl~P or [t2]P is 0, and 
hence equals 

(2) With our understanding of the form of products IAI X IBI, for information systems 
A and B, we see 

[fst (t)~p = let V ~ [t~p. Projl v 
= projl [t]p 

because the projection, under projl, of 0 is 0. 
(3) Recall the isomorphism between approximable mappings and continuous functions 

given by the two functions 1- 1 and' -' in Theorem 12.30. We see that 

[AX.t~p l'(AV.[t]p[V/X])'j by definition, 

'(AV.[t]p[v/x])' from our understanding of lifting, 

{(U, V) 101= U E Contype(x) & V ~Jin [t]p[U Ix]} U {(0, 0)}. 

(4) Suppose h : 17-> T, t2 : 17. In the case where [tl~P = lrj and [t2]p = lvj, by 
Theorem 12.30, we see 

[tl t2]p Irl(v) 

U{V 13U ~ v. (U, V) E r} 

Thus in this case, the two expressions in (4) agree. Morever they also coincide, 
yielding 0, in the other case, where [h]p or [t2]p is empty. 
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(5) In the light of the discussion of Section 11.11, we might expect to have to specify 
the type 71 + 72 of inl(t)-the component 72 is left unspecified by the type of tl, 
and could conceivably affect the denotation of inlet). However, because of our 
particular representation of injections of a sum IAI + IBI, for information systems 
A and B, we can get away without specifying the component 72; whatever it is, the 
denotation of inlet) will be the same. Again, the definition simplifies: 

[inl(tHp let v {= [t]p. linl(v)j 

let v ~ [t]p. injl v 

injl [t]p. 

(6) The two halves of the isomorphism between information systems denoted by /1X.7 
and 7[/1X.7/X], expressed by abs and rep are equalities. 

(7) From our choice of operations associated with lifting, we simplify: 

[rec f.(.\x.t)]p =def l/1r.'(.\v.[t]p [v/x,r/f])'j 

w·l'(.\v.[t]p [v/x,r/f])'j 

/1r.[.\x.t]p[r / fl. 

The denotational semantics satisfies the expected properties. 
Denotations depend only on the free variables of a term: 

Lemma 13.2 If p, pi agree on the free variables of t then [t]p = [t]pl. 

Proof: By structural induction. 

Canonical forms denote values: 

Lemma 13.3 If c E C r then [c]p i- 0, any p. 

Proof: By structural induction on c. 

13.4 Adequacy of eager semantics 

D 

D 

Both the operational and denotational semantics agree on whether or not the evaluation 
of a term converges. For a typable, closed term t, define 

t! iff 3c. t --t C 

t.IJ. iff [t]p i- 0, 
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for an arbitrary environment p. So, t 1 means the evaluation of the closed term t 
terminates in a canonical form, while t .jJ. means its denotation is not bottom. 

The proof that the denotational semantics respects evaluation proceeds routinely on 
the lines of Section 11.4, with the help of a Substitution Lemma: 

Lemma 13.4 (Substitution Lemma) 

Let s be a typable, closed term such that [s]p i= 0. Then 

[t[s/x]]p = [t]p[[s]p/x] 

Proof: By structural induction. o 

Lemma 13.5 If t ---+ c then [t]p = [c]p for any typable, closed term t and canonical 

form c, and arbitrary environment p. 

Proof: By rule induction. o 

Exercise 13.6 Establish the cases of the above rule induction for the rules for sum and 
recursive types. 0 

By Lemma 13.3, canonical forms denote values. So, it follows that 

if t 1 then t .jJ., 

for any typable, closed term t. 
As usual, the converse is harder to prove and is done by means of a logical relation in 

a manner similar to that followed in Chapter 11. However, this time we have the extra 
complication of recursive types. In Chapter 11, we could define the logical relations :S r 
by structural induction on the types T. We can no longer do this when types can be 
defined recursively; the definition of :S/l-X.r cannot be given straightforwardly in terms of 
:Sr[/l-X.rjX) as such a definition would not be well-founded. Fortunately we can still give 
a simple definition of the relations :Sr by taking advantage of the information-systems 
representation. Suitable relations 

for a token a E Tokr , type T and canonical form c E C r are definable by well-founded 
recursion (see Section 10.4). For d E (Vr hand t : T, we then take 

The definition of the relation c makes use the size of tokens: 
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Definition: For sets built up inductively from the empty set by forming finite subsets, 
pairing with 1 and 2, and pairing define: 

size(0) 
size(X) 
size((a, b» 
size((l, a» 
size((2, b» 

1 

1 + I;a E x size(a) (where X is a finite, nonempty subset) 
1 + size(a) + size(b) 
1 + size(a) 
1 + size(b) 

Lemma 13.7 For each closed type T there is a relation E r between tokens of Vr and 
canonical forms CT with the following properties: 

• 0 EI0 
• (a, b) Er, *T2(Cl, C2) iff a Er, C1 & b cr2C2 

• (U, V) CT1->T2 AX.t iffVc E CT1 · U .:'STl C =? V.:'ST2 t[c/x]. 
• (1,a)cTl+T2 inI(c) iffacTlc 

(2, b) CT1+T2 inr(c) iff b CT2C. 

• aCj.LX.T abs(c) iffaET[j.Lx.TjXj c 

where we write 
U .:'Sr s, 

for U a subset of tokens of VT and s : T a closed term, iff 

Vb E U 3c E CT.(b Cr C & s --+ c). 

Proof: The relation C exists by well-founded recursion on the size of tokens and canonical 
forms combined lexicographically. More precisely, defining 

(a, c) < (a', c/) iff size(a) < size(a' ) or 

(size(a) = size(a' ) & c is a proper subterm of c/), 

for tokens a, a' and canonical forms c, c' , produces a well-founded set. On a typical 
member (a, c) we can define by well-founded recursion those types T for which a ETC 

holds. 0 

Lemma 13.8 Assume t is a closed term of type T, and that U, V E CanT' Then 

U f--; V & U .:'ST t =? V .:'ST t. 
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Proof: A necessary and sufficent condition is that 

U I-r a & (Vb E U. b Cr c) =} a Cr C, 

for any U E Conn a E Tokr and C E Cr. This is shown by well-founded induction 
on size(U U {a}), and the structure of c ordered lexicographically. The proof proceeds 
according to the form of 7. 

For example, suppose 7 == 71-> 72. In this case, assume 

(1) 

and 
(Xi, Xi) Cr,->r2 AZ.t, for 1::; i::; n. (2) 

To maintain the induction hypothesis, we require (X, Y) C T->T2 AZ.t, i.e. 

Suppose X ;Sri CI with CI E Cr1 · If X 1-;1 Xi then, by well-founded induction, 
Xi ;S CI· Hence by (2) it follows that Y i ;Sr2 t[cd z]. Thus 

Now by (1), 

By well-founded induction, 

as required. 
The proof for the other cases of T proceeds more simply; when T == /LX.a the well

founded induction relies on a decrease in the second component of the lexicographic 
order. 0 

Theorem 13.9 For any typable, closed term t, 

if t JJ- then t 1 . 

Proof: It is shown by structural induction on terms t that: 
If t has type 7 and free variables Xl : 71,···, Xk : Tk and 
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for VI E Vrl , ... ,Vk E Vrk , and closed terms 81, ... ,8k, then 

We consider two cases of the structural induction, leaving the remainder to the reader. 

Case (h t2): Inductively suppose the property above holds of t 1 : (j- > T and t2 : 
(j. Assume (t1 t2) has free variables amongst Xl : Tb··· ,Xk : Tk matched by VI ;SrI 
81,···, Vk ;Sk 8k, for VI E Vrl ,··· ,Vk E Vrk and closed terms 81,·· ., 8k· 

Suppose b E [ti t2]p[vdxI,··-j. We require the existence of a canonical form c such 
that b Er C and (ti t2)[sdx1,···J -t c. From the denotation of [t1 t2TI, 

for some U, V with b E V. By induction, 

and 

By the property of approximable mappings, V being non-empty ensures U non-empty. 
Thus there are canonical forms C2 and Ay.t1 such that 

Now, by definition of E(7->Tl 

In particular, 

Thus 

for some canonical form c. Combining the various facts about the evaluation relation, 
from the rule for evaluation of applications, we see that 
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Case >..y.t: Let y : a and t : T in a typable abstraction >..y.t. Assume >..y.t has free 
variables amongst Xl : T1,·· ., Xk : Tk matched by 

for VI E V.,.,,···, Vk E V"'k and closed terms Sl,···, Sk. We require that any token in 
[>..y.t]P[VI/x1'···J, necessarily of the form (U, V), satisfies 

(U, V) Ca->.,. (>..y.t)[stfxl,··-j. 

Suppose (U, V) E [>..y.t]P[VI/Xl,··-j. If U = 0 then so is V = 0 which ensures 
(U, V) Ca->-r >..y.t[SI/XI,··-j. Assume otherwise, that U =1= 0. Recalling the definition of 
Ca->.,., we require 

Vc E Ca. U ;S.,. C => V ;S.,. t[c/Y][SI/X1,···j 

Let U ;S.,. c, for cECa· Then by Lemma 13.8, U ;S" c. From the denotation of >..y.t, 

V r;;.fin [t]p[vI/xl,·· ·][U /yj. 

But from the induction hypothesis, 

which implies 

Hence, 
(U, V) Ca->.,. (>..y.t) [SI/X1, ... j 

also in the case where U =1= 0. D 

Exercise 13.10 Carry through the case of the structural induction of the proof above 
for terms of the form ree x.t. D 

Corollary 13.11 For any typable, closed term t, 

t 1 iff t.IJ.. 

13.5 The eager >..-calculus 

In the eager language we can define the recursive type 

A == /-Lx. (X -> X). 
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This type denotes the :SJ-least information system 1: such that 

-an information system equal to its own lifted function space. The terms built solely 
out of those of type A without rec can be described quite simply. They are those terms 
given by: 

where x ranges over variables of type A, and we use the abbreviations 

tl·t2 == (rep(td t2) 

AX.t == abs(Ax.t) 

-it is easy to check from the typing rules that if t, t 1, t2 are terms of type A then so are 
applications tl.t2 and abstractions AX.t. This is the syntax of a A-calculus in which we 
can do paradoxical things like apply functions to themselves and, as we shall see, even 
define a fixed-point operator. 

The only canonical forms amongst the terms are those closed abstractions AX.t. Their 
evaluation to themselves is captured in the rule 

AX.t ---+ AX.t 
(1) 

which is, of course, derivable from the operational semantics. It remains to see how 
applications (tl.t2) evaluate. From the operational semantics we obtain the derivation: 

h ---+ abs(Ax.tJJ == AX.tJ. 
rep(td ---+ Ax.ti 

This condenses to the derived rule: 

h ---+ Ax.ti t2 ---+ C2 ti[C2/X] ---+ c 

(td2) ---+ C 
(2) 

It is not hard to see that all derivations in the operational semantics determining evalu
ations of terms in the A-calculus can be built up out of these derived rules. The second 
derived rule expresses that applications (t 1.t2) evaluate in an eager way. The terms form 
an eager A-calculus. 
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The eager A-calculus inherits a denotational semantics from that of the larger language. 
Simply by restricting the denotational semantics to its terms we obtain: 

[x~p = p(x) 

[tl.t2~P = [tl~p. [t2~P 

where the application <p.d of <p E 1£1.1 to dE 1£1.1 is defined by 

<p.d =def U{V 1 :3 U S;;; d. (U, V) E <p}, 

[AX.t~p = {(U, V) 10-; U E ConA & V S;;;fin [t~p [U Ix]} u {(0,0)} 

We could have proceeded differently, and defined the syntax, operational and denota
tional semantics of the eager A-calculus from scratch, simply by taking (1) and (2) as 
the evaluation rules, and the denotational semantics above as a definition (though then 
environments would not involve variables other than those of type A). The adequacy 
result for the full language restricts to an adequacy result for the eager A-calculus: a 
closed term of the eager A-calculus denotes a non-bottom (i.e. nonemptyelement) iff it 
converges with respect to an operational semantics given by the rules (1) and (2) above. 

13.5.1 Equational theory 

In general we can regard two terms of the same type as equivalent iff they have the same 
denotation, i. e. for t 1, t2 of the same type, define 

i.e. , terms tl , t2 are equivalent iff [tl~P = [t2~P' for all environments p. Similarly, we 
can define 

t! iffVp.[t~p -; 0, 

which holds of a typable term t iff it converges in every environment. 
Let us examine what rules hold of two relations = and 1 but, for brevity, just on 

terms of the eager A-calculus. Firstly, the relation = is an equivalence relation-it is 
reflexive, symmetric and transitive. The relation = is also substitutive: if two terms 
have the same denotation then replacing one by the other in any context will yield the 
same denotation. To state such a property in generality, we need to address the issues 
involved in the substitution of terms which are not closed. 

Substitution: An occurrence of a variable x in a term t of the A-calculus is bound if it 
is inside some subterm of t of the form AX.t'; otherwise it is free. We use t[ulx] to mean 
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the term obtained from t by substituting u for every free occurrence of x in t. However 
care must. be taken as the following example shows. The two functions denoted by Ay.X 
and AW.X are the same constant function in any environment; we have 

Ay.X = AW.X. 

However, substituting y for the free occurrence of x we obtain 

(Ay.X)[Y/X] == Ay.y, 

denoting the identity function in one case, and 

(AW.X)[Y/X] == AW.y, 

the constant function we would hope for, in the other. Certainly it is not true that 

Ay.y = AW.y. 

The difficulty is due to the substitution leading to the free variable y becoming bound in 
the first case. Substitutions t[u/x] only respect the semantics provided no free variable 
of u becomes bound in t. 

We now state the rules for equality, taking care with the substitutions: 
Equality rules: 

(reft) -
t = t 

(eql) it = t2 
t[tI/x] = t[t2/X] 

tl = t2 (sym) 
t2 = it 

provided no free variables of tl and t2 become bound by the substitutions into t. The 
last rule says if h always converges and tl has the same denotation as t2 then t2 always 
converges. 

Variables and abstractions of type A are convergent: 

Convergence rules: 

xi if x is a variable of type A, 
Ax.d 

Recall the denotation of a variable in an environment p is the value p(x), which is 
necessarily convergent. This explains why variables are always regarded as convergent. 

The remaining rules are slight variants of the conversion rules from the classical .A
calculus, adjusted to take account of eager evaluation. 
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Conversion rules: 

(a) 
AX.t = Ay.(t[y/X]) 

provided y does not occur (free or bound) in t. 

(13) 
(AX.t)U = t[u/x) 

provided no free variable of u becomes bound in t. 

(7]) t! provided x is not a free variable of t. 
t = AX.(t.X) 

The first rule (a) says we can always rename bound variables provided this doesn't make 
unwelcome identifications. The second rule (13) expresses the essence of eagerness, that 
an application needs the prior evaluation of the argument. The soundness of the final 
rule (7]) becomes apparent on examining the denotational semantics. 

Exercise 13.12 Prove the soundness of the rule (7]) from the denotational semantics. 
o 

Exercise 13.13 Show the following two rules are also sound: 

provided no free variables of s become bound in t 1, t2 or t. Explain why anything derived 
using these rules in addition to the system of rules listed could also have been derived in 
the original system. 0 

Exercise 13.14 Show the soundness of the following two "strictness" rules: 

t.u! 

if 
t.u! 

u! 

Explain why anything derived using these rules in addition to the system of rules listed 
could also have been derived in the original system. 0 

Exercise 13.15 Give rules for = and! for the full eager language (not just the eager 
'x-calculus). 0 
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13.5.2 A fixed-point operator 

Like its ancestor the A-calculus, the eager A-calculus is amazingly expressive. As there 
it is possible to encode, for example, the natural numbers and computable operations ,on 
them as terms within it. In particular it has a term Y which behaves like a fixed-point 
operator. Here it is: 

Y == Af.(AX.Ay.(f.(X.x).y)).(AX.Ay.(f.(X.x).y)) 

(In writing this term we have adopted the convention that f.g.h means (f.g).h.) Imagine 
we apply Y to a term F == Ag.(AZ.h)-so F is a function which given a function 9 returns 
the function (Az.h) possibly involving g. Using the equational laws of the last section, 
we derive: 

Y.F (AX.Ay.F.(x.x).y).(AX.Ay.F.(x.x).y) by ((3) as F 1, (1) 
Ay.(F.( (AX.Ay.F.(X.x ).y) (AX.Ay.F.(X.x).y) ).y) 

by ((3) as AX.Ay.(F.(X.x).y)!, 
Ay.(F.(Y.F).y) by (eq1) using (1). 

In particular, it follows that y.F! by (eq2). Hence, by ((3), 

F.(Y.F) = (Az.h)[Y.F/g] 

where because it is an abstraction (Az.h)[Y.F/g]!. So F(y.F)! by (eq2). Thus, by (''7), 

Ay.(F.(Y.F).y) = F.(Y.F) 

and we conclude 
Y.F = F.(Y.F). 

In other words, Y.F is a fixed-point of F. 

Exercise 13.16 
(i) Show from the operational semantics that Yl.F diverges for any closed term F of the 
eager .A-calculus where 

Yl == Af.(AX.f.(X.X)).(AX.f.(X.X)). 

(ii) Suppose F is a term Ag.AZ.h of of the eager A-calculus. Let 

Y' == Af.(AX.f.(Ay.X.X.y)).(AX.f.(Ay·X.X.y)). 

Show Y'.F = F.(Y'.F). o 
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To see how Y is related to the least-fixed-point operator fix, we try to imagine what 
the denotation of Y.f is, for a variable f : A, assigned value 'P in an environment p. 

Certainly, p(f) = 'P E 1£1· Automatically, from Cs definition, 'P E 1£ -> £oll· Hence 
I'PI : 1£1 -> 1£lol· We cannot take the least fixed point of 'P as it stands. However, note 
that 1£1 has a bottom element .l1.CI, given by 

.lICI = {(X, 0) I X E ConAl· 

Thus we can define a continuous function 

acting so 

down: 1£lol -> 1£1 

down (d) = { d.l 
I·CI 

if dE 1£1, 
if d = 0. 

Or, equivalently, down can be described as acting so that 

down(d) = d U .l1.CI, 

for any d E 1£lol. The function 

down 0 I'PI : 1£1 -> 1£1 

has a least fixed point. This is the denotation of [Y.f]p in an environment p with 
p(f) = 'P. We claim: 

[Y.f]p = fix(down 0 Ip(f)I). 

We begin the proof of this claim by studying the properties of application of the eager 
A-ca1cul us in the model 1£ Iol· Recall, that application in the model 1£ Iol is defined by 

'P.d = U{V I :J U ~ d. (U, V) E 'P}, 

Lemma 13.17 For 'P, dE 1£lol, b a token and V a subset of tokens, 

V ~fin 'P.d {=} (V = 0 or:JU ~ d. (U, V) E 'P)' 

Proof: In the proof we refer to the properties of an approximable mapping stated in 
Lemma 12.29. From the definition of 'P.d, 
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V ~fin cp.d ¢:} V = 0 or 

V ~ VI U··· U Vk for some UI,···, Uk ~ d 
such that (UI, VI),···, (Uk, Vk) E cpo 

In the latter case, taking U = UI U ... U Uk, we obtain (U, V) E cp because cp is an 
approximable mapping. 0 

The function down is associated with protecting a term from evaluation by enclosing 
it in an abstraction: 

Lemma 13.18 Let t be a term of the eager .>.-calculus which does not contain y as a free 
variable. Then, 

[Ay.(t.y)]p = down([t]p). 

Proof: The desired equation follows immediately from the definition of down, once we 
have shown that, for a token b and arbitrary environment p, 

bE [Ay.(t.y)]p ¢:} (:lU E ConA. b = (U, 0)) or bE [t]p. Ct) 

To show this, recall from the semantics, that 

(U, V) E [Ay.(t.y)]p ¢:} U = V = 0 or 

0=1- U E Con A & V ~fin [t.y]p[U /yj. 

This can be simplified to (t) by the equivalences: 

V ~fin [t.y]p[U /yj ¢:} V ~fin [t]p.U 
as y is not free in t-see Lemma 13.2 

¢:} V = 0 or 
:lU' ~ U. (U' , V) E [t]p by Lemma 13.17, 

¢:} V = 0 or 
:lU'. U f-* U' & (U' , V) E [t]p 

¢:} V = 0 or (U, V) E [t]p 
by the properties of an approximable mapping. 0 

Let f be a variable of type A. By equational reasoning, just like that above, we derive 

Y.f = .>.y.f.(Y.J).y and Y·f! 

from which we obtain directly that 

[Y.J]p = [.>.y.f.(Y.f).y]p =I- 0 

f 
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for any environment p. Whence, by Lemma 13.18, we see that 

[Y·np =down([f·(Y·f)~p) 

=down 0 Ip(f)I([Y.np) 

275 

from the denotational semantics. Thus [Y.f~p is a fixed point of down olp(f)I. It follows 
that 

fix (down 0 Ip(f)I) ~ [Y·np 

As claimed, the converse inclusion holds too. 

Theorem 13.19 Let 

Y =: >..f.(>..x.>..y.f.(x.x).y)(>..x.>..y.f.(x.x).y). 

Then, for an arbitrary environment p, 

[Y·f~p = fix (down 0 Ip(f)I)· 

Proof: In presenting the proof a particular environment p will be assumed. With respect 
to p, we will identify a term with its denotation, writing, for example, 

bEt for b E [t~p. 

We will write Fixf for fix(down 0 Ip(f)I). Note, that Fixf has an inductive charac
terisation as the least set d such that 

d = U{V 13U ~ d. (U, V) E f} U J../£/. 

From the preceding discussion, it is clear that it remains to prove Y.f ~ Fixf. The 
({3) rule yields 

Y.f = (>..x.>..y.f.(x.x).y).(>..x.>..y.f.(x.x).y). 

Consequently, 

V ~!in Y.f {::? V ~!in (>..x.>..y.f.(x.x).y).(>..x.>..y.f.(x.x).y) 

{::? V = 0 or 
3U ~ (>..x.>..y.f.(x.x).y). (U, V) E (>..x.>..y.f.(x.x).y). 

To establish Y.f ~ Fixf it is thus sufficient to show that the property P(U) holds of all 
U E ConA where 

P(U) {::::::} de! 

