

Foundations of Computing
Michael Garey and Albert Meyer, editors

Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graph and Other
Networks, Frank Thomson Leighton, 1983

Equational Logic as a Programming Language, Michael J. 0 'Donnell, 1985

General Theory of Deductive Systems and Its Applications, S. Yu Maslov, 1987

Resource Allocation Problems: Algorithmic Approaches, Toshihide Ibaraki and Naoki
Katoh, 1988

Algebraic Theory of Processes, Matthew Hennessy, 1988

PX: A Computational Logic, Susumu Hayashi and Hiroshi Nakano, 1989

The Stable Marriage Problem: Structure and Algorithms, Dan Gusfield and Robert
Irving, 1989

Realistic Compiler Generation, Peter Lee, 1989

Single-Layer Wire Routing and Compaction,F. Miller Maley, 1990

Basic Category Theory for Computer Scientists, Benjamin C. Pierce, 1991

Categories, Types, and Structures: An Introduction to Category Theory for the Working
Computer Scientist, Andrea Asperti and Giuseppe Longo, 1991

Semantics of Programming Languages: Structures and Techniques, Carl A. Gunter, 1992

The Formal Semantics of Programming Languages: An Introduction, Glynn Winskel,
1993

The Formal Semantics of Programming Languages
An Introduction

Glynn Winskel

The MIT Press
Cambridge, Massachusetts
London, England

Second printing, 1994

©1993 Massachusetts Institute of Technology

All rights reserved. No part ofthis book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and
retrieval) without permission in writing from the publisher.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Winskel, G. (Glynn)
The formal semantics of programming languages : an introduction

Glynn Winskel.
p. cm. - (Foundations of computing)

Includes bibliographical references and index.
ISBN 0-262-23169-7
1. Programming languages (Electronic computers)-Semantics.

1. Title. II. Series.
QA76.7.W555 1993
005.13'1--dc20 92-36718

CIP

To Kirsten, Sofie and Stine

Contents

Series foreword xiii

Preface xv

1 Basic set theory 1

1.1 Logical notation 1

1.2 Sets 2

1.2.1 Sets and properties 3
1.2.2 Some important sets 3
1.2.3 Constructions on sets 4
1.2.4 The axiom of foundation 6

1.3 Relations and functions 6

1.3.1 Lambda notation 7
1.3.2 Composing relations and functions 7
1.3.3 Direct and inverse image of a relation 9
1.3.4 Equivalence relations 9

1.4 FUrther reading 10

2 Introduction to operational semantics 11

2.1 IMP-a simple imperative language 11

2.2 The evaluation of arithmetic expressions 13

2.3 The evaluation of boolean expressions 17

2.4 The execution of commands 19

2.5 A simple proof 20

2.6 Alternative semantics 24

2.7 FUrther reading 26

3 Some principles of induction 27

3.1 Mathematical induction 27

3.2 Structural induction 28

3.3 Well-founded induction 31

3.4 Induction on derivations 35

3.5 Definitions by induction 39

viii Contents

3.6 Further reading 40

4 Inductive definitions 41

4.1 Rule induction 41

4.2 Special rule induction 44

4.3 Proof rules for operational semantics 45

4.3.1 Rule induction for arithmetic expressions 45

4.3.2 Rule induction for boolean expressions 46

4.3.3 Rule induction for commands 47

4.4 Operators and their least fixed points 52

4.5 Further reading 54

5 The denotational semantics of IMP 55

5.1 Motivation 55

5.2 Denotational semantics 56

5.3 Equivalence of the semantics 61

5.4 Complete partial orders and continuous functions 68

5.5 The Knaster-Tarski Theorem 74

5.6 Further reading 75

6 The axiomatic semantics of IMP 77

6.1 The idea 77

6.2 The assertion language Assn 80

6.2.1 Free and bound variables 81

6.2.2 Substitution 82

6.3 Semantics of assertions 84

6.4 Proof rules for partial correctness 89

6.5 Soundness 91

6.6 Using the Hoare rules-an example 93

6.7 Further reading 96

7 Completeness of the Hoare rules 99

Contents ix

7.1 Codel's Incompleteness Theorem 99

7.2 Weakest preconditions and expressiveness 100

7.3 Proof of Codel's Theorem 110

7.4 Verification conditions 112

7.5 Predicate transformers 115

7.6 Further reading 117

8 Introduction to domain theory 119

8.1 Basic definitions 119

8.2 Streams-an example 121

8.3 Constructions on cpo's 123

8.3.1 Discrete cpo's 124

8.3.2 Finite products 125

8.3.3 Function space 128

8.3.4 Lifting 131

8.3.5 Sums 133

8.4 A metalanguage 135

8.5 Further reading 139

9 Recursion equations 141

9.1 The language REC 141

9.2 Operational semantics of call-by-value 143

9.3 Denotational semantics of call-by-value 144

9.4 Equivalence of semantics for call-by-value 149

9.5 Operational semantics of call-by-name 153

9.6 Denotational semantics of call-by-name 154

9.7 Equivalence of semantics for call-by-name 157

9.8 Local declarations 161

9.9 Further reading 162

10 Techniques for recursion 163

10.1 BekiC's Theorem 163

x Contents

10.2 Fixed-point induction 166

10.3 Well-founded induction 174

10.4 Well-founded recursion 176

10.5 An exercise 179

10.6 Further reading 181

11 Languages with higher types 183

11.1 An eager language 183

11.2 Eager operational semantics 186

11.3 Eager denotational semantics 188

11.4 Agreement of eager semantics 190

11.5 A lazy language 200

11.6 Lazy operational semantics 201

11.7 Lazy denotational semantics 203

11.8 Agreement of lazy semantics 204

11.9 Fixed-point operators 209

11.10 Observations and full abstraction 215

11.11 Sums 219

11.12 Further reading 221

12 Information systems 223

12.1 Recursive types 223

12.2 Information systems 225

12.3 Closed families and Scott predomains 228

12.4 A cpo of information systems 233

12.5 Constructions 236

12.5.1 Lifting 237

12.5.2 Sums 239

12.5.3 Product 241

12.5.4 Lifted function space 243

12.6 Further reading 249

Contents xi

13 Recursive types 251

13.1 An eager language 251

13.2 Eager operational semantics 255

13.3 Eager denotational semantics 257

13.4 Adequacy of eager semantics 262

13.5 The eager A-calculus 267

13.5.1 Equational theory 269

13.5.2 A fixed-point operator 272

13.6 A lazy language 278

13.7 Lazy operational semantics 278

13.8 Lazy denotational semantics 281

13.9 Adequacy of lazy semantics 288

13.10 The lazy A-calculus 290

13.10.1 Equational theory 291

13.10.2 A fixed-point operator 292

13.11 Further reading 295

14 N ondeterminism and parallelism 297

14.1 Introduction 297

14.2 Guarded commands 298

14.3 Communicating processes 303

14.4 Milner's CCS 308

14.5 Pure CCS 311

14.6 A specification language 316

14.7 The modal v-calculus 321

14.8 Local model checking 327

14.9 Further reading 335

A Incompleteness and undecidability 337

Bibliography 353

Index 357

Series foreword

Theoretical computer science has now undergone several decades of development. The
"classical" topics of automata theory, formal languages, and computational complexity
have become firmly established, and their importance to other theoretical work and to
practice is widely recognized. Stimulated by technological advances, theoreticians have
been rapidly expanding the areas under study, and the time delay between theoreti
cal progress and its practical impact has been decreasing dramatically. Much publicity
has been given recently to breakthroughs in cryptography and linear programming, and
steady progress is being made on programming language semantics, computational ge
ometry, and efficient data structures. Newer, more speculative, areas of study include
relational databases, VLSI theory, and parallel and distributed computation. As this list
of topics continues expanding, it is becoming more and more difficult to stay abreast
of the progress that is being made and increasingly important that the most significant
work be distilled and communicated in a manner that will facilitate further research and
application of this work. By publishing comprehensive books and specialized monographs
on the theoretical aspects of computer science, the series on Foundations of Computing
provides a forum in which important research topics can be presented in their entirety
and placed in perspective for researchers, students, and practitioners alike.

Michael R. Garey
Albert R. Meyer

Preface

In giving a formal semantics to a programming language we are concerned with building
a mathematical model. Its purpose is to serve as a basis for understanding and reasoning
about how programs behave. Not only is a mathematical model useful for various kinds
of analysis and verification, but also, at a more fundamental level, because simply the
activity of trying to define the meaning of program constructions precisely can reveal
all kinds of subtleties of which it is important to be aware. This book introduces the
mathematics, techniques and concepts on which formal semantics rests.

For historical reasons the semantics of programming languages is often viewed as con
sisting of three strands:

Operational semantics describes the meaning of a programming language by spec
ifying how it executes on an abstract machine. We concentrate on the method
advocated by Gordon Plotkin in his lectures at Aarhus on "structural operational
semantics" in which evaluation and execution relations are specified by rules in a
way directed by the syntax.

Denotational semantics is a technique for defining the meaning of programming
languages pioneered by Christopher Strachey and provided with a mathematical
foundation by Dana Scott. At one time called "mathematical semantics," it uses
the more abstract mathematical concepts of complete partial orders, continuous
functions and least fixed points.

Axiomatic semantics tries to fix the meaning of a programming contruct by giv
ing proof rules for it within a program logic. The chief names associated with
this approach are that of R.W.Floyd and C.A.R.Hoare. Thus axiomatic semantics
emphasises proof of correctness right from the start.

It would however be wrong to view these three styles as in opposition to each other. They
each have their uses. A clear operational semantics is very helpful in implementation.
Axiomatic semantics for special kinds of languages can give strikingly elegant proof sys
tems, useful in developing as well as verifying programs. Denotational semantics provides
the deepest and most widely applicable techniques, underpinned by a rich mathematical
theory. Indeed, the different styles of semantics are highly dependent on eachother. For
example, showing that the proof rules of an axiomatic semantics are correct relies on an
underlying denotational or operational semantics. To show an implementation correct,
as judged against a denotational semantics, requires a proof that the operational and
denotational semantics agree. And, in arguing about an operational semantics it can
be an enormous help to use a denotational semantics, which often has the advantage of
abstracting away from unimportant, implementation details, as well as providing higher
level concepts with which to understand computational behaviour. Research of the last

xvi Preface

few years promises a unification of the different approaches, an approach in which we
can hope to see denotational, operational and logics of programs developed hand-in-hand.
An aim of this book has been to show how operational and denotational semantics fit
together.

The techniques used in semantics lean heavily on mathematical logic. They are not
always easily accessible to a student of computer science or mathematics, without a good
background in logic. There is an attempt here to present them in a thorough and yet as
elementary a way as possible. For instance, a presentation of operational semantics leads
to a treatment of inductive definitions, and techniques for reasoning about operational
semantics, and this in turn places us in a good position to take the step of abstraction
to complete partial orders and continuous functions-the foundation of denotational
semantics. It is hoped that this passage from finitary rules of the operational semantics,
to continuous operators on sets, to continuous functions is also a help in understanding
why continuity is to be expected of computable functions. Various induction principles
are treated, including a general version of well-founded recursion, which is important
for defining functions on a set with a well-founded relation. In the more advanced work
on languages with recursive types the use of information systems not only provides an
elementary way of solving recursive domain equations, but also yields techniques for
relating operational and denotational semantics.

Book description: This is a book based on lectures given at Cambridge and Aarhus
Universities. It is introductory and is primarily addressed to undergraduate and graduate
students in Computer Science and Mathematics beginning a study of the methods used
to formalise and reason about programming languages. It provides the mathematical
background necessary for the reader to invent, formalise and justify rules with which to
reason about a variety of programming languages. Although the treatment is elementary,
several of the topics covered are drawn from recent research. The book contains many
exercises ranging from the simple to mini projects.

Starting with basic set theory, structural operational semantics (as advocated by
Plotkin) is introduced as a means to define the meaning of programming languages along
with the basic proof techniques to accompany such definitions. Denotational and ax
iomatic semantics are illustrated on a simple language of while-programs, and full proofs
are given of the equivalence of the operational and denotational semantics and soundness
and relative completeness of the axiomatic semantics. A proof of G6del's incompleteness
theorem is included. It emphasises the impossibility of ever achieving a fully complete
axiomatic semantics. This is backed up by an appendix providing an introduction to the
theory of computability based on while programs. After domain theory, the foundations
of denotational semantics is presented, and the semantics and methods of proof for sev-

Preface xvii

eral functional languages are treated. The simplest language is that of recursion equations
with both call-by-value and call-by-name evaluation. This work is extended to languages
with higher and recursive types, which includes a treatment of the eager and lazy A
calculi. Throughout, the relationship between denotational and operational semantics
is stressed, and proofs of the correspondence between the operational and denotational
semantics are provided. The treatment of recursive types-one of the more advanced
parts of the book-relies on the use of information systems to represent domains. The
book concludes with a chapter on parallel programming languages, accompanied by a
discussion of methods for verifying nondeterministic and parallel programs.

How to use this book

The dependencies between the chapters are indicated below. It is hoped that this is a
help in reading, reference and designing lecture courses. For example, an introductory
course on "Logic and computation" could be based on chapters 1 to 7 with additional
use of the Appendix. The Appendix covers computability, on the concepts of which
Chapter 7 depends-it could be bypassed by readers with a prior knowledge of this topic.
Instead, a mini course on "Introductory semantics" might be built on chapters 1 to 5,
perhaps supplemented by 14. The chapters 8, 10 and 12 could form a primer in "Domain
theory"-this would require a very occasional and easy reference to Chapter 5. Chapters
8-13 provide "A mathematical foundation for functional programming." Chapter 14,
a survey of "Nondeterminism and parallelism," is fairly self-contained relying, in the
main, just on Chapter 2; however, its discussion of model checking makes use of the
Knaster-Tarski Theorem, of which a proof can be found in Chapter 5.

Some of the exercises include small implementation tasks. In the course at Aarhus
it was found very helpful to use Prolog, for example to enliven the early treatment of
the operational semantics. The use of Standard ML or Miranda is perhaps even more
appropriate, given the treatment of such languages in the later chapters.

Acknowledgements

Right at the start I should acknowledge the foundational work of Dana Scott and Gordon
Plotkin as having a basic influence on this book. As will be clear from reading the book,
it has been influenced a great deal by Gordon Plotkin's work, especially by his notes for
lectures on complete partial orders and denotational semantics at Edinburgh University.

At Cambridge, comments of Tom Melham, Ken Moody, Larry Paulson and Andy
Pitts have been very helpful (in particular, Andy's lecture notes and comments on Eu
genio Moggi's work have been incorporated into my presentation of domain theory). At
Aarhus, Mogens Nielsen provided valuable feedback and encouragement from a course

xviii Preface

he gave from an early draft. Recommendations of Erik Meineche Schmidt improved the
proofs of relative completeness and Gi:idel's theorem. Numerous students at Aarhus have
supplied corrections and suggestions. I especially thank Henrik Reif Andersen, Torben
Brauner, Christian Clausen, Allan Cheng, Urban Engberg, Torben Amtoft Hansen, Ole
Hougaard and Jakob Seligman. Added thanks are due to Bettina Blaaberg S0rensen for
her prompt reading and suggestions at various stages in the preparation of this book. I'm
grateful to Douglas Gun for his conscientious criticism of the chapters on domain theory.
Kim Guldstrand Larsen suggested improvements to the chapter on nondeterminism and
concurrency.

In the fall of '91, Albert Meyer gave a course based on this book. He, with instructors
A.Lent, M.Sheldon, and C.Yoder, very kindly provided a wealth of advice from notifi
cation of typos to restructuring of proofs. In addition, Albert kindly provided his notes
on computability on which the appendix is based. I thank them and hope they are not
disappointed with the outcome.

My thanks go to Karen M0ller for help with the typing. Finally, I express my gratitude
to MIT Press, especially Terry Ehling, for their patience.

The chapter dependencies:

1 Basic set theory

2 Introduction to operational semantics

3 Some principles of induction

4 Inductive definitions

5 The denotational semantics of IMP

6 The axiomatic semantics of IMP

7 Completeness of the Hoare rules

8 Introduction to domain theory

9 Recursion equations

10 Techniques for recursion

11 Languages with higher types

12 Information systems

13 Recursive types

14 Nondeterminism and parallelism

A Incompleteness and undecidability

The Formal Semantics of Programming Languages

1 Basic set theory

This chapter presents the informal, logical and set-theoretic notation and concepts we
shall use to write down and reason about our ideas. It simply presents an extension
of our everyday language, extended to talk about mathematical objects like sets; it is
not to be confused with the formal languages of programming languages or the formal
assertions about them that we'll encounter later.

This chapter is meant as a review and for future reference. It is suggested that on a
first reading it is read fairly quickly, without attempting to absorb it fully.

1.1 Logical notation

We shall use some informal logical notation in order to stop our mathematical statements
getting out of hand. For statements (or assertions) A and B, we shall commonly use
abbreviations like:

• A & B for (A and B), the conjunction of A and B,

• A=> B for (A implies B), which means ~if A then B),

• A <===> B to mean (A iff B), which abbreviates (A if and only if B), and expresses
the logical equivalence of A and B.

We shall also make statements by forming disjunctions (A or B), with the self-evident
meaning, and negations (not A), sometimes written -,A, which is true iff A is false. There
is a tradition to write for instance 7 I- 5 instead of -,(7 < 5), which reflects what we
generally say: "7 is not less than 5" rather than "not 7 is less than 5."

The statements may contain variables (or unknowns, or place-holders), as in

(x :::; 3) & (y :::; 7)

which is true when the variables x and y over integers stand for integers less than or
equal to 3 and 7 respectively, and false otherwise. A statement like P(x, y), which
involves variables x, y, is called a predicate (or property, or relation, or condition) and it
only becomes true or false when the pair x, y stand for particular things.

We use logical quantifiers 3, read "there exists", and V, read" for all". Then you can
read assertions like

3x. P(x)

as abbreviating "for some x, P(x)" or "there exists x such that P(x)", and

Vx. P(x)

2 Chapter 1

as abbreviating" for all x, P(x)" or "for any x, P(x)". The statement

3x,y,···,z. P(x,y,···,z)

abbreviates
3x3y ... 3z P(x y ... z) . ") ,

and
"Ix, y,' .. , z. P(x, y, ... , z)

abbreviates
VxVy· .. Vz. P(x, y, ... , z).

Later, we often wish to specify a set X over which a quantifier ranges. Then one
writes "Ix E X. P(x) instead of "Ix. x E X =* P(x), and 3x E X. P(x) instead of
3x. x E X & P(x).

There is another useful notation associated with quantifiers. Occasionally one wants
to say not just that there exists some x satisfying a property P(x) but also that x is the
unique object satisfying P(x). It is traditional to write

3!x. P(x)

as an abbreviation for

(3x. P(x)) & (Vy, z. P(y) & P(z) =* y = z)

which means that there is some x satisfying the property P and also that if any y, z

both satisfy the property P they are equal. This expresses that there exists a unique x

satisfying P(x).

1.2 Sets

Intuitively, a set is an (unordered) collection of objects, called its elements or members.
We write a E X when a is an element of the set X. Sometimes we write e.g. {a, b, c, ... }
for the set of elements a, b, c, .. '.
A set X is said to be a subset of a set Y, written X ~ Y, iff every element of X is an
element of Y, i. e.

X ~ Y -¢=} Vz E X. z E Y.

A set is determined solely by its elements in the sense that two sets are equal iff they
have the same elements. So, sets X and Yare equal, written X = Y, iff every element
of A is a element of B and vice versa. This furnishes a method for showing two sets X

and Yare equal and, of course, is equivalent to showing X ~ Y and Y ~ X.

Basic set theory 3

1.2.1 Sets and properties

Sometimes a set is determined by a property, in the sense that the set has as elements
precisely those which satisfy the property. Then we write

x = {x I P(x)},

meaning the set X has as elements precisely all those x for which P(x) is true.
When set theory was being invented it was thought, first of all, that any property P(x)

determined a set
{x I P(x)}.

It came as a shock when Bertrand Russell realised that assuming the existence of certain
sets described in this way gave rise to contradictions.

Russell's paradox is really the demonstration that a contradiction arises from the liberal
way of constructing sets above. It proceeds as follows: consider the property

xf/:.x

a way of writing "x is not an element of x". If we assume that properties determine sets,
just as described, we can form the set

R={xlx~x}.

Either R E R or not. If so, i.e. R E R, then in order for R to qualify as an element of
R, from the definition of R, we deduce R rJ. R. So we end up asserting both something
and is negation-a contradiction. If, on the other hand, R rJ. R then from the definition
of R we see R E R-a contradiction again. Either R E R or R rJ. R lands us in trouble.

We need to have some way which stops us from considering things like R as a sets. In
general terms, the solution is to discipline the way in which sets are constructed, so that
starting from certain given sets, new sets can only be formed when they are constructed
by using particular, safe ways from old sets. We shall not be formal about it, but state
those sets we assume to exist right from the start and methods we allow for constructing
new sets. Provided these are followed we avoid trouble like Russell's paradox and at the
same time have a rich enough world of sets to support most mathematics.

1.2.2 Some important sets

We take the existence of the empty set for granted, along with certain sets of basic
elements.
Write 0 for the null, or empty set, and
w for the set of natural numbers 0,1,2,

4 Chapter 1

We shall also take sets of symbols like

{ "a" "b" "c" "d" "e" ... "z"} , , , , , ,

for granted, although we could, alternatively have represented them as particular num
bers, for example. The equality relation on a set of symbols is that given by syntactic
identity; two symbols are equal iff they are the same.

1.2.3 Constructions on sets

We shall take for granted certain operations on sets which enable us to construct sets
from given sets.

Comprehension: If X is a set and P(x) is a property, we can form the set

{x E X I P(x)}

which is another way of writing

{x I x E X & P(x)}.

This is the subset of X consisting of all elements x of X which satisfy P(x).

Sometimes we'll use a further abbreviation. Suppose e(x I, ... ,xn) is some expression
which for particular elements Xl E Xl,'" Xn E Xn yields a particular element and
P(XI' ... ,xn) is a property of such Xl, ... ,Xn- We use

to abbreviate

For example,

{2m + 1 I mEw & m > I}

is the set of odd numbers greater than 3.

Powerset: We can form a set consisting of the set of all subsets of a set, the so-called
powerset:

Pow(X) = {Y I Y ~ X}.

Indexed sets: Suppose I is a set and that for any i E I there is a unique object Xi,

maybe a set itself. Then

{Xi liE I}

is a set. The elements Xi are said to be indexed by the elements i E I.

Basic set theory 5

Union: The set consisting of the union of two sets has as elements those elements
which are either elements of one or the other set. It is written and described by:

Xu Y = {a I a E X or a E Y}.

Big union: Let X be a set of sets. Their union

Ux = {a I 3x E X. a E x}

is a set. When X = {Xi liE I} for some indexing set I we often write UX as UiE1 Xi.

Intersection: Elements are in the intersection X nY, of two sets X and Y, iff they
are in both sets, i. e.

X n Y = {a I a E X & a E Y}.

Big intersection: Let X be a nonempty set of sets. Then

nX = {a II::/x E X. a EX}

is a set called its intersection. When X = {X iii E I} for a non empty indexing set I we

often write n X as niEI Xi·

Product: Given two elements a, b we can form a set (a, b) which is their ordered pair.
To be definite we can take the ordered pair (a, b) to be the set {{a}, {a, b} }-this is
one particular way of coding the idea of ordered pair as a set. As one would hope, two
ordered pairs, represented in this way, are equal iff their first components are equal and
their second components are equal too, i.e.

(a,b) = (a',b') -¢=} a = a' & b = b'.

In proving properties of ordered pairs this property should be sufficient irrespective of
the way in which we have represented ordered pairs as sets.

Exercise 1.1 Prove the property above holds of the suggested representation of ordered
pairs. (Don't expect it to be too easy! Consult [39], page 36, or [47], page 23, in case of
difficulty.) D

For sets X and Y, their product is the set

X x Y = {(a, b) I a E X & bEY},

the set of ordered pairs of elements with the first from X and the second from Y.
A triple (a, b, c) is the set (a, (b, c)), and the product X x Y x Z is the set of triples

{(x, y, z) I x E X & y E Y & Z E Z}. More generally XIX X 2 X ... X Xn consists of the
set ofn-tuples (Xl,X2, ... ,Xn) = (Xl, (X2, (X3,"')))'

6 Chapter 1

Disjoint union: Frequently we want to join sets together but, in a way which, unlike
union, does not identify the same element when it comes from different sets. We do this
by making copies of the elements so that when they are copies from different sets they
are forced to be distinct.

Xo ttl Xl ttl··· ttl Xn = ({O} x Xo) U ({I} x Xd u··· U ({n} x Xn).

In particular, for X ttl Y the copies ({O} x X) and ({I} x Y) have to be disjoint, in the
sense that

({O} x X) n ({I} x Y) = 0,
because any common element would be a pair with first element both equal to 0 and 1,
clearly impossible.

Set difference: We can subtract one set Y from another X, an operation which re
moves all elements from X which are also in Y.

X \ Y = {x I x E X & x ~ Y}.

1.2.4 The axiom of foundation

A set is built-up starting from basic sets by using the constructions above. We remark
that a property of sets, called the axiom of foundation, follows from our informal un
derstanding of sets and how we can construct them. Consider an element b I of a set boo
lt is either a basic element, like an integer or a symbol, or a set. If b l is a set then it
must have been constructed from sets which have themselves been constructed earlier.
Intuitively, we expect any chain of memberships

... bn E ... E bl E bo

to end in some bn which is some basic element or the empty set. The statement that any
such descending chain of memberships must be finite is called the axiom of foundation,
and is an assumption generally made in set theory. Notice the axiom implies that no set
X can be a member of itself as, if this were so, we'd get the infinite descending chain

···X E··· E X E X,

-a contradiction.