"iV. [U ~ (>"X.>..y.f.(X.x).y) & (U, V) E (>..x.>..y.f.(x.x).y)] =} V ~ Fixf. 
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This is shown by induction on the size of U. 
Let U E ConA. Suppose the induction hypothesis P(U') holds for all U' E ConA for 

which size(U') < size(U). We require 

[U ~ (>.x.>.y.f.(x.x).y) & (U, V) E (>.x.>.y.f.(x.x).y)] =} V ~ Fixf, 

for any V. This holds trivially when V is empty. In fact, by the following argument, 
it also suffices to show this not just for nonempty V but also only for the case where 
V n 1..1£1 = 0. Of course, in general, V = Vo U VI where Vo n 1..1£1 = 0 and VI ~ 1.. 1£1. It 
is then clear that VI ~ Fixf, while (U, Vo) E (>.x.>.y.f.(x.x).y), from the properties of 
approximable mappings. The original problem reduces to showing 

[U ~ (>.x.>.y.f·(x.x).y) & (U, Yo) E (>.x.>.y.f.(x.x).y)] =} Vo ~ Fixf, 

where Vo n 1..1£1 = 0. 
Suppose 

U ~ (>.x.>.y.f.(x.x).y) & (U, V) E (>.x.>.y.f.(x.x).y) 

where we assume V is nonempty and V n 1..1£1 = 0, i. e., V n {(X, 0) I X E ConAl = 0. 
Under these assumptions, 

(U, V) E (>.x.>.y.f.(x.x).y) # V ~ [>.y.f.(x.x).yTIP[U Ix] from the semantics, 

# V ~ down([f.(x.x)TIp[U/x]) by Lemma 13.18, 

# V ~ [f.(x.x)TIp[U Ix] U 1..1£1 

# V ~ [f.(x.x)TIp[U Ix] as V n 1..1£1 = 0, 
# V ~ p(J).(U.U) from the semantics, 

# 3W ~ (U.u). (W, V) E f by Lemma 13.17 as V =1= 0. 

Thus we have deduced the existence of W E ConA such that 

W ~ (U.u) & (W, V) E f. 

Because V is nonempty and (W, V) is a token, W is nonempty too. From W ~ (U.U) 
we obtain 

3X ~ U. (X, W) E U, 

i.e. 3X.U ~A X & U ~A (X, W). 

But this simplifies to 
U ~A (U, W), 
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by the properties of entailment in I:- = I:- -> I:- -L. However this is defined to mean precisely 
that 

U{Y I 3Z. U f-A Z & (Z, Y) E U} f-A W. 

Consider arbitrary Z, Y for which 

U f-A Z & (Z, Y) E U. 

Then size(Z) < size(U), and hence P(Z) by the induction hypothesis. By assumption 

U ~ (>.x.>.y.f.(x.x).y). 

Thus 
(Z, Y) E (>.x.>.y.f.(x.x).y), and also Z ~ (>.x.>.y.f.(x.x).y), 

as denotations are f- A-closed. By P(Z) we obtain Y ~ Fixf. Because Y, Z were arbitrary, 

Fixf d U{y I 3Z. U f-A Z & (Z, Y) E U} f-A w. 

Hence, as Fix f is f- A -closed, W ~ Fix f. 
Recall the inductive characterisation of Fixf. Because 

W ~ Fixf and (W, V) E f 

we finally get V ~ Fixf. This concludes the proof by induction on the size of U. D 

Exercise 13.20 Let 
fl == (>.x.x.x).(>.x.x.x), 

a term of the eager A-calculus. Show 

[fl]p = 0 

i.e., fl denotes the bottom element of II:-I-L, with respect to an arbitrary environment p. 

(Hint: Adopting the same conventions as used in the proof of Theorem 13.19, first remark 
that the denotation of fl is nonempty, so we have nonempty V ~ fin fl, iff 

U ~ (>.x.x.x) & (U, V) E (>.x.x.x), 

for some U E ConA. Secondly, show 

(U, V) E (>.x.x.x) => U f- A (U, V). 

Finally, obtain a contradiction to there being a smallest U with property (t), for some 
V, by examining the definition of f- A') D 
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13.6 A lazy language 

In moving over to a language with lazy evaluation it's appropriate to modify the syntax 
of Section 13.1 slightly. The types are the same as the eager case but for one small 
change: in the lazy case the smallest type is 0 (and not 1). The type 0 will have no 
values; all the terms of type 0 will diverge. The types are: 

where X ranges over an infinite set of type variables, and p,X.T is a recursively-defined 
type. The role of 0 in the eager case will now be taken over by a term. of type 0 which 
is to denote the diverging computation--it will not be a canonical form. The precise 
syntax of untyped terms in the lazy case is: 

t "= • I (tt, tz) I fst(t) I snd(t) I 
x I AX.t I (tl tz) I 
inl(t) I inr(t) I case t of inl(xt}.tl' inr(x2).tZ. I 
abs(t) I rep(t) I 
ree x.t 

where x, Xl, x2 are variables in Var. The only differences with the eager case are the 
replacement of 0 by. and a more general form of recursive definition. Just as in Chapter 
11, a recursive definition in the lazy case can now take the form reex.t where, unlike the 
eager case, we do not insist that the body t is an abstraction. 

Again, any closed type is associated with infinitely many term variables of that type. 
Accompanying the changes in syntax are the typing rules 

.:0 

X: T t: T 

reex.t : T 

-the other term constructions are typed as in the eager case. The definition of the free 
variables of a term and the notion of closed term are defined as usual. 

13.7 Lazy operational semantics 

The canonical forms CT of type T given by the rules: 3 

3Here. as in the remainder of this chapter. we use the same notation in the lazy case as we used 
for the corresponding eager concepts. The two treatments are kept separate so this should not cause 
confusion. 
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tl : Tl t2: T2 t] and t2 closed 
(tl' t2) E Crl *T2 

AX.t : T]-> T2 AX.t closed 
AX.t E C rl ->r2 

tl : Tl tl closed 
inl(td E C rl +r2 

c E Cr[/.Lx.r/Xj 

abs(c) E C/.LX.r 

t2 : T2 t2 closed 
inr(t2) E C rl+r2 
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The canonical forms can have unevaluated components. Apart from the last, these rules 
have already appeared in Chapter 11. Canonical forms of recursive types are handled as 
in the eager case. 

Example: The lazy natural numbers 
Consider the type 

nat ==de/ {.Lx. (0 + X). 

in the lazy language. It has canonical forms associated with the left and right components 
of the sum. 

Associated with the left summand are the canonical forms 

abs(inl(tt}) 

where tl is a closed term of type o. There are in fact infinitely many closed terms 
tl : 0 (Why?); though, of course, they all denote the same element of I 0 -L I, namely 
bottom-there are no others. In particular, e : 0 denotes bottom. With it we define 

Zero == abs(inl(e)). 

Then Zero: nat is a canonical form. Canonical forms associated with the right-hand-side 
of the sum in nat == {.LX. (0 + X) have the form 

where t2 is a closed term of type nat. If we abbreviate abs(inr(t2)) to SUCC(t2) we can 
generate canonical forms: 

Zero, Succ(Zero) , Succ(Succ(Zero)) , ... 
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These canonical forms are obtained, starting from Zero by repeatedly applying the "suc
cessor function" 

AX.SUCC(X) : nat-> nat. 

Such canonical forms correspond to natural numbers. There are many other canonical 
forms however: one given by Succ(recx.Succ(x» corresponds to an "infinite" number, 
while others like Succ(Succ(recx.x», where x: nat, correspond to partial natural num
bers, as we will discuss further following the denotational semantics. 0 

We define the evaluation relation between closed terms and canonical forms by the 
rules: 

Evaluation rules 

if c is a canonical form 
c-->c 

t --> (tl ,t2) tl --> c 

fst(t) --> c 

tl --> Ax.ti ti [t2/xj --> c 

(tl t2) --> c 

t --> c 

abs(t) --> abs(c) 

t[rec x.tlx] --> c 

rec x.t --> c 

t --> (tl,t2) t2 --> c 

snd(t) --> c 

t --> abs(c) 

rep(t) --> C 

Evaluation is deterministic and preserves types: 

Proposition 13.21 Let t be a closed term and c, CI and C2 canonical forms. Then 

(i) t --> c & t : T implies c : T, 

(ii) t --> CI & t --> C2 implies CI == C2· 

Proof: By rule induction. o 
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13.8 Lazy denotational semantics 

To each type T we associate an information system with elements the values at type T. 

The type T may contain free type variables, so we need a type environment X which to 
each of these assigns an information system. We define the information system denoted 
by T by structural induction: 

V[O~x 

V[TI * T2~X 
V[TI-> T2h 

V[TI + T2h 

V[Xh 

V[jlX.T~X 

(0, {0}, 0) (also called 0) 

(V[Tlhh x (Vhhh 

(V[Tl~xh ----> (V[Tdxh 

(V[Tl~xh + (V[T2~xh 
x(X) 

jlI.V[T]x[I / Xl 

All the operations on the right hand sides are operations on information systems. Again 
a recursive type expression jlX.T denotes, in an environment X, the ::::)-least fixed point 
of 

in the cpo of information systems. 
A closed type T has an information system of values 

for some arbitrary type environment X, which we will write as 

The corresponding cpo of values is IV.,. I· With respect to an environment for its free 
variables, a term will denote an element of the lifted cpo of values. This time, it turns 
out to be simpler to represent this cpo at type T as an information system, and define 

which we will write as 

V"'.L = (Tok"'.L,Con"'.L,I-.,..L). 

A term t of type T is to denote an element 

[t~p E IV.,..L I 
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with respect to an environment p: Var --> IVT.LI. We choose the following interpretation 
of ..L and the lifting function l- J : IV T I -> IVT.L I: the conditions required by the lifting 
construction on cpo's in Section 8.3.4 are met if we take 

..L = {0}, 

the singleton consisting of the empty set, and 

lxJ = Fin(x), 

consisting of all the finite subsets of x, for all x E V T • Lifting is associated with the 
operation f I-> f* extending a continuous function f : IAI --> IBI to f* : IA.l1 --> IBI when 
the elements IBI have a bottom element ..LB. Our choice of lifting construction leads to 
the following characterisation of f* and the closely-coupled let-notation. 

Proposition 13.22 Let A, B be information systems. Assume IBI has a bottom element 
..LB. Let f : IAI --> IBI be a continuous function. Its extension 

is given by 

r : IA.lI --> IBI 

f*(x) = {f(UX) 
..LB 

if xi- {0}, 
if x = {0}, 

for x E IA.lI. Consequently, 

(let v {= x. f(v)) = { feu x) 
..LB 

if xi- {0}, 
if x = {0} . 

Proof: The extension f* is defined to act on x E IA.lI so 

rex) = {f(V) if x = lvJ, 
..LB if x = {0}. 

However, x = lvJ is equivalent to x = Fin(v), which implies v = Ux. With the remark 
that the case where x = l v J, for some v, coincides with that where x i- {0}, we obtain 
the characterisation claimed in the proposition. Finally, note that, by definition, 

(let v {= x. f ( v)) = f* (x) . 

o 
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Remark: The extension of the function f* : IAt I --+ 181 of f : IAI --+ 181 will be 
used most often in situations where f is described as a set-theoretic operation for which 
f(0) = 0. In these situations f*(x) = f(Ux) U 1.B· 

In presenting the denotational semantics we shall again identify a sum of cpo's IAI + 181 
with IA + 81, and a product IAI x 181 with IA x 81, for information systems A and 8. 
The treatment of the the lazy-function-space type will use the following isomorphisms 
between elements of information systems and continuous functions: 

Proposition 13.23 Let A and 8 be information systems. Define 

by taking 

II-II :IA1- --+ 81-1 --+ [IA1-1 --+ 181-1], 
"-" :[lA1-1 --+ 181-1J--+ IA1- --+ 81-1, 

Ilrll = Ax E IA1-I· {Y I :3X ~ x. (X, Y) E r}, 

"!" = {(X, Y) I 0 i- X E ConA.L & Y E f(X)} U {(0, 0)}. 

Then II -II and "-" are mutual inverses, giving an isomorphism 

Proof: By Theorem 12.30, we have the mutual inverses 

given by: 

I-I : IA1- --+ 81-1 --+ [IA1-1 --+ 1811-], 
'-': [IA1-I--+ 1811-]--+ IA1- --+81-1, 

Irl = Ax E IA1-I· U {Y I :3X ~ x. (X, Y) E r}, 

'1' = {(X, Y) 10 i- X E ConA.L & Y ~fin f(X)} U {(0, 0)}. 

There is, in addition, an isomorphism between 1811- and 181-1 given by the mutual inverses 
Fin: 1811- --+ 181-1 and U: 181-1--+ 1811-· Thus defining lid = Fin 0 Irl and "1" =' Uol' 
yields an isomorphism pair "-", II-II between IA1- --+ 81-1 and [IA1-I--+ 181-1]. From the 
definition of 1- I, we see: 

Ilrll (x) =Fin( Irl (x)) 

=Fin(U {Y I :3X ~ x. (X, Y) E r}), 

={Y I :3X ~ x. (X, Y) E r}. 
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From the definition of ' - " we obtain: 

"f" ='Uof' 

={(X, Y) I 0 -# X E ConA.L & Y c;;.Jin U f(X)} U {(0, 0)} 

={(X, Y) I 0-# X E COnA.L & Y E f(X)} U {(0, 0)}. 

Stated precisely, the cpo of environments consists of 

p : Var -> U {IVT.L II T a closed type}, 

Chapter 13 

D 

such that p(x) E Ivtype(x).L I, ordered pointwise. The denotational semantics extends to 
recursive types that of Chapter 11 (Section 11.7). We accompany the semantic definitions 
by alternatives expressed using the information-system representation. 

Denotational semantics 

[.] =def 

[( h, t2)] =def 

[fst( t)] =def 

[snd(t)] =def 

[x] =def 

[.\x.t] =deJ 

.\p. {0} 

.\p. l([tl]p, [t2]p)J 

.\p. l[tl]P x [t2]p J 

.\p. let v {= [t]p. 7fl (v) 

.\p. (projl U[t]p) U {0} 

.\p. let v {= [t]p. 7f2(V) 

.\p. (projz U[t]p) U {0} 

.\p. p(x) 

.\p. l"(.\ d E IVtype(x)J [t]p[d/x])"J 

.\p. l {(U, V) I ° -# U E Contype(x).L & V E [t]p[U /x]} U 

(1) 

(2) 

(3) 

{(0,0)}J (4) 

[tl t2] =deJ .\p. let r {= [tl]P· IlrII([t2]p) 
.\p. {V I 3U c;;. [t2]p. (U, V) E U[tdp} U {0} (5) 

[inlet)] =def .\p. linl([t]p)J 
.\p. l injl [t]p J (6) 

[inr(t)] =deJ .\p. l in2([t]p)J 
.\p. linjz [t]pJ 
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[case t of inl(xt).t1 , inr(x2).t2] 

=def >..p. case [t]p of inl(dd·[tl]p[ddxlJI in2(d2)·[t2]P[d2/X2J. 

[abs(t)] =def [t] 

[rep(t)] =def [t] 

[rec x.t] =def >..p. j.Ld.[t]p[d/x] 

Explanation 

(1) The term. denotes the bottom and only element of 101.1, viz. {0}. 

(2) We identify the pair ([tl]p, [t2]p) with [tl]P x [t2]p. 
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(7) 

(3) The characterisation of the denotation [fst(t)]p depends on Proposition 13.22. 
From the proposition 

let v {= [t]p. 1l"l(V) = {1l"l(U[t]P) ~f [t]p i- {0}, 
{0} If [t]p = {0} 

= {proj l U[t]p if [t]p i- {0}, 
{0} if [t]p = {0} 

=(projl U[t]p) u {0} 

where the final step follows from the fact that proj10 = 0. 

(4) This equality follows by Proposition 13.23. 

(5) The characterisation of the let-construction in Proposition 13.22 yields 

let r {= [tl]p. Ilrll([t2]P) = {~~[tl]pll([t2]P) !~ [!~~~ ~ ~~~' 
= {{V 1 :lU ~ [t2]P' (U, V) E U[tl]P} if [tl]p i- {0}, 

{0} if [tl]p = {0} 

={V 1 :lU ~ [t2]P' (U, V) E U[tdp} u {0} 

because the first component gives 0 when [tl]P = {0}. 

(6) We identify injections inl(dt),in2(d2) of a sum with the image inj1d1 and inhd2' 

(7) The two halves of the isomorphism between information systems denoted by j.LX. r 
and T[j.LX.r/x], expressed by abs and rep are equalities. 
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Example: The lazy natural numbers 
The information system denoted by the lazy natural numbers 

nat == ,ux.(O + X) 

will be the :'9-least solution to 

Terms of type nat will denote elements of £..L where 

with cpo of elements 

We can picture its cpo of elements as: 

Indeed the cpo 1 £..LI has the form: 

rec x.Suee(x) 
Suec(··· Suee(Zero)·· .) • 

~~(SU«(n)) Suce(Zero) 

Zero Suce(n) 

Above, the denotations of various terms of type nat are indicated. We have written n 
for the term recx.x, with x: nat. The elements 

Zero, Succ(Zero), Succ(Succ(Zero)),··· 
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denote numbers while the maximal element, denoted by recx.Succ(x), can be thought 
of as the "infinite" number 

Succ(Succ(··· Succ·· .)). 

It is the least upper bound of the "partial" numbers: 

n, Succ(n), Succ(Succ(n)),··· 

In fact, all but the bottom element are denoted by canonical forms-the "infinite number" 
is the denotation of the canonical form Succ(recx.Succ(x)). The operation of addition 
on the lazy natural numbers can be defined as a term just as in the eager case. 0 

Exercise 13.24 Explain why it is not possible to define the cpo N 1. of lifted natural 
numbers as a cpo of values or denotations associated with a type of the lazy language. 
(Lazy languages generally take this type as primitive.) 0 

Example: Lazy lists 
Let a be some closed type expression-for example a could be the type of lazy natural 
numbers. The type of lazy lists over a is given by the type term 

L=ftY.(O+a*y). 

Assume A is the information system denoted by a. This type term denotes the ::=;I-Ieast 
information system satisfying: 

£ = 01. +A1. X £1.. 

Terms of type L will denote members of D = 1£1.1, the domain of lazy lists over IAIJ., 
where 

D ~ (1011. + IAIJ. x Dh· 
The lazy programming language provides the constant Nil as the canonical form 

Nil =de! abs(inl(e)) : L 

and the list constructor Cons as 

Cons =de! AX. abs(inr(x)) : a * L-> L, 

where X is a variable of type L. In the lazy language we can also define infinite lists. For 
example, the term 

rec l. Cons(a, l), 

defines an infinite list in which each component is a : a. o 

Exercise 13.25 Classify the different kinds of canonical forms of type lazy lists over a 
type a, indicating the form of their denotations. 0 
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13.9 Adequacy of lazy semantics 

Let t : T be a closed term. We say its evaluation converges with respect to the operational 
semantics iff it evaluates to some canonical form, i.e. 

t 1 iff ::lc. t -> c. 

As expected, we take t to converge if its denotation is not bottom in the cpo IVT.L I. 
Recalling that the bottom element of IVT.L 1 is {0}, this amounts to: 

t.J,i. iff U[t~p =1= 0 for an arbitrary environment p. 

It is straightforward to show that t 1 implies t .J,i., for typable, closed terms t. The 
appropriate lemmas are listed here: 

Lemma 13.26 If p and pi agree on the free variables of t, then [t~p = [t]p'. 

Proof: By structural induction on t. o 

Lemma 13.27 If c E C T then c .J,i.. 

Proof: By rule induction. 0 

Lemma 13.28 (Substitution Lemma) 
Let s be a closed term with s : a. Let x be a variable with x : a. Assume t : T. Then 
t[s/x] : T and [t[s/x]] = [tH[s]/x]. 

Proof: By structural induction on t. 0 

Lemma 13.29 If t -> c then [t~p = [dp for any closed term t, canonical form c and 
arbitrary environment p. 

Proof: By rule induction. o 

Showing the converse, that t .J,i. implies t L for typable, closed terms t, uses a logical 
relation ;ST between subsets of tokens VT and canonical forms CT. It is derivable from 
the relation C T constructed in the following lemma: 

Lemma 13.30 For each closed type T there exists a relation C T between tokens TokT 

and canonical forms C T with the following properties: 
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• (U, V) CTd>T2 AX.t iff (U U .:5T1 s:::} V .:5T2 t[s/x] for any closed s : Td 
• (1, a) CTI +T2 inl(t) iff a .:5Tl t 
• (2, b) CTI+T2 inr(t) iff b .:5T2 t 

• a CJ1.X.T abs(c) iff a CT[J1.X.T!X] c 

where we write 

iff 
Vb E U3c E CT. (b CT c & t -> c), 

for U a subset of tokens of V T and t a closed term. 

Proof: The relation exists by well-founded recursion on the size of tokens and the struc
ture of canonical forms ordered lexicographically. D 

Lemma 13.31 For U E CanT -L and t : T a closed term 

u U .:5T t :::} U U .:5T t. 

Proof: The lemma follows from 

U U .:5T C & U I-T -L a :::} a .:5T c 

for U E ConT -L' a E TokT -L and c E CT. This is shown by well-founded induction on 
size(U U {a}), and the structure of c ordered lexicographically. The proof proceeds 
according to the form of T. D 

Lemma 13.32 For each typable, closed term t, ift J). then t 1. 

Proof: The proof proceeds by structural induction on terms to show that for all terms 
t : T with free variables among Zl : 0"1, ... , Zk : O"k that if U d1 .:50"1 Sl,···, U dk .:5O"k Sk 

for di E \VeT i 1.1 and Si closed terms then 

The case where t is an abstraction makes recourse to Lemma 13.31. 
Taking t closed, it then follows from the definition of .:5T that if t J)., i.e., U[t]p =1= 0, 

then t -> c for some canonical form c. D 



290 Chapter 13 

13.10 The lazy .A.-calculus 

In the lazy language we can define the recursive type 

A == pX.(X -> X). 

This type denotes the ::9 -least information system £ such that 

an information system equal to its own lazy function space. This implies that the deno
tations of terms at type A lie in the cpo D = 1 £ 1- I, satisfying 

Just as in the eager case, the type A has terms which form a .A.-calculus: 

t ::= X 1 h·t2 1 AX.t 

where x ranges over variables of type A, where again we use the abbreviations 

tl·t2 == ((rep(td t2) 

AX.t == abs(.A.x.t). 

We inherit an operational and denotational semantics from the full language. The only 
canonical forms amongst them are those terms which are closed abstractions AX.t. From 
the operational semantics we derive the rules: 

AX.t -; AX.t 
h --> Ax.ti ti [t21 xl -; c 

(h .t2) --> c 

The two rules are sufficient to derive any instance of the evaluation relation t --> c where 
t is a closed term of the .A.-calculus. Because of the way applications are evaluated, the 
terms under such evaluation form a lazy .A.-calculus. 

By restricting the denotational semantics to terms of the .A.-calculus we obtain: 

[x]p= p(x) 

[tl·t2]p = [tl]P· [t2]p 

where the application cp.d of cp E 1£1-1 to dE 1£1-1 is defined by 

cp.d =def {V 13 U ~ d. (U, V) E U cp} u {0}, 

[AX.t]p = l{(U, V) 1 0 -I U E ConA.L & V E [t]p [U Ix]} u {(0, 0)} J 
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As far as the lazy .\-calculus is concerned, the only relevant part of an environment p is 
how it takes variables x: A to elements 1£1-1. 
13.10.1 Equational theory 

We regard two terms of the lazy .\-calculus as equivalent iff they have the same denotation, 
i.e. for tl, t2 of the same type, define 

We can define 

We list rules which hold of two relations = and!. They differ from those in the eager .\
calculus in that variables do not converge (because they need not in the lazy case denote 
only values) and (/3) conversion holds irrespective of convergence of the argument. 
Equality rules: 

(reft) -
t = t 

provided no free variables of tl and t2 become bound by the substitutions into t. 

Convergence rule: 

Conversion rules: 

(0:) 
>"x.t = >..y.(t[y/x]) 

provided y does not occur (free or bound) in t. 

(13) 
(>..x.t)u = t[u/x] 

provided no free variable of u becomes bound in t. 

tl provided x is not a free variable of t. 
t = >..x.(t.x) 
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Exercise 13.33 Prove the soundness of the rules from the denotational semantics. 0 

Exercise 13.34 Show the soundness of the "strictness" rule: 

t.u! 
tf· 

o 

Exercise 13.35 Propose rules for = and! for the full lazy language. o 

13.10.2 A fixed-point operator 

The lazy A-calculus has a simpler fixed-point operator than that for the eager calculus-it 
is no longer necessary to protect arguments from evaluation with an abstraction. Define 

Y == >..f.(>..x.f.(x.x)).(>..x.f.(x.x)). 

By equational reasoning, we see that 

Y.f = (>..x.f.(x.x)).(>..x.J.(x.x)) by ((3), (1) 

= f.((>..x.f.(x.x)).(>..x.f.(x.x))) by ((3), 

= f.(Y.f) by (eq1) using (1). 

To understand the denotation of Y we introduce a function down : I.e J.I --> I.e I, defined 
using the bottom element of l.el. Because 

and, by convention, 

the bottom element of .e is 

Define down: 1.eJ.I--> l.el by taking 

down( d) = (U d) U -L,£,. 
Lemma 13.36 Let <p, dE 1.eJ.I. Then 

<p.d = IIdown(<p)IICd). 
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Proof: Let cp, d E 1£1.1. By the definition of II-II, we obtain 

Ildown(cp)ll(d) = {V I ::lU ~ d. (U, V) E down(cp)}. 

By definition, down(cp) = (Ucp) U {(U,0) I U E ConA-t.}. Hence 

Ildown(cp)ll(d) = {V I ::lU ~ d. (U, V) E Ucp} U {0} = cp.d. 0 

Now, by Lemma 13.36, from the fact that Y.J = j.(Y.f), we obtain 

[Y.j]p = p(J).[Y.j]p = Ildown(p(J))II([Y.j]p). 

Thus [Y.J]p is a fixed point of the function Ildown(p(J)) II : 1£1.1-+ 1£1.1. Hence 

jix(lldown(p(J))ID ~ [Y.j]p. 

As we will now show, the converse inclusion holds too, yielding equality. 

Theorem 13.37 Let 
Y =' Aj.(AX.f.(X.X)).(AX.f.(X.X)). 

Then, Jor an arbitrary environment p 

[y.j]p = Jix(lldown(p(J))II)· 

Proof: The proof of the required converse inclusion is very similar to that of Theo
rem 13.19, and we will adopt similar abbreviations. A particular environment p will be 
assumed throughout the proof. We write FixJ for Jix(lldown(p(J))II). With respect to 
p we will identify a term with its denotation, writing 

bEt for b E [t]p, 

and even 
bE Ut for b E U[t]p. 

Before embarking on the proof, we note that FixJ can be characterised as the least 
dE 1£1.1 such that d = p(J).d, i.e. 

d = {V I ::lU ~ d. (U, V) E U J} u {0}. 

The (13) rule yields 
y.! = (AX.f.(X.X)).(AX.f.(X.X)). 

So, we see 
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V E Y.f {::} V E (AX.f.(X.X)).(AX.f.(X.X)) 

{::} V = 0 or 3U <;;; (AX.f.(X.X)). (U, V) E U(AX.f.(X.X)). 

If V = 0 it is clear that V E Fixf so it is sufficient to show that for all U E ConA.L' the 
property P(U) holds, where 

P(U) {==} de! 

VV.[U <;;; (AX.f.(X.X)) & (U, V) E U(Ax.f.(x.x))] =? V E Fixf. 

This is proved by induction on the size of U. 
Let U E COnA.L. Suppose the induction hypothesis P(U') holds for all U' E ConA.L for 

which size(U') < size(U). Assume 

U <;;; (AX.f.(X.X)) & (U, V) E U(AX.f.(x.x)). 

If V = 0 it is clear that V E Fixf. Suppose otherwise, that V =I- 0. Because (U, V) is a 
token, it follows that U =I- 0. Under this supposition, we argue 

(U, V) E U(AX.f.(x.x)) {::} V E [f.(x.x)]p[U Ix] 

from the denotational semantics of 13.10, 

{::} V E p(f).(U.U) again from the semantics, 

{::} 3W <;;; (U.U). (W, V) E U f. 
Thus from the assumption that (U, V) E U(AX.f.(X.X)) we have deduced the existence 

of W E ConA.L such that 

(W, V) E Uf and VC E W. C E (U.U). 

We show that consequently W <;;; Fixf, from which it follows that V E Fixf. 
With the aim of showing W <;;; Fixf, let C E W. If C = 0 then clearly C E Fixf. So, 

suppose otherwise, that C =I- 0. Directly from the fact that C E (U.U) we see 

3Z <;;; U. (Z,C) E UU. 

But 
(Z,C) E Uu {::} Uu I-A (Z,C) 

-an instance of a general property of the lifting construction on information systems 
(el Exercise 12.22). Hence 

3Z. U I-L Z & Uu I-A (Z,C) 
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and thus 
U U f-A (U, C). 

Recall A denotes .c = .c1. -> .cJ., a lifted function space of information systems. By the 
definition of its entailment relation: 

U{Y I :3Z. U f-L Z & (Z, Y) E U U}f-A C. 

Consider arbitrary Z, Y for which 

U f-A.L Z & (Z, Y) E U U. 

Then size(Z) < size(U), and hence P(Z) by the induction hypothesis. By assumption 

U ~ (>..x.f.(x.x)). 

Thus 
Z ~ (>..x.f.(x.x)), 

as the denotation of (>..x.f.(x.x)) is closed under entailment, and also 

(Z, Y) E U(>"x.f.(x.x)). 

By P(Z) we obtain Y E Fixf. Thus as Z, Y were arbitrary 

Fixf;> {Y I :3Z. U f-A.L Z & (Z, Y) E U U} f-A.L C. 

Hence C E Fixf, because Fixf is closed under entailment. But C was an arbitrary 
member of W, so we deduce W ~ Fixf. 

From the characterisation of Fixf, we now finally get V E Fixf. This concludes the 
proof by induction on the size of U. 0 

13.11 Further reading 

The books [101] by Wikstrom on the eager language of Standard ML and [22] by Bird 
and Wadler on a lazy functional language, give clear, elementary explanations of the 
uses of recursive types. The technique used in proving adequacy follows closely that 
in Gordon Plotkin's lecture notes-similar methods of proof have been used by Per 
Martin-Lof in his domain interpretation of type theory (1983), and by Samson Abramsky 
[1]. The same method of proof also works to prove adequacy for an extension of the 
language to include polymorphic types as in the student project [17J. Plotkin was early 
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to study different modes of evaluating the 'x-calculus in [77]. The rules of for the eager 
'x-calculus in Section 13.5.1 are essentially those of Eugenio Moggi's 'xp-calculus [66]. 
The lazy 'x-calculus is studied by Abramsky in [1] and the rules of the lazy 'x-calculus 
in Section 13.10.1 correspond to Chih-Hao Ong's rules in [71]. Lazy 'x-calculus is also 
treated in [87], which contains another proof of Theorem 13.37. A recent advance on the 
methods for proving properties of recursive domains is described in Andrew Pitts' article 
[76]. The classic book on the classical 'x-calculus is Barendregt's [14]. See also Hindley 
and Seldin's [45]. See Gordon's book [42] for an elementary exposition of the 'x-calculus. 



14 N ondeterminism and parallelism 

This chapter is an introduction to nondeterministic and parallel (or concurrent) pr<r 
grams and systems, their semantics and logic. Starting with communication via shared 
variables it leads through Dijkstra's language of guarded commands to a language closely 
related to Occam and Hoare's CSP, and thence to Milner's CCS. In the latter languages 
communication is solely through the synchronised exchange of values. A specification 
language consisting of a simple modal logic with recursion is motivated. An algorithm is 
derived for checking whether or not a finite-state process satisfies a specification. This 
begins a study of tools for the verification of parallel systems of the kind supported by the 
Edinburgh-Sussex Concurrency Workbench and the Aalborg TAV system. The chapter 
concludes with an indication of other approaches and some current research issues in the 
semantics and logic of parallel processes. 

14.1 Introduction 

A simple way to introduce some basic issues in parallel programming languages is to 
extend the simple imperative language IMP of Chapter 2 by an operation of parallel 
composition. For commands co, C1 their parallel composition Co II C1 executes like Co and 
C1 together, with no particular preference being given to either one. What happens, if, 
for instance, both Co and C1 are in a position to assign to the same variable? One (and 
by that it is meant either one) will carry out its assignment, possibly followed by the 
other. It's plain that the assignment carried out by one can affect the state acted on 
later by the other. This means we cannot hope to accurately model the execution of 
commands in parallel using a relation between command configurations and final states. 
We must instead use a relation representing single uninterruptible steps in the execution 
relation and so allow for one command affecting the state of another with which it is set 
in parallel. 

Earlier, in Chapter 2, we saw there was a choice as to what is regarded as a single 
uninterruptible step. This is determined by the rules written down for the execution 
of commands and, in turn, on the evaluation of expressions. But assuming these have 
been done we can explain the execution of the parallel composition of commands by their 
rules: 

(co, a) ----1 (Co, at) 

Look at the first two rules. They show how a single step in the execution of a command 



298 Chapter 14 

Co gives rise to a single step in the execution of Co II cl-these are two rules corresponding 
to the single step in the execution of Co completing the execution of Co or not. There are 
symmetric rules for the right-hand-side component of a parallel composition. If the two 
component commands Co and Cl of a parallel composition have locations in common they 
are likely to influence each others execution. They can be thought of as communicating 
by shared locations. Our parallel composition gives an example of what is often called 
communication by shared variables. 

The symmetry in the rules for parallel composition introduces an unpredictability 
into the behaviour of commands. Consider for example the execution of the program 
(X := 0 II X := 1) from the initial state. This will terminate but with what value at X? 
More generally a program of the form 

(X := 0 II X := 1); if X = 0 then Co else Cl 

will execute either as Co or Cl, and we don't know which. 
This unpredictability is called nondeterminism. The programs we have used to illus

trate nondeterminism are artificial, perhaps giving the impression that it can be avoided. 
However it is a fact of life. People and computer systems do work in parallel leading 
to examples of nondeterministic behaviour, not so far removed from the silly programs 
we've just seen. We note that an understanding of parallelism requires an understanding 
of nondeterminism. 

14.2 Guarded commands 

Paradoxically a disciplined use of nondeterminism can lead to a more straightforward 
presentation of algorithms. This is because the achievement of a goal may not depend on 
which of several tasks is performed. In everyday life we might instruct someone to either 
do this or that and not care which. Dijkstra's language of guarded commands uses a 
nondeterministic construction to help free the programmer from overspecifying a method 
of solution. Dijkstra's language has arithmetic and boolean expressions a E Aexp and 
b E Bexp which we can take to be the same as those for IMP as well as two new 
syntactic sets that of commands (ranged over by c) and guarded commands (ranged over 
by gc). Their abstract syntax is given by these rules: 

c ::= skip I abort I X:= a I CO;Cl I if gc fi I do gc od 

gc ::= b ---+ C I gcO~gCl 
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The constructor used to form guarded commands gco ~gCl is called alternative (or "fat
bar"). The guarded command typically has the form 

In this context the boolean expressions are called guards - the execution of the command 
body Ci depends on the corresponding guard bi evaluating to true. If no guard evalu
ates to true at a state the guarded command is said to fail, in which case the guarded 
command does not yield a final state. Otherwise the guarded command executes nonde
terministically as one of the commands Ci whose associated guard bi evaluates to true. 
We have already met skip, assignment and sequential composition in our treatment of 
IMP. The new command abort does not yield a final state from any initial state. The 
command if ge fi executes as the guarded command gc, if gc does not fail, and otherwise 
acts like abort. The command do gc od executes repeatedly as the guarded command 
ge, while ge continues not to fail, and terminates when gc fails; it acts like skip if the 
guarded command fails initially. 

We now capture these informal explanations in rules for the execution of commands 
and guarded commands. We inherit the evaluation relations for Aexp and Bexp from 
IMP in Chapter 2. With an eye to the future section on an extension of the language 
to handle parallelism we describe one step in the execution of commands and guarded 
commands. A command configuration has the form (c, a) or a for commands c and states 
a. 

Initial configurations for guarded commands are pairs (gc, a), for guarded commands 
gc and states a, as is to be expected, but one step in their execution can lead to a 
command configuration or to a new kind of configuration called fail. Here are the rules 
for execution: 

Rules for commands: 

(skip, a) ~ a 

(a, a) ~ n 

(X := a, a) ~ a[n/ Xl 

(co, a) ~ a' (co, a) ~ (co, a') 
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(ge, a) -> (e, a') 

(if ge fl, a) -> (e, a') 

(ge, a) -> fail 
( do ge od, a) --f a 

Rules for guarded commands: 

(b, a) -> true 

(b -> e, a) -> (e, a) 

(gCQ, a) -> (e, a') 

(b, a) -> false 
(b -> e, a) --f fail 

(ge, a) -> (e,a') 

( do ge od, a) -> (e; do ge od, a') 

(gel, a) -> (e, a') 

(gCQ, a) --f fail (gCl' a) -> fail 

(gCQ~gel' a) ----> fail 

Chapter 14 

The rule for alternatives geo ~gel introduces nondeterminism-such a guarded command 
can execute like geo or like gel. Notice the absence of rules for abort and for commands 
if ge fi in the case where the guarded command ge fails. In such situations the com
mands do not execute to produce a final state. Another possibility, not straying too far 
from Dijkstra's intentions in [36], would be to introduce a new command configuration 
abortion to make this improper termination explicit. 1 

As an example, here is a command which assigns the maximum value of two locations 
X and Y to a location MAX: 

if 

X :,?: Y -> MAX := X 

Y :,?: X -> MAX := Y 

fi 

IThe reader may find one thing curious. As the syntax stands there is an unnecessary generality 
in the rules. From the rules for guarded commands it can be seen that in transitions (ge, tJ) --+ (e, d) 
which can be derived the state is unchanged, i. e. tJ = tJ'. And thus in all rules whose premises are a 
transition (ge, tJ) --+ (c, tJ') we could replace tJ' by tJ. Of course we lose nothing by this generality, but 
more importantly, the extra generality will be needed when later we extend the set of guards to allow 
them to have side effects. 
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The symmetry between X and Y would be lost in a more traditional IMP program. 
Euclid's algorithm for the greatest common divisor of two numbers is particularly 

striking in the language of guarded commands: 

do 

X > Y --> X := X - Y 

Y > X --> Y := Y - X 

od 

Compare this with its more clumsy program in IMP in Section 3.3, a clumsiness which 
is due to the asymmetry between the two branches of a conditional. See Dijkstra's book 
[36] for more examples of programs in his language of guarded commands. 

Exercise 14.1 Give an operational semantics for the language of guarded commands 
but where the rules determine transitions of the form (c, a") --> (7' and (ge, (7) --> (7' 

between configurations and final states. 0 

Exercise 14.2 Explain why this program terminates: 

do (21X --> X := (3 x X)/2)~(3IX --> X := (5 x X)/3) od 

where e.g. 31X means 3 divides X, and (5 x X)/3 means 5 x X divided by 3. 0 

Exercise 14.3 A partial correctness assertion {A}e{B}, where e is a command or 
guarded command and A and B are assertions about states, is said to be valid if for 
any state at which A is true the execution of e, if it terminates, does so in a final state 
at which B is true. Write down sound proof rules for the partial correctness assertions 
of Dijktra's language. In what sense do you expect the proof rules to be complete? As a 
test of their completeness, try to use them to prove the partial correctness of Euclid's al
gorithm, (cf. Exercise 6.16). How would you prove its termination under the assumption 
that initially the locations hold positive numbers? [' 

Exercise 14.4 Let the syntax of regular commands c be given as follows: 

e := skip I X := e I b? I e; e I c + e I e* 

where X ranges over a set of locations, e is an integer expression and b is a boolean 
expression. States (7 are taken to be functions from the set of locations to integers. It is 
assumed that the meaning of integer and boolean expressions are specified by semantic 
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functions so I[e]a is the integer which integer expression e evaluates to in state a and 
B[b]a is the boolean value given by b in state a. The meaning of a regular command c 
is given by a relation of the form 

(c,a) -+ a' 

which expresses that the execution of c in state a can lead to final state a'. The relation 
is determined by the following rules: 

(skip, a) -+ a 

B[b]a = true 
(b?, a) -+ a 

(eo, a) -+ a' 

I[e]a = n 

(X := e, a) -+ a[n/ Xl 

(eo, a) -+ a" (CI, a") -+ a' 

(eo; CI, a) -+ a' 

(eo + Cl, a) -+ a' 

(C*, a) -+ a 
(c, a) -+ a" (c*, a") -+ a' 

(c*, a) -+ a' 

(i) Write down a regular command which has the same effect as the while loop 

while b do c, 

where b is a boolean expression and c is a regular command. Your command C should 
have the same effect as the while loop in the sense that 

(C, a) -+ a' iff (while b do c, a) -+ a'. 

(This assumes the obvious rules for while loops.) 
(ii) For two regular commands Co and Cl write eo = Cl when (co, a) --> a' iff (Cl' a) -+ a' 
for all states a and a'. Prove from the rules that 

C* = skip + c; c* 

for any regular command c. 
(iii) Write down a denotational semantics of regular commands; the denotation of a 
regular command C should equal the relation 

{(a,a')I(c,a) -+ a'}. 
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Describe briefly the strategy you would use to prove that this is indeed true of your 
semantics. 
(iv) Suggest proof rules for partial correctness 
form b?, Co + Cl and c*. 

14.3 Communicating processes 

assertions of regular commands of the 
o 

In the latter half of the seventies Hoare and Milner independently suggested the same 
novel communication primitive. It was clear that systems of processors, each with its 
own store, would become increasingly important. A communication primitive was sought 
which was independent of the medium used to communicate, the idea being that the 
medium, whether it be shared locations or something else, could itself be modelled as a 
process. Hoare and Milner settled on atomic actions of synchronisation, with the possible 
exchange of values, as the central primitive of communication. 

Their formulations are slightly different. Here we will assume that a process commu
nicates with other processes via channels. We will allow channels to be hidden so that 
communication along a particular channel can be made local to two or more processes. 
A process may be prepared to input or output at a channel. However it can only suc
ceed in doing so if there is a companion process in its environment which performs the 
complementary action of output or input. There is no automatic buffering; an input or 
output communication is delayed until the other process is ready with the corresponding 
output or input. When successful the value output is then copied from the outputting 
to the inputting process. 

We now present the syntax of a language of communicating processes. In addition to 
a set of locations X E Loc, boolean expressions b E Bexp and arithmetic expressions 
a E Aexp, we assume: 

Channel names 
Input expressions 

0'.,/3, {, ... E Chan 
a? X where X E Loc 

Output expressions ala where a E Aexp 

Commands: 
C .. - skip I abort I X := a I a? X I ala I Co; Cl I if gc fi I do gc od I Co II Cl I c \ a 

Guarded commands: 
gc .. - b ----> C I b A a? X ----> C I b A ala ----> C I gCdgCl 

Not all commands and guarded commands are well-formed. A parallel composition 
Co II Cl is only well-formed in case the commands Co and Cl do not contain a common 
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location. In general a command is well-formed if all its subcommands of the form coil Cl 
are well-formed. A restriction c \ a hides the channel a, so that only communications 
internal to c can occur on it. 

How are we to formalise the intended behaviour of this language of communicating 
processes? As earlier, states will be functions from locations to the values they contain, 
and a command configuration will have the form (c, a) or a for a command c and state 
a. We will try to formalise the idea of one step in the execution. Consider a particular 
command configuration of the form 

(a?X;c,a). 

This represents a command which is first prepared to receive a synchronised communica
tion of a value for X along the channel a. Whether it does or not is, of course, contingent 
on whether or not the command is in parallel with another prepared to do a comple
mentary action of outputting a value to the channel a. Its semantics should express this 
contingency on the environment. This we do in a way familiar from automata theory. 
We label the transitions. For the set of labels we take 

{a?n I a E Chan & n E N} U {a!n I a E Chan & n E N} 

Now, in particular, we expect our semantics to yield the labelled transition 

(a?X;co,a) ~ (co,a[njX]). 

This expresses the fact that the command a? X; Co can receive a value n at the channel a 
and store it in location X, and so modify the state. The labels of the form a!n represent 
the ability to output a value n at channel a. We expect the transition 

provided (e, a) --t n. Once we have these we would expect a possibility of communication 
when the two commands are set in parallel: 

((a?X;co) II (a!e;cd,a) --t (co II cl,a[njX]) 

This time we don't label the transition because the communication capability of the two 
commands has been used up through an internal communication, with no contingency on 
the environment. We expect other transitions too. Afterall, there may be other processes 
in the environment prepared to send and receive values via the channel a. So as to not 
exclude those possibilities we had better also include transitions 
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and 
",In 

((a?X;eo) II (a!e;ed,a-) ---.:...., ((a?X;co) II cl,o-[n/X]). 

The former captures the possibility that the first component receives a value from the 
environment and not from the second component. In the latter the second component 
sends a value received by the environment, not by the first component. 

Now we present the full semantics systematically using rules. We assume that arith
metic and boolean expressions have the same form as earlier from IMP and inherit the 
evaluation rules from there. 

Guarded commands will be treated in a similar way to before, but allowing for com
munication in the guards. As earlier guarded commands can sometimes fail at a state. 