1.3 Relations and functions

A binary relation between X and Y is an element of Pow(X x Y), and so a subset of
pairs in the relation. When R is a relation R ~ X x Y we shall often write xRy for
(x,y) E R.

Basic set theory 7

A partial function from X to Y is a relation f ~ X x Y for which

'v'x,y,y'. (x,y) E f & (x,y') E f =? Y = y'.

We use the notation f(x) = y when there is a y such that (x,y) E f and then say f(x)
is defined, and otherwise say f(x) is undefined. Sometimes we write f : x t--> y, or just
x t--> y when f is understood, for y = f(x). Occasionally we write just fx, without the
brackets, for f(x).

A (total) function from X to Y is a partial function from X to Y such that for all
x E X there is some y E Y such that f(x) = y. Although total functions are a special
kind of partial function it is traditional to understand something described as simply a
function to be a total function, so we always say explicitly when a function is partial.

Note that relations and functions are also sets.
To stress the fact that we are thinking of a partial function f from X to Y as taking

an element of X and yielding an element of Y we generally write it as f : X ~ Y. To
indicate that a function f from X to Y is total we write f : X --> Y.

We write (X ~ Y) for the set of all partial functions from X to Y, and (X --> Y) for
the set of all total functions.

Exercise 1.2 Why are we justified in calling (X ~ Y) and (X --> Y) sets when X, Y
are sets? D

1.3.1 Lambda notation

It is sometimes useful to use the lambda notation (or A-notation) to describe functions. It
provides a way of refering to functions without having to name them. Suppose f : X --> Y
is a function which for any element x in X gives a value f(x) which is exactly described
by expression e, probably involving x. Then we sometime write

AX E x'e

for the function f. Thus
AX E x'e = {(x,e) I x EX},

so AX E X.e is just an abbreviation for the set of input-output values determined by the
expression e. For example, AX E w.(x + 1) is the successor function.

1.3.2 Composing relations and functions

We compose relations, and so partial and total functions, R between X and Y and S
between Y and Z by defining their composition, a relation between X and Z, by

SoR=def {(x,z) E X x Z 13y E Y. (x,y) E R & (y,z) E S}.

8 Chapter 1

Thus for functions f : X --+ Y and g : Y --+ Z their composition is the function go f : X --+

Z. Each set X is associated with an identity function Id x where Idx = {(x, x) I x EX}.

Exercise 1.3 Let R ~ X x Y, S ~ Y x Z and T ~ Z x W. Convince yourself that
To (S 0 R) = (T 0 S) 0 R (i. e. composition is associative) and that R 0 Id x = I dy 0 R = R
(i. e. identity functions act like identities with respect to composition). 0

A function f : X --+ Y has an inverse g : Y --+ X iff g(f(x)) = x for all x E X, and
f(g(y)) = y for all y E Y. Then the sets X and Yare said to be in 1-1 correspondence.
(Note a function with an inverse has to be total.)

Any set in 1-1 correspondence with a subset of natural numbers w is said to be count
able.

Exercise 1.4 Let X and Y be sets. Show there is a 1-1 correspondence between the set
of functions (X --+ Pow(Y)) and the set of relations Pow(X x Y). 0

Cantor's diagonal argument
Late last century, Georg Cantor, one of the pioneers in set theory, invented a method

of argument, the gist of which reappears frequently in the theory of computation. Cantor
used a diagonal argument to show that X and Pow (X) are never in 1-1 correspondence
for any set X. This fact is intuitively clear for finite sets but also holds for infinite sets.
He argued by reductio ad absurdum, i. e., by showing that supposing otherwise led to a
contradiction:

Suppose a set X is in 1-1 correspondence with its powerset Pow(X). Let e : X --+

Pow(X) be the 1-1 correspondence. Form the set

Y = {x E X I x ~ e(x)}

which is clearly a subset of X and therefore in correspondence with an element y E X.
That is e(y) = Y. Either y E Y or y ~ Y. But both possibilities are absurd. For, if
y E Y then y E e(y) so y ~ Y, while, if y ~ Y then y ~ e(y) so y E Y. We conclude
that our first supposition must be false, so there is no set in 1-1 correspondence with its
powerset.

Cantor's argument is reminiscient of Russell's paradox. But whereas the contradiction
in Russell's paradox arises out of a fundamental, mistaken assumption about how to
construct sets, the contradiction in Cantor's argument comes from denying the fact one
wishes to prove.

To see why it is called a diagonal argument, imagine that the set X, which we suppose is
in 1-1 correspendence with Pow(X), can be enumerated as Xo, Xl, X2,···, x n ,···. Imagine
we draw a table to represent the 1-1 correspondence e along the following lines. In the

Basic set t.heory 9

ith row and jth column is placed 1 if Xi E 8(xj) and 0 otherwise. The table below, for
instance, represents a situation where Xo rJ. 8(xo), Xl E 8(xo) and Xi E 8(Xj).

8(xo) 8(xd 8(X2) 8(xj)

Xo 0 1 1 1

Xl 1 1 1 0
X2 0 0 1 0

Xi 0 1 0 1

The set Y which plays a key role in Cantor's argument is defined by running down the
diagonal of the table interchanging O's and 1 's in the sense that X n is put in the set iff
the nth entry along the diagonal is a O.

Exercise 1.5 Show for any sets X and Y, with Y containing at least two elements, that
there cannot be a 1-1 correspondence between X and the set of functions (X --> Y). D

1.3.3 Direct and inverse image of a relation

We extend relations, and thus partial and total functions, R : X x Y to functions on
subsets by taking

RA = {y E Y I 3x E A. (x, y) E R}

for A ~ X. The set RA is called the direct image of A under R. We define

R-IB={xEX 13yEB. (x,y)ER}

for B ~ Y. The set R- I B is called the inverse image of B under R. Of course, the same
notions of direct and inverse image also apply in the special case where the relation is a
function.

1.3.4 Equivalence relations

An equivalence relation is a relation R ~ X x X on a set X which is

• reflexive: 'Ix E X. xRx,

• symmetric: 'Ix, y E X. xRy => yRx and

• transitive: 'Ix, y, z E X. xRy & yRz => xRz.

If R is an equivalence relation on X then the (R-)equivalence class of an element x E X
is the subset {xh =def {y E X I yRx}.

10 Chapter 1

Exercise 1.6 Let R be an equivalence relation on a set X. Show if {x} R n {y h -=1= 0
then {xh = {Y}w for any elements X,Y E X. 0

Exercise 1. 7 Let xRy be a relation on a set of sets X which holds iff the sets x and y

in X are in 1-1 correspondence. Show that R is an equivalence relation. 0

Let R be a relation on a set X. Define RO = I dx , the identity relation on the set X,
and Rl = R and, assuming Rn is defined, define

So, Rn is the relation R 0 ... 0 R, obtained by taking n compositions of R. Define the
transitive closure of R to be the relation

Define the transitive, reflexive closure of a relation R on X to be the relation

nEw

so R* = I dx U R+ .

Exercise 1.8 Let R be a relation on a set X. Write ROP for the opposite, or converse,
relation ROP = {(y, x) I (x, y) E R}. Show (R U ROP)* is an equivalence relation. Show
R* U (ROP)* need not be an equivalence relation. o

1.4 Further reading

Our presentation amounts to an informal introduction to the Zermelo-Fraenkel axioma
tisation of set theory but with atoms, to avoid thinking of symbols as being coded by
sets. If you'd like more material to read I recommend Halmos's "Naive Set Theory" [47]
for a very readable introduction to sets. Another good book is Enderton's "Elements of
set theory" [39], though this is a much larger work.

2 Introduction to operational semantics

This chapter presents the syntax of a programming language, IMP, a small language
of while programs. IMP is called an "imperative" language because program execution
involves carrying out a series of explicit commands to change state. Formally, IMP's
behaviour is described by rules which specify how its expressions are evaluated and its
commands are executed. The rules provide an operational semantics of IMP in that they
are close to giving an implementation of the language, for example, in the programming
language Prolog. It is also shown how they furnish a basis for simple proofs of equivalence
between commands.

2.1 IMP-a simple imperative language

Firstly, we list the syntactic sets associated with IMP:

• numbers N, consisting of positive and negative integers with zero,

• truth values T = {true, false},

• locations Loc,

• arithmetic expressions Aexp,

• boolean expressions Bexp,

• commands Com.

We assume the syntactic structure of numbers and locations is given. For instance,
the set Loc might consist of non-empty strings of letters or such strings followed by
digits, while N might be the set of signed decimal numerals for positive and negative
whole numbers-indeed these are the representations we use when considering specific
examples. (Locations are often called program variables but we reserve that term for
another concept.)

For the other syntactic sets we have to say how their elements are built-up. We'll use
a variant of BNF (Backus-Naur form) as a way of writing down the rules of formation of
the elements of these syntactic sets. The formation rules will express things like:

If ao and al are arithmetic expressions then so is ao + al.

It's clear that the symbols ao and al are being used to stand for any arithmetic expression.
In our informal presentation of syntax we'll use such metavariables to range over the
syntactic sets-the metavariables ao, al above are understood to range over the set of
arithmetic expressions. In presenting the syntax of IMP we'll follow the convention that

12 Chapter 2

• n, m range over numbers N,

• X, Y range over locations Loc,

• a ranges over arithmetic expressions Aexp,

• b ranges over boolean expressions Bexp,

• c ranges over commands Com.

The metavariables we use to range over the syntactic categories can be primed or sub
scripted. So, e.g., X, X', X o, XI, Y" stand for locations.

We describe the formation rules for arithmetic expressions Aexp by:

The symbol "::=" should be read as "can be" and the symbol "I" as "or". Thus an
arithmetic expression a can be a number n or a location X or ao + al or ao - al or
ao x a1, built from arithmetic expressions ao and a1·

Notice our notation for the formation rules of arithmetic expressions does not tell us
how to parse

2 + 3 x 4 - 5,

whether as 2 + ((3 x 4) - 5) or as (2 + 3) x (4 - 5) etc .. The notation gives the so-called
abstract syntax of arithmetic expressions in that it simply says how to build up new
arithmetic expressions. For any arithmetic expression we care to write down it leaves us
the task of putting in enough parentheses to ensure it has been built-up in a unique way.
It is helpful to think of abstract syntax as specifying the parse trees of a language; it is
the job of concrete syntax to provide enough information through parentheses or orders
of precedence between operation symbols for a string to parse uniquely. Our concerns
are with the meaning of programming languages and not with the theory of how to write
them down. Abstract syntax: suffices for our purposes.

Here are the formation rules for the whole of IMP:
For Aexp:

For Bexp:

b ::= true I false I ao = a1 I ao ::; al I -,b I bo /\ b1 I bo V b1

For Com:

c ::= skip I X := a I co; Cl I if b then Co else C1 I while b do c

Introduction to operational semantics 13

From a set-theory point of view this notation provides an inductive definition of the
syntactic sets of IMP, which are the least sets closed under the formation rules, in a
sense we'll make clear in the next two chapters. For the moment, this notation should
be viewed as simply telling us how to construct elements of the syntactic sets.

We need some notation to express when two elements eo, el of the same syntactic set
are identical, in the sense of having been built-up in exactly the same way according to
the abstract syntax or, equivalently, having the same parse tree. We use eo == el to mean
eo is identical to el. The arithmetic expression 3 + 5 built up from the numbers 3 and
5 is not syntactically identical to the expression 8 or 5 + 3, though of course we expect
them to evaluate to the same number. Thus we do not have 3 + 5 == 5 + 3. Note we do

have (3 + 5) == 3 + 5!

Exercise 2.1 If you are familiar with the programming language ML (see e.g.[101]) or
Miranda (see e.g.[22]) define the syntactic sets of IMP as datatypes. If you are familiar
with the programming language Prolog (see e.g.[3I]) program the formation rules ofIMP
in it. Write a program to check whether or not eo == el holds of syntactic elements eo,
el. D

So much for the syntax of IMP. Let's turn to its semantics, how programs behave
when we run them.

2.2 The evaluation of arithmetic expressions

Most probably, the reader has an intuitive model with which to understand the be
haviours of programs written in IMP. Underlying most models is an idea of state
determined by what contents are in the locations. With respect to a state, an arithmetic
expression evaluates to an integer and a boolean expression evaluates to a truth value.
The resulting values can influence the execution of commands which will lead to changes
in state. Our formal description of the behaviour of IMP will follow this line. First we
define states and then the evaluation of integer and boolean expressions, and finally the
execution of commands.

The set of states E consists of functions u : Loc --+ N from locations to numbers. Thus
u(X) is the value, or contents, of location X in state u.

Consider the evaluation of an arithmetic expression a in a state u. We can represent
the situation of expression a waiting to be evaluated in state u by the pair (a, u). We
shall define an evaluation relation between such pairs and numbers

(a, u) --+ n

14 Chapter 2

meaning: expression a in state a evaluates to n. Call pairs (a, a), where a is an arithmetic
expression and a is a state, arithmetic-expression configurations.

Consider how we might explain to someone how to evaluate an arithmetic expression
(ao + al). We might say something along the lines of:

1. Evaluate ao to get a number no as result and

2. Evaluate al to get a number nl as result.

3. Then add no and nl to get n, say, as the result of evaluating ao + al.

Although informal we can see that this specifies how to evaluate a sum in terms of how
to evaluate its summands; the specification is syntax-directed. The formal specification of
the evaluation relation is given by rules which follow intuitive and informal descriptions
like this rather closely.

We specify the evaluation relation in a syntax-directed way, by the following rules:
Evaluation of numbers:

(n, a) --> n

Thus any number is already evaluated with itself as value.
Evaluation of locations:

(X, a) --> a(X)

Thus a location evaluates to its contents in a state.
Evaluation of sums:

(ao, a) --> no (aI, a) ---> nl

(ao + aI, a) ---> n
where n is the sum of no and nl.

Evaluation of subtractions:

(ao, a) --> no (aI, a) --> nl

(ao - aI, a) ---> n
where n is the result of subtracting nl from no.

Evaluation of products:

(ao, a) ---> no (aI, a) --> nl

(ao x aI, a) --> n
where n is the product of no and nl.

How are we to read such rules? The rule for sums can be read as:
If (ao, a) --> no and (aI, a) ---> nl then (ao + aI, a) ---> n, where n is the sum of no and nl.
The rule has a premise and a conclusion and we have followed the common practice of
writing the rule with the premise above and the conclusion below a solid line. The rule
will be applied in derivations where the facts below the line are derived from facts above.

Introduction to operational semantics 15

Some rules like those for evaluating numbers or locations require no premise. Sometimes
they are written with a line, for example, as in

(n, a) --; n

Rules with empty premises are called axioms. Given any arithmetic expression a, state
a and number n, we take a in a to evaluate to n, i.e. (a, a) --; n, if it can be derived from
the rules starting from the axioms, in a way to be made precise soon.

The rule for sums expresses that the sum of two expressions evaluates to the number
which is obtained by summing the two numbers which the summands evaluate to. It
leaves unexplained the mechanism by which the sum of two numbers is obtained. I
have chosen not to analyse in detail how numerals are constructed and the above rules
only express how locations and operations +, -, x can be eliminated from expressions
to give the number they evaluate to. If, on the other hand, we chose to describe a
particular numeral system, like decimal or roman, further rules would be required to
specify operations like multiplication. Such a level of description can be important when
considering devices in hardware, for example. Here we want to avoid such details-we
all know how to do simple arithmetic!

The rules for evaluation are written using metavariables n, X, ao, al ranging over the
appropriate syntactic sets as well as a ranging over states. A rule instance is obtained
by instantiating these to particular numbers, locations and expressions and states. For
example, when ao is the particular state, with a in each location, this is a rule instance:

So is this:

(2, iTo) --; 2 (3, ao) --; 3

(2 x 3, iTo) --; 6

(2, iTo) --; 3 (3, aD) --; 4

(2 x 3, iTo) --; 12

though not one in which the premises, or conclusion, can ever be derived.
To see the structure of derivations, consider the evaluation of a == (Init + 5) + (7 + 9)

in state iTo, where Init is a location with iTo(Init) = O. Inspecting the rules we see that
this requires the evaluation of (Init + 5) and (7 + 9) and these in turn may depend on
other evaluations. In fact the evaluation of (a, iTo) can be seen as depending on a tree of
evaluations:

(Init, iTo) --; a (5, iTo) --; 5 (7, iTo) --; 7 (9, iTo) --; 9

«(Init + 5), iTo) --; 5 (7 + 9, iTo) --; 16

«(Init + 5) + (7 + 9), iTo) --; 21

16 Chapter 2

We call such a structure a derivation tree or simply a derivation. It is built out of
instances of the rules in such a way that all the premises of instances of rules which
occur are conclusions of instances of rules immediately above them, so right at the top
come the axioms, marked by the lines with no premises above them. The conclusion of
the bottom-most rule is called the conclusion of the derivation. Something is said to be
derived from the rules precisely when there is a derivation with it as conclusion.

In general, we write (a, a-) ----> n, and say a in 17 evaluates to n, iff it can be derived from
the rules for the evaluation of arithmetic expressions. The particular derivation above
concludes with

((Init + 5) + (7 + 9), (70) ----> 21.

It follows that (Init + 5) + (7 + 9) in state 17 evaluates to 21-just what we want.
Consider the problem of evaluating an arithmetic expression a in some state 17. This

amounts to finding a derivation in which the left part of the conclusion matches (a, (7).
The search for a derivation is best achieved by trying to build a derivation in an upwards
fashion: Start by finding a rule with conclusion matching (a, (7); if this is an axiom the
derivation is complete; otherwise try to build derivations up from the premises, and, if
successful, fill in the conclusion of the first rule to complete the derivation with conclusion
of the form (a, (7) ----> n.

Although it doesn't happen for the evaluation of arithmetic expressions, in general,
more than one rule has a left part which matches a given configuration. To guarantee
finding a derivation tree with conclusion that matches, when one exists, all of the rules
with left part matching the configuration must be considered, to see if they can be the
conclusions of derivations. All possible derivations with conclusion of the right form must
be constructed "in parallel" .

In this way the rules provide an algorithm for the evaluation of arithmetic expressions
based on the search for a derivation tree. Because it can be implemented fairly directly
the rules specify the meaning, or semantics, of arithmetic expressions in an operational
way, and the rules are said to give an operational semantics of such expressions. There
are other ways to give the meaning of expressions in a way that leads fairly directly
to an implementation. The way we have chosen is just one---any detailed description
of an implementation is also an operational semantics. The style of semantics we have
chosen is one which is becoming prevalent however. It is one which is often called
structural operational semantics because of the syntax-directed way in which the rules
are presented. It is also called natural semantics because of the way derivations resemble
proofs in natural deduction-a method of constructing formal proofs. We shall see more
complicated, and perhaps more convincing, examples of operational semantics later.

The evaluation relation determines a natural equivalence relation on expressions. De-

Introduction to operational semantics 17

fine
ao rv al iff (Vn E mu E E. (ao,u) -+ n «=} (al,u) -+ n),

which makes two arithmetic expressions equivalent if they evaluate to the same value in
all states.

Exercise 2.2 Program the rules for the evaluation of arithmetic expressions in Prolog
and/ or ML (or another language of your choice). This, of course, requires a representation
of the abstract syntax of such expressions in Prolog and/or ML. 0

2.3 The evaluation of boolean expressions

We show how to evaluate boolean expressions to truth values (true, false) with the
following rules:

(true, u) -+ true

(false, tJ) -+ false

(ao, u) -+ n (aI, tJ) -+ m

(ao = aI, u) -+ true

(ao, u) -+ n (aI, u) -> m

(ao = aI, u) -+ false

(ao, u) -+ n (aI, u) -+ m

(ao ::; aI, u) -+ true

(ao, u) -+ n (aI, u) -> m

(ao ::; aI, u) -> false

if nand m are equal

if nand m are unequal

if n is less than or equal to m

if n is not less than or equal to m

(b, u) -+ true

(...,b, u) -+ false

(b, u) -+ false

(...,b, u) -+ true

18

(bo, a) -; to (b1 , a) -; t1

(bo 1\ b1 , a) -; t

where t is true if to == true and t1 == true, and is false otherwise.

(bo, a) -; to (b1, a) -; t1

(bo V b1 , a) -; t

where t is true if to == true or t1 == true, and is false otherwise.

Chapter 2

This time the rules tell us how to eliminate all boolean operators and connectives and
so reduce a boolean expression to a truth value.

Again, there is a natural equivalence relation on boolean expressions. Two expressions
are equivalent if they evaluate to the same truth value in all states. Define

bo ,...., b1 iff VNa E ~. (bo, a) -; t <¢::=} (b1 , a) -; t.

It may be a concern that our method of evaluating expressions is not the most efficient.
For example, according to the present rules, to evaluate a conjunction bo 1\ b1 we must
evaluate both bo and b1 which is clearly unnecessary if bo evaluates to false before b1 is
fully evaluated. A more efficient evaluation strategy is to first evaluate bo and then only
in the case where its evaluation yields true to proceed with the evaluation of b 1. We can
call this strategy left-first-sequential evaluation. Its evaluation rules are:

(bo, a) -; false

(bo 1\ b1 , a) -; false

(bo, a) -; true (b1 , a) -; false

(bo 1\ b1,a) -; false

(bo, a) -; true (b1 , a) -; true

(bo 1\ b1 , a) -; true

Exercise 2.3 Write down rules to evaluate boolean expressions of the form bo V b1 ,

which take advantage of the fact that there is no need to evaluate b in true V b as the
result will be true independent of the result of evaluating b. The rules written down
should describe a method of left-sequential evaluation. Of course, by symmetry, there is
a method of right-sequential evaluation. 0

Exercise 2.4 Write down rules which express the "parallel" evaluation of bo and b1 in
bo V h so that bo V b1 evaluates to true if either bo evaluates to true, and b1 is unevaluated,
or b1 evaluates to true, and bo is unevaluated. 0

Introduction to operational semantics 19

It may have been felt that we side-stepped too many issues by assuming we were given
mechanisms to perform addition or conjunction of truth values for example. If so try:

Exercise 2.5 Give a semantics in the same style but for expressions which evaluate to
strings (or lists) instead of integers and truth-values. Choose your own basic operations
on strings, define expressions based on them, define the evaluation of expressions in the
style used above. Can you see how to use your language to implement the expression
part of IMP by representing integers as strings and operations on integers as operations
on strings? (Proving that you have implemented the operations on integers correctly is
quite hard.) 0

2.4 The execution of commands

The role of expressions is to evaluate to values in a particular state. The role of a
program, and so commands, is to execute to change the state. When we execute an
IMP program we shall assume that initially the state is such that all locations are set to
zero. So the initial state 0'0 has the property that ao(X) = 0 for all locations X. As we
all know the execution may terminate in a final state, or may diverge and never yield a
final state. A pair (c, a) represents the (command) configuration from which it remains
to execute command c from state a. We shall define a relation

(c, a) -t a'

which means the (full) execution of command c in state a terminates in final state a'.
For example,

(X := 5, a) -t a'

where a' is the state a updated to have 5 in location X. We shall use this notation:

Notation: Let a be a state. Let mEN. Let X E Loc. We write a[mj Xl for the state
obtained from a by replacing its contents in X by m, i.e. define

Now we can instead write

a[mjX](Y) = {~Y) if Y = X,
if Y =1= X.

(X:= 5,0') -t a[5jX].

The execution relation for arbitrary commands and states is given by the following rules.

20

Rules for commands

Atomic commands:

Sequencing:

Conditionals:

While-loops:

(skip, 0") -t a

(a,a)-tm

(X := a, a) -t a[m/ Xl

(co, a) -t a" (C1' a") ---> a'

(co; Cll a) ---> a'

(b, a) ---> true (Co, a) ---> a'

(if b then Co else C1, a) -t a'

(b, a) ---> false (C1' a) ---> a'

(if b then Co else C1, a) ---> a'

(b,a) ---> false

(while b do c, a) ---> a

(b, a) ---> true (c, a) ---> a" (while b do c, a") -> a'

(while b do c, a/ ---> a'

Again there is a natural equivalence relation on commands. Define

Chapter 2

Exercise 2.6 Complete Exercise 2.2 of Section 2.2, by coding the rules for the evaluation
of boolean expressions and execution of commands in Prolog and/or ML. 0

Exercise 2.7 Let w == while true do skip. By considering the form of derivations,
explain why, for any state a, there is no state a' such that (w, a) ---> a'. 0

2.5 A simple proof

The operational semantics of the syntactic sets Aexp, Bexp and Com has been given
using the same method. By means of rules we have specified the evaluation relations of

Introduction to operational semantics 21

both types of expressions and the execution relation of commands. All three relations
are examples of the general notion of transition relations, or transition systems, in which
the configurations are thought of as some kind of state and the relations as expressing
possible transitions, or changes, between states. For instance, we can consider each of

(3, a) -> 3, (true, a) -> true, (X:= 2, a) -> a[2/ Xl.
to be transitions.

Because the transition systems for IMP are given by rules, we have an elementary, but
very useful, proof technique for proving properties of the operational semantics IMP.

As an illustration, consider the execution of a while-command w := while b do c, with
b E Bexp, c E Com, in a state a. We expect that if b evaluates to true in a' then w

executes as c followed by w again, and otherwise, in the case where b evaluates to false,
that the execution of w terminates immediately with the state unchanged. This informal
explanation of the execution of commands leads us to expect that for all states a, a'

(w,a) -> a' iff (if b then c;w else skip, a) -> a',

i. e. , that the following proposition holds.

Proposition 2.8 Let w := while b do c with b E Bexp, c E Com. Then

W rv if b then c; weIse skip.

Proof: We want to show

(w, a) -> a' iff (if b then c; weIse skip, a) -> a',

for all states a, a'.
"=*": Suppose (w, a) -> a', for states a, a'. Then there must be a derivation of (w, a) ->

a'. Consider the possible forms such a derivation can take. Inspecting the rules for
commands we see the final rule of the derivation is either

or

(b, a) -> false

(w, a) -> a

(b, a) -> true (c, a) -> a" (w, a") -> a'

(w, a) -> a'

In case (1 =*), the derivation of (w,a) -> a' must have the form

(b, a) -> false

(w,a) -> a

(2 =*)

22 Chapter 2

which includes a derivation of (b, a) -'t false. Using this derivation we can build the
following derivation of (if b then c; weIse skip, a) -'t a:

(b, a) -'t false (skip, a) -+ a

(if b then c; weIse skip, a) -'t a

In case (2 =», the derivation of (w, a) -+ a' must take the form

(b, a) -'t true (c, a) -+ a" (w, a") -'t a'

(w, a) -> a'

which includes derivations of (b, a) -> true, (c, a) -'t a" and (w, a") -'t a'. From these
we can obtain a derivation of (c; w, a) -'t a', viz.

(c, a) -'t a" (w, a") -'t a'

(c; w, a) -+ a'

We can incorporate this into a derivation:

(c,a) -'t a" (w,a") -'t a'

(b, a) -'t true (c; w, a) -'t a'

(if b then c; weise skip, a) -'t a'

In either case, (1 =» or (2 =», we obtain a derivation of

(if b then c; weIse skip, a) -> a'

from a derivation of

Thus
(w, a) -'t a' implies (if b then c; weise skip, a) -'t a',

for any states a, a'.
"{=": We also want to show the converse, that (if b then c; weise skip, a) -t a' implies
(w,a) -'t a', for all states a,a'.

Introduction to operational semantics 23

Suppose (if b then C; weIse skip, a) --+ a', for states a, a', Then there is a derivation
with one of two possible forms:

(b, a) --+ false (skip, a) --+ a

(if b then C; weIse skip, a) --+ a

(b, a) --+ true (c; w, a) --+ a'

(if b then C; weIse skip, a) --+ a'

where in the first case, we also have a' = a, got by noting the fact that

(skip, a) --+ a

is the only possible derivation associated with skip,

(1 ~)

(2 ~)

From either derivation, (1~) or (2 ~), we can construct a derivation of (w,a) --+ a',
The second case, (2 ~), is the more complicated, Derivation (2 ~) includes a derivation
of (c; w, a) --+ a' which has to have the form

(c, a) --+ a" (w, a") --+ a'

(c; w, a) --+ a'

for some state a", Using the derivations of (c, a) --+ a" and (w, a") --+ a' with that for
(b, a) --+ true, we can produce the derivation

(b, a) --+ true (c, a) ---> a" (w, a") --+ a'

(w, a) ---> a'

More directly, from the derivation (1 ~), we can construct a derivation of (w, a) -> a'
(How?),

Thus if (if b then C; weIse skip, a) -> a' then (w, a) --+ a' for any states a, a',
We can now conclude that

(w, a) --+ a' iff (if b then C; weIse skip, a) -> a',

for all states a, a', and hence

W rv if b then C; weIse skip

as required, o

24 Chapter 2

This simple proof of the equivalence of while-command and its conditional unfolding
exhibits an important technique: in order to prove a property of an operational semantics
it is helpful to consider the various possible forms of derivations. This idea will be used
again and again, though never again in such laborious detail. Later we shall meet other
techniques, like "rule induction" which, in principle, can supplant the technique used
here. The other techniques are more abstract however, and sometimes more confusing
to apply. So keep in mind the technique of considering the forms of derivations when
reasoning about operational semantics.

2.6 Alternative semantics

The evaluation relations
(a, a) -+ nand (b, a) -+ t

specify the evaluation of expressions in rather large steps; given an expression and a
state they yield a value directly. It is possible to give rules for evaluation which capture
single steps in the evaluation of expressions. We could instead have defined an evaluation
relation between pairs of configurations, taking e.g.

(a, a) -+1 (a', a')

to mean one step in the evaluation of a in state a yields a' in state a'. This intended
meaning is formalised by taking rules such as the following to specify single steps in the
left-to-right evaluation of sum.

(aD, a) -+1 (a~, a)

(n + a1, a) -1 (n + ai, a)

(n + m, a) -1 (p, a)

where p is the sum of m and n.
Note how the rules formalise the intention to evaluate sums in a left-to-right sequential

fashion. To spell out the meaning of the first sum rule above, it says: if one step in the
evaluation of aD in state a leads to a~ in state a then one step in the evaluation of aD + a1

in state a leads to a~ + a1 in state a. So to evaluate a sum first evaluate the component

Introduction to operational semantics 25

expression of the sum and when this leads to a number evaluate the second component
of the sum, and finally add the corresponding numerals (and we assume a mechanism to
do this is given).

Exercise 2.9 Complete the task, begun above, of writing down the rules for -1, one
step in the evaluation of integer and boolean expressions. What evaluation strategy have
you adopted (left-to-right sequential or ...) ? 0

We have chosen to define full execution of commands in particular states through a
relation

(c, fJ) - fJ'

between command configurations. We could instead have based our explanation of the
execution of commands on a relation expressing single steps in the execution. A single
step relation between two command configurations

(c, fJ) -1 (c', fJ')

means the execution of one instruction in c from state fJ leads to the configuration in
which it remains to execute c' in state fJ'. For example,

(X:= 5jY:= 1,fJ) -1 (Y:= 1,fJ[5/Xj).

Of course, as this example makes clear, if we consider continuing the execution, we need
some way to represent the fact that the command is empty. A configuration with no
command left to execute can be represented by a state standing alone. So continuing the
execution above we obtain

(X:= 5;Y:= 1,fJ) -1 (Y:= 1,fJ[5/Xj) -1 fJ[5/X][1/Y].

We leave the detailed presentation of rules for the definition of this one-step execution
relation to an exercise. But note there is some choice in what is regarded as a single
step. If

(b, fJ) -1 (true, fJ)

do we wish
(if b then Co else C1,fJ) -1 (eo,fJ)

or
(if b then Co else C1, fJ) -1 (if true then Co else C1, fJ)

to be a single step? For the language IMP these issues are not critical, but they become
so in languages where commands can be executed in parallelj then different choices can
effect the final states of execution sequences.

26 Chapter 2

Exercise 2.10 Write down a full set of rules for --> 1 on command configurations, so
-->1 stands for a single step in the execution of a command from a particular state, as
discussed above. Use command configurations of the form (c, a; and a when there is no
more command left to execute. Point out where you have made a choice in the rules
between alternative understandings of what constitutes a single step in the execution.
(Showing (c, a; -->i a' iff (c, a; --> a' is hard and requires the application of induction
principles introduced in the next two chapters.) 0

Exercise 2.11 In our language, the evaluation of expressions has no side effects-their
evaluation does not change the state. If we were to model side-effects it would be natural
to consider instead an evaluation relation of the form

(a, a; --> (n, a';

where a' is the state that results from the evaluation of a in original state a. To introduce
side effects into the evaluation of arithmetic expressions of IMP, extend them by adding
a construct

c result is a

where c is a command and a is an arithmetic expression. To evaluate such an expression,
the command c is first executed and then a evaluated in the changed state. Formalise
this idea by first giving the full syntax of the language and then giving it an operational
semantics. 0

2.7 Further reading

A convincing demonstration of the wide applicability of "structural operational seman
tics", of which this chapter has given a taste, was first set out by Gordon Plotkin in
his lecture notes for a course at Aarhus University, Denmark, in 1981 [81J. A research
group under the direction Gilles Kahn at INRIA in Sophia Antipolis, France are currently
working on mechanical tools to support semantics in this style; they have focussed on
evaluation or execution to a final value or state, so following their lead this particular kind
of structural operational semantics is sometimes called "natural semantics" [26, 28, 29J.
We shall take up the operational semantics of functional languages, and nondetermin
ism and parallelism in later chapters, where further references will be presented. More
on abstract syntax can be found in Wikstrom's book [101], Mosses' chapter in [68J and
Tennent's book [97J.

3 Some principles of induction

Proofs of properties of programs often rely on the application of a proof method, or really
a family of proof methods, called induction. The most commonly used forms of induction
are mathematical induction and structural induction. These are both special cases of a
powerful proof method called well-founded induction.

3.1 Mathematical induction

The natural numbers are built-up by starting from 0 and repeatedly adjoining successors.
The natural numbers consist of no more than those elements which are obtained in this
way. There is a corresponding proof principle called mathematical induction.

Let P(n) be a a property of the natural numbers n = 0,1,···. The principle of
mathematical induction says that in order to show P(n) holds for all natural numbers n
it is sufficient to show

• P(O) is true

• If P(m) is true then so is P(m + 1) for any natural number m.

We can state it more succinctly, using some logical notation, as

(P(O) & (Vm E w. P(m) =} P(m + 1)) =} Vn E w. P(n).

The principle of mathematical induction is intuitively clear: If we know P(O) and we
have a method of showing P(m + 1) from the assumption P(m) then from P(O) we
know P(l), and applying the method again, P(2), and then P(3), and so on. The
assertion P(m) is called the induction hypothesis, P(O) the basis of the induction and
(Vm E w. P(m) =} P(m + 1)) the induction step.

Mathematical induction shares a feature with all other methods of proof by induction,
that the first most obvious choice of induction hypothesis may not work in a proof.
Imagine it is required to prove that a property P holds of all the natural numbers.
Certainly it is sensible to try to prove this with P(m) as induction hypothesis. But quite
often proving the induction step Vm E w. (P(m) =} P(m+ 1)) is impossible. The rub can
come in proving P(m + 1) from the assumption P(m) because the assumption P(m) is
not strong enough. The way to tackle this is to strengthen the induction hypothesis to a
property pl(m) which implies P(m). There is an art in finding pl(m) however, because
in proving the induction step, although we have a stronger assumption pi (m), it is at
the cost of having more to prove in pl(m + 1) which may be unnecessarily difficult, or
impossible.

In showing a property Q(m) holds inductively of all numbers m, it might be that the
property's truth at m + 1 depends not just on its truth at the predecessor m but on

28 Chapter 3

its truth at other numbers preceding m as well. It is sensible to strengthen Q(m) to an
induction hypothesis P(m) standing for Vk < m. Q(k). Taking P(m) to be this property
in the statement of ordinary mathematical induction we obtain

Vk < O. Q(k)

for the basis, and

Vm E w.((Vk < m. Q(k)) '* (Vk < m + 1. Q(k)))

for the induction step. However, the basis is vacuously true-there are no natural num
bers strictly below 0, and the step is equivalent to

Vm E w.(Vk < m. Q(k)) '* Q(m).

We have obtained course-oj-values induction as a special form of mathematical induction:

(Vm E w.(Vk < m. Q(k)) '* Q(m)) '* Vn E w. Q(n).

Exercise 3.1 Prove by mathematical induction that the following property P holds for
all natural numbers:

P(n) {==:} defE~=1(2i - 1) = n2 .

(The notation E~=kSi abbreviates Sk + Sk+l + ... + Sl when k, I are integers with k < I.)
o

Exercise 3.2 A string is a sequence of symbols. A string ala2· .. an with n positions
occupied by symbols is said to have length n. A string can be empty in which case it is
said to have length O. Two strings sand t can be concatenated to form the string st.
Use mathematical induction to show there is no string u which satisfies au = ub for two
distinct symbols a and b. 0

3.2 Structural induction

We would like a technique to prove "obvious" facts like

(a, a) --> m & (a, a) --> m' '* m = m'

for all arithmetic expressions a, states a and numbers m, m'. It says the evaluation of
arithmetic expressions in IMP is deterministic. The standard tool is the principle of
structural induction. We state it for arithmetic expressions but of course it applies more
generally to all the syntactic sets of our language IMP.

Let P(a) be a property of arithmetic expressions a. To show P(a) holds for all arith
metic expressions a it is sufficient to show:

Some principles of induction 29

• For all numerals m it is the case that P(m) holds.

• For all locations X it is the case that P(X) holds.

• For all arithmetic expressions ao and aI, if P(ao) and P(al) hold then so does
P(ao + al).

• For all arithmetic expressions ao and aI, if P(ao) and P(al) hold then so does
P(ao - al).

• For all arithmetic expressions ao and aI, if P(ao) and P(ad hold then so does
P(ao x al).

The assertion P(a) is called the induction hypothesis. The principle says that in order to
show the induction hypothesis is true of all arithmetic expressions it suffices to show that
it is true of atomic expressions and is preserved by all the methods of forming arithmetic
expressions. Again this principle is intuitively obvious as arithmetic expressions are
precisely those built-up according to the cases above. It can be stated more compactly
using logical notation:

(Vm E N. P(m)) & (VX E Loc.P(X)) &

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao + ad) &

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao - ad) &

(Vao, al E Aexp. P(ao) & P(ad ==> P(ao x ad)

==>

Va E Aexp. P(a).

In fact, as is clear, the conditions above not only imply Va E Aexp. P(a) but also are
equivalent to it.

Sometimes a degenerate form of structural induction is sufficient. An argument by
cases on the structure of expressions will do when a property is true of all expressions
simply by virtue of the different forms expressions can take, without having to use the
fact that the property holds for sub expressions. An argument by cases on arithmetic
expressions uses the fact that if

(Vm E N. P(m))&

(VX E Loc.P(X)) &

(Vao, al E Aexp. P(ao + al)) &

(Vao, al E Aexp. P(ao - ad) &

(Vao, al E Aexp. P(ao x ad)

30 Chapter 3

then Va E Aexp. P(a).
As an example of how to do proofs by structural induction we prove that the evaluation

of arithmetic expression is deterministic.

Proposition 3.3 For all arithmetic expressions a, states 0' and numbers m, m'

(a,a) -> m & (a,a) -> m' =} m = m'.

Proof: We proceed by structural induction on arithmetic expressions a using the induc
tion hypothesis P(a) where

P(a) iffVa,m,m'. ((a,a) -> m & (a,a) -> m' =} m = m').

For brevity we shall write (a,O') -> m, m' for (a, a) -> m and (a, a) -> m'. Using
structural induction the proof splits into cases according to the structure of a:

a == n: If (a, 0') -> m, m' then there is only one rule for the evaluation of numbers so
m=m'=n.
a == ao + al: If (a, a) -> m, m' then considering the form of the single rule for the
evaluation of sums there must be mo, ml so

(ao, a) -> mo and (aI, a) -> ml with m = mo + ml

as well as m~, m~ so

(ao, a) -> m~ and (aI, a) -> m~ with m' = m~ + m~

By the induction hypothesis applied to ao and al we obtain mo = m~ and ml = m~.
Thus m = mo + ml = m~ + m~ = m'.

The remaining cases follow in a similar way. We can conclude, by the principle of
structural induction, that P(a) holds for all a E Aexp. 0

One can prove the evaluation of expressions always terminates by structural induction,
and corresponding facts about boolean expressions.

Exercise 3.4 Prove by structural induction that the evaluation of arithmetic expressions
always terminates, i. e. , for all arithmetic expression a and states a there is some m such
that (a, a) -> m. 0

Exercise 3.5 Using these facts about arithmetic expressions, by structural induction,
prove the evaluation of boolean expressions is firstly deterministic, and secondly total.

o

Exercise 3.6 What goes wrong when you try to prove the execution of commands is
deterministic by using structural induction on commands? (Later, in Section 3.4, we
shall give a proof using "structural induction" on derivations.) 0

Some principles of induction 31

3.3 Well-founded induction

Mathematical and structural induction are special cases of a general and powerful proof
principle called well-founded induction. In essence structural induction works because
breaking down an expression into sub expressions can not go on forever, eventually it must
lead to atomic expressions which can not be broken down any further. 1£ a property fails
to hold of any expression then it must fail on some minimal expression which when it is
broken down yields subexpressions, all of which satisfy the property. This observation
justifies the principle of structural induction: to show a property holds of all expressions
it is sufficient to show that a property holds of an arbitrary expression if it holds of all
its subexpressions. Similarly with the natural numbers, if a property fails to hold of all
natural numbers then there has to be a smallest natural number at which it fails. The
essential feature shared by both the subexpression relation and the predecessor relation
on natural numbers is that do not give rise to infinite descending chains. This is the
feature required of a relation if it is to support well-founded induction.

Definition: A well-founded relation is a binary relation --< on a set A such that there
are no infinite descending chains· .. --< ai --< ... --< al --< ao. When a --< b we say a is a
predecessor of b.

Note a well-founded relation is necessarily irreftexive i.e. , for no a do we have a --< a,
as otherwise there would be the infinite decending chain· .. --< a --< ... --< a --< a. We shall
generally write :::5 for the reflexive closure of the relation --<, i. e.

a :::5 b ~ a = b or a --< b.

Sometimes one sees an alternative definition of well-founded relation, in terms of min
imal elements.

Proposition 3.7 Let --< be a binary relation on a set A. The relation --< is well-founded
iff any nonempty subset Q of A has a minimal element, i. e. an element m such that

m E Q & Vb --< m. b .;. Q.

Proof:
"if": Suppose every nonempty subset of A has a minimal element. If··· --< a i --<
. .. --< al --< ao were an infinite descending chain then the set Q = {a iii E w} would
be nonempty without a minimal element, a contradiction. Hence --< is well-founded.
"only if": To see this, suppose Q is a nonempty subset of A. Construct a chain of
elements as follows. Take ao to be any element of Q. Inductively, assume a chain of

32 Chapter 3

elements an -< ... -< ao has been constructed inside Q. Either there is some b -< an such
that bE Q or there is not. If not stop the construction. Otherwise take an+l = b. As -<
is well-founded the chain· .. -< ai -< ... -< al -< ao cannot be infinite. Hence it is finite,
of the form an -< ... -< ao with Vb -< an. b ~ Q. Take the required minimal element m to
be an. 0

Exercise 3.8 Let -< be a well-founded relation on a set B. Prove

1. its transitive closure -<+ is also well-founded,
2. its reflexive, transitive closure -< * is a partial order.

o

The principle of well-founded induction.
Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. Pea)

iff
Va E A. ([Vb -< a. PCb)] =? Pea)).

The principle says that to prove a property holds of all elements of a well-founded set it
suffices to show that if the property holds of all predecessors of an arbitrary element a

then the property holds of a.
We now prove the principle. The proof rests on the observation that any nonempty

subset Q of a set A with a well-founded relation -< has a minimal element. Clearly if
Pea) holds for all elements of A then Va E A. ([Vb -< a. PCb)] =? Pea)). To show the
converse, we assume Va E A. ([Vb -< a. PCb)] =? Pea)) and produce a contradiction by
supposing ,pea) for some a E A. Then, as we have observed, there must be a minimal
element m of the set {a E A I ,Pea)}. But then ,P(m) and yet Vb -< m. PCb), which
contradicts the assumption.

In mathematics this principle is sometimes called Noetherian induction after the al
gebraist Emmy Noether. Unfortunately, in some computer science texts (e.g. [59]) it is
misleadingly called "structural induction" .

Example: If we take the relation -< to be the successor relation

n-<miffm=n+l

on the non-negative integers the principle of well-founded induction specialises to math
ematical induction. 0

Example: If we take -< to be the "strictly less than" relation < on the non-negative
integers, the principle specialises to course-of-values induction. 0

Some principles of induction 33

Example: If we take -< to be the relation between expressions such that a -< b holds iff
a is an immediate subexpression of b we obtain the principle of structural induction as a
special case of well-founded induction. 0

Proposition 3.7 provides an alternative to proofs by well-founded induction. Suppose
A is a well-founded set. Instead of using well-founded induction to show every element
of A satisfies a property P, we can consider the subset of A ~or which the property P
fails, i.e. the subset F of counterexamples. By Proposition 3.7, to show F is 0 it is
sufficient to show that F cannot have a minimal element. This is done by obtaining a
contradiction from the assumption that there is a minimal element in F. (See the proof
of Proposition 3.12 for an example of this approach.) Whether to use this approach or
the principle of well-founded induction is largely a matter of taste, though sometimes,
depending on the problem, one approach can be more direct than the other.

Exercise 3.9 For suitable well-founded relation on strings, use the "no counterexample"
approach described above to show there is no string u which satisfies au = ub for two
distinct symbols a and b. Compare your proof with another by well-founded induction
(and with the proof by mathematical induction asked for in Section 3.1). 0

Proofs can often depend on a judicious choice of well-founded relation. In Chapter 10
we shall give some useful ways of constructing well-founded relations.

As an example of how the operational semantics supports proofs we show that Euclid's
algorithm for the gcd (greatest common divisor) of two non-negative numbers terminates.
Though such proofs are often less clumsy when based on a denotational semantics. (Later,
Exercise 6.16 will show its correctness.) Euclid's algorithm for the greatest common
divisor of two positive integers can be written in IMP as:

Euclid:::::: while -,(M = N) do

ifM~N

thenN:=N-M

else M :=M-N

Theorem 3.10 For all states a

a(M) ;:::: 1 & a(N) ;:::: 1 '* 3a'. (Euclid, a) -> a'.

Proof: We wish to show the property

P(a) <===} 3a'.(Euclid,a) -> a'.

34 Chapter 3

holds for all states CT in S = {u E I; I CT(M) ~ 1 & CT(N) ~ I}.
We do this by well-founded induction on the relation -< on S where

CT' -< CT iff (CT'(M) ~ CT(M) & CT'(N) ~ CJ(N)) &

(CT'(M) i= CT(M) or CT'(N) i= CT(N))

for states CT', CT in S. Clearly -< is well-founded as the values in M and N cannot be
decreased indefinitely and remain positive.

Let CT E S. Suppose \:ICT' -< CT. P(CT'). Abbreviate CT(M) = m and CT(N) = n.
If m = n then (-,(M = N), CT) ~ false. Using its derivation we construct the derivation

(-,(M = N), CT) ~ false

(Euclid, CT) ~ CT

using the rule for while-loops which applies when the boolean condition evaluates to false.
In the case where m = n, (Euclid, CT) ~ CT.

Otherwise m i= n. In this case (-,(M = N), CT) ~ true. From the rules for the
execution of commands we derive

where

(if M ~ N then N := N - Meise M := M - N, CT) ~ CT"

CT" = {CT[n - miN)
CT[m-nIM)

ifm~ n
ifn<m.

In either case CT" -< CT. Hence P(CT") so (Euclid, CT") ~ CT' for some CT'. Thus applying the
other rule for while-loops we obtain

(-,(M = N), CT) ~ true

(if M ~ N then N := N - Meise M := M - N, CT)~CT" (Euclid, CTIf)~CT'

(Euclid, CT) ~ CT'

a derivation of (Euclid, CT) ~ CT'. Therefore P(CT).
By well-founded induction we conclude VCT E S. P(CT), as required. o

Well-founded induction is the most important principle in proving the termination
of programs. Uncertainties about termination arise because of loops or recursions in a
program. If it can be shown that execution of a loop or recursion in a program decreases
the value in a well-founded set then it must eventually terminate.

Some principles of induction 35

3.4 Induction on derivations

Structural induction alone is often inadequate to prove properties of operational seman
tics. Often it is useful to do induction on the structure of derivations. Putting this on a
firm basis involves formalising some of the ideas met in the last chapter.

Possible derivations are determined by means of rules. Instances of rules have the form

--- or
x x

where the former is an axiom with an empty set of premises and a conclusion x, while the
latter has {Xl, ... ,Xn } as its set of premises and x as its conclusion. The rules specify
how to construct derivations, and through these define a set. The set defined by the
rules consists precisely of those elements for which there is a derivation. A derivation of
an element x takes the form of a tree which is either an instance of an axiom

x

or of the form

x

which includes derivations of x I, ... ,Xn , the premises of a rule instance with conclusion

X. In such a derivation we think of ~, ... , ~ as sub derivations of the larger derivation
Xl Xn

of x.
Rule instances are got from rules by substituting actual terms or values for metavari

abIes in them. All the rules we are interested in are finitary in that their premises are
finite. Consequently, all rule instances have a finite, possibly empty set of premises and a
conclusion. We start a formalisation of derivations from the idea of a set of rule instances.

A set of rule instances R consists of elements which are pairs (X/y) where X is a finite
set and y is an element. Such a pair (X/y) is called a rule instance with premises X
and conclusion y.

We are more used to seeing rule instances (X/y) as

·f X rio d Xl, ... ,Xn ·f X { }
--- 1 = 'I), an as 1 = Xl,···, Xn .

y y

Assume a set of rule instances R. An R-derivation of y is either a rule instance (0/y) or
a pair ({d1 ,···, dn}/y) where ({Xl)···) xn}/y) is a rule instance and d l is an R-derivation

36 Chapter 3

of Xl, ... , dn is an R-derivation of X n . We write d If-R Y to mean d is an R-derivation of
y. Thus

(0/y) If- R Y if (0/y) E R, and

({d l ,···, dn}/y) If-R y if ({Xl,···, Xn}/Y) E R & d l If-R Xl & & dn If-R X n ·

We say y is derived from R if there is an R-derivation of y, i.e. d If- R Y for some
derivation d. We write If- R Y to mean y is derived from R. When the rules are understood
we shall write just d If- y and If- y.