To control the number of rules we shall adopt some conventions. To treat both labelled 
and unlabelled transitions in a uniform manner we shall use ,\ to range over labels like 
a?n and a!n as well as the empty label. The other convention aims to treat both kinds 
of command configurations (e,o-) and 0- in the same way. We regard the configuration a 
as configuration (*,0-) where * is thought of as the empty command. As such * satisfies 
the laws 

*; e == c; * == * II c == c II * == c and *; * == * II * == (* \ a) = * 

which express, for instance, that * II e stands for the piece of syntax e. 
Rules for commands 

(skip, 0-) -+ 0-
(a, 0-) -+ n 

(X := a, 0-) -+ a[n/ Xl 

",?n 
(a? X, 0-) --:.. o-[n/ Xl 

(a,o-) -+ n 

( ' ) ",!n a.a,o- -+ 0-

(eo, 0-) ~ (co, 0-') 

oX (ge,o-) -+ (C,o-') 

(if gc fi, 0-) ~ (c,o-') 
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>. (gc, u) -t (c, u') (gc, u) -t fail 
>. ( do gc od, u) -t (c; do gc od, u') ( do gc od, u) -t U 

(Cl' u) ~ (c~, u') 

(e,u) -7 (c',u') provided neither A == a?n nor A == a!n 
(c \ a, u) -t (c' \ a, u') 

Rules for guarded commands 

(b, u) -t true 

(b -t e, u) -t (c, u) 

(b, u) -t false 

(b, u) -t false 

(b -t c, u) -t fail 

(b, u) -t false 

(b /\ a? X -t C, u) -t fail (b /\ a!a -t c, u) -t fail 

(geo, u) -t fail (gel, u) -t fail 

(gCo~gcl' u) -t fail 

(b, u) -t true (b, u) -t true (a, u) -t n 
",?n 

(b /\ a? X -t C, u) ...:.., (c, u[n/ Xl) 
",In 

(b /\ a!a -t c, u) ...:.., (c, u) 

(gcO, u) ~ (c, u') 
>. 

(gCo~gCl' u) -t (c, u') 

(gCl, u) ~ (c, u') 

(geo ~gcl' u) ~ (c, u') 

Chapter 14 
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Example: The following illustrate various features of the language and the processes it 
can describe (several more can be found in Hoare's paper [49]): 
A process which repeatedly receives a value from the a channel and transmits it on 
channel/3: 

do (true 1\ a?X ---+ /3!X) od 

A buffer with capacity 2 receiving on a and transmitting on T 

( do (true 1\ a?X ---+ /3!X) od II do (true 1\ /3?Y ---+ flY) od) \ /3 

Notice the use of restriction to make the /3 channel hidden so that all communications 
along it have to be internal. 

One use of the alternative construction is to allow a process to "listen" to two channels 
simultaneously and read from one should a process in the environment wish to output 
there; in the case where it can receive values at either channel a nondeterministic choice 
is made between them: 

if (true 1\ a?X ---+ co)~(true 1\ /3?Y ---+ cd fi 

Imagine this process in an environment offering values at the channels. Then it will not 
deadlock (i.e., reach a state of improper termination) if neither Co nor Cl can. On the 
other hand, the following process can deadlock: 

if (true ---+ (a? X; co)) ~ (true ---+ (/3?Y; Cl)) fi 

It autonomously chooses between being prepared to receive at the a or /3 channel. If, for 
example, it elects the right-hand branch and its environment is only able to output on 
the a channel there is deadlock. Deadlock can however arise in more subtle ways. The 
point of Dijkstra's example of the so-called "dining philosophers" is that deadlock can 
be caused by a complicated chain of circumstances often difficult to forsee (see e.g. [49]). 

o 

The programming language we have just considered is closely related to Occam, the 
programming language of the transputer. It does not include all the features of Occam 
however, and for instance does not include the prialt operator which behaves like the 
alternative construction ~ except for giving priority to the execution of the guarded 
command on the left. On the other hand, it also allows outputs a!e in guards not 
allowed in Occam for efficiency reasons. Our language is also but a step away from 
Hoare's language of Communicating Sequential Processes (CSP) [49]. Essentially the 
only difference is that in CSP process names are used in place of names for channels; in 
CSP, P? X is an instruction to receive a value from process P and put it in location X, 
while P!5 means output value 5 to process P. 
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14.4 Milner's CCS 

Robin Milner's work on a Calculus of Communicating Systems (CCS) has had an impact 
on the foundations of the study of parallelism. It is almost true that the language for his 
calculus, generally called CCS, can be derived by removing the imperative features from 
the language of the last section, the use of parameterised processes obviating the use of 
states. In fact, locations can be represented themselves as CCS processes. 

A CCS process communicates with its environment via channels connected to its poris, 
in the same manner as we have seen. A process p which is prepared to input at the 0: 

and /3 channels and output at the channels 0: and 1 can be visualised as 

P?07! 
o:! 

with its ports labelled appropriately. The parallel composition of p with a process q, a 
process able to input at 0: and output at /3 and 6 can itself be thought of as a process 
p II q with ports 0:?,0:!,/3?,/3!,I!,6!. 

The operation of restriction hides a specified set of ports. For example restricting 
away the ports specified by the set of labels {o:, I} from the process p results in a process 
p\ {o:, I} only capable of performing inputs from the channel /3; it looks like: 

Often it is useful to generate several copies of the same process but for a renaming of 
channels. A relabelling function is a function on channel names. After relabelling by the 
function J with J(o:) = I, J(/3) = 6 and Jb) = 1 the process p becomes p[J] with this 

interface with its environment: 0 
6? . I! 

In addition to communications o:?n,o:!n at channels 0: we have an extra action T 

which can do the duty of the earlier skip, as well as standing for actions of internal 
communication. Because we remove general assignments we will not need the states (J" 

of earlier and can use variables x, y, ... in place of locations. To name processes we have 
process identifiers P, Q, ... in our syntax, in particular so we can define their behaviour 
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recursively. Assume a syntax for arithmetic expressions a and boolean expressions b, 
with variables instead of locations. The syntax of processes P, Po, PI,·' . is: 

P .. - nil I 
(T-'>p) I (a!a-'>p) I (a?x-'>p) I (b-'>p) 

Po + PI I Po II PI I 
p\L I p[J] I 
P(al,"',ak) 

where a and b range over arithmetic and boolean expressions respectively, x is a variable 
over values, L is a subset of channel names, f is a relabelling function, and P stands for 
a process with parameters aI, ... , ak-we write simply P when the list of parameters is 
empty. 

Formally at least, a?x -'> P is like a lambda abstraction on x, and any occurrences of 
the variable x in P will be bound by the a?x provided they are not present in subterms 
of the form f3?x -'> q. Variables which are not so bound will be said to be free. Process 
identifiers P are associated with definitions, written as 

where all the free variables of P appear in the list x I, ... ,Xk of distinct variables. The 
behaviour of a process will be defined with respect to such definitions for all the process 
identifiers it contains. Notice that definitions can be recursive in that P may mention P. 
Indeed there can be simultaneous recursive definitions, for example if 

( ) def 
P XI,"',Xk = P 

( ) def 
Q YI,'" ,Yl = q 

where P and q mention both P and Q. 
In giving the operational semantics we shall only specify the transitions associated with 

processes which have no free variables. By making this assumption, we can dispense 
with the use of environments for variables in the operational semantics, and describe 
the evaluation of expressions without variables by relations a -'> nand b -'> t. Beyond 
this, the operational semantics contains few surprises. We use >. to range over actions 
a?n, a!n, and T. 

nil process: has no rules. 



310 Chapter 14 

Guarded processes: 

a->n 
orin 

(o:!a -> p) ~ P 
or?n 

(o:?x -> p) ~ p[n/x] 

..\ b -> true P -----> pi 
..\ (b -> p) -----> pi 

(By p[n/x] we mean P with n substituted for the variable x. A more general substitution 
p[al/xI,···, ak/xk]' stands for a process term P in which arithmetic expressions ai have 
replaced variables xd 
Sum: 

Composition: 

Restriction: 

..\ I 
Po -----> Po 

..\ I 
Po + PI -----> Po 

..\ I 
Po -> Po 

Po II PI ~ Po II PI 

..\ I 
PI -> PI 

Po II PI ~ Po II pi 

..\ I 
PI -----> PI 

..\ I 
Po + PI -----> PI 

a?n I adn, 
Po -----> Po PI -----> PI 

Po II PI ~ Po II pi 

a:!n I o:?n I 
Po -----> Po PI -----> PI 

Po II PI ~ Po II pi 

..\ 
P -----> p' 

..\ ' p\L -----> p'\L 

where if A == o:?n or A == o:!n then 0: 1- L 
Relabelling: 

Identifiers: 

..\ 
P -----> p' 

p[J] ~pl[J] 

p[al/xI,···,ak/xk] ~pl 
P(al,···,ak) ~pl 
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( ) def 
where P Xl,"',Xk = p. 

We expand on our claim that it is sufficient to consider processes without free variables 
and so dispense with environments in the operational semantics. Consider the process 

(a?x ---t (a!x ---t nil)). 

It receives a value n and outputs it at the channel a, as can be derived from the rules. 
From the rules we obtain directly that 

(a?x ---t (a!x ---t nil)) ~ (a!x ---t nil) [n/x] 

which is 
(a?x ---t (a!x ---t nil)) ~ (a!n ---t nil). 

Then 
I 

(a!n ---t nil) ~ nil. 

As can be seen here, when it comes to deriving the transitions of the subprocesses 
(a!x ---t nil) the free variable x has previously been bound to a particular number n. 

14.5 Pure CCS 

Underlying Milner's work is a more basic calculus, which we will call pure CCS. Roughly 
it comes about by eliminating variables from CCS. 

We have assumed that the values communicated during synchronisations are numbers. 
We could, of course, instead have chosen expressions which denote values of some other 
type. But for the need to modify expressions, the development would have been the 
same. Suppose, for the moment, that the values lie in a finite set 

V={vl, ... ,vd· 

Extend CCS to allow input actions a?n where a is a channel and v E V. A process 

(a?n ---t p) 

first inputs the specific value v from channel a and then proceeds as process Pi its 
behaviour can be described by the rule: 

a?n 
(a?n ---t p) -.:....... p 
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It is not hard to see that under these assumptions the transitions of a?x --t P are the 
same as those of 

The two processes behave in the same way. In this fashion we can eliminate variables 
from process terms. Numbers however form an infinite set and when the set of values 
is infinite, we cannot replace a term a?x --t P by a finite summation. However, this 
problem is quickly remedied by introducing arbitrary sums into the syntax of processes. 
For a set of process terms {Pi liE I} indexed by a set I, assume we can form a term 

LPi. 
iEI 

Then even when the values lie in the infinite set of numbers we can write 

L (a?m --t p[m/x]) 

mEN 

instead of (a?x --t p). 

With the presence of variables x, there has existed a distinction between input and 
output of values. Once we eliminate variables the distinction is purely formal; input 
actions are written a?n as compared with a!n for output actions. Indeed in pure CCS 
the role of values can be subsumed under that of port names. It will be, for example, 
as if input of value v at port a described by a?n is regarded as a pure synchronisation, 
without the exchange of any value, at a "port" a?n. 

In pure CCS actions can carry three kinds of name. There are actions f (corresponding 
to actions a?n or a!n), complementary actions l (corresponding to a?n being comple
mentary to a!n, and vice versa) and internal actions T. With our understanding of 

complementary actions it is natural to take f to be the same as f, which highlights the 
symmetry we will now have between input and output. 

In the syntax of pure CCS we let>. range over actions of the form f, land T where f 
belongs to a given set of action labels. Terms for processes P,PO,PllPi,'" of pure CCS 
take this form: 

P ::= nil I >..p I LPi I (Po II Pl) I p\L I pUll P 
iEI 

The term >..p is simply a more convenient way of writing the guarded process (>. --t p). 

The new general sum 2:iEI Pi of indexed processes {Pi liE I} has been introduced. We 
will write Po +Pl in the case where I = {O, I}. Above, L is to range over subsets of labels. 
We extend the complementation operation to such a set, taking L =def {ll f E L}. The 
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symbol J stands for a relabelling function on actions. A relabelling function should obey 
the conditions that J(t) = J(i) and J(T) = T. Again, P ranges over identifiers for 
processes. These are accompanied by definitions, typically of the form 

P clef 
= p. 

As before, they can support recursive and simultaneous recursive definitions. 
The rules for the operational semantics of CCS are strikingly simple: 

nil has no rules. 
Guarded processes: 

Sums: 

Composition: 

Restriction: 

Relabelling: 

Identifiers: 

,\ 
A.p ----+ P 

>. 
Pj ----+ q j E I 

>. 
LiE! Pi ----+ q 

>. I 
Po ----+ Po 

>. I 
PI ----+ PI 

Po II PI ~ p~ II PI Po II PI ~ Po II pi 

I I I I 
Po ----+ Po PI ----+ PI 

Po II PI ~ p~ II pi 

>. 
p----+q A¢.LuL 

>. 
p\L ----+ q\L 

>. 
P ----+ q 

p[J] ~q[J] 

>. 
P ----+ q def 

where P = p. >. 
P----+q 

We have motivated pure CCS as a basic language for processes into which the other 
languages we have seen can be translated. We now show, in the form of a table, how 
closed terms t of CCS can be translated to terms t of pure CCS in a way which preserves 
their behaviour. 
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T.p 

(a!a -+ p) am.p where a denotes the value m 

~ 

(a?x -+ p) I:mEN(am.p[m/x]) 

(b -+ p) P if b denotes true 
nil if b denotes false 

Po + PI Po+Pi 

Po II PI Po II Pi 

p\L P\ {am I a E L & mEN} 

where aI,···, ak denote the values mI,···, mk. 

To accompany a definition P( x I, ... ,Xk) d~f P in CCS, where p has free variables x I, ... , Xb 

we have a collection of definitions in the pure calculus 

indexed by mI, ... ,mk EN. 

Exercise 14.5 Justify the table above by showing that 

for closed process terms p, q, where 

;;?n = an, a!n = an. 

o 
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Recursive definition: In applications it is useful to use process identifiers and defining 
equations. However sometimes in the study of CCS it is more convenient to replace the 
use of defining equations by the explicit recursive definition of processes. Instead of 

defining equations such as P ~f p, we then use recursive definitions like 

rec(P = p). 

The transitions of these additional terms are given by the rule: 

p[rec(P = p)/P] ~ q 

rec(P = p) ~ q 

Exercise 14.6 Use the operational semantics to derive the transition system reachable 
from the process term rec(P = a.b.P). 0 

Exercise 14.7 Let another language for processes have the following syntax: 

p := 0 I a I p;p I p + pip x piP I rec(P = p) 

where a is an action symbol drawn from a set ~ and P ranges over process variables 
used in recursively defined processes rec(P = p). Processes perform sequences of actions, 
precisely which being specified by an execution relation p -> s between closed process 
terms and finite sequences s E ~*; when p -> s the process p can perform the sequence 
of actions s in a complete execution. Note the sequence s may be the empty sequence E 

and we use st to represent the concatenation of strings sand t. The execution relation 
is given by the rules: 

0-> f a->a 
p->s q->t 

p; q -> st 

p->s 
p+q->s 

p->s q->s 
pxq->s 

q->s 
p+q->s 

p[rec(P = p)/Pj-> s 
rec(P = p) -> s 

The notation p[q/ P] is used to mean the term resulting from substituting q for all free 
occurrences of P in p. 

Alternatively, we can give a denotational semantics to processes. Taking environments 
p to be functions from variables Var to subsets of sequences P(~ *) ordered by inclusion, 
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we define: 
[O]p = if} [a]p = {a} 

[Piq]P = {st I s E [PDp and t E [q]p} 

[P + q]p = [PDp u [q]p [P x q]p = [PDp n [q]p 

[X]p = p(X) 

[rec(P = p)]p = the least solution S of S = [P]p[SjP] 

The notation p[Sj P] represents the environment p updated to take value S on P. 
(i) Assuming a and b are action symbols, write down a closed process term with denota
tion the language {a, b} * in any environment. 
(ii) Prove by structural induction that 

[P[qj P]]p = [P]p[[q]p/ P] 

for all process terms p and q, with q closed, and environments p. 

(iii) Hence prove if p -> s then s E [PDp, where p is a closed process term, s E I; * and p 
is any environment. Indicate clearly any induction principles you use. 0 

14.6 A specification language 

We turn to methods of reasoning about parallel processes. Historically, the earliest 
methods followed the line of Hoare logics. Instead Milner's development of CCS has 
been based on a notion of equivalence between processes with respect to which there are 
equational laws. These laws are sound in the sense that if any two processes are proved 
equal using the laws then, indeed, they are equivalent. They are also complete for finite
state processes. This means that if any two finite-state processes are equivalent then 
they can be proved so using the laws. The equational laws can be seen as constituting 
an algebra of processes. Different languages for processes and different equivalences 
lead to different process algebras. Pointers to other notable approaches are given in the 
concluding section of this chapter. 

Milner's equivalence is based on a notion of bisimulation between processes. Early 
on, in exploring the properties of bisimulation, Milner and Hennessy discovered a logical 
characterisation of this central equivalence. Two processes are bisimilar iff they satisfy 
precisely the same assertions in a little modal logic, that has come to be called Hennessy
Milner logic. The finitary version of this logic has a simple, if perhaps odd-looking syntax: 

A ::= T I F I Ao 1\ Al I Ao V Al I ..,A I (>')A 
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The final assertion (>')A is a modal assertion (pronounced "diamond>' A") which involves 
an action name >.. It will be satisfied by any process which can do a >. action to become 
a process satisfying A. To be specific, we will allow>. to be any action of pure ees. The 
other ways of forming assertions are more usual. We use T for true, F for false and build 
more complicated assertions using conjunctions (1\), disjunctions (V) and negations (-,). 
Thus (-,(a)T) 1\ (-,(b)T) is satisfied by any process which can do neither an a nor a b 
action. We can define a dual modality in the logic. Take 

[>']A, 

(pronounced "box>. A"), to abbreviate -,(>.)-,A. Such an assertion is satisfied by any 
process which cannot do a >. action to become one failing to satisfy A. In other words, 
[>']A is satisfied by a process which whenever it does a >. action becomes one satisfying 
A. In particular, this assertion is satisfied by any process which cannot do any>. action 
at all. Notice [elF is satisfied by those processes which refuse to do a e action. In writing 
assertions we will assume that the modal operators (a) and [a] bind more strongly than 
the boolean operations, so e.g. ([e]F 1\ [dlF) is the same assertion as (([e]F) 1\ ([d]F)). 
As another example, 

(a)(b)([e]F 1\ [d]F) 

is satisfied by any process which can do an a action followed by a b to become one which 
refuses to do either a e or a d action. 

While Hennessy-Milner logic does serve to give a characterisation of bisimulation equiv
alence (see the exercise ending this section), central to Milner's approach, the finitary 
language above has obvious shortcomings as a language for writing down specifications of 
processes; a single assertion can only specify the behaviour of a process to a finite depth, 
and cannot express, for example, that a process can always perform an action throughout 
its possibly infinite course of behaviour. To draw out the improvements we can make 
we consider how one might express particular properties, of undeniable importance in 
analysing the behaviour of parallel processes. 

Let us try to write down an assertion which is true precisely of those processes which 
can deadlock. A process might be said to be capable of deadlock if it can reach a state 
of improper termination. There are several possible interpretations of what this means, 
for example, depending on whether "improper termination" refers to the whole or part 
of the process. For simplicity let's assume the former and make the notion of "improper 
termination" precise. Assume we can describe those processes which are properly termi
nated with an assertion terminal. A reasonable definition of the characteristic function 
of this property would be the following, by structural induction on the presentation of 



318 Chapter 14 

pure CCS with explicit recursion: 

terminal(nil) = true 

terminal()".p) = false 

terminal(LPi) = {true if terminal(pi) = true for all i E I, 
iEI false otherwise 

terminal(po II PI) = terminal(po) I\T terminal(PI) 

terminal(p\L) = terminal(p) 

terminal(p[f]) = terminal(p) 

terminal(P) = false 

terminal(rec(P = p)) = terminal(p) 

This already highlights one way in which it is sensible to extend our logic, viz. by adding 
constant assertions to pick out special processes like the properly terminated ones. Now, 
reasonably, we can say a process represents an improper termination iff it is not properly 
terminated and moreover cannot do any actions. How are we to express this as an 
assertion? Certainly, for the particular action a, the assertion [alF is true precisely of 
those processes which cannot do a. Similarly, the assertion 

is satisfied by those which cannot do any action from the set {a 1, ... , ak}. But without 
restricting ourselves to processes whose actions lie within a known finite set, we cannot 
write down an assertion true just of those processes which can (or cannot) do an arbitrary 
action. This prompts another extension to the assertions. A new assertion of the form 

(.)A 

is true of precisely those processes which can do any action to become a process satisfying 
A. Dually we define the assertion 

which is true precisely of those processes which become processes satifying A whenever 
they perform an action. The assertion [.IF is satisfied by the processes which cannot do 
any action. Now the property of immediate deadlock can be written as 

Dead =def ([.IF 1\ ,terminal). 
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The assertion Dead captures the notion of improper termination. A process can dead
lock if by performing a sequence of actions it can reach a process satisfying Dead. It's 
tempting to express the possibility of deadlock as an infinite disjunction: 

Dead V (.)Dead V (.)(.)Dead V (.) (.)(.)Dead V ... V ((.) ... (.)Dead) V ... 

But, of course, this is not really an assertion because in forming assertions only finite 
disjunctions are permitted. Because there are processes which deadlock after arbitrarily 
many steps we cannot hope to reduce this to a finite disjunction, and so a real assertion. 
We want assertions which we can write down! 

We.need another primitive in our language of assertions. Rather than introducing ex
tra primitives on an ad hoc basis as we encounter further properties we'd like to express, 
we choose one strong new method of defining assertions powerful enough to define the 
possibility of deadlock and many other properties. The infinite disjunction is remini
scient of the least upper bounds of chains one sees in characterising least fixed points of 
continuous functions, and indeed our extension to the language of assertions will be to 
allow the recursive definition of properties. The possibility of deadlock will be expressed 
by the least fixed point 

IlX.(Dead V OX) 

which intuitively unwinds to the infinite "assertion" 

Dead V (.)(Dead V (.)(Dead V (.J(- .. 

A little more generally, we can write 

possibly(B) =deJ J.1X.(B V OX) 

true of those processes which can reach a process satisfying B through performing a 
sequence of actions. Other constructions on properties can be expressed too. We might 
well be interested in whether or not a process eventually becomes one satisfying assertion 
B no matter what sequence of actions it performs. This can be expressed by 

eventually(B) =deJ J.1X.(B V ((.)T /\ [.]X)). 

As this example indicates, it is not always clear how to capture properties as assertions. 
Even when we provide the mathematical justification for recursively defined properties 
in the next section, it will often be a nontrivial task to show that a particular assertion 
with recursion expresses a desired property. However this can be done once and for all 
for a batch of useful properties. Because they are all defined using the same recursive 



320 Chapter 14 

mechanism, it is here that the effort in establishing proof methods and tools can be 
focussed. 

In fact, maximum (rather than minimum) fixed points will play the more dominant 
role in our subsequent work. With negation, one is definable in terms of the other. An 
assertion defined using maximum fixed points can be thought of as an infinite conjunction. 
The maximum fixed point vX.(B 1\ [.]X) unwinds to 

B 1\ [.](B 1\ [.](B 1\ [.](B 1\ ... 

and is satisfied by those processes which, no matter what actions they perform, always 
satisfy B. In a similar way we can express that an assertion B is satisfied all the way 
along an infinite sequence of computation from a process: 

vX.(B 1\ OX). 

Exercise 14.8 What is expressed by the following assertions? 