In operational semantics the premises and conclusions are tuples. There,

If- (c, a) -> a',

meaning (c, a) -> a' is derivable from the operational semantics of commands, is cus
tomarily written as just (c, a) -> a'. It is understood that (c, a) -> a' includes, as part
of its meaning, that it is derivable. We shall only write If- (c, a) -> a' when we wish to
emphasise that there is a derivation.

Let d, d' be derivations. Say d' is an immediate subderivation of d, written d' -<1 d, iff
d has the form (D/y) with d' E D. Write -< for the transitive closure of -<1, i.e. -<=-<t.
We say d' is a proper sub derivation of d iff d' -< d.

Because derivations are finite, both relations of being an immediate subderivation -< I
and that of being a proper sub derivation are well-founded. This fact can be used to show
the execution of commands is deterministic.

Theorem 3.11 Let c be a command and aD a state. If (c, aD) -> al and (c, aD) -> a,
then a = a1, for all states a, a1.

Proof: The proof proceeds by well-founded induction on the proper subderivation rela
tion -< between derivations for the execution of commands. The property we shall show
holds of all such derivations d is the following:

P(d) {::::::} '<Ie E Com,aO,a,a1, E~. d If- (c,ao) -> a & (c,ao) -> a1 ~ a = al·

By the principle of well-founded induction, it suffices to show '<Id' -< d. P(d') implies
P(d).

Let d be a derivation from the operational semantics of commands. Assume
'<Id' -< d. P(d'). Suppose

d If- (c, aD) -> a and If- (c, aD) -> a1.

Then d1 If- (c, aD) -> al for some d1 ·

Some principles of induction

Now we show by cases on the structure of c that a = al.

C == skip: In this case
d = d1 = -----

(skip, aD) --> aD

c == X := a: Both derivations have a similar form:

(a, aD) --> m
d=--------

(X := a, aD) --> aD [m/ Xl

(a, aD) --> ml
d1 = ----------

(X :=a, aD) --> ao[mI/ Xl

37

where a = ao[m/Xl and al = ao[mI/Xl. As the evaluation of arithmetic expressions is
deterministic m = ml, so a = al·

(co, ao) --> a' (Cl' a') --> a
d = ----------

(CO; Cl, aD) --> a

(co,ao) --> a~ (cl,aD --> al
d1 = ------------

(co; Cl, ao) --> al

Let dO be the sub derivation

and d l the sub derivation

(Cl' a') --> a

in d. Then dO -< d and dl -< d, so P(dO) and P(d1). It follows that a' = a~, and a = al
(why?).

c == if b then Co else Cl: The rule for conditionals which applies in this case is deter
mined by how the boolean b evaluates. By the exercises of Section 3.2, its evaluation is
deterministic so either (b, ao) --> true or (b, ao) --> false, but not both.

When (b, ao) --> true we have:

d = (b, ao) --> true (co,ao) --> a

(if b then Co else Cl, ao) --> a

(b, ao) --> true (eo, ao) --> al
d1 = -----------

(if b then Co else Cl, ao) --> al

38 Chapter 3

Let d' be the subderivation of (co, aD) ----+ a in d. Then d' -< d. Hence P(d'). Thus 0'= 0'1.

When (b, aD) ----+ false the argument is similar.

c == while b do c: The rule for while-loops which applies is again determined by how b
evaluates. Either (b, aD) ----+ true or (b, a) --> false, but not both.

When (b, aD) --> false we have:

(b, aD) --> false
d = --------

(while b do c, aD) --> aD

so certainly a = aD = 0'1.

When (b, aD) --> true we have:

(b,ao) --> false
d1 = ---------

(while b do c, aD) --> aD

(b, aD) ----+ true (c, aD) ----+ a' (while b do c, a') --> a
d= ---------------------

(while b do c, aD) --> a

(b, aD) --> true (c, aD) --> a~ (while b do c, a~) --> 0'1
d1 = ------------------------

(while b do c, aD) --> 0'1

Let d' be the sub derivation of (c, aD) --> a' and d" the subderivation of (while b do c, a') -->

a in d. Then d' -< d and d" -< d so P(d') and P(d"). It follows that a' = ai, and subse
quently that 0'=0'1.

In all cases of c we have shown d If- (c, aD) --> a and (c, aD) --> 0'1 implies a = 0'1.

By the principle of well-founded induction we conclude that P(d) holds for all deriva
tions d for the execution of commands. This is equivalent to

'ric E Com, aD, a, aI, E ~. (c, aD) ----+ a & (c, aD) --> 0'1 =? a = aI,

which proves the theorem. o

As was remarked, Proposition 3.7 provides an alternative to proofs by well-founded
induction. Induction on derivations is a special kind of well-founded induction used to
prove a property holds of all derivations. Instead, we can attempt to produce a contra
diction from the assumption that there is a minimal derivation for which the property is
false. The approach is illustrated below:

Some principles of induction 39

Proposition 3.12 For all states a, ai,

(while true do skip, a) f> a ' .

Proof: Abbreviate w == while true do skip. Suppose (w, a) ----- a l for some states a, a' .
Then there is a minimal derivation d such that 3a, a l E L:. d II- (w, a) ----- a' . Only one
rule can be the final rule of d, making d of the form:

(true, a) ----- true (c, a) ----- a" (while true do c, a") ----- a l

d=~----------------------------------~----
(while true do c, a) ----- a'

But this contains a proper subderivation d' II- (w, a) ----- ai, contradicting the minimality

of d. 0

3.5 Definitions by induction

Techniques like structural induction are often used to define operations on the set defined.
Integers and arithmetic expressions share a common property, that of being built-up in
a unique way. An integer is either zero or the successor of a unique integer, while an
arithmetic expression is either atomic or a sum, or product etc. of a unique pair of
expressions. It is by virtue of their being built up in a unique way that we can can make
definitions by induction on integers and expressions. For example to define the length
of an expression it is natural to define it in terms of the lengths of its components. For
arithmetic expressions we can define

lengthen) = length(X) = 1,

length(ao + at) = 1 + length(ao) + length(ar),

For future reference we define locL(c), the set of those locations which appear on the left
of an assignment in a command. For a command c, the function loc£Cc) is defined by
structural induction by taking

locL(skip) = 0,
loc£CCoi Cl) = locL(co) U locdcl),

loc£Cwhile b do c) = loc£Cc).

loc£CX := a) = {X},

locdif b then Co else cr) = locdco) U locdcr),

In a similar way one defines operations on the natural numbers by mathematical induc
tion and operations defined on sets given by rules. In fact the proof of Proposition 3.7,

40 Chapter 3

that every nonempty subset of a well-founded set has a minimal element, contains an
implicit use of definition by induction on the natural numbers to construct a chain with
a minimal element in the nonempty set.

Both definition by structural induction and definition by mathematical induction are
special cases of definition by well-founded induction, also called well-founded recursion.
To understand this name, notice that both definition by induction and structural in
duction allow a form of recursive definition. For example, the length of an arithmetic
expression could have been defined in this manner:

length(a) ~ { ~ength(ao) + length(a,)

if a == n, a number
if a == (ao + ad,

How the length function acts on a particular argument, like (ao +al) is specified in terms
of how the length function acts on other arguments, like ao and al. In this sense the
definition of the length function is defined recursively in terms of itself. However this
recursion is done in such a way that the value on a particular argument is only specified
in terms of strictly smaller arguments. In a similar way we are entitled to define functions
on an arbitrary well-founded set. The general principle is more difficult to understand,
resting as it does on some relatively sophisticated constructions on sets, and for this
reason its full treatment is postponed to Section lOA. (Although the material won't be
needed until then, the curious or impatient reader might care to glance ahead. Despite
its late appearance that section does not depend on any additional concepts.)

Exercise 3.13 Give definitions by structural induction of loc(a), loc(b) and loc R (c), the
sets of locations which appear in arithmetic expressions a, boolean expressions b and the
right-hand sides of assignments in commands c. D

3.6 Further reading

The techniques and ideas discussed in this chapter are well-known, basic techniques
within mathematical logic. As operational semantics follows the lines of natural deduc
tion, it is not surprising that it shares basic techniques with proof theory, as presented
in [84] for example-derivations are really a simple kind of proof. For a fairly advanced,
though accessible, account of proof theory with a computer science slant see [51, 40],
which contains much more on notations for proofs (and so derivations). Further expla
nation and uses of well-founded induction can be found in [59] and [21], where it is called
"structural induction", in [58] and [73]), and here, especially in Chapter 10.

4 Inductive definitions

This chapter is an introduction to the theory of inductively defined sets, of which pre
sentations of syntax and operational semantics are examples. Sets inductively defined
by rules are shown to be the least sets closed under the rules. As such, a principle of
induction, called rule induction, accompanies the constructions. It specialises to proof
rules for reasoning about the operational semantics of IMP.

4.1 Rule induction

We defined the syntactic set of arithmetic expressions Aexp as the set obtained from
the formation rules for arithmetic expressions. We have seen there is a corresponding
induction principle, that of structural induction on arithmetic expressions. We have
defined the operational semantics of while-programs by defining evaluation and execution
relations as relations given by rules which relate evaluation or execution of terms to the
evaluation or execution of their components. For example, the evaluation relation on
arithmetic expressions was defined by the rules of Section 2.2 as a ternary relation which
is the set consisting of triples (a, u, n) of Aexp x ~ x N such that (a, u) ---- n. There is
a corresponding induction principle which we can see as a special case of a principle we
call rule induction.

We are interested in defining a set by rules. Viewed abstractly, instances of rules have
the form (0 j x) or ({Xl, ... , xn } / x). Given a set of rule instances R, we write I R for the
set defined by R consisting of precisely of those elements x for which there is a derivation.
Put another way

The principle of rule induction is useful to show a property is true of all the elements
in a set defined by some rules. It is based on the idea that if a property is preserved in
moving from the premises to the conclusion of all rule instances in a derivation then the
conclusion of the derivation has the property, so the property is true of all elements in
the set defined by the rules.

The general principle of rule induction
Let IR be defined by rule instances R. Let P be a property. Then Vx E I R . P(x) iff

for all rule instances (Xjy) in R for which X ~ I R

(Vx E X. P(x)) => P(y).

Notice for rule instances of the form (X/y), with X = 0, the last condition is equivalent
to P(y). Certainly then Vx E X. x E IR & P(x) is vacuously true because any x in 0

42 Chapter 4

satisfies P-there are none. The statement of rule induction amounts to the following.
For rule instances R, we have Vy E I R. P(y) iff for all instances of axioms

x

P(X) is true, and for all rule instances

Xl,··· ,Xn

X

if Xk E IR & P(Xk) is true for all the premises, when k ranges from 1 to n, then P(x) is
true of the conclusion.

The principle of rule induction is fairly intuitive. It corresponds to a superficially
different, but equivalent method more commonly employed in mathematics. (This ob
servation will also lead to a proof of the validity of rule induction.) We say a set Q is
closed under rule instances R, or simply R-closed, iff for all rule instances (X/y)

x ~ Q =} Y E Q.

In other words, a set is closed under the rule instances if whenever the premises of any
rule instance lie in the set so does its conclusion. In particular, an R-closed set must
contain all the instances of axioms. The set IRis the least set closed under R in this
sense:

Proposition 4.1 With respect to rule instances R
(i) IR is R-closed, and
(ii) if Q is anR-closed set then IR ~ Q.

Proof:
(i) It is easy to see IR is closed under R. Suppose (X/y) is an instance of a rule in R
and that X ~ I R . Then from the definition of IR there are derivations of each element
of X. If X is nonempty these derivations can be combined with the rule instance (X/y)
to provide a derivation of y, and, otherwise, (0/y) provides a derivation immediately. In
either case we obtain a derivation of y which must therefore be in I R too. Hence IR is
closed under R.
(ii) Suppose that Q is R-closed. We want to show IR ~ Q. Any element of IR is the
conclusion of some derivation. But any derivation is built out of rule instances (X/y).
If the premises X are in Q then so is the conclusion y (in particular, the conclusion of
any axiom will be in Q). Hence we can work our way down any derivation, starting at

Inductive definitions 43

axioms, to show its conclusion is in Q. More formally, we can do an induction on the
proper sub derivation relation -< to show

'r/y E h. d If-R Y => y E Q

for all R-derivations d. Therefore J R s;: Q. 0

Exercise 4.2 Do the induction on derivations mentioned in the proof above. 0

Suppose we wish to show a property P is true of all elements of J R, the set defined by
rules R. The conditions (i) and (ii) in the proposition above furnish a method. Defining
the set

Q = {x E JR 1 P(x)},

the property P is true of all elements of J R iff J R s;: Q. By condition (ii), to show J R s;: Q
it suffices to show that Q is R-closed. This will follow if for all rule instances (X/y)

(Vx E X. x E JR & P(x)) => P(y)

But this is precisely what is required by rule induction to prove the property P holds for
all elements of JR. The truth of this statement is not just sufficient but also necessary
to show the property P of all elements of JR. Suppose P(x) for all x E h. Let (X/y)
be a rule instance such that

'r/x E X. x E JR & P(x).

By (i), saying JR is R-closed, we get y E JR , and so that P(y). And in this way we
have derived the principle of rule induction from (i) and (ii), saying that J R is the least
R-closed set.

Exercise 4.3 For rule instances R, show

n {Q 1 Q is R-closed}

is R-closed. What is this set? o

Exercise 4.4 Let the rules consist of (0/0) and ({n}/(n + 1)) where n is a natural
number. What is the set defined by the rules and what is rule induction in this case? 0

In presenting rules we have followed the same style as that used in giving operational
semantics. When it comes to defining syntactic sets by rules, BNF is the traditional way
though it can be done differently. For instance, what is traditionally written as

a ::= ... 1 ao + al I···,

44 Chapter 4

saying that if ao and al are well-formed expressions arithmetic expressions then so is
ao + al, could instead be written as

ao : Aexp al: Aexp

ao + al : Aexp

This way of presenting syntax is becoming more usual.

Exercise 4.5 What is rule induction in the case where the rules are the formation rules
for Aexp? What about when the rules are those for boolean expressions? (Careful! See
the next section.) 0

4.2 Special rule induction

Thinking of the syntactic sets of boolean expressions and commands it is clear that
sometimes a syntactic set is given by rules which involve elements from another syntactic
set. For example, the formation rules for commands say how commands can be formed
from arithmetic and boolean expressions, as well as other commands. The formation
rules

C ::= ···1 X := a I·· ·1 if b then Co else Cl I""
can, for the sake of uniformity, be written as

X : Loc a: Aexp

X:= a: Com
and

b : Bexp Co: Com Cl: Com

if b then Co else Cl : Com

Rule induction works by showing properties are preserved by the rules. This means that
if we are to use rule induction to prove a property of all commands we must make sure
that the property covers all arithmetic and boolean expressions as well. As it stands,
the principle of rule induction does not instantiate to structural induction on commands,
but to a considerably more awkward proof principle, simultaneously combining structural
induction on commands with that on arithmetic and boolean expressions. A modified
principle of rule induction is required for establishing properties of subsets of the set
defined by rules.

The special principle of rule induction
Let JR be defined by rule instances R. Let A ~ JR. Let Q be a property. Then

Va E A. Q(a) iff for all rule instances (X/y) in R, with X ~ J Rand YEA,

("Ix E X n A. Q(x)) =} Q(y).

Inductive definitions 45

The special principle of rule induction actually follows from the general principle. Let
R be a set of rule instances. Let A be a subset of I R, the set defined by R. Suppose
Q(x) is a property we are interested in showing is true of all elements of A. Define a
corresponding property P(x) by

P(x) ~ (x E A,* Q(x)).

Showing Q(a) for all a E A is equivalent to showing that P(x) is true for all x E I R. By
the general principle of rule induction the latter is equivalent to

V(Xjy) E R. X ~ IR & ("Ix E x.(x E A '* Q(x))) '* (y E A,* Q(y)).

But this is logically equivalent to

V(Xjy) E R. (X ~ IR & yEA & (Vx E x.(x E A,* Q(x)))) '* Q(y).

This is equivalent to the condition required by the special principle of rule induction.

Exercise 4.6 Explain how structural induction for commands and booleans follows from
the special principle of rule induction. 0

Because the special principle follows from the general, any proof using the special
principle can be replaced by one using the principle of general rule induction. But in
practice use of the special principle can drastically cut down the number of rules to
consider, a welcome feature when it comes to considering rule induction for operational
semantics.

4.3 Proof rules for operational semantics

Not surprisingly, rule induction can be a useful tool for proving properties of operational
semantics presented by rules, though then it generally takes a superficially different
form because the sets defined by the rules are sets of tuples. This section presents the
special cases of rule induction which we will use later in reasoning about the operational
behaviour of IMP programs.

4.3.1 Rule induction for arithmetic expressions

The principle of rule induction for the evaluation of arithmetic expressions is got from
the rules for their operational semantics. It is an example of rule induction; a property
pea, a, n) is true of all evaluations (a, a) -> n iff it is preserved by the rules for building

46

up the evaluation relation.

Va E Aexp, a E I:, n E N. (a, 0-) -; n =} pea, a, n)

iff

[\In E N, a E I:. pen, a-, n)

&

VX E Loc,a- E I:. P(X,a-,a-(X))

&

Vao, al E Aexp, a- E I:, no, nl EN.

(ao,a-) -+ no & P(ao,a-,no) & (al,a-) -+ nl & P(al,a,nl)

=} P(ao + aI, a-, no + nl)

&

\iao,al E Aexp,a- E I:,no,nl EN.

(ao,a-) -; no & P(ao,a,no) & (al,a-) -; nl & P(al,a,nd

=} P(ao - aI, a-, no - nr)

&

\iao, al E Aexp, a- E I:, no, nl EN.

(ao,a-) -+ no & P(ao,a,no) & (al,a-) -; nl & P(al,a-,nr)

=} P(ao x al,a-,nO x nd].

Chapter 4

Compare this specific principle with that for general rule induction. Notice how all
possible rule instances are covered by considering one evaluation rule at a time.

4.3.2 Rule induction for boolean expressions

The rules for the evaluation of boolean expressions involve those for the evaluation of
arithmetic expressions. Together the rules define a subset of

(Aexp x L: x N) U (Bexp x I: x T).

A principle useful for reasoning about the operational semantics of boolean expressions
is got from the special principle of rule induction for properties P(b, a-, t) on the subset
Bexp x L: x T.

Inductive definitions 47

Vb E Bexp, CT E 2::, t E T. (b, CT) ----+ t =} P(b, CT, t)

iff

[VCT E 2::. P(false, CT, false) & VCT E 2::. P(true, CT, true)

&

Vao, al E Aexp, CT E 2::, m, n E N.

(ao, CT) ----+ m & (aI, CT) ----+ n & m = n =} P(ao = aI, CT, true)

&

VaO,al E Aexp,CT E 2::,m,n E N.

(ao, CT) ----+ m & (aI, CT) ----+ n & m -=I- n =} P(ao = aI, CT, false)

&

Vao, al E Aexp, CT E 2::, m, n E N.

(ao, CT) ----+ m & (aI, CT) ----+ n & m ::; n =} P(ao ::; al, CT, true)

&

Vao, al E Aexp, CT E 2::, m, n E N.

(aO,CT) ----+ m & (al,CT) ----+ n & m 1:. n =} P(ao::; aI, CT, false)

&

Vb E Bexp,CT E 2::,t E T.

(b,CT) ----+ t & P(b,CT,t) =} P(-.b,CT,-.t)

&

Vbo, bl E Bexp, CT E 2::, to, tl E T.

(bo, CT) ----+ to & P(bo, CT, to) & (bl , CT) ----+ tl & P(bl , CT, td =} P(bo /I. bl , CT, to /I. tl)

&

Vbo, bl E Bexp, CT E 2::, to, tl E T.

(bO,CT) ----+ to & P(bO,CT,tO) & (bl,CT) ----+ tl & P(bl,CT,td =} P(bo V bl,CT,to V tdJ.

4.3.3 Rule induction for commands

The principle of rule induction we use for reasoning about the operational semantics of
commands is an instance of the special principle of rule induction. The rules for the
execution of commands involve the evaluation of arithmetic and boolean expressions.
The rules for the operational semantics of the different syntactic sets taken together

48 Chapter 4

define a subset of

(Aexp x Ex N) U (Bexp x ExT) U (Com x E x E).

We use the special principle for properties P(c, a, a') on the subset Com x E x E.
(Try to write it down and compare your result with the following.)

Vc E Com,a,a' E E. (c,a) -+ a':::::} P(c,a,a')

iff

[\fa E E. P(skip, a, a)

&

"IX E Loc, a E Aexp, a E E, mEN. (a, a) -+ m :::::} PCX := a, a, a[m/ Xl)

&

VCo, Cl E Com, a, a', a" E E.

(Co, a) -+ a" & P(eo,a,a") & (cl,a") -+ a' & P(cl,a",a'):::::} P(cOjCl,a,a')

&

VCo, Cl E Com, b E Bexp, a, a' E E.

(b, a) -+ true & (co, a) -+ a' & P(co, a, a') :::::} P(if b then Co else Cl, a, a')

&

VCO,Cl E Com,b E Bexp,a,a' E E.

(b, a) -+ false & (Cl, a) -+ a' & P(Cll a, a') :::::} P(if b then Co else Cl, a, a')

&

Vc E Com,b E Bexp,a E~.

(b, a) -+ false:::::} P(while b do c, a, a)

&

Vc E Com, b E Bexp, a, a', a" E E.

(b, a) -+ true & (c, a) -+ a" & PCc, a, a") &

(while b do c, a") -+ a' & P(while b do c, a", a')

:::::} P(while b do c,a,a')].

As an example, we apply rule induction to show the intuitively obvious fact that if a
location Y does not occur in the left hand side of an assignment in a command C then
execution of c cannot affect its value. Recall the definition of the locations loc d c) of a
command c given in Section 3.5.

Inductive definitions 49

Proposition 4.7 Let Y E Loc. For all commands c and states cr,cr',

Y (j. lac£(c) & (c, cr) ---+ cr' =} cr(Y) = cr' (Y).

Proof: Let P be the property given by:

P(c,cr,cr') -¢:::::::::} (Y (j.loc£(c) =} cr(Y) = cr'(Y)).

We use rule induction on commands to show that

Vc E Com, cr, cr' E E. (c, cr) ---+ cr' =} P(c, cr, cr').

Clearly P(skip,a,cr) for any a E E.
Let X E Loc, a E Aexp, cr E E, mEN. Assume (a, cr) ---+ m. If Y (j. lOCL(X := a)

then Y t:. X, so cr(Y) = cr[m/ X](Y). Hence P(X := a, cr, a[m/ X]).
Let co, ct E Com, cr, a' E E. Assume

i.e., that

(eo,a) ---+ cr" & P(eo,cr,cr") & (cI,a") ---+ cr' & P(CI,cr",cr'),

(eo,cr) ---+ cr" & (Y (j.loc£(co) =} cr(Y) = cr"(Y)) &

(CI' a") ---+ a' & (Y (j. 10CL(CI) =} a"(Y) = cr'(Y)).

Suppose Y (j. loc£(eo; CI). Then, as loc£(eo; CI) = loc£(eo) U loc£(cd, we obtain Y (j.
loc£(eo) and Y (j. loc£(cd. Thus, from the assumption, cr(Y) = cr"(Y) = cr'(Y). Hence
P(co; el, cr, a').

We shall only consider one other case of rule instances.
Let e E Com, b E Bexp, a, cr', cr" E E. Let w == while b do c. Assume

i.e. ,

(b,cr) ---+ true & (e,cr) ---+ cr" & P(e,cr,cr") &

(w, cr") ---+ cr' & pew, cr", cr')

(b,cr) ---+ true & (c,cr) ---+ cr" & (Y (j.loc£(e) =} cr(Y) = cr"(Y)) &

(w, cr") ---+ cr' & (Y (j. lac£(w) =} cr" (Y) = a' (Y)).

Suppose Y (j. loc£(w). By the assumption cr"(Y) = cr'(Y). Also, as loc£(w) = loc£(c),
we see Y (j. 10cL(e), so by the assumption cr(Y) = cr"(Y). Thus cr(Y) = cr'(Y). Hence
pew, a, cr').

The other cases are very similar and left as an exercise. o

50 Chapter 4

We shall see many more proofs by rule induction in subsequent chapters. In general
they will be smooth and direct arguments. Here are some more difficult exercises on
using rule induction. As the first two exercises indicate applications of rule induction
can sometimes be tricky.

Exercise 4.8 Let w == while true do skip. Prove by special rule induction that

't/O",O"'. (w,O") -f> 0"'.

(Hint: Apply the special principle of rule induction restricting to the set

{(w,O",O"') 10",0"' E E}

and take the property P(w, 0", 0"') to be constantly false.
It is interesting to compare the proof for this exercise with that of Proposition 3.12 in
Section 3.4-proofs by rule induction can sometimes be less intuitive than proofs in which
the form of derivations is considered.) D

Although rule induction can be used in place of induction on derivations it is no
panacea; exclusive use of rule induction can sometimes make proofs longer and more
confusing, as will probably become clear on trying the following exercise:

Exercise 4.9 Take a simplified syntax of arithmetic expressions:

a ::= n I X I ao + al·

The evaluation rules of the simplified expressions are as before:

(n,O") ---> n

(X,O") ---> O"(X)

(ao,O")--->no (al,O")--->nl

(ao + aI, 0") ---> n

where n is the number which is the sum of no and nl.