(i) p,X.( (a)T V [.]X) 
(ii) vY( (a)T V (.)T 1\ [.]Y)) 

(Argue informally, by unwinding definitions. Later, Exercise 14.13 will indicate how to 
prove that an assertion expresses a property, at least for finite-state processes.) 0 

Exercise 14.9 In [63], Milner defines a strong bisimulation to be a binary relation R 
between ees processes with the following property: If pRq then 

(i)Va,p'. p ~ p'::::} 3q'.q ~ q' and 

(ii)Va,q'. q ~ q'::::} 3p'.p ~ p' 

Then strong bisimulation equivalence "-' is defined by 

"-'= U {R I R is a strong bisimulation}. 

An alternative equivalence is induced by Hennessy-Milner logic, including a possibly 
infinite conjunction, where assertions A are given by 

A ::= 1\ Ai I -,A I (a)A 
iEI 

where I is a set, possibly empty, indexing a collection of asertions Ai, and a ranges over 
actions. The notion of a process p satisfying an assertion A is formalised in the relation 
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p ~ A defined by structural induction on A: 

p ~ /\ Ai iff P ~ Ai for all i E I, 
iEI 

p ~ -,A iff not p ~ A, 

p ~ (a)A iff p ~ q & q ~ A for some q. 
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(An empty conjunction fulfils the role of true as it holds vacuously of all processes.) 
Now we define p::::: q iff (p ~ A) {:} (q ~ A) for all assertions A of Hennessy-Milner logic. 
This exercise shows::::: coincides with strong bisimulation, i.e. :::::="': 

(i) By structural induction on A show that 

Yp, q. p '" q =} (p ~ A {:} q ~ A). 

(This shows :::::2"'.) 
(ii) Show::::: is a strong bisimulation. 

(From the definition of'" it will then follow that :::::S;;"', Hint: this part is best proved 
by assuming that::::: is not a bisimulation, and deriving a contradiction.) 0 

14.7 The modal v-calculus 

We now provide the formal treatment of the specification language motivated in the 
previous Section 14.6. 

Let P denote the set of processes in pure ees. Assertions determine properties of 
processes. A property is either true or false of a process and so can be identified with 
the subset of processes P which satisfy it. In fact, we will understand assertions simply 
as a notation for describing subsets of processes. Assertions are built up using: 

• constants: Any subset of processes S S;; P is regarded as a constant assertion taken 
to be true of a process it contains and false otherwise. (We can also use finite 
descriptions of them like terminal and Dead earlier. In our treatment we will 
identify such descriptions with the subset of processes satisfying them.) 

• logical connectives: The special constants T, F stand for true and false respectively. 
If A and B are assertions then so are -,A ("not A"), A!\ B ("A and B"), A V B 
("A or B") 

• modalities: If a is an action symbol and A is an assertion then (a)A is an asser
tion. If A is an assertion then so is (.)A. (The box modalities [alA and [.lA are 
abbreviations for -,(a)-,A and -'(')'A, respectively.) 
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• maximum fixed points: If A is an assertion in which the variable X occurs positively 
(i. e. under an even number of negation symbols for every ocurrence) then 1I X.A (the 
maximum fixed point of A) is an assertion. (The minimum fixed point /-LX.A can 
be understood as an abbreviation for -1// X. ,A[ ,X/X].) 

In reasoning about assertion we shall often make use of their size. Precisely, the size 
of an assertion is defined by structural induction: 

size(S) = size(T) = size(F) = 0 where S is a constant 

size( ,A) = size( (a)A) = size(vX.A) = 1 + size(A) 

size(A /I. B) = size(A V B) = 1 + size(A) + size(B). 

Assertions are a notation for describing subsets of processes. So for example, A /I. B 
should be satisfied by precisely those processes which satisfy A and satisfy B, and thus 
can be taken to be the intersection An B. Let's say what subsets of processes all the 
assertions stand for. In the following, an assertion on the left stands for the set on the 
right: 

S S where S ~ P 
T P 
F 0 
A/l.B AnB 
AvB AUB 
,A P\A 
(a) A {p E PI :Jq.p ~ q and q E A} 
(.)A {p E PI :Ja, q.p ~ q and q E A} 
vX.A U{S ~ PIS ~ A[S/X]} 

Note, this is a good definition because the set associated with an assertion is defined 
in terms of sets associated with assertions of strictly smaller size. Most clauses of the 
definition are obvious; for example, ,A should be satisfied by all processes which do 
not satisfy A, explaining why it is taken to be the complement of A; the modality {a)A 
is satisfied by any process p capable of performing an a-transition leading to a process 
satisfying A. If X occurs only positively in A, it follows that the function 

Sf---> A[S/X]. 

is monotonic on subsets of P ordered by~. The Knaster-Tarski Theorem (see Section 5.5) 
characterises the maximum fixed point of this function as 

U{S ~ PIS ~ A[S/X]} 
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is the union of all postfixed points of the function S ~ A[S/ X]. Above we see the use 
of an assertion A[S/X] which has a form similar to A but with each occurrence of X 
replaced by the subset S of processes. 

Exercise 14.10 Prove the minimum fixed point }.LX.A, where 

}.LXA = n{S ~ PI A[S/X] ~ S}, 

is equal to -,vX-,A[-,X/X]. 
(Hint: Show that the operation of negation provides a 1-1 correspondence between pre
fixed points of the function S ~ A[S/X] and postfixed points of the function S ~ 
-,A[-,S/X].) D 

Exercise 14.11 Show [alA = {p E P I Vq E P. p ~ q =i> q E A}. By considering e.g.a 

process I;nEwa.Pn where the Pn, nEw, are distinct, show that the function S ~ [a]S is 
not continuous with respect to inclusion (it is monotonic). D 

We can now specify what it means for a process P to satisfy an assertion A. We define 
the satisfaction assertion P F A to be true if pEA, and false otherwise. 

It is possible to check automatically whether or not a finite-state process P satisfies 
an assertion A. (One of the Concurrency-Workbench/TAV commands checks whether 
or not a process P satisfies an assertion A; it will not necessarily terminate for infinite
state processes though in principle, given enough time and space, it will for finite-state 
processes.) To see why this is feasible let p be a finite-state process. This means that 
the set of processes reachable from it 

Pp =def {q E Plp"':"'* q} 

is finite, where we use p ...:... q to mean p ~ q for some action a. In deciding whether or 
not p satisfies an assertion we need only consider properties of the reachable processes 
Pp. We imitate what we did before but using Pp instead of P. Again, the definition is 
by induction on the size of assertions. Define: 

Sip 
Tip 
F Ip 
A 1\ B Ip 
AvB Ip 
-,A Ip 
(a)A Ip 
(.)A Ip 
vX.A Ip 

snpp where S ~ P 
Pp 
o 
Alp n B Ip 
Alp U Alp 
Pp \ (A Ip) 
{r E Pp I :lq E Pp.r ~ q and q E Alp} 

= {r E Pp I :la, q E Pp.r ~ q and q E Alp} 
U{S ~ Pp I S ~ A[S/X]lp} 
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Fortunately there is a simple relationship between the "global" and "local" meanings 
of assertions, expressed in the following lemma. 

Lemma 14.12 For all assertions A and processes p, 

Proof: We first observe that: 

This observation is easily shown by induction on the size of assertions A. 
A further induction on the size of assertions yields the result. We consider the one 

slightly awkward case, that of maximum fixed points. We would like to show 

vX.Alp = (vX.A) n Pp 

assuming the property expressed by the lemma holds inductively for assertion A. Recall 

vX.A = U{S ~ PIS ~ A[S/X]} and 

vX.Al p = U {S' ~ Pp I s' ~ A[S'/X]lp}· 

Suppose S ~ P and S ~ A[S/X]. Then 

snpp ~ A[S/X] npp 

= A[S/X]lp by induction 

= A[S n Pp/ X)lp by the observation. 

Thus snpp is a postfixed point of S' r--> A[S'/Xllp, so snpp ~ vX.Alp' Hence 
vX.A n Pp ~ vX.Alp. 

To show the converse, suppose S' ~ Pp and S' ~ A[S' / Xll p. Then, by induction, 
S' ~ A[S' / Xl n Pp. Thus certainly S' ~ A[S' / X], making S' a postfixed point of 
S r--> A[S/ X] which ensures S' ~ vx.A. It follows that vX.Alp ~ vX.A. 

Whence we conclude vX.Alp = (vX.A) n Pp, as was required. 0 

One advantage in restricting to Pp is that, being a finite set of size n say, we know 

vX.A Ip= n Ai[T/X) Ip 
O~i~n 
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where AO = T, AHI = A[Ai/X). This follows from our earlier work characterising 
the least fixed point of a continuous function on complete partial order with a bottom 
element: The function S ....... A[S/ X)lp is monotonic and so continuous on the the finite cpo 
(Pow(Pp ), ;:2)-the least fixed point with respect to this cpo is of course the maximum 
fixed point with respect to the converse order ~. 

In this way maximum fixed points can be eliminated from an assertion A for which we 
wish to check P F A. Supposing the result had the form (a)B we would then check if 
there was a process q with P ~ q and q F B. If, on the other hand, it had the form of a 
conjunction B 1\ C we would check P F Band P F C. And no matter what the shape of 
the assertion, once maximum fixed points have been eliminated, we can reduce checking a 
process satisfies an assertion to checking processes satisfy strictly smaller assertions until 
ultimately we must settle whether or not processes satisfy constant assertions. Provided 
the constant assertions represent decidable properties, in this way we will eventually 
obtain an answer to our original question, whether or not P F A. It is a costly method 
however; the elimination of maximum fixed points is only afforded through a possible 
blow-up in the size of the assertion. Nevertheless a similar idea, with clever optimisations, 
can form the basis of an efficient model-checking method, investigated by Emerson and 
Lei in [37). 

However, we seek another method, called "local model checking" by Stirling and 
Walker, which is more sensitive to the structure of the assertion being considered, and 
does not always involve finding the full, maximum-fixed-point set vX.A I p. It is the 
method underlying the algorithms in the Concurrency Workbench and TAV system. 

Exercise 14.13 (i) Let S be a finite set of size k and <I> : Pow(S) ---; Pow(S) a 
monotonic operator. Prove 

JLx. <I> (X) UnEw <I>n(0) 
vX.<I>(X) nnEw <I>n(s) 

(ii) Let P be a finite-state process. Prove P satisfies vX.( (a)X) iff P can perform an 
infinite chain of a-transitions. 
What does JLx.((a)X) mean? Prove it. 

In the remainder of this exercise assume the processes under consideration are finite-state 
(so that (i) is applicable). Recall a process P is finite-state iff the set Pp is finite, i.e. 
only finitely many processes are reachable from p. 

(iii) Prove the assertion vX.(A 1\ [.)X) is satisfied by those processes p which always 
satisfy an assertion A, i.e. q satisfies A, for all q E Pp-
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(iv) How would you express in the modal v-calculus the property true of precisely those 
processes which eventually arrive at a state satisfying an assertion A? Prove your 
claim. 
(See the earlier text or Exercise 14.15 for a hint.) 

o 

In the remaining exercises of this section assume the processes are finite-state. 

Exercise 14.14 

(i) A complex modal operator, often found in temporal logic, is the so-called until 
operator. Formulated in terms of transition systems for processes the until operator 
will have the following interpretation: 

A process P satisfies A until B (where A and B are assertions) iff for all 
sequences of transitions 

. . . 
P = Po ----> PI ----> ••• ----> Pn 

it holds that 

W(O:S i :S n). Pi 1= A 

or 3i(0 :S i :S n). (pi 1= B & V'j(O :S j :S i). Pj 1= A). 

Formulate the until operator as a maximum-fixpoint assertion. 
(See Exercise 14.15 for a hint.) 

(ii) What does the following assertion (expressing so-called "strong-until") mean? 

J.1,X.(B V (A 1\ (.)T 1\ [.]X)) 

o 

Exercise 14.15 What do the following assertions mean? They involve assertions A and 
B. 

(i) inv(A) == vX.(A 1\ [.]X) 
(ii) eV(A) == J.1,X.(A V ((.)T 1\ [.]X)) 

(iii) un(A, B) == vX.(B V (A 1\ [.]X)) 

o 



Nondeterminism and parallelism 327 

Exercise 14.16 A process P is said to be unfair with respect to an action a iff there is 
an infinite chain of transitions 

ao al an-l an 
P = Po --+ PI --+ . .. --+ Pn --+ ... 

such that 

(a) 3q. Pi ~ q, for all i ~ 0, and 
(b) ai =1= a, for all i ~ O. 

Informally, there is an infinite chain of transitions in which a can always occur but never 
does. 

(i) Express the property of a process being unfair as an assertion in the modal v
calculus, and prove that any finite-state process P satisfies this assertion iff p is 
unfair with respect to a. 

(ii) A process p is said to be weakly unfair with respect to an action a iff there is an 
infinite chain of transitions in which a can occur infinitely often but never does. 
Write down an assertion in the modal v-calculus to express this property. 

o 

14.8 Local model checking 

We are interested in whether or not a finite-state process p satisfies a recursive modal 
assertion A, i.e in deciding the truth or falsity of P F A. We shall give an algorithm 
for reducing such a satisfaction assertion to true or false. A key lemma, the Reduction 
Lemma, follows from the Knaster-Tarski Theorem of Section 5.5. 

Lemma 14.17 (Reduction Lemma) 
Let r.p be a monotonic function on a powerset Pow (S). For S c,;: S 

S c,;: vXr.p(X) ¢:} S c,;: r.p(vX(S U r.p(X))). 

Proof: 
"=:}" Assume S c,;: vX.r.p(X). Then 

S u r.p(vXr.p(X)) = S u vXr.p(X) = vXr.p(X). 

Therefore vXr.p(X) is a postfixed point of X f--t S U r.p(X). As vX.(S u r.p(X)) is the 
greatest such postfixed point, 

vXr.p(X) c,;: vX(S u r.p(X)). 
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By monotonicity, 

vX.<p(X) = cp(vX.cp(X) ~ <p(vX.(S U <p(X))). 

But S ~ vx.<p(X) so S ~ cp(vX(S U <p(X))), as required. 
"¢::" Assume S ~ cp(vX.(SUcp(X)). As vX.(SU<p(X)) is a fixed point of X f--+ SUcp(X), 

vX.(S U cp(X)) = S U cp(vX.(S U <p(X))). 

Hence, by the assumption 

vX.(S U <p(X)) = <p(vX.(S U <p(X)), 

i.e. vX.(S U cp(X)) is a fixed point, and so a postfixed point of cp. Therefore 

vX.(S U cp(X)) ~ vX.<p(X) 

as vX.cp(X) is the greatest postfixed point. Clearly S ~ vX.(SU<p(X)) so S ~ vX.cp(X), 
as required. 0 

We are especially concerned with this lemma in the case where S is a singleton set 
{p}. In this case the lemma specialises to 

P E vX.<p(X) ¢:} P E <p(vX.({p} U cp(X))). 

The equivalence says a process P satisfies a recursively defined property iff the process 
satisfies a certain kind of unfolding of the recursively defined property. The unfolding 
is unusual because into the body of the recursion we substitute not just the original 
recursive definition but instead a recursive definition in which the body is enlarged to 
contain p. As we shall see, there is a precise sense in which this small modification, 
p E <p(vX.( {p} U cp(X))), is easier to establish than p E vX.cp(X), thus providing a 
method for deciding the truth of recursively defined assertions at a process. 

We allow processes to appear in assertions by extending their syntax to include a more 
general form of recursive assertion, ones in which finite sets of processes can tag binding 
occurrences of variables: 
If A is an assertion in which the variable X occurs positively and PI,· .. , Pn are pro
cesses, then v X {PI, ... , Pn} A is an assertion; it is to be understood as denoting the same 
property as vX.( {PI,··· ,Pn} V A). 
(The latter assertion is sensible because assertions can contain sets of processes as con
stants.) 
We allow the set of processes {PI,···, Pn} to be empty; in this case v X { } A amounts 
simply to vX.A. In fact, from now on, when we write vX.A it is to be understood as an 
abbreviation for v X { } A. 
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Exercise 14.18 Show (p F l/X{PI,'" ,Pn}A) = true if P E {PI,'" ,Pn}. o 

With the help of these additional assertions we can present an algorithm for establish
ing whether a judgement P F A is true or false. We assume there are the usual boolean 
operations on truth values. Write 'T for the operation of negation on truth values; thus 
'T (true) = false and 'T (false) = true. Write I\T for the operation of binary conjunction 
on T; thus to I\T tl is true if both to and tl are true and false otherwise. Write V T for 
the operation of binary disjunction; thus to VT tl is true if either to or tl is true and false 
otherwise. More generally, we will use 

for the disjunction of the n truth values t I, ... , t n ; this is true if one or more of the truth 
values is true, and false otherwise. An empty disjunction will be understood as false. 

With the help of the Reduction Lemma we can see that the following equations hold: 

(p F S) true if pES 

(p F S) false if P ~ S 

(p F T) true 

(p F F) false 

(P F ,B) 'T(p F B) 

(p F Ao 1\ AI) (p != Ao) I\T (p F AI) 

(p F Ao V AI) (p F Ao) V T (p F A I) 

(p F (a)B) (qi FB)VToo,VT(qn FB) 

where {ql,"', qn} {q!p ~ q} 

(p F (.)B) (qi FB)VToo,VT(qn FB) 

where {ql,oo·,qn} {q!:3a.p ~ q} 

(p F l/X {r}B) true ifp E {r} 

(p F l/X {r}B) (p F B[l/X{p, r}B/X]) if P ~ {r} 

(In the cases where P has no derivatives, the disjunctions indexed by its derivatives are 
taken to be false.) 
All but possibly the last two equations are obvious. The last equation is a special case 
of the Reduction Lemma, whereas the last but one follows by recalling the meaning of a 
"tagged" maximum fixed point (its proof is required by the exercise above). 

The equations suggest reduction rules in which the left-hand-sides are replaced by 
the corresponding right-hand-sides, though at present we have no guarantee that this 
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reduction does not go on forever. More precisely, the reduction rules should operate on 
boolean expressions built up using the boolean operations /\, V" from basic satisfaction 
expressions, the syntax of which has the form p I- A, for a process term p and an assertion 
A. The boolean expressions take the form: 

b ::= p I- A I true I false I bo /\ b1 I bo V b1 I .b 

The syntax p I- A is to be distinguished from the truth value p F A. 
To make the reduction precise we need to specify how to evaluate the boolean opera

tions that can appear between satisfaction expressions as the reduction proceeds. Rather 
than commit ourselves to one particular method, to cover the range of different methods 
of evaluation of such boolean expressions we merely stipulate that the rules have the 
following properties: 

For negations: 
(b -... * t {=} .b -... * 'Tt), for any truth value t. 

For conjunctions: 
If bo -...* to and b1 -...* tl and to,tl E T then 

(bo 1\ bI) -... * t {=} (to I\T tt} = t, for any truth value t. 

For disjunctions: 
If bo -...' to and b1 -... * tl and to, tl E T then 

(bo V bI) -...* t {=} (to VT h) = t, for any truth value t. 

More generally, a disjunction b1 V b2 V ... V bn should reduce to true if, when all of 
b1 , ... , bn reduce to values, one of them is true and false if all of the values are false. 
As mentioned, an empty disjunction is understood as false. 

Certainly, any sensible rules for the evaluation of boolean expressions will have the 
properties above, whether the evaluation proceeds in a left-to-right, right-to-Ieft or par
allel fashion. With the method of evaluation of boolean expressions assumed, the heart 
of the algorithm can now be presented in the form of reduction rules: 

(p I- S) -... true 

(p I- S) -... false 

(p I- T) -; true 

(p I- F) -; false 

if pES 

if P tic S 
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(p f-- -,B) -+ .(p f-- B) 

(p f-- Ao 1\ Ad -+ (p f-- Ao) 1\ (p f-- Ad 

(p f-- Ao V Ad -+ (p f-- Ao) V (p f-- AI) 

(p f-- (a)B) -+ (ql f-- B) V ... V (qn f-- B) 

where {ql,···, qn} {qlp ~ q} 

(p f-- (.)B) -+ (ql f-- B) V ... V (qn f-- B) 

where {ql,···, qn} {qlja.p ~ q} 

(p f-- vX (r}B) -+ true if p E (r} 

(p f-- vX(r}B) -+ (p f-- B[vX{p, r}BjX]) ifp ~ {r} 

(Again, in the cases where p has no derivatives, the disjunctions indexed by its derivatives 
are taken to be false.) 
The idea is that finding the truth value of the satisfaction assertion on the left is reduced 
to finding that of the expression on the right. In all rules but the last, it is clear that 
some progress is being made in passing from the left- to the right-hand-side; for these 
rules either the right-hand-side is a truth value, or concerns the satisfaction of strictly 
smaller assertions than that on the left. On the other hand, the last rule makes it at least 
thinkable that reduction may not terminate. In fact, we will prove it does terminate, 
with the correct answer. Roughly, the reason is that we are checking the satisfaction of 
assertions by finite-state processes which will mean that we cannot go on extending the 
sets tagging the recursions forever. 

Under the assumptions to do with the evaluation of boolean expressions the reduction 
rules are sound and complete in the sense of the theorem below. (Notice that the theorem 
implies the reduction terminates.) 

Theorem 14.19 Let pEP be a finite-state process and A be a closed assertion. For 
any truth value t E T, 

(p f-- A) -+* t iff (p FA) = t. 

Proof: Assume that p is a finite-state process. Sayan assertion is a p-assertion if for all 
the recursive assertions vX{rl,···,rdB within it rl,···,rk E P p , i.e. all the processes 
mentioned in the assertion are reachable by transitions from p. The proof proceeds by 
well-founded induction on p-assertions with the relation 

A' -< A iff A' is a proper subassertion of A 

or A, A' have the form 

A == vX(r}B and A' == vX{p, r'}B with p ~ {r} 
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As Pp is a finite set, the relation -< is well-founded. 
We are interested in showing the property 

Q(A) ~def 'r:/q E Pp'r:/t E T. [(q f- A) ~* t ~ (q F= A) = t] 

holds for all closed p-assertions A. The proof however requires us to extend the property 
Q to p-assertions A with free variables FV(A), which we do in the following way: 
For p-assertions A, define 

Q+(A) ~def WJ, a substitution from FV(A) to closed p-assertions. 

[('r:/X E FV(A). Q(O(X))) =} Q(A[O])]. 

Notice that when A is closed Q+(A) is logically equivalent to Q(A). Here 0 abbreviates a 
substitution like Bd XI, ... ,Bk/ Xk and an expression such as O(Xj) the corresponding 
assertion B j . 

We show Q+(A) holds for all p-assertions A by well-founded induction on -<. To this 
end, let A be an p-assertion such that Q+(A') for all p-assertions A' -< A. We are 
required to show it follows that Q+(A). SO letting 0 be a substitution from FV(A) to 
closed p-assertions with 'r:/X E FV(A). Q(e(X)), we are required to show Q(A[O]) for all 
the possible forms of A. We select a few cases: 

A == Ao /\ AI: In this case A[O] == Ao[e]/\ AI[e]. Let q E Pp. Let (q F= Ao[e]) = to and 
(q F= Ade]) = h· As Ao -< A and Al -< A we have Q+(Ao) and Q+(AI ). Thus Q(Ao[e]) 
and Q(Ade]), so (q f- Ao[e]) ---.* to and (q f- AI[e]) ~* tl' Now, for t E T, 

(q f- Ao[O]/\ Al [0]) ~* t ~ «q f- Ao[O]) /\ (q f- AdO])) ~* t 
~ to /\T tl = t 

Hence Q(A[O]) in this case. 

by the property assumed for the evaluation of conjunctions 

~ (q F= Ao[e]) /\T (q F= Ade]) = t 
~ (q F= Ao [0]/\ AdO]) = t 

A == X: In this case, when A is a variable, Q(A[O]) holds trivially by the assumption on 
e. 

A == vX (r}B: In this case A[O] == vX (rHB[e])-recall e is not defined on X because 
it is not a free variable of A. Let q E P p . Either q E (r} or not. If q E (r} then it is 
easy to see 

(q f- vX(rHB[O])) ~* t ~ t = true, for any t E T, 

and that (q F= vX (rHB[e])) = true. Hence Q(A[e]) when q E (r} in this case. Oth
erwise q ~ {r'}. Then vX{q, "T}B -< A, so Q(vX{q, "THB[e])). Define a substitution 0' 
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from Y E FV(B) to closed p-assertions by taking 

, { O(Y) if Y 'I=- X 
o (Y) = vX{q, r'}(B[O]) ifY == X 

Certainly Q(O'(Y)), for all Y E FV(B). As B -< A we have Q+(B). Hence Q(B[O']). 
But B[O'] == (B[O]) [vX{q, r'}(B[O])jX]. Thus from the reduction rules, 

(q I- vX{r'}(B[O])) ->* t {:> (q I- (B[O]) [vX{q, r'}(B[O])jX]) ->* t 

{:> (q I- B[O']) ->* t 

{:> (q F B[O']) = t as Q(B[O']) 

{:> (q F (B[O])[vX{q, r'}(B[O])jX]) = t 

{:> (q F vX {r'}(B[O])) = t by the Reduction Lemma. 

Hence, whether q E {r'} or not, Q(A[B]) in this case. 

For all the other possible forms of A it can be shown (Exercise!) that Q(A[B]). Using 
well-founded induction we conclude Q+(A) for all p-assertions A. In particular Q(A) for 
all closed assertions A, which establishes the theorem. 0 

Example: Consider the two element transition system given in CCS by 

P d;j a.Q 

Q d;j a.P 

-it consists of two transitions P ~ Q and Q ~ P. We show how the rewriting algorithm 
establishes the obviously true fact that P is able to do arbitrarily many a's, formally that 
P F vX.(a)X. Recalling that vX.(a)X stands for vX{ }(a)X, following the reductions 
of the model-checking algorithm we obtain: 

PI- vX{ }(a)X -> PI- (a)X[vX{P}(a)XjX] 

i.e. P I- (a)vX {P}(a)X 

-> Q I- vX {P}(a)X 

-> Q I- (a)X[vX{Q,P}(a)XjX] 

i.e.Q I- (a)vX{Q,P}(a)X 

-> PI- vX {Q, P}(a)X 

-> true. 

o 
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Hence provided the constants of the assertion language are restricted to decidable 
properties the reduction rules give a method for deciding whether or not a process satisfies 
an assertion. We have concentrated on the correctness rather than the efficiency of an 
algorithm for local model checking. As it stands the algorithm can be very inefficient in 
the worst case because it does not exploit the potential for sharing data sufficiently (the 
same is true of several current implementations). The next section contains references 
to more careful and efficient algorithms. 

Exercise 14.20 
(i) For the CCS process P defined by 

P d;J a.P 

show p f- vX.(a)T 1\ [aJX reduces to true under the algorithm above. 
(ii) For the CCS definition 

P d;J a.Q 

Q de! P .1 = a. + a.nl 

show P f- /Lx. [a]F V (a)X reduces to true. o 

Exercise 14.21 (A project) Program a method to extract a transition system table for 
a finite-state process from the operational semantics in e.g. SML or Prolog. Program 
the model checking algorithm. Use it to investigate the following simple protocol. 0 

Exercise 14.22 A simple communication protocol (from [72]) is described in CCS by: 

Sender a.Sender' 

Sender' ii.(d.Sender + c.Sender') 

Medium b.(c.Medium + e.Medium) 

Receiver eId.Receiver 

Protocol (Sender II Medium II Receiver)\ {b,c,d,e} 

Use the tool developed in Exercise 14.21 (or the Concurrency Workbench or TAV system) 
to show the following: 
The process Protocol does not satisfy Inv([a](ev(f)T)). 
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Protocol does satisfy Inv([f](ev(a)T)). 
(Here Inv(A) == vX.(A/\ [.]X) and ev(A) == p;X.(A V ((.)T /\ [.]X)), with Inv(A) satisfied 
by precisely those processes which always satisfy A, and ev(A) satisfied by precisely those 
processes which eventually satisfy A.) 0 

Exercise 14.23 (Bisimulation testing) Strong bisimulation can be expressed as a maxi
mum fixed point (see Exercise 14.9). The testing of bisimulation between two finite-state 
processes can be automated along the same lines as local model checking. Suggest how, 
and write a program, in e.g. SML or Prolog, to do it? (The method indicated is close to 
that of the TAV system, though not that of the Concurrency Workbench.) D 

14.9 Further reading 

The mathematical theory of how to model and reason about parallel systems is alive, 
and unsettled. The brief account of this chapter is necessarily incomplete. 

We have focussed on Dijkstra's language of guarded commands from [36], its extension 
by Hoare to communicating sequential processes (CSP) [49], and Milner's approach to a 
calculus of communicating systems (CCS). Milner's book on CCS [63] is highly suitable 
as an undergraduate text. Milner's handbook chapter [64] gives a quick run through 
the more theoretical contents of his book. Hoare's book [50] concentrates on another 
equivalence ("failures" equivalence) and represents another influential branch of work. 
A more mathematical treatment of closely related matters is given in Hennessy's book 
[48]. The programming language Occam [70] is based on the ideas of CCS and CSP. The 
logic, the modal v-calculus, follows that presented by Kozen in [55]. To date (1992) this 
contains the best result that's known on completeness of axiom at is at ions of the logic
the question of a complete axiomatisation for the full logic is still open! The logic is more 
traditionally called the (modal) p;-calculus. The emphasis in our treatment on maximum 
rather than minimum fixed points led to the slight change of name for our treatment. 

Class work on CCS is best supplemented by work with tools such as the Edinburgh
Sussex Concurrency Workbench [30] and the Aalborg TAV system [46].2 Walker's paper 

2The Concurrency Workbench is available from Edinburgh University or North Carolina State Uni
versity: 
George Cleland, LFCS, Dept. of Computer Science, University of Edinburgh, The King's Buildings, 
Edinburgh EH9 3JZ, Scotland. E-mail: lfcs@ed.ac.uk. 
Anonymous FTP: ftp.dcs.ed.ac.uk (Internet no. 129.215.160.150). 
Rance Cleaveland, Department of Computer Science, N.C. State University, Raleigh, NC 27695-8206, 
USA. E-mail: rance@adm.csc.ncsu.edu, 
Anonymous FTP: science.csc.ncsu.edu (IP address: 152.1.61.34). 

The TAV system is available from Kim G.Larsen or Arne Skou, Institute for Electronic Systems, 
Department of Mathematics and Computer Science, Aalborg University Centre, Fredrik Bajersvej 7, 
9200 Aalborg 0, Denmark. E-mail: kgl@iesd.auc.dk 
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[100] gives a good account of the Concurrency Workbench in action in investigating 
parallel algorithms. The Concurrency Workbench is extended to handle priorities of the 
kind found in Occam in [52]; the paper [18] in addition provides an equational proof 
system with respect to a suitably generalised bisimulation. The theoretical basis to the 
Concurrency Workbench is found in [93, 25] following from that of [57] (the model
checking section of this chapter is based on [106]). Model checking itself has evolved into 
a flourishing area in recent years. At the time of writing (1992), the Edinburgh-Sussex 
Concurrency Workbench can take exponential time in both the size of the formula and 
the size of the transition system (even with only one fixed-point operator). The algorithm 
described here suffers the same defect. They do not reuse information obtained during 
a computation as much as possible. For a particular "alternation depth"-a measure of 
how intertwined the minimum and maximum fixed-points of an assertion are-the TAV 
system is polynomial in the size of assertion and transition system. To date, the most 
efficient algorithms for local model checking up to alternation depth 2 are described in 
[6, 7]. There are many other ways to perform model checking ([37] has already been 
mentioned) often on logics rather different from that treated here (see e.g., [24] for an 
accessible paper). 

Throughout the book, except in this chapter, we have presented both operational and 
denotational semantics of programming languages. We have not given a denotational 
semantics to process languages because within domain theory this involves "powerdo
mains", not dealt with in this book. Powerdomains are cpo analogues of powersets 
enabling denotations to represent sets of possible outcomes. They were invented by 
Plotkin in [79] which also gives a good indication of their use (though the articles [92] 
and [102] are perhaps less intimidating). 

The recent book by Apt and Olderog [9] is concerned with extensions of Hoare logic to 
parallel programs. Temporal logic has been strongly advocated as a medium for reasoning 
about parallel processes (see e.g.[60, 56]). 

The presentation of parallelism here has, in effect, treated parallel composition by 
regarding it as a shorthand for nondeterministic interleaving of atomic actions of the 
components. There are other models like Petri nets and event structures which repre
sent parallelism explicitly as a form of independence between actions, and so make a 
distinction between purely nondeterministic processes and those with parallelism. An 
introductory book on Petri nets is [85]. There has recently been success in trying to 
achieve the expressive power of Petri nets within more mathematically amenable frame
works such as structural operational semantics. The forthcoming handbook chapter [107] 
provides a survey of a range of different models for parallel processes. 



A Incompleteness and undecidability 

This appendix furnishes a brief introduction to the theory of computability. 1 The basic 
notions of computable (partial recursive) function, recursively enumerable and decidable 
set are introduced. The "halting-problem" is shown undecidable and through it that 
the valid assertions of Assn are not recursively enumerable. In particular, it fleshes 
out the proof in Section 7.3 of Godel's Incompleteness Theorem. A discussion of a 
"universal IMP program" leads to an alternative proof. The chapter concludes with a 
closer examination of what it is about Assn's which makes their truth (and falsehood) 
not recursively enumerable. 

A.1 Computability 

A command c of IMP can be associated with a partial function on N. Throughout we 
assume locations are listed Xl, X 2 , X 3 ,···. Let ao be the state in which each location is 
assigned O. For n E N, define 

{
a(xI) 

{ c}( n) = undefined 
if a = C[c]ao [n/ X 1] 
if C[c]ao[n/X I ] is undefined. 

Any partial function N ~ N which acts as n 1-+ {c}(n) , on n E N, for some command 
c, is called IMP -computable. Such functions are also called "partial recursive", and 
"recursive" when they are total. More generally, we can associate a command with a 
partial function taking k arguments, so defining IMP-computable functions from N k to 
N. For nI, ... ,nk E N, define 

{
a(XI) 

{c}(nI,···, nk) = undefined 
if a = C[c]ao[nI/ Xl,···, nl,) X k] 
if C[c]ao[nI/ Xl,···, nk/ Xk] is undefined. 

To show that IMP-computable functions compose to give an IMP-computable func
tion we introduce the idea of a tidy command, one which sets all its non X 1 locations 
to 0 when it terminates. 

Definition: Sayan IMP command c is tidy iff for all states a and numbers n 

C[c]ao[n/Xd = a =? a[O/Xd = ao. 

Exercise A.I Show that if f is IMP-computable then there is a tidy IMP command 
c such that fen) = m iff {c}(n) = m, for all m,n. 0 

It is now easy to see that the following holds: 

lThe Appendix is based on notes of Albert Meyer which were used to supplement Chapters 1-7 in an 
undergraduate course at MIT. I'm very grateful to Albert for permission to use his notes freely. 
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Proposition A.2 Let Co and C1 be commands. Assume Co is tidy. For any n, mEN, 

{cl}({eo}(n)) = m iff {co;ct}(n) = m. 

Notation: For a partial function f and argument n we write f(n) 1 to mean 3m. f(n) = 
m, i.e. the result is defined, and f(n)t to signify the result is undefined. 

Note that {c}( n) 1 coincides with termination of the command c starting from the 
state 0"0 [n/ Xl]' A subset M of N is IMP -checkable iff there is an IMP command c such 
that 

n E M iff { c }( n) 1 . 

That is, given input n in location Xl, with all other locations initially zero, command c 
"checks" whether n is in M and stops when its checking procedure succeeds. The com
mand will continue checking forever (and so never succeed) if n is not in M. Checkable 
sets are usually referred to as "recursively enumerable" (r.e.) sets. 

Closely related is the concept of an IMP-decidable set. A subset M ~ N is IMP
decidable iff there is an IMP command c such that 

n EM implies {c}(n) = 1, 

and 
n ~ M implies {c}(n) = O. 

That is, given input n, command c tests whether n EM, returning output 1 in loca
tion Xl if so, and returning output 0 otherwise. It terminates with such an output for 
all inputs. Decidable sets are sometimes called "recursive" sets. 

If c is a "decider" for M, then 

c; if Xl = 1 then skip else Diverge 

is a "checker" for M, where Diverge == while true do skip. Thus: 

Lemma A.3 If M is decidable, then M is checkable. 

Exercise A.4 Show that if M is decidable, so is the complement M = N \ M. 0 

Exercise A.5 Show that if M is checkable, then there is a checker c for M such that 
{c}(n) 1 implies C[c)0"0[n/X1] = 0"0 for all n E N. In other words, c only halts after it 
has "cleaned up all its locations." (cf. Exercise A.I.) 0 
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Conversely, if CI is a checker for M, and C2 is a checker for M, then by constructing a 
command C which "time-shares" or "dovetails" CI and C2, one gets a decider for M. 

In a little more detail, here is how C might be written: Let T, F, S be "fresh" locations 
not in LOC(CI) U LOC(C2). Let "Cleari" abbreviate a sequence of assignments setting 
LOC(Ci) \ {Xd to O. Then C might be: 

T:=X I ; 

F :=0; 
S:= 1; 

[while F = 0 do 
Clearl; Xl := T; 
"do CI for S steps or until CI halts"; 
if "CI has halted in ::::; S steps" then 

if F = 1 then skip else 
Clear2; X I := T; 

F:= 1; 
X I := 1; 

else 5 := 5 + 1; 

"do C2 for 5 steps or until C2 halts"; 
if "C2 has halted in ::::; 5 steps" then 

F:= 1; 
X I := 0; 

else5:=5+1]; 
Clearl; Clear2; T:= 0; F := 0; 5 := 0 

% save Xl in T 
% F is a flag 
% how many steps to try 

% all done 
%TisinM 
% increase the step counter 

% all done 
% T is not in M 
% increase the step counter 
% clean up except for X I 

Exercise A.6 Describe how to transform a command CI into one which meets the de
scription "do CI for 5 steps or until CI halts (whichever happens first)." 0 

So we have 

Theorem A.7 A set M is decidable iff M and M are checkable. 

A.2 Undecidability 

By encoding commands as numbers we can supply them as inputs to other commands. 
To do this we encode commands C as numbers #c in the following way. Let mkpair be a 
pairing function for pairs of integers. For example, 

mkpair(n, m) = 2sg(n) .31nl .5sg(m) ·71ml 
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will serve, where 

sg(n) = {I ~f n ~ 0, 
o If n < O. 

Appendix A 

The details of the pairing function don't matter; the important point is that there are 
functions "left" and "right" such that 

left (mkpair(n, m)) n, 

right (mkpair( n, m)) m, 

and moreover there are IMP commands which act like assignment statements of each 
of the forms 

Exercise A.S 

x .- mkpair(Y, Z), 

X .- left(Y), and 

X .- right(Y). 

(i) Produce IMP-commands Mkpair, Left, Right realising the functions above, i.e. so 

for all n,m E N. 

{Mkpair}(n,m) = mkpair(n,m) 

{Left}(n) = left(n) 

{Right}(n) = right(n) 

(ii) Let c be a text which is of the form of an IMP command, except that c contains as
signment statements of the form "X := left(Y)." Describe how to construct an authentic 
IMP command c which simulates c up to temporary locations. 
(iii) Suppose that the definition of Aexp, and hence of IMP, was modified to allow 
Aexp's of the form "mkpair(al' a2)," "left(a)" and "right(a)" for a, aI, a2 themselves 
modified Aexp's. Call the resulting language IMP'. Explain how to translate every 
c' E Com' into acE Com such that c simulates c'. D 

To encode commands as numbers, we make use of the numbering of the set of locations 
Lac as Xl, X 2 , .... We use 0 as the "location-tag" and define 

#(Xi ) = mkloc(i) = mkpair(O, i). 

We also encode numerals, using 1 as the "number-tag": 

#(n) = mknum(n) = mkpair(l, n). 
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We proceed to encode Aexp's by using 2,3,4 as tags for sums, differences, and products, 
for example: 

We encode Bexp's using tags 5, 6, 7, 8, 9 for ::;, =, /\, V, -', for example: 

#(al ::; a2) = mkleq( #al, #a2) = mkpair (5, mkpair( #al, #a2)) , 

#(b1 V b2) = mkor(#b1 , #b2) = mkpair (8, mkpair(#b1 , #b2)). 

Finally, encode Com using tags 10-14 for :=, skip, if, sequencing, while, e.g., 

#(if b then Co else Cl) mkif(#b, #co, #cd 

mkpair (12, mkpair (#b, mkpair( #co, #Cl))) . 

This method of numbering syntactic or finitely structured objects was first used by Kurt 
Codel in the 1930's, and #(c) is called the Godel number of c. 

Now that commands are numbered, it makes sense to talk about supplying a command 
as an input to another command, namely, supply its number. We shall say a subset S of 
commands is checkable (respectively decidable) if their set of codes 

{#c ICE S} 

is checkable (respectively decidable). 

Exercise A.9 Describe how to write an IMP command which decides whether or not 
a number encodes a well-formed IMP command. Deduce that the set {c ICE Com} is 
decidable. D 

Let H be the "self-halting" subset of commands: 

H = {c I {c}(#c) n· 
Write 

fl =deJ {c E Com I c tf. H} 

Theorem A.10 fl is not IMP-checkable. 

Proof: Suppose C was an IMP-command which checked fl. That is, for all commands 
c, 

c E fl iff {C}( #c) is defined. 
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Now C is itself a command, so in particular, recalling the definition of H, 

{C}( #CH iff { C}( #C) 1, 

a contradiction. Hence, H cannot be checkable. D 

Corollary A.ll (Halting problem) The set H is undecidable. 

The undecidability of other properties follows from that of the undecidability of the 
halting problem. Define 

Ho = {c E Com I C[c]o'o =1= ..1 }. 

Note that 
Ho = {c E Com I {c}(O) !}. 

It follows from the fact that H is not checkable that neither is fio = {c E Com I c ~ Ho}: 

Theorem A.12 (Zero-state halting problem) The set fio is not checkable. 

Proof: The proof makes use of a command realising the function g such that, for any 
command c, 

g(#c) = #(XI := #c; c). 

Such a function is obtained by defining 

g(n) = mkseq (mkassign (mkloc(I), mknum(n)), n) , 

for n E N. However, by Exercise A.8, there is a command G such that 

{G}(n) = g(n). 

By Exercise A.I we can assume the command G is tidy. 
With the aim of obtaining a contradiction, assume fio were checkable, i.e. that there 

is a command C such that 
c E fio iff {C}(#c) 1 

for any command c. Then 

iff {c}(#cH 

iff {Xl := #c; c}(OH 

iff (Xl := #c; c) E fio 

iff {C}(#(XI := #c; c)) 1 
iff {C}(g(#c)) 1 
iff {C}( {G}(#c)) 1 
iff {G; C}(#c) 1 . 



Incompleteness and undecidability 343 

The final step is justified by Proposition A.2. But this makes the command G; C a 
checker for H, a contradiction. Hence flo is not checkable. 0 

Exercise A.13 
(i) Describe an IMP command C which given the G6del number #c of a command c 
outputs the maximum k for locations X k in c. Hence show there is an IMP computable 
function which for input #c outputs the G6del number of the command 

Xl := 0; X 2 := 0; "'; Xk := 0 

clearing all locations up to the last occurring in c. 

(ii) Let 
D = {c E Com I Va. C[c]a = ..l}. 

Using part (i), argue from the fact that flo is not checkable that D is not checkable 
either. 0 

A.3 Godel's incompleteness theorem 

If there were a theorem-proving system which was powerful enough to prove all (and of 
course, only) the valid assertions in Assn, then we would expect to be able to write a 
program which given input (a code of) an assertion A, searched exhaustively for a proof 
of A, and halted iff it found such a proof. Such a program would thus be a validity 
checker. 

In more detail, imagine we encode assertions A by G6del numbers #A in a way similar 
to that used for expressions and commands. Any system which could reasonably be 
called a "theorem-prover" would provide a method for how to decide if some structured 
finite object-commonly a finite sequence of Assn's-was a "proof" of a given assertion. 
A provability checker would work by exhaustively searching through the structured finite 
objects to find a proof object. Thus, in order to be worthy of the name "theorem-prover," 
we insist that the set 

Provable = {A E Assn I f- A } 

be IMP-checkable. As before, with commands, we say a subset of assertions is checkable 
iff its corresponding set of G6del numbers is. Let the valid assertions form the set 

Valid = {A E Assn I 1= A}. 

A theorem prover for validity would make this set checkable. However: 

Theorem A.14 Valid is not checkable. 
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Proof: The proof makes use of a command W which realises the function h such that, 
for any command c, 

h(#c) = #(w[c,false][O/Loc(c)]). 

(The hopefully self-evident notation above means substitute 0 for each location of c, and 
hence every location, which appears in the assertion.) 
The existence of such a command follows from constructive nature of the proof of The
orem 7.5; it describes how to construct an assertion w[c, A], expressing the weakest 
precondition, for a command c and assertion A, so that in principle we could write an 
IMP command to achieve this on the Godel numbers. The remaining proof will rest on 
there being a command W such that 

{W}(#c) = #(w[c,false][O/Loc(c)]). 

We won't give the detailed construction of W. We will assume W is a tidy command. 
Assume that Valid were checkable, i.e. that there is a command C such that, for any 

assertion A, 
A E Valid iff {C}(#A) 1 . 

Let A == w[c, false] [O/Loc(c)]. Then 

c E flo iff A E Valid 

iff {C}( #A) 1 
iff {C}({W}(#c)) 1 
iff {W; C}(#c) 1 by Proposition A.2. 

This makes flo checkable by the command W; C, a contradiction. Hence Valid is not 
checkable. 0 

The proof above can be carried through equally well for that special subset of valid 
assertions which are closed and location-free in the sense that they do not mention 
any locations. Such assertions are either true or false independent of the state and 
interpretation. We let 

Truth = {A E Assn I A closed & location-free & F= A}. 