By considering the unique form of derivations it is easy to see that (n,O") ---> m implies
m == n. Can you see how this follows by special rule induction? Use rule induction on
the operational semantics (and not induction on derivations) to show that the evaluation

Inductive definitions

of expressions is deterministic.
(Hint: For the latter, take

P(a, a, m) {::::::} dej'<lm' E N. (a, a) ---> m' * m = m'

51

as induction hypothesis, and be prepared for a further use of (special) rule induction.)
An alternative proof, of Proposition 3.3 in Section 3.2, uses structural induction and
considers the forms that derivations could take. How does the proof compare with that
of Proposition 3.3? 0

The next, fairly long, exercise proves the equivalence of two operational semantics.

Exercise 4.10 (Long) One operational semantics is that of Chapter 2, based on the
relation (c,a) ---> a'. The other is the one-step execution relation (c,a) --->1 (c',a')
mentioned previously in Section 2.6, but where, for simplicity, evaluation of expressions
is treated in exactly the same way as in Chapter 2. For instance, for the sequencing of
two commands there are the rules:

(eo, a) --->1 (C~, a') (eo, a) --->1 a'

(CO;Cl,a) --->1 (c~;C1,a') (eo;Cl,o-) --->1 (Cl,o-')

Start by proving the lemma

for all commands Co, Cl and all states 0-,0-'. Prove this in two stages. Firstly prove

by mathematical induction on n, the length of computation. Secondly prove

by mathematical induction on n, this time the length of the execution of Co from state
0-. Conclude that the lemma holds. Now proceed to the proof of the theorem:

'<10-,0-'. [(C, 0-) --->i 0-' iff (c,o-) ---> 0-'].

The "only if" direction of the proof can be done by structural induction on c, with an
induction on the length of the computation in the case where c is a while-loop. The "if"
direction of the proof can be done by rule induction (or by induction on derivations). 0

52 Chapter 4

4.4 Operators and their least fixed points

There is another way to view a set defined by rules. A set of rule instances R determines
an operator R on sets, which given a set B results in a set

R(B) = {y I 3X ~ B. (X/y) E R}.

Use of the operator R gives another way of saying a set is R-closed.

Proposition 4.11 A set B is closed under R iff R(B) ~ B.

Proof: The fact follows directly from the definitions. o

The operator R provides a way of building up the set I R. The operator R is monotonic
in the sense that

A ~ B :::} R(A) ~ R(B).

If we repeatedly apply R to the empty set 0 we obtain the sequence of sets:

Ao = RO(0) = 0,

Al = RI(0) = R(0),

A2 = R(R(0)) = R2(0),

The set Al consists of all the conclusions of instances of axioms, and in general the
set An+! is all things which immediately follow by rule instances with premises in An.
Clearly 0 ~ R(0), i.e. Ao ~ AI' By the monotonicity of R we obtain R(Ao) ~ R(AI),
i.e. Al ~ A2 • Similarly we obtain A2 ~ A3 etc .. Thus the sequence forms a chain

Taking A = UnEw An, we have:

Proposition 4.12
(i) A is R-closed.
(ii) R(A) = A.
(iii) A is the least R-closed set.

Inductive definitions 53

Proof:
(i) Suppose (X/y) E R with X ~ A. Recall A = Un An is the union of an increasing
chain of sets. As X is a finite set there is some n such that X ~ An. (The set X is
either empty, whence X ~ Ao, or of the form {Xl, ... , xd. In the latter case, we have
Xl E An1 ,···, Xk E Ank for some nl, ... , nk. Taking n bigger than all of nl, ... , nk we
must have X ~ An as the sequence Ao, A!, ... , An,'" is increasing.) As X ~ An we
obtain y E R(An) = An+l . Hence y E Un An = A. Thus A is closed under R.
(ii) By Proposition 4.11 the set A is R-closed, so we already know that R(A) ~ A. We
require the converse inclusion. Suppose yEA. Then YEAn for some n > O. Thus
Y E R(An-I)' This means there is some (X/y) E R with X ~ An-I. But An- l ~ A so
X ~ A with (X/y) E R, giving y E R(A). We have established the required converse
inclusion, A ~ R(A). Hence R(A) = A.
(iii) We need to show that if B is another R-closed set then A ~ B. Suppose B is closed
under R. Then R(B) C B. We show by mathematical induction that for all natural
numbers nEw

An ~B.

The basis of the induction Ao ~ B is obviously true as Ao = 0. To show the induction
step, assume An ~ B. Then

using the facts that R is monotonic and that B is R-closed. o

Notice the essential part played in the proof of (i) by the fact that rule instances are
finitary, i.e. in a rule instance (X/y), the set of premises X is finite.

It follows from (i) and (iii) that A = I R, the set of elements for which there are R
derivations. Now (ii) says preciselr that IRis a fixed point of R. Moreover, (iii) implies
that IR is the least fixed point of R, i.e.

because if any other set B is a fixed point it is closed under R, so I R ~ B by Propo
sition 4.1. The set I R , defined by the rule instances R, is the least fixed point, fix(R),
obtained by the construction

fix(R) =def U Rn(0).
nEw

Least fixed points will play a central role in the next chapten

54 Chapter 4

Exercise 4.13 Given a set of rules R define a different operator R by

RCA) = Au {y I :JX ~ A. (Xjy) E R}.

Clearly R is monotonic and in addition satisfies the property

A ~ RCA).

An operator satisfying such a property is called increasing. Exhibit a monotonic operator
which is not increasing. Show that given any set A there is a least fixed point of R which
includes A, and that this property can fail for monotonic operations. 0

Exercise 4.14 Let R be a set of rule instances. Show that R is continuous in the sense
that

nEw nEw

for any increasing chain of sets Bo ~ ... ~ Bn ~
(The solution to this exercise is contained in the next chapter.) o

4.5 Further reading

This chapter has provided an elementary introduction to the mathematical theory of
inductive definitions. A detailed, though much harder, account can be found in Peter
Aczel's handbook chapter [4]--our treatment, with just finitary rules, avoids the use
of ordinals. The term "rule induction" originates with the author's Cambridge lecture
notes of 1984, and seems be catching on (the principle is well-known and, for instance,
is called simply R-induction, for rules R, in [4]). This chapter has refrained from any
recommendations about which style of argument to use in reasoning about operational
semantics; whether to use rule induction or the often clumsier, but conceptually more
straightforward, induction on derivations. In many cases it is a matter of taste.

5 The denotational semantics of IMP

This chapter provides a denotational semantics for IMP, and a proof of its equivalence
with the previously given operational semantics. The chapter concludes with an intro
duction to the foundations of denotational semantics (complete partial orders, continuous
functions and least fixed points) and the Knaster-Tarski Theorem.

5.1 Motivation

We have described the behaviour of programs in IMP in an operational manner by
inductively defining transition relations to express evaluation and execution. There was
some arbitrariness in the choice of rules, for example, in the size of transition steps we
chose. Also note that in the description of the behaviour the syntax was mixed-up in the
description. This style of semantics, in which the transitions are built out of the syntax,
makes it hard to compare two programs written in different programming languages.
Still, the style of semantics was fairly close to an implement ion of the language, the
description can be turned into an interpreter for IMP written for example in Prolog,
and it led to firm definitions of equivalence between arithmetic expressions, boolean
expressions and commands. For example we defined

Co rv Cl iff (Va, a'. (Co, a) -t a' -¢=* (Cl' a) -t a').

Perhaps it has already occurred to the reader that there is a more direct way to capture
the semantics of IMP if we are only interested in commands to within the equivalence
"'. Notice Co rv Cl iff

{(a,a') I (Co, a) -t a'} = {(a, a') I (cl,a) -t a'}.

In other words, Co rv Cl iff Co and Cl determine the same partial function on states. This
suggests we should define the meaning, or semantics, of IMP at a more abstract level in
which we take the denotation of a command to be a partial function on states. The style
we adopt in giving this new description of the semantics of IMP is that from denota
tional semantics. Denotational semantics is much more widely applicable than to simple
programming languages like IMP -it can handle virtually all programming languages,
though the standard framework appears inadequate for parallelism and "fairness" (see
Chapter 14 on parallelism). The approach was pioneered by Christopher Strachey, and
Dana Scott who supplied the mathematical foundations. Our denotational semantics of
IMP is really just an introductory example. We shall see more on the applications and
foundations of denotational semantics in later chapters.

An arithmetic expression a E Aexp will denote a function A[a] : E -t N.
A boolean expression b E Bexp will denote a function B[bJ : E -t T, from the set of

states to the set of truth values.

56 Chapter 5

A command c will denote a partial function C[c] : E ~ E.
The brackets [~ are traditional in denotational semantics. You see A is really a function

from arithmetic expressions of the type Aexp -> (E -> N), and our first thought in
ordinary mathematics, when we see an expression, is to evaluate it. The square brackets
[a] put the arithmetic expression a in quotes so we don't evaluate a. We could have
written e.g. A("3 + 5")er = 8 instead of A[3 + 5]er = 8. The quotes tell that it is the
piece of syntax "3+5" which is being mapped. The full truth is a little more subtle as
we shall sometimes write denotations like A[ao+al~' where ao and al are metavariables
which stand for arithmetic expressions. It is the syntactic object got by placing the sign
"+" between the syntactic objects ao and al that is put in quotes. So the brackets []
do not represent true and complete quotation. We shall use the brackets [] round an
argument of a semantic function to show that the argument is a piece of syntax.

5.2 Denotational semantics

We define the semantic functions

A: Aexp -> (E -> N)

B : Bexp -> (E -> T)

C : Com -> (E ~ E)

by structural induction. For example, for commands, for each command c we define the
partial function C[c] assuming the previous definition of c' for sub commands c' of c. The
command c is said to denote C[c], and C[c] is said to be a denotation of c.

Denotations of Aexp:

Firstly, we define the denotation of an arithmetic expression, by structural induction, as
a relation between states and numbers:

A[n] = {(er, n) I er E E}

A[X~ = {(er, er(X)) I er E E}

A[aa + al~ = {(er, no + nd I (U, no) E A[ao] & (er, nd E A[al]}

A[ao - al] = {(er,na - nd I (u,no) E A[ao~ & (er,nd E A[ad}

A[ao x al~ = {(er,no x nl) I (u,na) E A[aa] & (er,nl) E A[al]}'

An obvious structural induction on arithmetic expressions a shows that each denotation
A[a] is in fact a function. Notice that the signs "+", "-", "x" on the left-hand sides
represent syntactic signs in IMP whereas the signs on the right represent operations on

The denotational semantics of IMP 57

numbers, so e.g., for any state a,

A[3 + 5]a = A[3]a + A[5]a = 3 + 5 = 8,

as is to be expected. Note that using A-notation we can present the definition of the
semantics in the following equivalent way:

A[n] = Aa E E.n

A[X] = Aa E E.a(X)

A[ao + al] = Aa E E.(A[ao]a + A[al]a)

A[ao - al] = Aa E E.(A[ao]a - A[al]a)

A[ao x al] = Aa E E.(A[ao]a x A[al]a).

Denotations of Bexp:

The semantic function for booleans is given in terms of logical operations conjunction
AT, disjunction VT and negation ""T, on the set of truth values T. The denotation of a
boolean expression is defined by structural induction to be a relation between states and
truth values.

B[true] = {(a, true) I a E E}

B[false] = {(a, false) I a E E}

B[ao = al] = {(a, true) I a E E & A[ao]a = A[ada}U

{(a, false) I a E E & A[ao]a =1= A[ada},

B[ao ~ al] = {(a, true) I a E E & A[ao]a ~ A[ada}u

{(a, false) I a E E & A[ada 1:: A[al]a},

B[...,b] = {(a,""Tt) I a E E & (a, t) E B[b]},

B[bo V bd = {(a, to VT tl) I a E E & (a, to) E B[bo] & (a, tI) E B[bd}·

"

58 Chapter 5

A simple structural induction shows that each denotation is a function. For example,

!3[~ { true if A[ao]a ::; A[al~a,
ao < al~a =

- false if A[ao~a 1:. A[al~a
for all a E ~.

Denotations of Com:

The definition of C[c~ for commands c is more complicated. We will first give denotations
as relations between states; afterwards a straightforward structural induction will show
that they are, in fact, partial functions. It is fairly obvious that we should take

C[skip~ = {(a, a) I a E ~}

C[X := a~ = {(a, a[n/ Xl) I a E ~ & n = A[a~a}

C[co; cd = C[Cl~ 0 C[co~, a composition of relations,

the definition of which explains the order-reversal in Co and Cl,

C[if b then Co else Cl~ =
{(a, a') I !3[b~a = true & (a, a') E C[co]} U {(a, a') I !3[b~a = false & (a, a') E C[Cl]}'

But there are difficulties when we consider the denotation of a while-loop. Write

w =: while b do c.

We have noted the equivalence

w rv if b then c; weIse skip

so the partial function C[w] should equal the partial function C[if b then c; weIse skipl
Thus we should have:

C[w] ={(a, a') I !3[b]a = true & (a, a') E C[c; w]} U

{(a, a) I !3[b]a = false}

={(a, a') I !3[b~a = true & (a, a') E C[w] 0 C[c]} U

{(a,a) I !3[b]a = false}.

Writing 'P for C[w~, 13 for !3[b] and 'Y for C[c] we require a partial function 'P such that

'P ={ (a, a') I f3(a) = true & (a, a') E ip 0 'Y}U

{(a, a) I f3(a) = false}.

The denotational semantics of IMP 59

But this involves <p on both sides of the equation. How can we solve it to find <p? We
clearly require some technique for solving a recursive equation of this form (it is called
"recursive" because the value we wish to know on the left recurs on the right). Looked
at in another way we can regard f, where

f(<p) ={(o-, 0-') I (3(0-) = true & (0-,0-') E <p 0 ,} U

{(0-,0-) I (3(0-) = false}

={ (0-,0-') I :30-". (3(0-) = true & (0-,0-") E , & (0-",0-') E <p} U

{(o-,o-) 1(3(0-) = false},

as a function which given <p returns r(<p). We want a fixed point <p of r in the sense that

<p = f(<p).

The last chapter provides the clue to finding such a solution in Section 4.4. It is not hard
to check that the function f is equal to R, where R is the operator on sets determined
by the rule instances

R ={({(o-",o-')}/(o-,o-')) 1(3(0-) = true & (0-,0-") E ,} u
{(0/(0-,0-)) 1(3(0-) = false}.

As Section 4.4 shows R has a least fixed point

<p = fix(R)

where <p is a set-in this case a set of pairs-with the property that

We shall take this least fixed point as the denotation of the while program w. Certainly
its denotation should be a fixed point. The full justification for taking it to be the least
fixed point will be given in the next section where we establish that this choice for the
semantics agrees with the operational semantics.

Now we can go ahead and define the denotational semantics of commands in the

60

following way, by structural induction:

where

C[skip] = {(O", 0") 10" E E}

C[X := a] = {(O", O"[nj Xl) I 0" E E & n = A[a] 0" }

C[if b then Co else CI] =

{(O",O"') I B[b]O" = true & (0',0"') E C[conU

{(O",o") I B[b]O" = false & (0",0"') E C[CIn

C[while b do c] = fix(r)

r(ip) ={(O",O"') I B[b]O" = true & (0",0") E ipoC[cn U

{(O",O") I B[b]O' = false}.

Chapter 5

In this way we define a denotation of each command as a relation between states. No
tice how the semantic definition is compositional in the sense that the denotation of a
command is constructed from the denotations of its immediate subcommands, reflected
in the fact that the definition is by structural induction. This property is a hallmark
of denotational semantics. Notice it is not true of the operational semantics of IMP
because of the rule for while-loops in which the while-loop reappears in the premise of
the rule.

We have based the definition of the semantic function on while programs by the op
erational equivalence between while programs and one "unfolding" of them into a con
ditional. Not surprisingly it is straightforward to check this equivalence holds according
to the denotational semantics.

Proposition 5.1 Write
w == while b do c

for a command c and boolean expression b. Then

C[w] = C[if b then c; weIse skip].

The denotational semantics of IMP

Proof: The denotation of w is a fixed point of f, defined above. Hence

C[wI =f(C[wI)

=((O",O"') I 8[bIO" = true & (0",0"') E C[wI 0 C[cD U

{(0",0") I 8[b]0" = false}

={(O",O"') I 8[b]0" = true & (0",0"') E C[c;wD u
{(0",0"') I 8[b]0" = false & (0",0"') E C[skip]}

=C[if b then c; weise skiplD

61

Exercise 5.2 Show by structural induction on commands that the denotation C[cI is a
partial function for all commands c.
(The case for while-loops involves proofs by mathematical induction showing that f n(0)
is a partial function between states for all natural numbers n, and that these form an
increasing chain, followed by the observation that the union of such a chain of partial
functions is itself a partial function.) 0

In Section 5.4 we shall introduce a general theory of fixed points, which makes sense
when the objects defined recursively are not sets ordered by inclusion.

5.3 Equivalence of the semantics

Although inspired by our understanding of the operational behaviour of IMP the denota
tional semantics has not yet been demonstrated to agree with the operational semantics.
We first check the operational and denotational semantics agree on the evaluation of
expressions:

Lemma 5.3 For all a E Aexp,

A[aI = {(O",n) I (a, 0") --; n}.

Proof: We prove the lemma by structural induction. As induction hypothesis we take

P(a) ~ defA[aI = {(O",n) I (a, 0") --; n}.

Following the scheme of structural induction the proof splits into cases according to the
structure of an arithmetic expression a.
a == m: From the definition of the semantic function, in the case where a is a number m,
we have

(O",n) E A[mI ~ 0" E:E & n == m.

62 Chapter 5

Clearly, if (cr, n) E A[m] then n == m and {m, cr) --> n. Conversely, if {m, cr) --> n then
the only possible derivation is one in which n == m and hence (cr, n) E A[m].
a == X: Similarly, if a is a location X,

(cr, n) E A[X] ~ (cr E E & n == cr(X))

~ {X, cr) --> n.

a == ao + al: Assume P(ao) and P(ad for two arithmetic expressions ao, al. We have

Supposing (cr, n) E A[ao +al], there are no, nl such that n = no +nl and (cr, no) E A[ao]
and (cr,nl) E A[all From the assumptions P(ao) and P(ad, we obtain

Thus we can derive (ao +al, cr) --> n. Conversely, any derivation of (ao + aI, cr) --> n must
have the form

(ao, cr) --> no (aI, cr) --> nl

(ao + aI, cr) --> n

for some no, nl such that n = no + nl. This time, from the assumptions P(ao) and
P(ad, we obtain (cr,no) E A[ao] and (cr,nd E A[all Hence (cr,n) E A[a].

The proofs of the other cases, for arithmetic expressions of the form a 0 - al and ao x aI,

follow exactly the same pattern. By structural induction on arithmetic expressions we
conclude that

A[a] = {(cr,n) I (a,cr) --> n},

for all arithmetic expressions a. o

Lemma 5.4 For b E Bexp,

8[b] = {(cr, t) I (b,a) --> t}.

Proof: The proof for boolean expressions is similar to that for arithmetic expressions.
It proceeds by structural induction on boolean expressions with induction hypothesis

P(b) ~ defB[b] = {(cr,t) I (b,a) --> t}

for boolean expression b.

The denotational semantics of IMP 63

We only do two cases of the induction. They are typical, and the remaining cases are
left to the reader.
b == (ao = al): Let ao, al be arithmetic expressions. By definition, we have

Thus

B[ao = al] ={ (cr, true) I cr E I; & A[ao]cr = A[al]cr}U

{(cr, false) I cr E I; & A[ao]cr =I A[al]cr}.

(cr, true) E B[ao = al] ~ cr E I; & A[ao]cr = A[al]cr.

If (cr, true) E B[ao = al] then A[ao]cr = A[al]cr, so, by the previous lemma,

(ao, cr) -> nand (aI, cr) -> n,

for some number n. Hence from the operational semantics for boolean expressions we
obtain

(ao = al,cr) -> true.

Conversely, supposing (ao = aI, cr) -> true, it must have a derivation of the form

(ao,cr) -+ n (al,cr) -> n

(ao = aI, a) -> true

But then, by the previous lemma, A[ao]cr = n = A[adcr. Hence (cr, true) E B[ao = al].
Therefore

(cr, true) E B[ao = al] ~ (ao = al,a) -> true.

Similarly,
(cr,false) E B[ao = al] ~ (ao = al,cr) -> false.

It follows that
B[ao = ad = {(cr, t) I (ao = aI, cr) -> t}.

b == bo 1\ bl : Let bo, bl be boolean expressions. Assume P(bo) and P(bd. By definition,
we have

(cr, t) E B[bo 1\ bl] ~ cr E I; & :lto, tl. t = to I\T tl & (cr, to) E B[b9] & (a, h) E B[bI].

Thus, supposing (cr, t) E B[bo 1\ bl]' there are to, tl such that (cr, to) E B[bo] and (a, td E
B[b1]. From the assumptions P(bo) and P(bd we obtain

64 Chapter 5

Thus we can derive (bo 1\ bl , a) ---* t where t = to I\T tl. Conversely, any derivation of
(bo 1\ bl , a) ---* t must have the form

(bo, a) ---* to (bl , a) ---* tl

(bo 1\ bl , a) ---* t

for some to, tl such that t = tOI\Ttl' From the P(bo) and P(bd, we obtain (a, to) E B[bo]
and (a, td E B[bll Hence (a, t) E B[bl

As remarked the other cases of the induction are similar. o

Exercise 5.5 The proofs above involve considering the form of derivations. Alternative
proofs can be obtained by a combination of structural induction and rule induction. For
example, show

1. {(a,n) I (a,a) ---* n} ~ A[a],
2. A[a] ~ {(a,n) I (a,a) ---* n},

for all arithmetic expressions a by using rule induction on the operational semantics of
arithmetic expressions for 1 and structural induction on arithmetic expressions for 2. 0

Now we can check that the denotational semantics of commands agrees with their
operational semantics:

Lemma 5.6 For all commands c and states a, a',

(c, a) ---* a' ::} (a, a') E C[c].

Proof: We use rule-induction on the operational semantics of commands, as stated in
Section 4.3.3. For c E Com and a, a' E ~, define

P(c, a, a') {::::::::} de/(a, a') E C[c].

If we can show P is closed under the rules for the execution of commands, in the sense
of Section 4.3.3, then

(c, a) ---* a' ::} P(c, a, a')

for any command c and states a, a'. We check only one clause in Section 4.3.3, that
associated with while-loops in the case in which the condition evaluates to true. Recall
it is:

(b, a) ---* true (c, a) ---* a" (w, a") ---* a'

(w, a) ---* a'

The denotational semantics of IMP 65

where we abbreviate w == while b do c. Following the scheme of Section 4.3.3, assume

(b,a) -> true & (c,a) -> a" & P(c,a,a") & (w,a") -> a' & P(w,a",a').

By Lemma 5.4
B[b]a = true.

From the meaning of P we obtain directly that

C[c]a = a" and C[w]a" = a'.

Now, from the definition of the denotational semantics, we see

C[w]a = C[c; w]a = C[w] (C[c]a) = C[w]a" = a'.

But C[w]a = a' means P(w, a, a') i.e. P holds for the consequence of the rule. Hence
P is closed under this rule. By similar arguments, P is closed under the other rules
for the execution of commands (Exercise!). Hence by rule induction we have proved the
lemma. 0

The next theorem, showing the equivalence of operational and denotational semantics
for commands, is proved by structural induction with a use of mathematical induction
inside one case, that for while-loops.

Theorem 5.7 For all commands c

C[c] = {(a,a') I (c,a) -> a'}.

Proof: The theorem can clearly be restated as: for all commands c

(a, a') E C[c] <¢:::::::} (c, a) -> a'.

for all states a, a'. Notice Lemma 5.6 gives the "~" direction of the equivalence.
We proceed by structural induction on commands c, taking

Va, 0-' E ~.(a, a') E C[c] <¢:::::::} (c, a) -> a'.

as induction hypothesis.

c == skip: By definition, C[skip] = {(a,a) I a E ~}. Thus if (a,a) E,C[c] then a' = a
so (skip, a) -> a' by the rule for skip. The induction hypothesis holds in this case.

c == X := a : Suppose (a,a') E C[X := a]. Then a' = a[n/X] where n = A[a]a. By
Lemma 5.3, (a, a) -> n. Hence (c, a) -> a'. The induction hypothesis holds in this case.

66 Chapter 5

C == co; CI ; Assume the induction hypothesis holds for Co and CI. Suppose (a, a') E C[c].
Then there is some state a" for which (a, a") E C[Co] and (a", a') E C[Cl]. By the
induction hypothesis for commands Co and CI we know

Hence (co; CI, a) --+ a' for the rules for the operational semantics of commands. Thus the
induction hypothesis holds for c.

C == if b then Co else CI ; Assume the induction hypothesis holds for Co and CI. Recall
that

C[C] ={(a, a') I 8[b]a = true & (a, a') E C[co]}U

{(a, a') I 8[b]a = false & (a, a') E C[cd}.

So, if (a, a') E C[c] then either
(i) 8[b]a = true and (a, a') E C[co], or
(ii) 8[b]a = false and (a, a') E C[CI].

Suppose (i). Then (b, a) --+ true by Lemma 5.4, and (co, a) --+ a' because the induction
hypothesis holds for Co. From the rules for conditionals in the operational semantics of
commands we obtain (c, a) --+ a'. Supposing (ii), we can arrive at the conclusion in
essentially the same way. Thus the induction hypothesis holds for c.

c == while b do Co ; Assume the induction hypothesis holds for Co. Recall that

where

C[while b do co] = fix(r)

r(ip) ={ (a, a') I 8[b]a = true & (a, a') E ip 0 C[co]} U

{(a,a) I 8[b]a = false}.

So, writing en for r n (0), we have

where

C[c] = U en
nEw

eo =0,

en+l ={ (a, a') I 8[b]a = true & (a, a') E en 0 C[co]}U

{(a,a) I 8[b]a = false.}

We shall show by mathematical induction that

Va, a' E I:. (a, a') E en =} (c, a) --+ a' (1)

The denotational semantics of IMP 67

for all nEw. It then follows, of course, that (u, u') E C[c] {=> (c, u) -> u' for states

u,u'.
We start the mathematical induction on the induction hypothesis (1).

Base case n = 0: When n = 0, 00 = 0 so that induction hypothesis is vacuously true.
Induction Step: We assume (1) holds for an arbitrary nEw and attempt to prove

for any states u, u'.
Assume (u, u') E On+!. Then either
(i) B[b]a = true and (a, u') E On 0 C[co] , or
(ii) B[b]a = false and u' = u.

Assume (i). Then (b, u) -> true by Lemma 5.4. Also (a, a") E C[co] and (u", a') E On
for some state u". From the induction hypothesis (1) we obtain (c, a") -> a'. By
assumption of the structural induction hypothesis for Co, we have (co, a) -> u". By the
rule for while-loops we obtain (c, u) -> u'.
Assume (ii). As B[b] = false, by Lemma 5.4, we obtain (b, u) -> false. Also u' = u so
(c, u) --> a. In this case the induction hypothesis holds.

This establishes the induction hypothesis (1) for n + 1.
By mathematical induction we conclude (1) holds for all n. Consequently:

(a, a') E C[c] ::::} (c, a) -> u'

for all states a, a' in the case where c == while b do Co.
Finally, by structural induction, we have proved the theorem. o

Exercise 5.8 Let w == while b do c. Prove that

C[w]a = u' iff B[b]a = false & a = a'

or

:luo, ... ,Un E ~.

a = aD & a' = an & B[b]an = false &

Vi(O ~ i < n). B[b]Ui = true & C[C]Ui = ai+l.

(The proof from left to right uses induction on the rn(0) used in building up the denota
tion of w; the proof from right to left uses induction on the length of tM chain of states.)

o

68 Chapter 5

Exercise 5.9 The syntax of commands of a simple imperative language with a repeat
construct is given by

C ::= X:= e I co; Cl I if b then Co else Cl I repeat C until b

where X is a location, e is an arithmetic expression, b is a boolean expression and c, Co, Cl

range over commands. From your understanding of how such commands behave explain
how to change the semantics of while programs to that of repeat programs to give:
(i) an operational semantics in the form of rules to generate transitions of the form
(c, a) -7 u' meaning the execution of C from state u terminates in state u';
(ii) a denotational semantics for commands in which each command C is denoted by a
partial function C[c] from states to states;
(iii) sketch the proof of the equivalence between the operational and denotational seman
tics, that (c, u) -7 u' iff C[c~u = u', concentrating on the case where c is a repeat loop.

o

5.4 Complete partial orders and continuous functions

In the last chapter we gave an elementary account of the theory of inductive definitions.
We have shown how it can be used to give a denotational semantics for IMP. In practice
very few recursive definitions can be viewed straightforwardly as least fixed points of
operators on sets, and they are best tackled using the more abstract ideas of complete
partial orders and continuous functions, the standard tools of denotational semantics. We
can approach this framework from that of inductive definitions. In this way it is hoped
to make the more abstract ideas of complete partial orders more accessible and show the
close tie-up between them and the more concrete notions in operational semantics.

Suppose we have a set ofrule instances R of the form (X / y). We saw how R determines
an operator R on sets, which given a set B results in a set

R(B) = {y I ~(X/y) E R. X ~ B},

and how the operator R has a least fixed point

flx(R) =dej U Rn(0)
nEw

formed by taking the union of the chain of sets

o ~ R(0) ~ ... ~ fin (0) ~

The denotational semantics of IMP 69

It is a fixed point in the sense that

R(flx(R)) = flx(R),

and it is the least fixed point because flx(R) is included in any fixed point B, i.e.

R(B) = B '* flx(R) ~ B.

In fact Proposition 4.12 of Section 4.4 shows that flx(R) was the least R-closed set, where
we can characterise an R-closed set as one B for which

R(B) ~ B.

In this way we can obtain, by choosing appropriate rule instances R, a solution to the
recursive equation needed for a denotation of the while-loop. However it pays to be more
general, and extract from the example above the essential mathematical properties we
used to obtain a least fixed point. This leads to the notions of complete partial order
and continuous functions.

The very idea of "least" only made sense because of the inclusion, or subset, relation.
In its place we take the more general idea of partial order.

Definition: A partial order (p.o.) is a set P on which there is a binary relation [;;;; which
is:

(i) relexive: Vp E P. p [;;;; P

(ii) transitive: Vp, q, rEP. p [;;;; q & q [;;;; r '* p [;;;; r

(iii) antisymmetric: Vp, q E P. p [;;;; q & q [;;;; p '* p = q.

But not all partial orders support the constructions we did on sets. In constructing
the least fixed point we formed the union UnEw An of a w-chain Ao ~ Al ~ ... An ~ ...
which started at 0-the least set. Union on sets, ordered by inclusion, generalises to the
notion of least upper bound on partial orders-we only require them to exist for such
increasing chains indexed by w. Translating these properties to partial orders, we arrive
at the definition of a complete partial order.

Definition: For a partial order (P, [;;;;) and subset X ~ P say p is an upper bound of X
iff

Vq E X. q [;;;; p.

Say p is a least upper bound (lub) of X iff
(i) p is an upper bound of X, and
(ii) for all upper bounds q of X, p [;;;; q.

When a subset X of a partial order has a least upper bound we shall write it as U X.
We write U {db"', dm } as d1 U··· U dm .

70 Chapter 5

Definition: Let (D, i;;:;D) be a partial order.
An w-chain of the partial order is an increasing chain do i;;:;D d1 i;;:;D ... [;;;D dn [;;;D ...

of elements of the partial order.
The partial order (D, [;;;D) is a complete partial order (abbreviated to cpo) if it has lubs

of all w-chains do [;;;D d1 [;;;D ... [;;;D dn i;;:;D ... , i.e. any increasing chain {d n In E w} of
elements in D has a least upper bound U {dn I nEw} in D, often written as UnEw dn ·

We say (D, [;;;D) is a cpo with bottom if it is a cpo which has a least element ..1 D (called
"bottom"). 1

Notation: In future we shall often write the ordering of a cpo (D, [;;;D) as simply [;;;,
and its bottom element, when it has one, as just ..i. The context generally makes clear
to which cpo we refer.

Notice that any set ordered by the identity relation forms a cpo, certainly without a
bottom element. Such cpo's are called discrete, or fiat.

Exercise 5.10 Show (Pow(X),~) is a cpo with bottom, for any set X. Show the set
of partial functions ~ ~ ~ ordered by ~ forms a cpo with bottom. 0

The counterpart of an operation on sets is a function f : D ----; D from a cpo D back
to D. We require such a function to respect the ordering on D in a certain way. To
motivate these properties we consider the operator defined from the rule instances R.
Suppose

Then

is an increasing chain of sets too. This is because R is monotonic in the sense that

B ~ G ~ R(B) ~ R(G).

By monotonicity, as each Bn ~ UnEw Bn,

nEw nEw

In fact, the converse inclusion, and so equality, holds too because of the finitary nature
of rule instances. Suppose y E R(UnEw Bn)· Then (X/y) E R for some finite set

IThe cpo's here are commonly called (bottomless) w-cpo's, or predomains.

The denotational semantics of IMP 71

x ~ UnEw Bn· Because X is finite, X ~ Bn for some n. Hence y E R(Bn). Thus

y E UnEw R(Bn). We have proved that R is continuous in the sense that

nEw nEw

for any increasing chain Bo ~ ... ~ Bn ~ This followed because the rules are finitary
i.e. each rule (X/y) involves only a finite set of premises X.

We can adopt these properties to define the continuous functions between a pair of
cpos.

Definition: A function f : D ---> E between cpos D and E is monotonic iff

Vd, d' E D. d ~ d' =? f(d) ~ f(d').

Such a function is continuous iff it is monotonic and for all chains d 0 ~ d1 ~ ... ~ dn ~ ...

in D we have

nEw nEw

An important consequence of this definition is that any continuous function from a cpo
with bottom to itself has a least fixed point, in a way which generalises that of operators
on sets in Section 4.4. In fact we can catch the notion of a set closed under rules with the
order-theoretic notion of a prefixed point (Recall a set B was closed under rule instances
Riff R(B) ~ B).

Definition: Let f : D ---> D be a continuous function on a cpo D. A fixed point of f is
an element d of D such that f (d) = d. A prefixed point of f is an element d of D such
that f(d) ~ d.

The following simple, but important, theorem gives an explicit construction fix(f) of
the least fixed point of a continuous function f on a cpo D.

Theorem 5.11 (Fixed-Point Theorem)
Let f : D ---> D be a continuous function on a cpo with bottom D. Define

fix(f) = U r(J..)·
nEw

Then fix(f) is a fixed point of f and the least prefixed point of f i. e.
(i) f(fix(f)) = fix(f) and (ii) if f{d) ~ d then fix(f) ~ d. Consequently fix(f) is the

least fixed point of f.

72 Chapter 5

Proof:
(i) By continuity

f(fix(f)) =f(U rei))
nEw

nEw

nEw

nEw

=fix(f).

Thus fix(f) is a fixed point.
(ii) Suppose d is a prefixed point. Certainly..1 [;;; d. By monotonicity f(..1) [;;; fed). But
d is prefixed point, i.e. fed) [;;; d, so f(..1) [;;; d , and by induction fn(..1) [;;; d. Thus,
fix(f) = UnEw r(..1) [;;; d.

As fixed points are certainly prefixed points, fix(f) is the least fixed point of f. 0

We say a little about the intuition behind complete partial orders and continuous
functions, an intuition which will be discussed further and pinned down more precisely
in later chapters. Complete partial orders correspond to types of data, data that can
be used as input or output to a computation. Computable functions are modelled as
continuous functions between them. The elements of a cpo are thought of as points of
information and the ordering x [;;; y as meaning x approximates y (or, x is less or the
same information as y)-so ..1 is the point of least information.

We can recast, into this general framework, the method by which we gave a denota
tional semantics to IMP. We denoted a command by a partial function from states to
states L:. On the face of it this does not square with the idea that the function computed
by a command should be continuous. However partial functions on states can be viewed
as continuous total functions. We extend the states by a new element ..1 to a cpo of
results L:1. ordered by

for all states a. The cpo L: 1. includes the extra element ..1 representing the undefined
state, or more correctly null information about the state, which, as a computation pro
gresses, can grow into the information that a particular final state is determined. It is
not hard to see that the partial functions L: ~ L: are in 1-1 correspondence with the
(total) functions L: ----; L: 1., and that in this caSe any total function is continuous; the

The denotational semantics of IMP 73

inclusion order between partial functions corresponds to the "pointwise order"

f I;;;; 9 iff Va E E. f(a) I;;;; g(a)

between functions E --> E 1. . Because partial functions form a cpo so does the set of
functions [E --> E1.) ordered pointwise. Consequently, our denotational semantics can
equivalently be viewed as denoting commands by elements of the cpo of continuous
functions [E --> E1.]' Recall that to give the denotation of a while program we solved a
recursive equation by taking the least fixed point of a continuous function on the cpo of
partial functions, which now recasts to one on the cpo [E --> E 1.).

For the cpo [E --> E1.), isomorphic to that of partial functions, more information
corresponds to more input/output behaviour of a function and no information at all, J..

in this cpo, corresponds to the empty partial function which contains no input/output
pairs. We can think of the functions themselves as data which can be used or produced
by a computation. Notice that the information about such functions comes in discrete
units, the input/output pairs. Such a discreteness property is shared by a great many of
the complete partial orders that arise in modelling computations. As we shall see, that
computable functions should be continuous follows from the idea that the appearance of
a unit of information in the output of a computable function should only depend on the
presence of finitely many units of information in the input. Otherwise a computation
of the function would have to make use of infinitely many units of information before
yielding that unit of output. We have met this idea before; a set of rule instances
determines a continuous operator when the rule instances are finitary, in that they have
only finite sets of premises.

Exercise 5.12
(i) Show that the monotonic maps from E to E1. are continuous and in 1-1 correspondence
with the partial functions E ~ E. Confirm the statement above, that a partial function
is included in another iff the corresponding functions E --> E 1. are ordered pointwise.
(ii) Let D and E be cpo's. Suppose D has the property that every w-chain do I;;;; d1 I;;;;
... I;;;; dn I;;;; ••. is stationary, in the sense that there is an n such that d m = dn for all
m ~ n. Show that all monotonic functions from D to E are continuous. 0

Exercise 5.13 Show that if we relax the condition that rules be finitary, and so allow
rule instances with an infinite number of premises, then the operator induced by a set of
rule instances need not be continuous. 0

74 Chapter 5

5.5 The Knaster-Tarski Theorem

In this section another abstract characterisation of least fixed points is studied. It results
are only used much later, so it can be skipped at a first reading. Looking back to the
last chapter, there was another characterisation of the least fixed point of an operator
on sets. Recall from Exercise 4.3 of Section 4.1 that, for a set of rule instances R,

IR = n {Q I Q is R-closed}.

In view of Section 4.4, this can be recast as saying

fixeR) = n {Q I R(Q) ~ Q},

expressing that the least fixed point of the operator R can be characterised as the in
tersection of its prefixed points. This is a special case of the K naster- Tarski Theorem, a
general result about the existence of least fixed points. As might be expected its state
ment involves a generalisation of the operation of intersection on sets to a notion dual to
that least upper bound on a partial order.

Definition: For a partial order (P,~) and subset X ~ P say p is an lower bound of X
iff

't/q E X. P ~ q.

Say p is a greatest lower bound (glb) of X iff
(i) P is a lower bound of X, and
(ii) for all lower bounds q of X, we have q ~ p.

When a subset X of a partial order has a greatest lower bound we shall write it as nX. We write n {do,dt} as dond1 ·

Just as sometimes lubs are called suprema (or sups), glbs are sometimes called infima
(or infs).

Definition: A complete lattice is a partial order which has greatest lower bounds of
arbitrary subsets.

Although we have chosen to define complete lattices as partial orders which have all
greatest lower bounds we could alternatively have defined them as those partial orders
with all least upper bounds, a consequence of the following exercise.

Exercise 5.14 Prove a complete lattice must also have least upper bounds of arbitrary
subsets. Deduce that if (L,~) is a complete lattice then so is (L, ;;;!), ordered by the
converse relation. 0

The denotational semantics of IMP 75

Theorem 5.15 (Knaster-Tarski Theorem for minimum fixed points)
Let (L,I;) be a complete lattice. Let f : L -; L be a monotonic function, i. e. such that if
x ~ y then f(x) I; fey) (but not necessarily continuous). Define

m= n{x EL [f(x) I; x}.

Then m is a fixed point of f and the least prefixed point of f·

Proof: Write X = {x E L [f(x) I; x}. As above, define m = nX. Let x E X.
Certainly m I; x. Hence f(m) I; f(x) by the monotonicity of f. But f(x) I; x because
x E X. So f(m) I; x for any x E X. It follows that f(m) I; n X = m. This makes
m a prefixed point and, from its definition, it is clearly the least one. As f(m) I; m
we obtain f(J(m)) ~ f(m) from the monotonicity of f. This ensures f(m) E X which
entails m I; f(m). Thus f(m) = m. We conclude that m is indeed a fixed point and is
the least prefixed point of f. 0

As a corollary we can show that a monotonic function on a complete lattice has a
maximum fixed point.

Theorem 5.16 (Knaster-Tarski Theorem for maximum fixed points)
Let (L, 1;) be a complete lattice. Let f : L -; L be a monotonic function. Define

M = U {x E L [x I; f(x)}.

Then M is a fixed point of f and the greatest postfixed point of f. (A postfixed point is
an element x such that x I; f(x).)

Proof: This follows from the theorem for the minimum-fixed-point case by noticing
that a monotonic function on (L, 1;) is also a monotonic function on the complete lattice
(L, ~). 0

The Knaster-Tarski Theorem is important because it applies to any monotonic function
on a complete lattice. However most of the time we will be concerned with least fixed
points of continuous functions which we shall construct by the techniques of the previous
section, as least upper bounds of w-chains in a cpo.

5.6 Further reading

This chapter has given an example of a denotational semantics. Later chapters will
expand on the range and power of the denotational method. Further elementary material

76 Chapter 5

can be found in the books by Bird [21], Loeckx and Sieber [58], Schmidt [88], and Stay
[95J (though the latter bases its treatment on complete lattices instead of complete partial
orders). A harder but very thorough book is that by de Bakker [13J. The denotational
semantics of IMP has come at a price, the more abstract use of least fixed points in place
of rules. However there is also a gain. By casting its meaning within the framework of
cpo's and continuous functions IMP becomes amenable to the techniques there. The
book [69J has several examples of applications to the language of while programs.

6 The axiomatic semantics of IMP

In this chapter we turn to the business of systematic verification of programs in IMP.
The Hoare rules for showing the partial correctness of programs are introduced and shown
sound. This involves extending the boolean expressions to a rich language of assertions
about program states. The chapter concludes with an example of verification conducted
within the framework of Hoare rules.

6.1 The idea

We turn to consider the problem of how to prove that a program we have written in
IMP does what we require of it.

Let's start with a simple example of a program to compute the sum of the first hundred
numbers, the naive way. Here is a program in IMP to compute Ll::;m::;lOo m (The
notation Ll::;m::;100 m means 1 + 2 + ... + 100).

S :=0;

N:= 1;

(while -,(N = 101) do S := S + N; N := N + 1)

How would we prove that this program, when it terminates, is such that the value of S
. '" 7 IS L....l::;m::;100 m.

Of course one thing we could do would be to run it according to our operational
semantics and see what we get. But suppose we change our program a bit, so that instead
of "while -,(N = 101) do ... " we put "while -.(N = P + 1) do ... " and imagine
making some arbitrary assignment to P before we begin. In this case the resulting value
of S after execution should be Ll::;m::;P m, no matter what the value of P. As P can
take an infinite set of values we cannot justify this fact simply by running the program
for all initial values of P. We need to be a little more clever, and abstract, and use some
logic to reason about the program.

We'll end up with a formal proof system for proving properties of IMP programs,
based on proof rules for each programming construct of IMP. Its rules are called Hoare
rules or Floyd-Hoare rules. Historically R.W.Floyd invented rules for reasoning about
flow charts, and later C.A.R.Hoare modified and extended these to give a treatment of
a language like IMP but with procedures. Originally their approach was advocated not
just for proving properties of programs but also as giving a method for explaining the
meaning of program constructs; the meaning of a construct was specified in terms of
"axioms" (more accurately rules) saying how to prove properties of it. For this reason,
the approach is traditionally called axiomatic semantics.

For now let's not be too formal. Let's look at the program and reason informally about

78 Chapter 6

it, for the moment based on our intuitive understanding of how it behaves. Straigr taway
we see that the commands S := 0; N := 1 initialise the values in the locations. So we
can annotate our program with a comment:

S:= O;N:= 1

{S=O 1\ N=l}

(while -.(N = 101) do S:= S + N; N := N + 1)

with the understanding that S = 0 for example means the location S has value 0, as in
the treatment of boolean expressions. We want a method to justify the final comment
in:

S:= O;N:= 1

{S = 0 1\ N = I}

(while -.(N = 101) do S := S + N; N := N + 1)

{S= L m}
l:5m:5lDO

-meaning that if S = 0 1\ N = 1 before the execution of the while-loop then S =

2:1:5m90o m after its execution.
Looking at the boolean, one fact we know holds after the execution of the while-loop is

that we cannot have N =I- 101; because if we had -.(N = 101) then the while-loop would
have continued running. So, at the end of its execution we know N = 101. But we want
to know S!

Of course, with a simple program like this we can look and see what the values of S
and N are the first time round the loop, S = 1, N = 2. And the second time round the
loop S = 1 + 2, N = 3 ... and so on, until we see the pattern: after the i th time round
the loop S = 1 + 2 + ... + i and N = i + 1. From which we see, when we exit the loop,
that S = 1 + 2 + ... + 100, because when we exit N = 101.

At the beginning and end of each iteration of the while-loop we have

S = 1 + 2 + 3 + ... + (N - 1) (1)

which expresses the key relationship between the value at location S and the value at
location N. The assertion I is called an invariant of the while-loop because it remains
true under each iteration of the loop. So finally when the loop terminates I will hold at
the end. We shall say more about invariants later.

For now it appears we can base a proof system on assertions of the form

{A}c{B}

The axiomatic semantics of IMP 79

where A and B are assertions like those we've already seen in Bexp and c is a command.
The precise interpretation of such a compound assertion is this:

for all states 1.7 which satisfy A if the execution c from state 1.7 terminates in state
1.7' then 1.7' satisfies B.

Put another way, {A}c{B} means that any successful (i.e., terminating) execution of c
from a state satisfying A ends up in a state satisfying B. The assertion A is called the
precondition and B the postcondition of the partial correctness assertion {A}c{B}.

Assertions of the form {A }c{ B} are called partial correctness assertions because they
say nothing about the command c if it fails to terminate. As an extreme example consider

c == while true do skip.

The execution of c from any state does not terminate. According to the interpretation
we give above the following partial correctness assertion is valid:

{ true} c{ false}

simply because the execution of c does not terminate. More generally, because c loops,
any partial correctness assertion {A }c{ B} is valid. Contrast this with another notion,
that of total correctness. Sometimes people write

[A]c[B]

to mean that the execution of c from any state which satisfies A will terminate in a state
which satisfies B. In this book we shall not be concerned much with total correctness
assertions.

Warning: There are several different notations around for expressing partial and total
correctness. When dipping into a book make doubly sure which notation is used there.

We have left several loose ends. For one, what kinds of assertions A and B do we
allow in partial correctness assertions {A}c{B}? We say more in a moment, and turn to
a more general issue.

The next issue can be regarded pragmatically as one of notation, though it can be
viewed more conceptually as the semantics of assertions for partial correctness--see the
"optional" Section 7.5 on denotational semantics using predicate transformers. Firstly
let's introduce an abbreviation to mean the state 1.7 satisfies assertion A, or equivalently
the assertion A is true at state 1.7. We abbreviate this to:

1.7 1= A.

80 Chapter 6

Of course, we'll need to define it, though we all have an intuitive idea of what it means.
Consider our interpretation of a partial correctness assertion {A}c{B}. As a command
c denotes a partial function from initial states to final states, the partial correctness
assertion means:

Va. (a 1= A & C[c]a is defined) =} C[c]a 1= B.

It is awkward working so often with the proviso that C[c]a is defined. Recall Chapter 5
on the denotational semantics of IMP. There we suggested that we use the symbol J..
to represent an undefined state (or more strictly, null information about the state). For
a command c we can write C[c]a = J.. whenever C[c]a is undefined, and, in accord with
the composition of partial functions, take C[c]J.. = J... If we adopt the convention that
J.. satisfies any assertion, then our work on partial correctness becomes much simpler
notationally. With the understanding that

for any assertion A, we can describe the meaning of {A}c{B} by

Va E 2::. a 1= A =} C[c]a 1= B.

Because we are dealing with partial correctness this convention is consistent with our
previous interpretation of partial correctness assertions. It's quite intuitive too; diverging
computations denote J.. and as we've seen they satisfy any postcondition.

6.2 The assertion language Assn

What kind of assertions do we wish to make about IMP programs? Because we want
to reason about boolean expressions we'll certainly need to include all the assertions in
Bexp. Because we want to make assertions using the quantifiers "Vi· .. " and ":li· .. " we
will need to work with extensions of Bexp and Aexp which include integer variables i
over which we can quantify. Then, for example, we can say that an integer k is a mUltiple
of another 1 by writing

:li. k = i x l.

It will be shown in reasonable detail how to introduce integer variables and quantifiers for
a particular language of assertions Assn. In principle, everything we'll do with assertions
can be done in Assn-it is expressive enough-but in examples and exercises we will
extend Assn in various ways, without being terribly strict about it. (For instance, in one
example we'll use the notation n! = n x (n - 1) x ... x 2 x 1 for the factorial function.)

The axiomatic semantics of IMP 81

Firstly, we extend Aexp to include integer variables i, j, k, etc .. This is done simply by
extending the BNF description of Aexp by the additional rule which makes any integer
variable i, j, k, ... an integer expression. So the extended syntactic category Aexpv of
arithmetic expressions is given by:

a ::= n I X I i I ao + al I ao - al I ao x al

where
n ranges over numbers, N

X ranges over locations, Loc

i ranges over integer variables, Intvar.