Notice that the assertions "w[c, false] [O/Loc(c)]" in the proof above are closed and 
location-free, so that the same argument would carry through to show that Truth is 
not IMP-checkable. Therefore, for all theorem-provers, Provable -=J Truth. At best, 
because we want a sound proof system, Provable ~ Truth, and so, for any theorem
prover whose provable assertions are indeed true, there must be some true assertion which 
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is not provable. So the theorem-prover cannot completely prove the true assertions. This 
is Godel's (first) Incompleteness Theorem. In abstract form, it is simply: 

Theorem A.I5 Truth is not checkable. 

The proof of G6del's Incompleteness Theorem has been based on the construction of 
an assertion expressing the weakest proecondition. In the next section there is another 
proof, this time based on the existence of a "universal program." 

A.4 A universal program 

It is nowadays a commonplace idea (although it was a strikingly imaginative one in the 
1930's) that one can write a "simulator" for IMP commands; in fact, the simulator itself 
could be programmed in IMP. That is, we want a command 81M which, given as input a 
pair (#c, n), will give the same output as c running on input n. The precise specification 
is 

{8IM}(#c,n) = m iff {c}(n) = m 

for any command c and n, mEN. 
(Note that we can exclude numbers not encoding commands by Exercise A.9.) 

Theorem A.16 (Universal Program Theorem) There is an IMP command, 81M, 
meeting the above specification. 

Proof: A long programming exercise to construct 81M, and a longer, challenging exercise 
to prove it works correctly. 0 

Corollary A.17 The self-halting set H is IMP-checkable. 

Proof: The command "X2 := Xl; 81M" describes an IMP-checker for H. o 

A set M ~ N is expressible iff there is an A E Assn with no locations and only one 
free integer variable i such that 

1= A[n/i] iff n E M. 

In other words, the meaning of A is "i is in M." Once i is instantiated with a number, 
say 7, the resulting assertion A[7/i] is true or false (depending on whether 7 E M) 
independent of the state IJ or interpretation I used to determine its truth value. 

Theorem A.1S Every IMP-checkable set M ~ N is expressible. 
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Proof: Let C E Com be an M checker. Let w[c, false] E Assn mean the weakest 
precondition of false under c. Then 

(...,w[c, false]) [if X l][O/Loc(c)] 

expresses M. o 

Once we assign G6del numbers to Assn just as we did for Com, we obtain a numbering 
which has the following important property: for any assertion A with no locations and 
a single free integer variable i, let f(n) = #(A[n/i]); then we claim there is an IMP 
command S which realises f, i.e. 

{S}(n) = f(n) 

for any n E N. 
One way to see this is to assume that A is of the form 

3j.j = i 1\ A' 

where A' has no free occurrences of i. There is essentially no loss of generality in this 
assumption, since any A E Assn is equivalent to an assertion of the form above. Now 
we see that 

f(n) = mkexistential(#(j), mkand (mkeq (#(j), mknum(n)), #(A'))), 

so f(n) is definable by an Aexp extended with a "mkpair" operator, and therefore by 
the Exercise A.8 above we know there is an IMP command S such that {S}(n) = f(n), 
for all n. By Exercise A.I we can assume S is tidy. 

This property is the only fact about the numbering of closed assertions which we need 
to use in the following alternative proof of the Incompleteness Theorem, as we now show. 

Another proof of the Incompleteness Theorem: 
Suppose C E Com was a Truth checker. Since the self-halting set H is checkable, 

there is an assertion B such that, for all commands c, 

c E H iff F B[#c/i]. 

Letting A be ...,B, we have 

c E fI iff F A[#c/i] 

iff A[#c/i] E Truth 

iff {C}(#(A[#c/i])) 1 
iff {C}( {S}(#c)) 1 
iff {S; C}(#c) 1 
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where 5 is the tidy command achieving substitution into A. 
But then "5; e" describes an fI checker, a contradiction. o 

Exercise A.19 Show that Truth is not checkable either. o 

Exercise A.20 Prove or give counter-examples to the claims that decidable (checkable, 
expressible) sets are closed under complement (union, intersection). Note, this asks nine 
questions, not three. 0 

Exercise A.21 Show that Ho = {c E Com I C[c]ao i- .l} is checkable. o 

A.5 Matijasevic's Theorem 

We now examine more closely what it is about Assn's which makes their truth (and 
falsehood) not even checkable, let alone decidable. It might seem that the source of the 
problem was the quantifiers ""i" and "3" whose checking seems to require an infinite 
search in order to complete a check. However, this is a case where naive intuition is 
misleading. The "hard part" of Assn's has more to do with the interaction between 
additive and multiplicative properties of numbers than with quantifiers. In particular, 
if we let PlusAssn's be assertions which do not contain the symbol for multiplication 
and likewise TimesAssn be assertions which do not contain the symbols for addition or 
subtraction, then validity for PlusAssn's and also for TimesAssn's is actually decidable, 
and there are logical systems of a familiar kind for proving all the valid PlusAssn's and 
likewise for TimesAssn's. These facts are not at all obvious, and the long, ingenious 
proofs won't be given here. 

On the other hand, when we narrow ourselves to Assn's without quantifiers, that is 
Bexp's, it turns out that validity is still not checkable. This is an immediate consequence 
of the undecidability of "Hilbert's 10 th Problem," which is to decide, given a E Aexp, 
whether a has an integer-vector root. More precisely, let 

H 10 = { a E Aexp I a F a = 0 for some a E ~}. 

Remember this is understood to mean that the set 

{ #a I a E Aexp and a F a = 0 for some a E ~}. 

is not a decidable subset of N. 

Theorem A.22 (Matijasevic, 1970) H 10 is not decidable. 
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This is one of the great results of 20th century Mathematics and Logic. Matijasevic, 
a Russian, building on earlier work of Americans Davis, Putnam and Robinson, learned 
how to "program" with polynomials over the integers and so obtained this theorem. The 
proof uses only elementary number theory, but would take several weeks to present in a 
series of lectures. 

Exercise A.23 Explain why H 10 is checkable, and so HlO = Aexp\HlO is not checkable. 
D 

Matijasevic actually proved the following general result: 

Theorem A.24 (Polynomial Programming) Let M be an r.e. set of nonnegative 
integers. Then there is an a E Aexp such that M is the set of nonnegative integers in 
the range of a. 

Remember that an a E Aexp can be thought of as describing a polynomial function 
on the integers. In particular, the range of a is Rge(a) =def {A[ak I a E E}. 

Exercise A.25 
(i) Show that it follows from the Polynomial Programming Theorem that 

{a E Aexp I #a E Rge(a)} 

is not checkable. 
(ii) Explain why the undecidability of Hilbert's 10 th Problem follows from the Polynomial 
Programming Theorem. D 

We now can conclude that the validity problem for Assn's of the simple form 
".(a = 0)" is not checkable. Let 

ValidNonEq = { .(a = 0) I a E Aexp and 1= .(a = O)}. 

Corollary A.26 ValidNonEq is not checkable. 

Proof: We have a E HlO iff .(a = 0) E ValidNonEq. So 

X 1 := mkneg(mkeq(X1 ,mknum(0))); c 

would describe an HlO checker if c were a ValidNonEq checker. D 
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On the other hand, an easy, informative example which is both decidable and even 
nicely axiomatizable are the valid equations, i. e. , Assn's of the form "a 1 = a2." 

We begin by giving the inductive definition of the "provable" equations. We write f- e 
to indicate that an equation e is provable. 

f-a=a 

f- al = a2 

f- a2 = al 

f- al = a2 f- a2 = a3 

f- al = a3 

f- al = a2 

f- al op a = a2 op a 

f- al = a2 

f-a+O=a 

f-axl=a 

f-a-a=O 

f-a-b=a+((-1)xb) 

f- (-n) = (-1) x n 

f- 1 + 1 = 2, f- 2 + 1 = 3, f- 3 + 1 = 4, 

(reflexi vi ty ) 

(symmetry) 

(transitivity) 

(right congruence) 

(left congruence) 

where op E {+, -, x} 

(associativity) 

(commutativity) 

where op / E {+, x} 

( +-identity) 

( x -identity) 

(additive inverse) 

(minus-one) 

(distributivity) 

(negative numeral) 

(successor) 
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Proof: (::::}) This direction of the "iff" is called soundness of the proof system. It follows 
immediately from the inductive definition of "1-," once we note the familiar facts that all 
the rules (including the axioms regarded as rules with no antecedents) preserve validity. 

( {=) This direction is called completeness of the proof system. The axioms and rules 
were selected to be sufficient to reduce every expression a to a "canonical form" a with 
the property that 

1= al = a2 iff (h == (h· 

A canonical form is either "0" or a sum-of-distinct-monomials representation, with each 
monomial (product of locations) having its locations occurring in increasing order of 
subscript, and parenthesized to the left. Moreover, each monomial has a "coefficient" of 
the form "n" where n is a nonzero numeral, and these monomials-with-coefficients are 
added in decreasing order of degree (i. e. , length), in alphabetical order of the monomials 
for monomials of the same degree, with the sum associated to the left also. 0 

For example, let a be the Aexp corresponding to 

Then a would be described as 

We have described a and a using the usual mathematical abbreviations in which paren
theses and multiplication symbols are omitted, exponents indicate repeated products, etc. 
The canonical form a E Assn would be written formally as follows: 

(((1 X (((X2 x X 2) x X 2 ) x X 3 )) + (3 x (((X2 x X 2) x X 2 ) x X 4 ))) 

+ (( ~1) X (X3 x X 3))) + (2 xl). 

Note that we regard "1" as a monomial of degree zero. 
The idea is that, first, subtractions can be eliminated using the (minus-one) axiom. 

Then distributivity can be applied repeatedly to remove occurrences of products over 
sums. The result is an expression consisting of sums of products of locations and numbers. 
The products can be internally sorted using associativity and commutativity, as can 
the order of the products in the sum. Coefficients of identical monomials can then be 
combined by distributivity. The monomials will have a sum of numerical products for 
their coefficients, and these can be simplified in turn to a sum of ones and then a single 
number using the numerical and identity axioms with associativity, commutativity and 
distributivity. Enough said; we thus have: 
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Lemma A.28 For every a E Aexp, there is a canonical form 0, E Aexp such that 
f- a = 0,. 

We now state the following fact about polynomial functions on the integers. 

Fact If aJ. and 62 are syntactically distinct canonical forms, then A[ad =1= A[62]. 

Exercise A.29 Prove the Fact. o 

Proof: (Completeness) We now can prove completeness. Suppose F a 1 = a2, i. e. , 
A[a1] = A[a2]. By the Lemma, f- ai = 5i, so by soundness, F ai = 5i for i = 1,2. So 
A[aJ.] = A[a1] = A[a2] = A[62]. Then by the Fact above, a1 is actually syntactically 
identical to 62, so we have 

and by symmetry and transitivity, we conclude f- al = a2. o 

A.6 Further reading 

The treatment here is based on lecture notes of Albert Meyer, with some modifications by 
the author. A proof of Matijasevic theorem can be found in [35]. The books by Crossley 
[34], Kleene [54], Mendelson [61] and Enderton [38] have already been mentioned in 
Chapter 7, as has [11] by Kfoury, Moll and Arbib which gives a treatment close to that 
here. A nice book with a more traditional mathematical presentation is Cutland's [20] 
which might be a warm-up to the encyclopaedic book of Rogers [86]. 





Bibliography 

[1] Abramsky, S., "The lazy lambda calculus." In Research Topics in Functional Programming (ed. 
Turner,D.A.), The UT Year of Programming Series, Addison-Wesley, 1990. 

[2J Abramsky, S., "Domain theory in logical form." In IEEE Proc. of Symposium on Logic in Computer 
Science, 1987. Revised version in Annals of pure and Applied Logic, 51, 1991. 

[3J Abramsky, S., "A computational interpretation of linear logic." To appear in Theoretical Computer 
Science. 

[4] Aczel, P., "An introduction to inductive definitions." A chapter in the Handbook of Mathe
matical Logic, Barwise, J., (ed), North Holland, 1983. 

[5J Alagic, S., and Arbib, M., "The design of well-structured and correct programs." Springer-Verlag, 
1978. 

[6J Andersen, H.R., "Model checking and boolean graphs." Proc. of ESOP 92, Springer-Verlag Lecture 
Notes in Computer Science vo1.582, 1992. 

[7] Andersen, H.R., "Local computation of alternating fixed-points." Tehnical Report No. 260, Com
puter Laboratory, University of Cambridge, 1992. 

[8] Apt, K.R., "Ten years of Hoare's Logic: a survey." TOPLAS, 3, pp. 431-483, 1981. 
[9J Apt, K.R, and Olderog, E-R, "Verification of Sequential and Concurrent Programs," 

Springer-Verlag, 1991. 
[10J Arbib, M., and Manes, E., "Arrows, structures and functors." Academic Press, 1975. 
[11J Kfoury, A.J., Moll, R.N. & Arbib, M.A., "A programming approach to computability." 

Springer-Verlag, 1982. 
[12J Backhouse, R, "Program construction and verification." Prentice Hall, 1986. 
[13J de Bakker, J., "Mathematical theory of program correctness." Prentice-Hall, 1980. 
[14] Barendregt, H., "The lambda calculus, its syntax and semantics." North Holland, 1984. 
[15J Barr, M., and Wells, C., "Category theory for computer science." Prentice-Hall, 1990. 
[16] Berry, G., Curien, P-L., and Levy, J-J., "Full abstraction for sequential languages: the state of the 

art. In Nivat, M., and Reynolds, J., (ed), Algebraic Methods in Semantics, Cambridge University 
Press, 1985. 

[17] S0rensen, B.B., and Clausen, C., "Adequacy results for a lazy functional language with recursive 
and polymophic types." DAIMI Report, University of Aarhus, submitted to Theoretical Computer 
Science. 

[18] Camilleri, J.A., and Winskel, G., "CCS with priority choice." Proc. of Symposium on Logic in 
Computer Science, Amsterdam, IEEE, 1991. Extended version to appear in Information and Com
putation. 

[19J Crole, R, "Programming metalogics with a fixpoint type." University of Cambridge Computer 
Laboratory Technical Report No. 247, 1992. 

[20] Cutland, N.J., "Computability: an introduction to recursive function theory." Cambridge Univer-
sity Press, 1983. 

[21J Bird, R, "Programs and machines." John Wiley, 1976. 
[22J Bird, R., and Wadler, P., "Introduction to functional programming." Prentice-Hall, 1988. 
[23J Clarke, E.M. Jr., "The characterisation problem for Hoare Logics" in Hoare, C.A.R and Shep-

herdson, J.C. (eds.), " Mathematical logic and programming languages." Prentice-Hall, 1985. 
[24J Clarke, E.M., Emerson, E.A., and Sistla, A.P., "Automatic verification of finite state concurrent 

sytems using temporal logic." Proc. of 10th Annual ACM Symposium on Principles of Programming 
Languages, Austin, Texas, 1983. 

[25J Cleaveland, R., "Tableau-based model checking in the propositional mu-calculus." Acta Informat
ica, 27, 1990. 

[26J Clement, J., Despeyroux, J., Despeyroux, T., and Kahn, G., "A simple applicative language: 
mini-ML." Proc. of the 1986 ACM Conference on Lisp and Functional Programming, 1986. 

[27J Cosmadakis, S.S., Meyer, A.R, and Riecke, J.G., "Completeness for typed lazy languages (Pre
liminary report)." Proc. of Symposium on Logic in Computer Science, Philadelphia, USA, IEEE, 
1990. 

[28J Despeyroux, J., "Proof of translation in natural semantics." Proc. of Symposium on Logic in 
Computer Science, Cambridge, Massachusetts, USA, IEEE, 1986. 

[29J Despeyroux, T., "Typol: a formalism to implement natural semantics." INRIA Research Report 
94, Roquencourt, France, 1988. 



354 Bibliography 

[30] Cleaveland, R., Parrow, J. and Steffen. B., "The Concurrency Workbench." Report of LFCS, 
Edinburgh University, 1988. 

[31] Clocksin, W.F., and Mellish, C., "Programming in PROLOG." Springer-Verlag, 1981. 
[32] Cohen, "Programming for the 1990's". Springer-Verlag, 1991. 
[33] Cook, S.A., "Soundness and completeness of an axiom system for program verification." SIAM J. 

Comput. 7, pp. 70-90, 1978. 
[34] Crossley, J.N., "What is mathematical logic?." Oxford University Press, 1972. 
[35] Davis, M., "Hilbert's tenth problem is unsolvable." Am.Math.Monthly 80, 1973. 
[36] Dijkstra, E.W., "A discipline of programming." Prentice-Hall, 1976. 
[37] Emerson, A. and Lei, C., "Efficient model checking in fragments of the propositional mu-calculus." 

Proc. of Symposium on Logic in Computer Science, 1986. 
[38] Enderton, H.B., "A mathematical introduction to logic." Academic Press, 1972. 
[39] Enderton, H.B., "Elements of set theory." Academic Press, 1977. 
[40] Girard, J-Y., Lafont, Y., and Taylor, P., "Proofs and types." Cambridge University Press, 1989. 
[41] Good, D.l., "Mechanical proofs about computer programs." in Hoare, C.A.R., and Shepherdson, 

J.C. (eds.), "Mathematical Logic and Programming Languages." Prentice-Hall, 1985. 
[42] Gordon, M.J.C., "Programming language theory and its implementation." Prentice-Hall, 

1988. 
[43] Gordon, M.J.C., HOL: A proof generating system for higher-order logic, in VLSI Specification, 

Verification and Synthesis, (ed. Birtwistle, G., and Subrahmanyam, P.A.) Kluwer, 1988. 
[44] Gries, D., "The science of programming." Springer Texts and Monographs in Computer Sci

ence, 1981. 
[45] Hindley, R., and Seldin, J.P, "Introduction to combinators and lambda-calculus." Cam

bridge University Press, 1986. 
[46] Godskesen, J.C., and Larsen, KG., and Zeeberg, M., "TAV (Tools for Automatic Verification) users 

manual." Technical Report R 89-19, Department of Mathematics and Computer Science, Aalborg 
University, 1989. Presented at the workshop on Automated Methods for Finite State Systems, 
Grenoble, France, June 1989. 

[47] Halmos, P.R., "Naive set theory." Litton Ed Publ. Inc., 1960. 
[48] Hennessy, M.C, "Algebraic theory of processes." MIT Press, 1988. 
[49] Hoare, C.A.R., "Communicating sequential processes." CACM, vo1.21, No.8, 1978. 
[50] Hoare, C.A.R., "Communicating sequential processes." Prentice-Hall, 1985. 
[51] Huet, G., "A uniform approach to type theory." In Logical Foundations of Functional Pro

gramming (ed. Huet,G.), The UT Year of Programming Series, Addison-Wesley, 1990. 
[52] Jensen, C.T., "The Concurrency Workbench with priorities." To appear in the proceedings of 

Computer Aided Verification, Aalborg, 1991, Springer-Verlag Lecture Notes in Computer Science. 
[53] Johnstone, P.T., "Stone spaces." Cambridge University Press, 1982. 
[54] Kleene, S.C., "Mathematical logic." John Wiley, 1967. 
[55] Kozen, D., "Results on the propositional mu-calculus," Theoretical Computer Science 27, 1983. 
[56] Lamport, L., "The temporal logic of actions." Technical Report 79, Digital Equipment Corporation, 

Systems Research Center, 1991. 
[57] Larsen, KG., "Proof systems for Hennessy-Milner logic." Proc. CAAP, 1988. 
[58] Loeckx, J. and Sieber, K "The foundations of program verification." John Wiley, 1984. 
[59] Manna, Z., "Mathematical theory of computation." McGraw-Hill, 1974. 
[60] Manna, Z., and Pnueli, A., "How to cook a temporal proof system for your pet language." Proc. 

of 10th Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, 1983. 
[61] Mendelson, E., "Introduction to mathematical logic." Van Nostrand, 1979. 
[62] Milner, A.J.R.G., "Fully abstract models of typed lambda-calculi." Theoretical Computer Science 

4, 1977. 
[63] Milner, A.J.R.G., "Communication and concurrency." Prentice Hall, 1989. 
[64] Milner, A.J .R.G., "Operational and algebraic semantics of concurrent processes." A chapter in 

Handbook of Theoretical Computer Science, North Holland, 1990. 
[65] Mitchell, J.C., "Type systems for programming languages." A chapter in Handbook of Theo

retical Computer Science, North Holland, 1990. 



Bibliography 355 

[66] Moggi, E., "Categories of partial morphisms and the lambdap-calculus." In proceedings of Category 

[67] 

[68] 

[69] 

[70] 
[71] 

[72] 
[73] 
[74] 

[75] 

[76] 

[77] 

[78] 
[79] 
[80] 

[81] 

[82] 

[83] 
[84] 

[85] 

[86] 

[87] 
[88] 

[89] 

[90] 

[91] 

[92] 
[93] 

[94] 
[95] 

[96] 

[97] 

Theory and Computer Programming, Springer-Verlag Lecture Notes in Computer Science vo1.240, 
1986. 
Moggi, E., "Computational lambda-calculus and monads." Proc. of Symposium on Logic in Com
puter Science, Pacific Grove, California, USA, IEEE, 1989. 
Mosses, P.D., "Denotational semantics." A chapter in Handbook of Theoretical Computer 
Science, North Holland, 1990. 
Nielson. H.R., and Nielson, F., "Semantics with applications: a formal introduction." John 
Wiley, 1992. 
inmos, "Occam programming manual." Prentice Hall, 1984. 
Ong, C-H.L., "The lazy lambda calculus: an investigation into the foundations of functional pro
gramming." PhD thesis, Imperial College, University of London, 1988. 
Parrow, J., "Fairness properties in process algebra." PhD thesis, Uppsala University, Sweden, 1985. 
Paulson,L.C., "ML for the working programmer." Cambridge University Press, 1991. 
Paulson, L.C., "Logic and computation: interactive proof with Cambridge LCF." Cam
bridge University Press, 1987. 
Pitts, A., "Semantics of programming languages." Lecture notes, Computer Laboratory, University 
of Cambridge, 1989. 
Pitts, A., "A co-induction principle for recursively defined domains." University of Cambridge 
Computer Laboratory Technical Report No.252, 1992. 
Plotkin, G.D., "Call-by-name, Call-by-value and the lambda calculus" Theoretical Computer Sci
ence 1, 1975. 
Plotkin, G.D., "LCF considered as programming language." Theoretical Computer Science 5, 1977. 
Plotkin, G.D., "A powerdomain construction." SIAM J. Comput.5, 1976. 
Plotkin, G.D" "The Pisa lecture notes." Notes for lectures at the University of Edinburgh, extend
ing lecture notes for the Pisa Summerschool, 1978. 
Plotkin, G.D., "Structural operational semantics." Lecture Notes, DAIMI FN-19. Aarhus Univer
sity, Denmark, 1981 (reprinted 1991). 
Plotkin, G.D., "An operational semantics for CSP." In Formal Description of Programming Con
cepts II, Proc. of TC-2 Work. Conf. (ed. Bj0rner, D.), North-Holland, 1982. 
Plotkin, G.D., "Types and partial functions." Notes of lectures at CSLI, Stanford University, 1985. 
Prawitz, D., "Natural deduction, a proof-theoretical study." Almqvist & WikselL Stock
holm, 1965. 
Reisig, W., "Petri nets: an introduction." EATCS Monographs on Theoretical Computer 
Science, Springer-Verlag, 1985. 
Rogers, H., "Theory of recursive functions and effective computability." McGraw-Hill, 
1967. 
Roscoe,A.W., and Reed,G.M .• "Domains for denotational semantics." Prentice Hall, 1992. 
schmidt, D., "Denotational semantics: a methodology for language development." Allyn 
& Bacon, 1986. 
Scott, D.S., "Lectures on a mathematical theory of computation." PRG Report 19, Programming 
Research Group, Univ. of Oxford, 1980. 
Scott, D.S., "Domains for denotational semantics." In proceedings of ICALP '82, Springer-Verlag 
Lecture Notes in Computer Science vo1.l40, 1982. 
Scott, D.S., and Gunter, c., "Semantic domains." A chapter in Handbook of Theoretical 
Computer Science, North Holland, 1990. 
Smyth, M., "Powerdomains." JCSS 16(1), 1978. 
Stirling, C. and Walker D., "Local model checking the modal mu-calculus." Proc.of TAPSOFT, 
1989. 
Stoughton, A., "Fully abstract models of programming languages." Pitman, 1988. 
Stoy, J., "Denotational semantics: the Scott-Strachey approach to programming lan
guage theory." MIT Press, 1977. 
Tarski, A., "A lattice-theoretical fixpoint theorem and its applications." Pacific Journal of Mathe
matics, 5, 1955. 
Tennent, R.D., "Principles of programming languages." Prentice-Hall, 1981. 