We extend boolean expressions to include these more general arithmetic expressions
and quantifiers, as well as implication. The rules are:

A ::= true I false I ao = al I ao ::::: al I Ao 1\ Al I Ao V Al I,A I Ao => Al I Vi.A I ::li.A

We call the set of extended boolean assertions, Assn.
At school we have had experience in manipulating expressions like those above, though

in those days we probably wrote mathematics down in a less abbreviated way, not using
quantifiers for instance. When we encounter an integer variable i we think of it as
standing for some arbitrary integer and do calculations with it like those "unknowns"
x, y,' .. at school. An implication like Ao => Al means if Ao then AI, and will be true if
either Ao is false or Al is true. We have used implication before in our mathematics, and
now we have added it to our set of formal assertions Assn. We have a "commonsense"
understanding of the expressions and assertions (and this should be all that is needed
when doing the exercises). However, because we want to reason about proof systems
based on assertions, not just examples, we shall be more formal, and give a theory of the
meaning of expressions and assertions with integer variables. This is part of the predicate
calculus.

6.2.1 Free and bound variables

We sayan occurrence of an integer variable i in an assertion is bound if it occurs in the
scope of an enclosing quantifier Vi or ::li. If it is not bound we say it is free. For example,
in

::li. k = i x I

the occurrence of the integer variable i is bound, while those of k and I are free-the
variables k and I are understood as standing for particular integers even if we are not

82 Chapter 6

precise about which. The same integer variable can have different occurrences in the
same assertion one of which is free and another bound. For example, in

(i + 100 -:::: 77) f\ (Vi. j + 1 = i + 3)

the first occurrence of i is free and the second bound, while the sole occurrence of j is
free.

Although this informal explanation will probably suffice, we can give a formal defini
tion using definition by structural induction. Define the set FV(a) of free variables of
arithmetic expressions, extended by integer variables, a E Aexpv, by structural induc-
tion

FV(n) = FV(X) = 0
FV(i) = {i}

FV(ao + ad = FV(ao - ad = FV(ao x aI) = FV(ao) U FV(ad

for all n E N, X E Loc, i E Intvar, and ao, al E Aexpv. Define the free variables
FV(A) of an assertion A by structural induction to be

FV(true) = FV(false) = 0
FV(ao = aI) = FV(ao -:::: ad = FV(ao) U FV(ad

FV(Ao f\ AI) = FV(Ao V AI) = FV(Ao => Ad = FV(Ao) U FV(Ad

FVC-,A) = FV(A)

FV(Vi.A) = FV(3i.A) = FV(A) \ {i}

for all aO,aI E Aexpv, integer variables i and assertions Ao,Al,A. Thus we have made
precise the notion of free variable. Any variable which occurs in an assertion A and yet
is not free is said to be bound. An assertion with no free variables is closed.

6.2.2 Substitution

We can picture an assertion A as

---i --- i--

say, with free occurrences of the integer variable i. Let a be an arithmetic expression,
which for simplicity we assume contains no integer variables. Then

Ala/i]:::::: ---a ---a--

is the result of substituting a for i. If a contained integer variables then it might be
necessary to rename some bound variables of A in order to avoid the variables in a

becoming bound by quantifiers in A-this is how it's done for general substitutions.

The axiomatic semantics of IMP 83

We describe substitution more precisely in the simple case. Let i be an integer variable
and a be an arithmetic expression without integer variables, and firstly define substitution
into arithmetic expressions by the following structural induction:

n[a/i] == n X[a/i] == X

j[a/i] == j i[a/i] == a

(ao + ad [a/i] == (ao[a/i] + ada/iJ)

(ao - at) [a/i] == (ao[a/i] - al[a/iJ)

(ao x at) [a/i] == (ao[a/i] x al[a/iJ)

where n is a number, X a location, j is an integer variable with j =f:. i and ao, al E Aexpv.
Now we define substitution of a for i in assertions by structural induction-remember a

does not have any free variables so we need not take any precautions to avoid its variables
becoming bound:

true[a/i] == true false[a/i] == false

(ao = at) [a/i] == (ao[a/i] = al[a/iJ) (ao :S ad [a/i] == (ao[a/i] :S ada/iJ)

(Ao 1\ Ad [a/i] == (Ao[a/i] 1\ Al [a/iJ) (Ao V At) [a/i] == (Ao[a/i] V AJ[a/iJ)

(-,A)[a/i] == -,(A[a/iJ) (Ao =? Ad[a/i] == (Ao[a/i] =? Al [a/iJ)

(Vj.A)[a/i] == Vj.(A[a/iJ) (Vi.A)[a/i] == Vi.A

(:3j.A)[a/i] == :3j.(A[a/iJ) (:3i.A)[a/i] == :3i.A

where ao, al E Aexpv, Ao, Al and A are assertions and j is an integer variable with

j =f:. i.
As was mentioned, defining substitution A[a/i] in the case where a contains free vari

ables is awkward because it involves the renaming of bound variables. Fortunately we
don't need this more complicated definition of substitution for the moment.

We use the same notation for substitution in place of a location X, so if an assertion
A == ---X -- then A[a/X] = ---a --, putting a in place of X. This time the
(simpler) formal definition is left to the reader.

Exercise 6.1 Write down an assertion A E Assn with one free integer variable i which
expresses that i is a prime number, i.e. it is required that:

(J 1=1 A iff J(i) is a prime number.

o

Exercise 6.2 Define a formula LCM E Assn with free integer variables i, j and k, which
means "i is the least common multiple of j and k," i.e. it is required that:

84 Chapter 6

U 1=1 LCM iff I(k) is the least common multiple of I(i) and I(j).

(Hint: The least common multiple of two numbers is the smallest non-negative integer
divisible by both.) 0

6.3 Semantics of assertions

Because arithmetic expressions have been extended to include integer variables, we can
not adequately describe the value of one of these new expressions using the semantic
function A of earlier. We must first interpret integer variables as particular integers.
This is the role of interpretations.

An interpretation is a function which assigns an integer to each integer variable i. e. a
function I : Intvar ---> N.

The meaning of expressions, Aexpv

Now we can define a semantic function Av which gives the value associated with an
arithmetic expression with integer variables in a particular state in a particular interpre
tation; the value of an expression a E Aexpv in a an interpretation I and a state u is
written as Av[a]Iu or equivalently as (Av[a](I))(u). Define, by structural induction,

Av[n]Iu = n

Av[X]Iu = u(X)

Av[i]Iu = I(i)

Av[ao + al]Iu = Av[ao]Iu + Av[adIu

Av[ao - adI u = Av[ao]I u - Av[al]I u

Av[ao x al]I u = Av[ao]I u x Av[al]I u

The definition of the semantics of arithmetic expressions with integer variables extends
the denotational semantics given in Chapter 5 for arithmetic expressions without them.

Proposition 6.3 For all a E Aexp (without integer variables), for all states u and for
all interpretations I

A[a]u = Av[a]I u.

Proof: The proof is a simple exercise in structural induction on arithmetic expressions.
o

The axiomatic semantics of IMP 85

The meaning of assertions, Assn

Because we include integer variables, the semantic function requires an interpretation
function as a further argument. The role of the interpretation function is solely to
provide a value in N which is the interpretation of integer variables.

Notation: We use the notation I[n/i] to mean the interpretation got from interpretation
I by changing the value for integer-variable i to n i. e.

I[n/i](j) = {;(j) if j == i,
otherwise.

We could specify the meanings of assertions in Assn in the same way we did for expres
sions with integer variables, but this time taking the semantic function from assertions
to functions which, given an interpretation and state as an argument, returned a truth
value. We choose an alternative though equivalent course. Given an interpretation I we
define directly those states which satisfy an assertion.

In fact, it is convenient to extend the set of states 2:; to the set 2:;.1 which includes
the value 1.- associated with a nonterminating computation-so 2:;.1 =def 2:; U {1.-}. For
A E Assn we define by structural induction when

a pI A

for a state a E 2:;, in an interpretation I, and then extend it so 1.- pIA. The relation
a pI A means state a satisfies A in interpretation I, or equivalently, that assertion
A is true at state a, in interpretation I. By structural induction on assertions, for an
interpretation I, we define for all a E 2:;:

a pI true,

a pI (ao = ad if Av[ao]Ia = Av[al]Ia,

a pI (ao :s: ad if Av[ao]Ia :s: Av[al]Ia,

a pI A 1\ B if a pI A and a pI B,

a pI A V B if a pI A or a pI B,

a pI -,A if not a pI A,

a pI A=} B if (not a pI A) or a pI B,

a pI Vi.A if a pI[n/i] A for all n E N,

a pI 3i.A if a pI[n/i] A for some n E N

1.- pI A.

86 Chapter 6

Note that, not 0" FI A is generally written as 0" ~I A.
The above tells us formally what it means for an assertion to be true at a state once

we decide to interpret integer variables in a particular way fixed by an interpretation.
The semantics of boolean expressions provides another way of saying what it means for
certain kinds of assertions to be true or false at a state. We had better check that the
two ways agree.

Proposition 6.4 For bE Bexp, 0" E L;,

for any interpretation I.

8[b]0" = true iff 0" FI b, and

8[b]0" = false iff 0" ~I b

Proof: The proof is by structural induction on boolean expressions, making use of
Proposition 6.3. o

Exercise 6.5 Prove the above proposition. o

Exercise 6.6 Prove by structural induction on expressions a E Aexpv that

Av[a]I[n/i]O" = Av[a[n/i]]IO".

(N ote that n occurs as an element of N on the left and as the corresponding number in
N on the right.)
By using the fact above, prove

0" FI Vi.A iff (J FI A[n/i] for all n E Nand

0" FI :=Ii.A iff 0" FI A[n/i] for some n E N.

The extension of an assertion

o

Let I be an interpretation. Often when establishing properties about assertions and
partial correctness assertions it is useful to consider the extension of an assertion with
respect to I i. e. the set of states at which the assertion is true.

Define the extension of A, an assertion, with respect to an interpretation I to be

The axiomatic semantics of IMP 87

Partial correctness assertions

A partial correctness assertion has the form

{A}c{B}

where A, B E Assn and c E Com. Note that partial correctness assertions are not in
Assn.

Let I be an interpretation. Let a E I;.L. We define the satisfaction relation between
states and partial correctness assertions, with respect to I, by

for an interpretation I. In other words, a state a satisfies a partial correctness assertion
{A}c{B}, with respect to an interpretation I, iff any successful computation of c from a
ends up in a state satisfying B.

Validity

Let I be an interpretation. Consider {A}c{B} . We are not so much interested in this
partial correctness assertion being true at a particular state so much as whether or not
it is true at all states i. e.

Va E I;.L. a FJ {A}c{B},

which we can write as
pJ {A}c{B},

expressing that the partial correctness assertion is valid with respect to the interpretation
I, because {A }c{ B} is true regardless of which state we consider. Further, consider e.g.

{i < X}X := X + l{i < X}

We are not so much interested in the particular value associated with i by the inter
pretation I. Rather we are interested in whether or not it is true at all states for all
interpretations I. This motivates the notion of validity. Define

F {A}c{B}

to mean for all interpretations I and all states a

a FI {A}c{B}.

When F {A}c{B} we say the partial correctness assertion {A}c{B} is valid.

88 Chapter 6

Similarly for any assertion A, write F A iff for all interpretations I and states a,
a F' A. Then say A is valid.

Warning: Although closely related, our notion of validity is not the same as the notion of
validity generally met in a standard course on predicate calculus or "logic programming."
There an assertion is called valid iff for all interpretations for operators like +, x···,
numerals 0, 1,···, as well as free variables, the assertion turns out to be true. We are
not interested in arbitrary interpretations in this general sense because IMP programs
operate on states based on locations with the standard notions of integer and integer
operations. To distinguish the notion of validity here from the more general notion we
could call our notion arithmetic-validity, but we'll omit the "arithmetic."

Example: Suppose F (A::::} B). Then for any interpretation I,

Va E ~. ((a F' A) ::::} (a FI B))

i. e. A I ~ B'. In a picture:
: •••••••• w •••••••••••••••••••••••••••••••••••• o ••••••••••••••••••••••••• ~

tJ BI)
~J,

So F (A::::} B) iff for all interpretations I, all states which satisfy A also satisfy B. 0

Example: Suppose F {A}c{B}. Then for any interpretation I,

Va E ~. ((a FI A) ::::} (C[c]a FI B)),

i.e. the image of A under C[c] is included in B i.e.

In a picture:

~J, ... :

The axiomatic semantics of IMP 89

So F {A}c{B} iff for all interpretations J, if c is executed from a state which satisfies A
then if its execution terminates in a state that state will satisfy B. 1 0

Exercise 6.7 In an earlier exercise it was asked to write down an assertion A E Assn
with one free integer variable i expressing that i was prime. By working through the
appropriate cases in the definition of the satisfaction relation F I between states and
assertions, trace out the argument that FI A iff J(i) is indeed a prime number. 0

6.4 Proof rules for partial correctness

We present proof rules which generate the valid partial correctness assertions. The proof
rules are syntax-directed; the rules reduce proving a partial correctness assertion of a
compound command to proving partial correctness assertions of its immediate subcom
mands. The proof rules are often called Hoare rules and the proof system, consisting of
the collection of rules, Hoare logic.

Rule for skip:

Rule for assignments:

Rule for sequencing:

Rule for conditionals:

Rule for while loops:

Rule of consequence:

{A}skip{A}

{B[ajX]}X:= arB}

{A}co{C} {C}Cl {B}
{A}co; Cl {B}

{A 1\ b}co{B} {A 1\ -,b}Cl {B}
{A}if b then Co else cdB}

{A 1\ b}c{A}
{A}while b do c{A 1\ -,b}

F (A '* A') {A'}c{B'} F (B' '* B)
{A}c{B}

IThe picture suggests, incorrectly, that the extensions of assertions .41 and Bl are disjoint; they will
both always contain 1., and perhaps have other states in common.

90 Chapter 6

Being rules, there is a notion of derivation for the Hoare rules. In this context the Hoare
rules are thought of as a proof system, derivations are called proofs and any conclusion
of a derivation a theorem. We shall write f-- {A}c{B} when {A}c{B} is a theorem.

The rules are fairly easy to understand, with the possible exception of the rules for
assignments and while-loops. If an assertion is true of the state before the execution of
skip it is certainly true afterwards as the state is unchanged. This is the content of the
rule for skip.

For the moment, to convince that the rule for assignments really is the right way round,
it can be tried for a particular assertion such as X = 3 for the simple assignment like
X :=X +3.

The rule for sequential compositions expresses that if {A}co{C} and {C}cdB} are
valid then so is {A}co; Cl {B}: if a successful execution of Co from a state satisfying A
ends up in one satisfying C and a successful execution of c 1 from a state satisfying C
ends up in one satisfying B, then any successful execution of Co followed by Cl from a
state satisfying A ends up in one satisfying B.

The two premises in the rule for conditionals cope with two arms of the conditional.
In the rule for while-loops while b do c, the assertion A is called the invariant because

the premise, that {A 1\ b }c{ A} is valid, says that the assertion A is preserved by a full
execution of the body of the loop, and in a while loop such executions only take place
from states satisfying b. From a state satisfying A either the execution of the while-loop
diverges or a finite number of executions of the body are performed, each beginning in
a state satisfying b. In the latter case, as A is an invariant the final state satisfies A and
also -,b on exiting the loop.

The consequence rule is peculiar because the premises include valid implications. Any
instance of the consequence rule has premises including ones of the form 1= (A '* A')
and 1= (B' '* B) and so producing an instance of the consequence rule with an eye
to applying it in a proof depends on first showing assertions (A '* A ') and (B' '*
B) are valid. In general this can be a very hard task-such implications can express
complicated facts about arithmetic. Fortunately, because programs often do not involve
deep mathematical facts, the demonstration of these validities can frequently be done
with elementary mathematics.

The axiomatic semantics of IMP 91

6.5 Soundness

We consider for the Hoare rules two very general properties of logical systems:

Soundness: Every rule should preserve validity, in the sense that if the assumptions
in the rule's premise is valid then so is its conclusion. When this holds of a rule it is
called sound. When every rule of a proof system is sound, the proof system itself is
said to be sound. It follows then by rule-induction that every theorem obtained from
the proof system of Hoare rules is a valid partial correctness assertion. (The comments
which follow the rules are informal arguments for the soundness of some of the rules.)

Completeness: Naturally we would like the proof system to be strong enough so that
all valid partial correctness assertions can be obtained as theorems. We would like the
proof system to be complete in this sense. (There are some subtle issues here which we
discuss in the next chapter.)

The proof of soundness of the rules depends on some facts about substitution.

Lemma 6.8 Let I be an interpretation. Let a, ao E Aexpv. Let X E Loc. Then for all
interpretations I and states (J

Av[ao[a/XJ]I(J = Av[ao]I(J[Av[a]I(J/X].

Proof: The proof is by structural induction on ao--€xercise! o

Lemma 6.9 Let I be an interpretation. Let B E Assn, X E Loc and a E Aexp. For
all states (J E I;

(J 1=1 B[a/X] iff (J[A[a](J/Xll=l B.

Proof: The proof is by structural induction on B--€xercise!

Exercise 6.10 Provide the proofs for the lemmas above.

Theorem 6.11 Let {A}c{B} be a partial correctness assertion.
Iff-- {A}c{B} then 1= {A}c{B}.

o

o

Proof: Clearly if we can show each rule is sound (i. e. preserves validity in the sense
that if its premise consists of valid assertions and partial correctness assertions then so
is its conclusion) then by rule-induction we can see that every theorem is valid.

The rule for skip: Clearly f= {A}skip{A} so the rule for skip is sound.

92 Chapter 6

The rule for assignments: Assume c == (X := a). Let I be an interpretation. We have
(11=1 B[a/X] iff (I[A[a~(I/X]1=1 B, by Lemma 6.9. Thus

(11=1 B[a/X]:::} C[X:= a~(I 1=1 B,

and hence 1= {B[a/X]}X:= a{B}, showing the soundness of the assignment rule.

The rule for sequencing: Assume 1= {A}c{}OC and 1= {C}c{}lB. Let I be an in
terpretation. Suppose (I 1=1 A. Then C[co~(I 1=1 C because 1=1 {A }chOC. Also
C[Cl~(C[CO~(I) 1=1 B because 1=1 {C}ch1B. Hence 1= {A}co; C1 {B}.

The rule for conditionals: Assume 1= {A 1\ b}co{B} and 1= {A 1\ -,b}cI{B}. Let I be
an interpretation. Suppose (I 1= I A. Either (I 1=1 b or (I 1=1 -,b. In the former case
(11=1 Al\b so C[co](I 1=1 B, as 1=1 {Al\b}co{B}. In the latter case (11=1 AI\-,b so
C[C1~(I 1=1 B, as 1=1 {A 1\ -,b}C1 {B}. This ensures 1= {A}if b then Co else C1 {B}.

The rule for while-loops: Assume 1= {A 1\ b}c{A}, i.e. A is an invariant of

w == while b do e.

Let I be an interpretation. Recall that C[w~ = UnEw On where

00 = 0,
OnH = {((I, (I') I 13 [b] (I = true & ((I, (I') E On 0 C[en U {((I, (I) I 13[b]CJ = false.}

We shall show by mathematical induction that Pen) holds where

Pen) ¢=:} det'V(I, (I' E E. ((I, (I') E On &

(I 1=1 A :::} (I' 1=1 A 1\ -,b

for all nEw. It then follows that

for all states (I, and hence that 1= {A}w{A 1\ -,b}, as required.
Base case n = 0: When n = 0, 00 = 0 so that induction hypothesis P(O) is vacuously
true.
Induction Step: We assume the induction hypothesis Pen) holds for n :::: ° and attempt
to prove Pen + 1). Suppose ((I, (I') E On+1 and (I 1=1 A. Either

(i) 13[b](I = true and ((I, (I') E On 0 C[c], or
(ii) 13[b](I = false and (I' = (I.

The axiomatic semantics of IMP 93

We show in either case that a ' 1=1 A A ---,b.
Assume (i). As 8[b]a = true we have a 1=1 b and hence a 1=1 A A b. Also (a, a") E C[c]
and (a", u') E en for some state a". We obtain a" 1=1 A, as 1= {A A b }c{ A}. From the
assumption P(n), we obtain u' 1=1 A A ---,b.
Assume (ii). As 8[b]a = false we have a 1=[---,b and hence a 1=1 A A ---,b. But a' = a.

This establishes the induction hypothesis P(n + 1). By mathematical induction we
conclude P(n) holds for all n. Hence the rule for while loops is sound.

The consequence rule: Assume 1= (A =} A') and 1= {A'}C{B'} and 1= (B' =} B). Let I
be an interpretation. Suppose u 1=1 A. Then a 1=1 A', hence C[c]a 1=1 B' and hence
C[c]a 1=1 B. Thus 1= {A}c{B}. The consequence rule is sound.

By rule-induction, every theorem is valid. o

Exercise 6.12 Prove the above using only the operational semantics, instead of the
denotational semantics. What proof method is used for the case of while-loops? 0

6.6 Using the Hoare rules-an example

The Hoare rules determine a notion of formal proof of partial correctness assertions
through the idea of derivation. This is useful in the mechanisation of proofs. But in
practice, as human beings faced with the task of verifying a program, we need not be
so strict and can argue at a more informal level when using the Hoare rules. (Indeed
working with the more formal notion of derivation might well distract from getting the
proof; the task of producing the formal derivation should be delegated to a proof assistant
like LCF or HOL [74], [43].)

As an example we show in detail how to use the Hoare rules to verify that the command

w == (while X > 0 do Y:= X x Y; X := X-I)

does indeed compute the factorial function n! = n x (n - 1) x (n - 2) x ... x 2 x 1, with
O! understood to be 1, given that X = n, a nonnegative number, and Y = 1 initially. 2

More precisely, we wish to prove:

{X = nAn ~ 0 A Y = l}w{Y = n!}.

To prove this we must clearly invoke the proof rule for while-loops which requires an
invariant. Take

1== (Y x X! = n! A X ~ 0).

2For this example, we imagine our syntax of programs and assertions to be extended to include> and
the factorial function which strictly speaking do not appear in the boolean and arithmetic expressions
defined earlier.

94 Chapter 6

We show f is indeed an invariant i. e.

{I AX> O}Y:= X x Y;X:= X -1{I}.

From the rule for assignment we have

{f[(X - l)/X]}X:= X - 1{I}

where f[(X - 1)/ Xl == (Y x (X - I)! = n! A (X - 1) ~ 0). Again by the assignment rule:

{X x Y x eX -I)! = n! A (X -1) ~ O}Y:= X x Y{f[(X -l)jX]}.

Thus, by the rule for sequencing,

Clearly

{X x Y x (X - I)! = n! A (X -1) ~ O}Y := X x Y; X := eX - 1){I}.

fAX > 0 =}Y x X! = n! A X ~ 0 A X> 0

=}YxX!=n!AX~l

=}X x Y x (X - I)! = n! A (X - 1) ~ o.
Thus by the consequence rule

{I AX> O}Y:= X x Y;X:= (X -1){I}

establishing that f is an invariant.
Now applying the rule for while-loops we obtain

{I}w{I A X 1 O}.

Clearly (X = n) A (n ~ 0) A (Y = 1) =} f, and

fAX10=}YxX!=n!AX~OAX10

=}YxX!=n!AX=O

=}Y x O! = Y = n!

Thus by the consequence rule we conclude

{(X = n) A (Y = l)}w{Y = n!}.

There are a couple of points to note about the proof given in the example. Firstly, in
dealing with a chain of commands composed in sequence it is generally easier to proceed

The axiomatic semantics of IMP 95

in a right-to-left manner because the rule for assignment is of this nature. Secondly, our
choice of I may seem unduly strong. Why did we include the assertion X ;:::: 0 in the
invariant? Notice where it was used, at (*), and without it we could not have deduced
that on exiting the while-loop the value of X is O. In getting invariants to prove what
we want they often must be strengthened. They are like induction hypotheses. One
obvious way to strengthen an invariant is to specify the range of the variables and values
at the locations as tightly as possible. Undoubtedly, a common difficulty in examples
is to get stuck on proving the "exit conditions". In this case, it is a good idea to see
how to strengthen the invariant with information about the variables and locations in
the boolean expression.

Thus it is fairly involved to show even trivial programs are correct. The same is true,
of course, for trivial bits of mathematics, too, if one spells out all the details in a formal
proof system. One point of formal proof systems is that proofs of properties of programs
can be automated as in e.g. [74][41]-see also Section 7.4 on verification conditions in the
next chapter. There is another method of application of such formal proof systems which
has been advocated by Dijkstra and Gries among others, and that is to use the ideas
in the study of program correctness in the design and development of programs. In his
book "The Science of Programming" [44], Gries says

"the study of program correctness proofs has led to the discovery and elucidation
of methods for developing programs. Basically, one attempts to develop a program
and its proof hand-in-hand, with the proof ideas leading the way!"

See Gries' book for many interesting examples of this approach.

Exercise 6.13 Prove, using the Hoare rules, the correctness of the partial correctness
assertion:

{I :S N}

P:=O;

C:= 1;

(while C:S N do P:= P + M; C:= C + 1)

{P = M x N}
o

Exercise 6.14 Find an appropriate invariant to use in the while-rule for proving the
following partial correctness assertion:

{i = Y}while -'(Y = 0) do Y:= Y -l;X:= 2 x X{X = 2i}

o

96

Exercise 6.15 Using the Hoare rules, prove that for integers n, m,

{X = m /I. Y = n /I. Z = l}c{Z = mn}

where c is the while-program

while .(Y = 0) do

((while even(Y) do X := X x X; Y := Y/2);

Z:= Z x X;Y:= Y -1)

Chapter 6

with the understanding that Y /2 is the integer resulting from dividing the contents of Y
by 2, and even(Y) means the content of Y is an even number.
(Hint: Use mn = Z x X Y as the invariants.) 0

Exercise 6.16
(i) Show that the greatest common divisor, gcd(n, m) of two positive numbers n, m
satisfies:

(a) n > m =} gcd(n, m) = gcd(n - m, m)

(b) gcd(n, m) = gcd(m, n)

(c) gcd(n, n) = n.

(ii) Using the Hoare rules prove

where

{N = n/l. M = m/l.l:-:; n 1\ 1:-:; m}Euclid{X = gcd(n,m)}

Euclid == while .(M = N) do

if M:-:; N

then N:= N-M

else M := M - N.

Exercise 6.17 Provide a Hoare rule for the repeat construct and prove it sound.

o

(cf. Exercise 5.9.) 0

6.7 Further reading

The book [44] by Gries has already been mentioned. Dijkstra's "A discipline of pro
gramming" [36] has been very influential. A more elementary book in the same vein

The axiomatic semantics of IMP 97

is Backhouse's "Program construction and verification" [12J. A recent book which is
recommended is Cohen's "Programming in the 1990's" [32J. A good book with many
exercises is Alagic and Arbib's "The design of well-structured and correct programs" [5J.
An elementary treatment of Hoare logic with a lot of informative discussion can be found
in Gordon's recent book [42J. Alternatives to this book's treatment, concentrating more
on semantic issues than the other references, can be found in de Bakker's "Mathemat
ical theory of program correctness" [13J and Loeckx and Sieber's "The foundations of
program verification" [58J.

7 Completeness of the Hoare rules

In this chapter it is discussed what it means for the Hoare rules to be complete. Codel's
Incompleteness Theorem implies there is no complete proof system for establishing pre
cisely the valid assertions. The Hoare rules inherit this incompleteness. However by
separating incompleteness of the assertion language from incompleteness due to inade
quacies in the axioms and rules for the programming language constructs, we can obtain
relative completeness in the sense of Cook. The proof that the Hoare rules are relatively
complete relies on the idea of weakest liberal precondition, and leads into a discussion of
verification-condition generators.

1.1 Godel's Incompleteness Theorem

Look again at the proof rules for partial correctness assertions, and in particular at the
consequence rule. Knowing we have a rule instance of the consequence rule requires that
we determine that certain assertions in Assn are valid. Ideally, of course, we would
like a proof system of axioms and rules for assertions which enabled us to prove all the
assertions of Assn which are valid, and none which are invalid. Naturally we would
like the proof system to be effective in the sense that it is a routine matter to check
that something proposed as a rule instance really is one. It should be routine in the
sense that there is a computable method in the form of a program which, with input
a real rule instance, returns a confirmation that it is, and returns no confirmation on
inputs which are not rule instances, without necessarily even terminating. Lacking such
a computable method we might well have a proof derivation without knowing it because
it uses a step we cannot check is a rule instance. We cannot claim that the proof system
of Hoare rules is effective because we do not have a computable method for checking
instances of the consequence rule. Having such depends on having a computable method
to check that assertions of Assn are valid. But here we meet an absolute limit. The
great Austrian logician Kurt Codel showed that it is logically impossible to have an
effective proof system in which one can prove precisely the valid assertions of Assn.
This remarkable result, called Codel's Incompleteness Theorem 1 is not so hard to prove
nowadays, if one goes about it via results from the theory of computability. Indeed a
proof of the theorem, stated now, will be given in Section 7.3 based on some results from
computability. Any gaps or shortcomings there can be made up for by consulting the
Appendix on computability and undecidability based on the language of while programs,
IMP.

IThe Incompleteness Theorem is not to be confused with Godel's Completeness Theorem which says
that the proof system for predicate calculus generates precisely those assertions which are valid for all
interpretations.

100 Chapter 7

Theorem 7.1 Cadel's Incompleteness Theorem {1931}:
There is no effective proof system for Assn such that the theorems coincide with the valid
assertions of Assn.

This theorem means we cannot have an effective proof system for partial correctness
assertions. As F B iff F {true}skip{B}, if we had an effective proof system for partial
correctness it would reduce to an effective proof system for assertions in Assn, which is
impossible by G6del's Incompleteness Theorem. In fact we can show there is no effective
proof system for partial correctness assertions more directly.

Proposition 7.2 There is no effective proof system for partial correctness assertions
such that its theorems are precisely the valid partial correctness assertions.

Proof: Observe that F {true }c{ false} iff the command c diverges on all states. If we
had an effective proof system for partial correction assertions it would yield a computable
method of confirming that a command c diverges on all states. But this is known to be
impossible-see Exercise A.13 of the Appendix. 0

Faced with this unsurmountable fact, we settle for the proof system of Hoare rules
in Section 6.4 even though we know it to be not effective because of the nature of
the consequence rule; determining that we have an instance of the consequence rule is
dependent on certain assertions being valid. Still, we can inquire as to the completeness
of this system. That it is complete was established by S. Cook in [33]. If a partial
correctness assertion is valid then there is a proof of it using the Hoare rules, i. e. for any
partial correctness assertion {A }c{ B},

F {A}c{B} implies f-- {A}c{B},

though the fact that it is a proof can rest on certain assertions in Assn being valid. It is
as if in building proofs one could consult an oracle at any stage one needs to know if an
assertion in Assn is valid. For this reason Cook's result is said to establish the relative
completeness of the Hoare rules for partial correctness-their completeness is relative to
being able to draw from the set of valid assertions about arithmetic. In this way one
tries to separate concerns about programs and reasoning about them from concerns to
do with arithmetic and the incompleteness of any proof system for it.

7.2 Weakest preconditions and expressiveness

The proof of relative completeness relies on another concept. Consider trying to prove

{A}co; C1 {B}.

Completeness of the Hoare rules 101

In order to use the rule for composition one requires an intermediate assertion C so that

{A}co{C} and {C}ct{B}

are provable. How do we know such an intermediate assertion C can be found? A
sufficient condition is that for every command c and postconditions B we can express
their weakest precondition 2 in Assn.

Let c E Com and B E Assn. Let I be an interpretation. The weakest precondition
wpI[c, B] of B with respect to c in I is defined by:

wl[c,B] = {O" E 2:.L I C[c]O" 1=1 B}.

It's all those states from which the execution of c either diverges or ends up in a final
state satisfying B. Thus if 1=1 {A}c{B} we know

AI ~ wpI[c, B]

and vice versa. Thus 1=1 {A }c{ B} iff A I ~ wpI [c, Ell.
Suppose there is an assertion Ao such that in all interpretations I,

Then
1=1 {A}c{B} iff 1=1 (A "* Ao),

for any interpretation I i. e.

1= {A}c{B} iff 1= (A "* Ao).

So we see why it is called the weakest precondition, it is implied by any precondition
which makes the partial correctness assertion valid. However it's not obvious that a
particular language of assertions has an assertion Ao such that A& = wpI[c, B].

Definition: Say Assn is expressive iff for every command c and assertion B there is an
assertion Ao such that A& = wpI[c, B] for any interpretation I.

In showing expressiveness we will use G6del's (3 predicate to encode facts about se
quences of states as assertions in Assn. The (3 predicate involves the operation a mod b
which gives the remainder of a when divided by b. We can express this notion as an
assertion in Assn. For x = a mod b we write

2What we shall call weakest precondition is generally called weakest liberal precondition, the term
weakest precondition referring to a related notion but for total correctness.

102 Chapter 7

a:::::O 1\ b:::::O 1\

:Jk.[k ::::: 0 1\ k X b 5, a 1\ (k + 1) x b> a 1\ x = a - (k x b)].

Lemma 7.3 Let f3(a, b, i, x) be the predicate over natural numbers defined by

f3(a, b, i, x) {=}de! X = a mod(l + (1 + i) x b).

For any sequence no, ... ,nk of natural numbers there are natural numbers n, m such

that for all j, 0 5, j 5, k, and all x we have

f3(n,m,j,x) {=} x = nj.

Proof: The proof of this arithmetical fact is left to the reader as a small series of exercises
at the end of this section. 0

The f3 predicate is important because with it we can encode a sequence of k natural
numbers no," " nk as a pair n, m. Given n, m, for any length k, we can extract a
sequence, viz. that sequence of numbers no, ... ,nk such that

for 0 ~ j 5, k. Notice that the definition of f3 shows that the list no,'" ,nk is uniquely
determined by the choice of n, m. The lemma above asserts that any sequence no, ... ,nk

can be encoded in this way.
We must now face a slight irritation. Our states and our language of assertions can

involve negative as well as positive numbers. We are obliged to extend Godel's f3 predicate
so as to encode sequences of positive and negative numbers. Fortunately, this is easily
done by encoding positive numbers as the even and negative numbers as the odd natural
numbers.

Lemma 7.4 Let F(x,y) be the predicate over natural numbers x and positive and neg

ative numbers y given by

Define

F(x, y)

:Jz ::::: O.

x::::: 0 &

[(x = 2 x z =? Y = z) &

(x = 2 x z + 1 =? Y = -z)]

f3±(n,m,j,y) {=}de! 3x.(f3(n,m,j,x) I\F(x,y)).

Completeness of the Hoare rules 103

Then for any sequence no, ... ,nk of positive or negative numbers there are natural num
bers n, m such that for all j, 0 ::; j ::; k, and all x we have

f3±(n,m,j,x) {o} x = nj.

Proof: Clearly F(n, m) expresses the 1-1 correspondence between natural numbers m E

wand n E N in which even m stand for non-negative and odd m for negative numbers.
The lemma follows from Lemma 7.3. 0

The predicate f3± is expressible in Assn because f3 and F are. To avoid introducing a
further symbol, let us write f3± for the assertion in Assn expressing this predicate. This
assertion in Assn will have free integer variables, say n, m, j, x, understood in the same
way as above, i. e. n, m encodes a sequence with jth element x. We will want to use
other integer variables besides n, m, j, x, so we write f3± (n', m', j', x') as an abbreviation
for f3±[n'/n,m'/m,j'fj,x'/x], got by substituting the the integer variable n' for n, m'
for m, and so on. We have not give a formal definition of what it means to substitute
integer variables in an assertion. The definition of substitution in Section 6.2.2 only
defines substitutions A[a/i] of arithmetic expressions a without integer variables, for an
integer variable i in an assertion A. However, as long as the variables n', m' , l' ,x' are
"fresh" in the sense of their being distinct and not occurring (free or bound) in f3 ±, the
same definition applies equally well to the substitution of integer variables; the assertion
f3± [n' In, m' /m, j' fj, x' /x] is that given by f3± [n' /n][m' /m][j' fj][x' /x] using the definition
of Section 6.2.2.3

Now we can show:

Theorem 7.5 Assn is expressive.

Proof: We show by structural induction on commands c that for all assertions B there
is an assertion w[c, B] such that for all interpretations I

WpI [c, B] = w[c, B] I,

for all commands c.
Note that by the definition of weakest precondition that, for I an interpretation, the

equality wpI[c, B] = w[c, B]f amounts to

a- pJ w[c, B] iff C[c]a- FI B,

3To illustrate the technical problem with substitution of integer variables which are not fresh, consider
the assertion A == (:li'. 2 x i' = i) which means "i is even." The naive definition of A[i'li] yields the
assertion (:li'. 2 x i' = i') which happens to be valid, and so certainly does not mean "i is even."

104 Chapter 7

holding for all states 0-, a fact we shall use occasionally in the proof.

C == skip: In this case, take w[skip, B~ == B. Clearly, for all states 0- and interpretations
I,

0- E wpI [skip, BD iff C[skip~o- pI B

iff 0- pI B

iff 0- pI w[skip, Bl

C == (X := a) : In this case, define w[X := a, Bn == B[a/ X]. Then

0- E wpI[X := a, ED iff o-[A[ano-/ X] pI B

iff 0- pI B[a/ X] by Lemma 6.9

iff 0- pI w[X := a, Bl

C == co; Cl : Inductively define w[co; Cl, Bn == w[co, W[Cl' BnD- Then, for 0- E ~ and
interpretation I,

0- E wpI [Co; Cl, Bn iff C[co; Clno- pI B

iff C[ClTI(C[COno-) pI B

iff C[cono- pI W[Cl, Bn, by induction,

iff 0- pI w[co, W[Cl' Bn], by induction,

iff 0- pI W[Co; Cl, Bn.

C == if b then Co else Cl : Define

w[if b then Co else Cl, B] == [(b A w[co, Bm V (-,b A W[Cl' Bn)].

Then, for 0- E ~ and interpretation I,

0- E wpI [c, Bn iff C[c]o- 1=1 B

iff ([8[b]0- = true & C[co]o- pI B] or

[8[b]o- = false & C[Cl]o- 1=1 BD

iff ([0- 1=1 b & 0- 1=1 w[co, B]) or

[0- 1=1 -,b & 0- 1=1 W[Cl, Bm, by induction,

iff 0-1=1 [(bA w[cQ,B]]) V (-,bA W[Cl' Bn)]

iff 0- 1=1 w[c, B].

Completeness of the Hoare rules 105

c == while b do co: This is the one difficult case. For a state a and interpretation I, we
have (from Exercise 5.8) that a E wpI[c,B] iff

'Vk 'Vao, ... ,ak E ~.

[a = ao &

'Vi(O :::; i < k). (ai FI b &

(1)

As it stands the mathematical characterisation of states a in wpI[c, B] is not an as
sertion in Assn; in particular it refers directly to states ao,"', ak. However we show
how to replace it by an equivalent description which is. The first step is to replace all
references to the states ao, ... , ak by references to the values they contain at the locations
mentioned in c and B. Suppose X = Xl, ... ,Xl are the locations mentioned in c and
B-the values at the remaining locations are irrelevant to the computation. We make
use of the following fact:
Suppose A is an assertion in Assn which mentions only locations from X = Xl, ... , Xl.

For a state a, let Si = a(Xi), for 1 :::; i :::; t, and write S = Sl,"', Sl. Then

for any interpretation I. The assertion A[s/ Xl is that obtained by the simultaneous
substitution of s for X in A. This fact can be proved by structural induction (Exercise!).

Using the fact (*) we can convert (1) into an equivalent assertion about sequences. For
i 2: 0, let Si abbreviate Si1, ... , Sil, a sequence in N. We claim: a E wpI[c, B] iff

'Vk'VSO, ... ,Sk EN.
[a FI X = So &

'Vi (0:::; i < k). (F I b[sdXl &

We have used X = So to abbreviate Xl = SOl /I. ... /I. Xl = SOL.

(2)

106 Chapter 7

To prove the claim we argue that (1) and (2) are equivalent. Parts of the argument
are straightforward. For example, it follows directly from (*) that, assuming state 0" i has
values Si at X,

for an interpretation I. The hard part hinges on showing that assuming 0" i and O"i+l have
values Si and Si+l, respectively, at X and agree elsewhere, we have

for an interpretation I. To see this we first observe that

C[CO]O"i = O"i+l iff O"i E wpl[cO, X = Si+d & C[CO]O"i is defined.

(Why?) From the induction hypothesis we obtain

I - -
O"i E wp [co, X = si+d
C[CO]O"i is defined iff

iff O"i 1=1 (w[co, X = si+d, and

O"i 1=1 ...,w[co, false]

-recall that O"i E wpl [co, false] iff Co diverges on O"i. Consequently,

This covers the difficulties in showing (1) and (2) equivalent.
Finally, notice how (2) can be expressed in Assn, using the Godel predicate j3 ±. For

simplicity assume I = 1 with X = X. Then we can rephrase (2) to get: 0" E wpI[c, B] iff

0" FI VkVm,n ~ 0.

[j3±(n,m,O,X) /I.

Vi (0:::; i < k). ("Ix. j3±(n,m,i,x) ==} b[x/X]) /I.

"Ix, y. (j3±(n, m,i,x) /I. j3±(n, m, i + 1, y) ==}

(w[co,X = y] /I.""w[co,false])[x/X])]

==} (j3± (n, m, k, x) ==} (b V B)[x / Xl)

This is the assertion we take as w[c, B] in this case. (In understanding this assertion
compare it line-for-line with (2), bearing in mind that j3±(n,m,i,x) means that x is the

Completeness of the Hoare rules 107

ith element of the sequence encoded by the pair n, m.) The form of the assertion in the
general case, for arbitrary I, is similar, though more clumsy, and left to the reader.

This completes the proof by structural induction. D

As Assn is expressive for any command c and assertion B there is an assertion w[c, B]
with the property that

for any interpretation I. Of course, the assertion w[c, B] constructed in the proof of
expressiveness above, is not the unique assertion with this property (Why not?). However
suppose Ao is another assertion such that Al = wpI [c, B] for all I. Then

F (w[c,B] {::::::::> Ao)·

So the assertion expressing a weakest precondition is unique to within logical equivalence.
The useful key fact about such an assertion w[c, B] is that, from the definition of weakest
precondition, it is characterised by:

a FI w[c, B] iff C[c]a FI B,

for all states a and interpretations I.
From the expressiveness of Assn we shall prove relative completeness. First an im

portant lemma.

Lemma 7.6 For c E Com and B E Assn, let w[c, B] be an assertion expressing the
weakest precondition i. e. w[c, B] I = wpI [c, B] (the assertion w[c, B] need not be neces
sarily that constructed by Theorem 7.5 above). Then

f- {w[c,B]}c{B}.

Proof: Let w[c, B] be an assertion which expresses the weakest precondition of a com
mand c and postcondition B. We show by structural induction on c that

f- {w[c, B]}c{B} for all B E Assn,

for all commands c.
(In all but the last case, the proof overlaps with that of Theorem 7.5.)

c == skip : In this case F w[skip, B] {::::::::> B, so f- {w[skip, B]}skip{ B} by the
consequence rule.

108

c == (X := a) : In this case

CT E wpI[c,B] iff CT[.A[a]CT/X] FI B

iff CT FI B[a/ X].

Chapter 7

Thus F (w[c, B] ~ B[a/ Xl). Hence by the rule for assignment with the consequence
rule we see f-- {w[c, B]}c{ B} in this case.

c == co; Cl : In this case, for CT E ~ and interpretation I,

CT FI w[co; Cl, B] iff C[co; Cl]CT FI B

iff C[cI](C[CO]CT) FI B

iff C[CO]CT FI W[C1, B]

iff CT FI w[co, W[Cl, Bn
Thus F w[co; C1, B] ~ w[co, W[Cl, B]]. By the induction hypothesis

f-- {w[co, W[Cl, B]nco{ W[Cl, Bn and

f-- {w[cl,B]}cdB}.

Hence, by the rule for sequencing, we deduce

f-- {w[co, W[Cl, B]] }co; C1 {B}

By the consequence rule we get

C == if b then Co else Cl : In this case, for CT E ~ and interpretation I,

Hence

CT FI w[c, B] iff C[C]CT FI B

iff ([8[b]CT = true & C[CO]CT FI B] or

[8[b]CT = false & C[CI]CT FI BD

iff ([CT FI b & CT FI w[co, B]] or

[CT FI -.b & CT FI W[Cl, Bm

iff CT FI [(b A w[co, B]]) V (-.b A W[Cl, B])].

F w[c,B] ~ [(bA w[co,B]]) V (-.bA w[cl,B])].

Completeness of the Hoare rules

Now by the induction hypothesis

I- {w[eo, Bneo{B} and I- {w[el' BnCl {B}.

But
1= (w[e,B]t\b) {:==} w[eo,B] and

F (w[e, B] t\,b) {:==} w[el' B].

So by the consequence rule

I- {w[e, B] t\ b}eo{B} and I- {w[e, B] t\,b }et{ B}.

By the rule for conditionals we obtain I- {w[e, Bne{ B} in this case.

Finally we consider the case:
c == while b do Co : Take A == w[e, B]. We show

(1) 1= {A t\ b}eo{A},
(2) 1= (A t\,b) =? B.

109

Then, from (1), by the induction hypothesis we obtain I- {A t\ b}co{A}, so that by the
while-rule I- {A}e{A t\,b}. Continuing, by (2), using the consequence rule, we obtain
I- {A}c{B}. Now we prove (1) and (2).

(1) Let 0' 1=1 A t\ b, for an interpretation I. Then 0' 1=1 w[e, B] and 0' 1=1 b, i.e.
C[e]O' 1=1 Band 0' 1=1 b. But C[e] is defined so

C[e] = C[if b then Co; c else skip],

which makes C[eo; e]O' 1=1 B, i.e. C[e](C[eo]O') 1=1 B. Therefore C[eo]O' 1=1 w[e, B], i.e.
C[eo]O' 1=1 A. Thus 1= {A t\ b}eo{A}.

(2) Let 0' 1=1 A t\,b, for an interpretation I. Then C[e]O' 1=1 Band 0' 1=1,b. Again
note C[e] = C[if b then co; e else skip], so C[e]O' = 0'. Therefore 0' 1=1 B. It follows
that 1=1 A t\.....,b =? B. Thus 1= A t\.....,b =? B, proving (2).

This completes all the cases. Hence, by structural induction, the lemma is proved. 0

Theorem 7.7 The proof system for partial correctness is relatively complete, i. e. for
any partial correctness assertion {A}e{B},

I- {A}e{B} if 1= {A}e{B}.

110 Chapter 7

Proof: Suppose 1= {A}c{B}. Then by the above lemma f-- {w[c, B]}c{B} where w[c, B] I ::::
wpI[c, B] for any interpretation I. Thus as 1= (A =? w[c, B]), by the consequence rule,
we obtain f-- {A}c{B}. 0

Exercise 7.8 (The G6del f3 predicate)

(a) Let no, ... ,nk be a sequence of natural numbers and let

m = (max {k,no, .. · ,nd)!

Show that the numbers

Pi = 1 + (1 + i) x m, for 0 :::; i :::; k

are coprime (i.e., gcd(Pi,pj) = 1 for i f. j) and that ni < Pi·
(b) Further, define

Ci = Po x ... X Pk/pi, for 0 :::; i :::; k.

Show that for all i, 0 :::; i :::; k, there is a unique di , 0 :::; di < Pi, such that

(c) In addition, define

Show that

when 0 :::; i :::; k.
(d) Finally prove lemma 3.

k

n = L Ci X di x ni·
i=O

ni = nmodpi

7.3 Proof of Godel's Theorem

o

G6del's Incompleteness Theorem amounts to the fact that the subset of valid assertions
in Assn is not recursively enumerable (i. e. , there is no program which given assertions
as input returns a confirmation precisely on the valid assertions-see the Appendix on
computability for a precise definition and a more detailed treatment).

Theorem 7.9 The subset of assertions {A E Assn I 1= A} is not recursively enumer

able.

Completeness of the Hoare rules 111

Proof: Suppose on the contrary that the set {A E Assn I 1= A} is recursively enumer
able. Then there is a computable method to confirm that an assertion is valid. This
provides a computable method to confirm that a command c diverges on the zero-state
<70, in which each location X has contents 0:
Construct the assertion w[c, false] as in the proof of Theorem 7.5. Let X consist of all
the locations mentioned in w[c, false]. Let A be the assertion w[c, false] [0/ XL obtained
by replacing the locations by zeros. Then the divergence of c on the zero-state can be
confirmed by checking the validity of A, for which there is assumed to be a computable
method.
But it is known that the commands c which diverge on the zero-state do not form
a recursively enumerable set-see Theorem A.12 in the Appendix. This contradiction
shows {A E Assn I 1= A} to not be recursively enumerable. D

As a corollary we obtain Godel's Incompleteness Theorem:

Theorem 7.10 (Theorem 7.1 restated) (Gadel's Incompleteness Theorem):
There is no effective proof system for Assn such that its theorems coincide with the

valid assertions of Assn.

Proof: Assume there were an effective proof system such that for an assertion A, we
have A is provable iff A is valid. The proof system being effective implies that there is a
computable method to confirm precisely when something is a proof. Searching through
all proofs systematically till a proof of an assertion A is found provides a computable
method of confirming precisely when an assertion A is valid. Thus there cannot be an
effective proof system. D

Although we have stated Godel's Theorem for assertions Assn the presence of locations
plays no essential role in the results. Godel's Theorem is generally stated for the smaller
language of assertions without locations-the language of arithmetic. The fact that
the valid assertions in this language do not form a recursively enumerable set means
that the axiomatisation of arithmetic is never finished-there will always be some fact
about arithmetic which remains unprovable. Nor can we hope to have a program which
generates an infinite list of axioms and effective proof rules so that all valid assertions
about arithmetic follow. If there were such a program there would be an effective proof
system for arithmetical assertions, contradicting Godel's Incompleteness Theorem.

Godel's result had tremendous historical significance. Godel did not have the concepts
of computability available to him. Rather his result stimulated logicians to research dif
ferent formulations of what it meant to be computable. The original proof worked by
expressing the concept of provability of a formal system for assertions as an assertion

112 Chapter 7

itself, and constructing an assertion which was valid iff it was not provable. It should
be admitted that we have only considered Godel's First Incompleteness Theorem; there
is also a second which says that a formal system for arithmetic cannot be proved free of
contradiction in the system itself. It was clear to Godel that his proofs of incompleteness
hinged on being able to express a certain set of functions on the natural numbers by
assertions-the set has come to be called the primitive recursive functions. The reali
sation that a simple extension led to a stable notion of computable function took some
years longer, culminating in the Church-TUring thesis. The incompleteness theorem dev
astated the programme set up by Hilbert. As a reaction to paradoxes like Russell's in
mathematical foundations, Hilbert had advocated a study of the finitistic methods em
ployed when reasoning within some formal system, hoping that this would lead to proofs
of consistency and completeness of important proof systems, like one for arithmetic.
Godel's Theorem established an absolute limit on the power ot finitistic reasoning.

7.4 Verification conditions

In principle, the fact that Assn is expressive