356 Bibliography 

[98] Vickers, S., "Topology via logic." Cambridge University Press, 1989. 
[99] Vuillemin, J.E., "Proof techniques for recursive programs." PhD Thesis, Stanford Artificial Intel

ligence Laboratory, Memo AIM-218, 1973. 
[100] Walker, D., "Automated analysis of mutual exclusion algorithms using CCS." Formal Aspects of 

Computing 1, 1989. 
[101] Wikstrom, A. "Functional programming using Standard ML." Prentice-Hall, 1987. 
[102] Winskel, G., "On powerdomains and modality." Theoretical Computer Science 36, 1985. 
(103] Winskel, G. and Larsen, K., "Using information systems to solve recursive domain equations 

effectively." In the proceedings of the conference on Abstract Datatypes, Sophia-Antipolis, France, 
Springer-Verlag Lecture Notes in Computer Science vol.l73, 1984. 

[104] Winskel, G., "Event structures." Lecture notes for the Advanced Course on Petri nets, September 
1986, Springer-Verlag Lecture Notes in Computer Science, vol.255, 1987. 

[105] Winskel, G., "An introduction to event structures." Lecture notes for the REX summerschool in 
temporal logic, May 88, Springer-Verlag Lecture Notes in Computer Science, vol.354, 1989. 

[106] Winskel, G., "A note on model checking the modal nu-calculus." Theoretical Computer Science 
83, 1991. 

[107] Winskel, G., and Nielsen, M., "Models for concurrency." To appear as a chapter in the Handbook 
of Logic and the Foundations of Computer Science, Oxford University Press. 

[108] Zhang, G-Q., "Logic of domains." Birkhiiuser, 1991. 



Index 

A 

abstract syntax, 12, 26 
Ackermann's function, 175 
adequacy, 191, 216, 262, 288 
application, 129 
applicative, 141 
approximable mapping, 245 
axiomatic semantics, 77, 89 

B 

Backus-Naur form, 11 
Bekic's theorem, 162, 163 
binary trees, 224 
bisimulation, 316, 317, 320, 335, 336 
BNF,l1 
bound variable, 81 

c 

Calculus of Communicating Systems, 308 
call-by-name, 142 
call-by-need, 183 
call-by-value, 142 
canonical forms, 

call-by-name, 201 
call-by-value, 186 
eager, 186, 255 
lazy, 201 

Cantor's diagonal argument, 8 
cases-notation for cpo's, 134, 138 
category, 139 

cartesian closed, 139 
coproducts, 139 
products, 139 

CCS, 308, 335 
operational semantics, 313 
pure, 311 
recursive definition, 315 
syntax, 309, 312 

channel, 303 
checkable, 338 
closed family, 228 
closed under rules, 42 
commands, 13 
communicating processes, 303 
Communicating Sequential Processes, 307 
communication by shared variables, 298 
complete lattice, 74 
complete partial order (cpo), 68, 70 
compositional, 60 
computability, 337 
computationally feasible, 122 

concrete syntax, 12 
concurrency, 297 
Concurrency Workbench, 335 
conditional on cpo's, 134 
configuration, 14, 19 
context, 218 
continuous function, 68, 120 
continuous in each argument separately, 127 
continuous in variables, 136 
convergence, 

eager, 191, 262 
lazy, 204, 288 

cpo, 68, 70, 119 
algebraic, 230 
bounded complete, 230 
constructions, 123 
function space, 128 
lifting, 131 
product, 125 
sum, 133 

discrete, 120, 124 
discrete (flat), 70 
finite element, 230 
injection function, 133 
isomorphism, 124 
omega algebraic, 230 
projection function, 125 
with bottom, 70, 119 

CSP, 307, 335 
currying, 129 

D 

deadlock, 307, 317 
decidable, 338 
declaration, 141 

local, 161 
denotational semantics, 55 

higher types, 
eager, 188 
lazy, 203 

IMP, 58 
REC, 
call-by-name, 154 
call-by-value, 144 

recursive types, 
eager, 257 
lazy, 281 

derivation, 14, 16 
induction on, 35 
subderivation, 35 

deterministic evaluation, 28 
dI-domains, 249 
Dijkstra's guarded commands, 298 
domain, 119 



358 

domain theory, 119 
metalanguage, 135, 172 
application, 136 
cases-notation, 138 
lambda abstraction, 137 
let-notation, 137 
mu-notation, 138 
tupling, 136 

E 

eager evaluation, 183 
eager language, 

recursive types, 251 
embedding-projection pairs, 236 
environment, 144, 154, 188, 203, 258, 284 

for types, 258, 281 
Euclid's algorithm, 33, 96, 301 
expressible set, 345 
expressiveness, 100, 101 
extension of assertion, 86 

F 

fairness, 327 
finite-state process, 323 
Fixed-point induction, 166 
fixed-point operator, 209 

eager, 214, 272, 275 
lazy, 209, 292, 293 

Fixed-Point Theorem, 71, 121 
Floyd-Hoare rules, 77 
free variable, 81 
full abstraction, 215, 221 
function, 6 

composition, 7 
continuous, 68, 71, 120 
continuous in each argument separately, 127 
direct image, 9 
fixed point, 71 
identity, 8 
IMP computable, 337 
inverse image, 9 
maximum fixed point, 75 
monotonic, 71, 120 
order-monic, 170 
partial, 7 
prefixed point, 71 
recursive, 337 
stable, 249 
strict, 132 
total, 7 

function space of cpo's, 128 
function type, 

eager, 251 

lazy, 278 
functional language, 251, 295 

eager, 183, 251 
lazy, 200, 278 

G 

gcd, 33, 96 
glb,74 
Godel number, 341 
Godel's beta predicate, 101, 110 

Index 

Godel's Incompleteness Theorem, 99, 110, 343 
greatest common divisor (gcd), 33 
greatest lower bound, 74 
guarded commands, 298, 335 

H 

halting problem, 342 
Haskell, 251 
Hennessy-Milner logic, 316 
Hilbert's Tenth Problem, 347 
Hoare logic, 89, 97 
Hoare rules, 77, 89 

completeness, 91, 99 
relative completeness, 99, 100 
soundness, 91 

HOL,93 

I 

IMP, 11 
checkable, 338 
computable, 337 
decidable, 338 
denotational semantics, 60 
evaluation rules, 14, 17 
execution rules, 20 
syntax, 11 

imperative language, 11 
inclusive in each argument separately, 171 
inclusive predicates, 167 

constructions, 
logical operations, 169 
substitution, 168 

inclusive properties, 166 
constructions, 
finite unions, 169 
function space, 171 
intersections, 169 
inverse image, 168 
lifting, 171 
products, 170 
sum, 171 

incompleteness, 337 
induction, 27 



Index 

inductive definition, 41, 54 
information system, 223 

consistency relation, 226 
constructions, 236 
lifted function space, 243 
lifting, 237 
product, 241 
sums, 239 

cpo of information systems, 233 
definition, 226 
entailment relation, 226 
tokens, 226 

interpretation, 84 
invariant, 78, 90 
isomorphism, 124 

K 

Knaster-Tarski Theorem, 74, 322 

L 

lambda calculus, 296 
eager, 267 
equational theory, 269 

eager typed, 183 
denotational semantics, 188 
operational semantics 186 

lazy,290 ' 
equational theory, 291 

lazy typed, 200 
denotational semantics, 203 
operational semantics, 201 

lambda notation, 7 
lazy evaluation, 183 
lazy language, 

recursive types, 278 
lazy lists, 121. 287 
lazy natural numbers, 279, 286 
LCF, 93, 139 
least common multiple, 84 
least upper bound (lub), 69 
let-notation, 132 
lifting of cpo's, 131 
lists, 179, 224, 254, 256 

append, 179 
cons, 179 
lazy, 287 
of integers, 179 

local model checking, 325, 327 
location, 11, 39, 48 
logical operations, 1 
logical relation, 217 

eager, 193, 263 
lazy, 205 

lower bound, 74 
lub,69 . 

M 

mathematical induction, 27 
Matijasevic Theorem, 351 
Matijasevic's Theorem, 347 
metavariables, 11 
Miranda, 251 
modal logic, 316 
modal mu-calculus, 321 
modal nu-calculus, 321 
model checking, 325 

local, 325 
monotonic function, 120 
mu-calculus, 321, 335 

N 

natural semantics, 16, 26 
Noetherian induction, 32 
nondeterminism, 297 
nu-calculus, 321, 335 

o 

observation, 215 
Occam, 307, 335 
omega chain, 70 
operational semantics 11 

CCS, 309 ' 
communicating processes, 303 
guarded commands, 298 
higher types, 
eager, 186 
lazy, 201 

IMP, 13 
pure CCS, 313 
REC, 
call-by-name, 153 
call-by-value, 143 

recursive types, 
eager, 255 
lazy, 278 

shared-variable communication, 297 
operator on sets, 

least fixed point. 59 
operators on sets, 52 

continuous, 54 
fixed points, 52 
increasing, 54 
monotonic, 52 

order-monic, 170 
Orwell, 251 

359 



360 

p 

parallel composition, 303 
parallelism, 297 
Park induction, 163 
part.ial correctness, 

proof rules, 89 
partial correctness assertion, 79 

annotated, 113 
partial correctness predicate, 115 
partial order, 69 
partial recursive function, 337 
Petri nets, 336 
Plotkin powerdomain, 249 
polynomial programming, 348 
ports, 308 
powerdomain, 249, 336 
predicate calculus, 81 
predicate transformer, 115 
predomain, 

Scott, 230 
predomains, 70, 249 
product of cpo's, 125 
product type, 

eager, 251 
lazy, 278 

Q 

quantifiers, 

R 

REe,141 
call-by-name, 
denotational semantics, 154 
operational semantics, 153 

call-by-value, 
denotational semantics, 144 
operational semantics, 143 
semantics equivalent, 149 

syntax, 141 
recursion equations, 141 
recursive function, 337 
recursive set, 338 
recursive types, 251, 295 

eager language, 251 
denotational semantics, 257 
operational semantics, 255 
typing rules, 252 

lazy language, 278 
operational semantics, 278 

lazy lists, 287 
lazy natural numbers, 279, 286 

lists, 254, 256 
natural numbers, 253, 256 

recursively enumerable, 338 
relation, 6 

composition, 7 
direct image, 9 
equivalence relation, 9 
identity, 10 
inverse image, 9 
transitive closure, 10 
well-founded, 31 

restriction, 304 
rule, 35 

axiom, 35 
conclusion, 35 
finitary, 35, 71 
instance, 15, 35 
premise, 35 
set defined by rules, 41 

rule induction, 41 
general principle, 41 
special principle, 44 

rules, 
set closed under rules, 42 

Russell's paradox, 3 

s 

Scott closed, 167 
Scott domain, 228 
Scott predomain, 230 
Scott topology, 123 
Scott's fixed-point induction, 166 
sequentiality, 218 
set, 

closed under rules, 42 
defined by rules, 41 
inductively defined, 41 

sets, 2 
constructions, 4 
foundation axiom, 6 
functions, 6 
relations, 6 
Russell's paradox, 3 

SFP objects, 249 
side effects, 26 
size of token, 263 
Standard ML, 251 
state, 13 
state transformer, 115 
stoppered sequences, 121, 224 
streams, 121, 224 
strict extension of a function, 132 
strongest postcondition, 117 
structural induction, 28 

Index 



Index 

structural operational semantics, 16, 26 
subderivation, 35 
substitution, 82, 103, 269 
sum of cpo's, 133 
sum type, 

eager, 251 
lazy, 278 

sum types, 219 
eager, 219 
lazy, 219 

T 

Tarski's Theorem, 74, 322 
TAV System, 335 . 
temporal logic, 336 
tidy command, 337 
transition relations, 21 
transition systems, 21 
truth values, 11 

cpo, 122 
operations, 57 

typable term, 184 
type environment, 258, 281 
type variables, 251, 278 
types, 183 

eager, 251 
function, 
eager, 251 
lazy, 278 

higher, 183 
lazy, 278 
product, 
eager, 251 
lazy, 278 

recursive, 223 
eager, 251 
lazy, 278 

sum, 
eager, 251 
lazy, 278 

typing rules, 185 
typing rules, 252 

u 

undecidability, 337, 339 
universal program, 345 
until operator, 326 
upper bound, 69 

v 

validity, 87 
values, 186 

eager, 188, 258 
lazy, 203, 281 

verification condition, ll2, ll3 
generator, ll5 

w 
weakest liberal precondition, 101 
weakest precondition, 100 
well ordering, 181 
well-founded induction, 31, 174 

principle, 32 
well-founded recursion, 40, 176, 264, 289 
well-founded relation, 

inverse image, 175 
lexicographic product, 175 
product, 175 

while programs, 11 

361 





The MIT Press, with Peter Denning as general consulting editor, publishes computer 
science books in the following series: 

ACL-MIT Press Series in Natural Language Processing 
Aravind K. Joshi, Karen Sparck Jones, and Mark Y. Liberman, editors 

ACM Doctoral Dissertation Award and Distinguished Dissertation Series 

Artificial Intelligence 
Patrick Winston, founding editor 
J. Michael Brady, Daniel G. Bobrow, and Randall Davis, editors 

Charles Babbage Institute Reprint Series for the History of Computing 
Martin Campbell-Kelly, editor 

Computer Systems 
Herb Schwetman, editor 

Explorations with Logo 
E. Paul Goldenberg, editor 

Foundations of Computing 
Michael Garey and Albert Meyer, editors 

History of Computing 
I. Bernard Cohen and William Aspray, editors 

Logic Programming 
Ehud Shapiro, editor; Fernando Pereira, Koichi Furukawa, Jean-Louis Lassez, and David 
H. D. Warren, associate editors 

The MIT Press Electrical Engineering and Computer Science Series 

Research Monographs in Parallel and Distributed Processing 
Christopher Jesshope and David Klappholz, editors 

Scientific and Engineering Computation 
Janusz Kowalik, editor 

Technical Communication and Information Systems 
Edward Barrett, editor 


	Cover
	Foundations of Computing
	The Formal Semantics of Programming Languages: An Introduction
	Copyright
	0262231697

	Contents
	Series foreword
	Preface
	1 Basic set theory�������������������������
	1.1 Logical notation���������������������������
	1.2 Sets���������������
	1.2.1 Sets and properties��������������������������������
	1.2.2 Some important sets��������������������������������
	1.2.3 Constructions on sets����������������������������������
	1.2.4 The axiom of foundation������������������������������������

	1.3 Relations and functions����������������������������������
	1.3.1 Lambda notation����������������������������
	1.3.2 Composing relations and functions����������������������������������������������
	1.3.3 Direct and inverse image of a relation���������������������������������������������������
	1.3.4 Equivalence relations����������������������������������

	1.4 FUrther reading��������������������������

	2 Introduction to operational semantics����������������������������������������������
	2.1 IMP-a simple imperative language�������������������������������������������
	2.2 The evaluation of arithmetic expressions���������������������������������������������������
	2.3 The evaluation of boolean expressions������������������������������������������������
	2.4 The execution of commands������������������������������������
	2.5 A simple proof�������������������������
	2.6 Alternative semantics��������������������������������
	2.7 Further reading

	3 Some principles of induction�������������������������������������
	3.1 Mathematical induction���������������������������������
	3.2 Structural induction�������������������������������
	3.3 Well-founded induction���������������������������������
	3.4 Induction on derivations�����������������������������������
	3.5 Definitions by induction�����������������������������������
	3.6 Further reading��������������������������

	4 Inductive definitions������������������������������
	4.1 Rule induction�������������������������
	4.2 Special rule induction���������������������������������
	4.3 Proof rules for operational semantics������������������������������������������������
	4.3.1 Rule induction for arithmetic expressions������������������������������������������������������
	4.3.2 Rule induction for boolean expressions���������������������������������������������������
	4.3.3 Rule induction for commands����������������������������������������

	4.4 Operators and their least fixed points�������������������������������������������������
	4.5 Further reading��������������������������

	5 The denotational semantics of IMP������������������������������������������
	5.1 Motivation���������������������
	5.2 Denotational semantics���������������������������������
	5.3 Equivalence of the semantics���������������������������������������
	5.4 Complete partial orders and continuous functions�����������������������������������������������������������
	5.5 The Knaster-Tarski Theorem�������������������������������������
	5.6 Further reading��������������������������

	6 The axiomatic semantics of IMP���������������������������������������
	6.1 The idea�������������������
	6.2 The assertion language Assn��������������������������������������
	6.2.1 Free and bound variables�������������������������������������
	6.2.2 Substitution�������������������������

	6.3 Semantics of assertions����������������������������������
	6.4 Proof rules for partial correctness����������������������������������������������
	6.5 Soundness��������������������
	6.6 Using the Hoare rules-an example�������������������������������������������
	6.7 Further reading��������������������������

	7 Completeness of the Hoare rules����������������������������������������
	7.1 Codel's Incompleteness Theorem�����������������������������������������
	7.2 Weakest preconditions and expressiveness���������������������������������������������������
	7.3 Proof of Codel's Theorem�����������������������������������
	7.4 Verification conditions����������������������������������
	7.5 Predicate transformers���������������������������������
	7.6 Further reading��������������������������

	8 Introduction to domain theory��������������������������������������
	8.1 Basic definitions����������������������������
	8.2 Streams-an example�����������������������������
	8.3 Constructions on cpo's���������������������������������
	8.3.1 Discrete cpo's���������������������������
	8.3.2 Finite products����������������������������
	8.3.3 Function space���������������������������
	8.3.4 Lifting��������������������
	8.3.5 Sums�����������������

	8.4 A metalanguage�������������������������
	8.5 Further reading��������������������������

	9 Recursion equations����������������������������
	9.1 The language REC���������������������������
	9.2 Operational semantics of call-by-value�������������������������������������������������
	9.3 Denotational semantics of call-by-value��������������������������������������������������
	9.4 Equivalence of semantics for call-by-value�����������������������������������������������������
	9.5 Operational semantics of call-by-name������������������������������������������������
	9.6 Denotational semantics of call-by-name�������������������������������������������������
	9.7 Equivalence of semantics for call-by-name����������������������������������������������������
	9.8 Local declarations�����������������������������
	9.9 Further reading��������������������������

	10 Techniques for recursion����������������������������������
	10.1 Bekic's Theorem
	10.2 Fixed-point induction���������������������������������
	10.3 Well-founded induction����������������������������������
	10.4 Well-founded recursion����������������������������������
	10.5 An exercise�����������������������
	10.6 Further reading���������������������������

	11 Languages with higher types�������������������������������������
	11.1 An eager language�����������������������������
	11.2 Eager operational semantics���������������������������������������
	11.3 Eager denotational semantics����������������������������������������
	11.4 Agreement of eager semantics����������������������������������������
	11.5 A lazy language���������������������������
	11.6 Lazy operational semantics��������������������������������������
	11.7 Lazy denotational semantics���������������������������������������
	11.8 Agreement of lazy semantics���������������������������������������
	11.9 Fixed-point operators���������������������������������
	11.10 Observations and full abstraction����������������������������������������������
	11.11 Sums�����������������
	11.12 Further reading����������������������������

	12 Information systems�����������������������������
	12.1 Recursive types���������������������������
	12.2 Information systems�������������������������������
	12.3 Closed families and Scott predomains������������������������������������������������
	12.4 A cpo of information systems����������������������������������������
	12.5 Constructions�������������������������
	12.5.1 Lifting���������������������
	12.5.2 Sums������������������
	12.5.3 Product���������������������
	12.5.4 Lifted function space�����������������������������������

	12.6 Further reading���������������������������

	13 Recursive types�������������������������
	13.1 An eager language�����������������������������
	13.2 Eager operational semantics���������������������������������������
	13.3 Eager denotational semantics����������������������������������������
	13.4 Adequacy of eager semantics���������������������������������������
	13.5 The eager A-calculus��������������������������������
	13.5.1 Equational theory�������������������������������
	13.5.2 A fixed-point operator������������������������������������

	13.6 A lazy language���������������������������
	13.7 Lazy operational semantics��������������������������������������
	13.8 Lazy denotational semantics���������������������������������������
	13.9 Adequacy of lazy semantics��������������������������������������
	13.10 The lazy λ-calculus
	13.10.1 Equational theory��������������������������������
	13.10.2 A fixed-point operator�������������������������������������

	13.11 Further reading����������������������������

	14 Nondeterminism and parallelism
	14.1 Introduction������������������������
	14.2 Guarded commands����������������������������
	14.3 Communicating processes�����������������������������������
	14.4 Milner's CCS������������������������
	14.5 Pure CCS��������������������
	14.6 A specification language������������������������������������
	14.7 The modal v-calculus��������������������������������
	14.8 Local model checking��������������������������������
	14.9 Further reading���������������������������

	A Incompleteness and undecidability������������������������������������������
	A.1 Computability
	A.2 Undecidability
	A.3 Godel's incompleteness theorem
	A.4 A universal program
	A.5 Matijasevic's Theorem
	A.6 Further reading

	Bibliography�������������������
	Index������������

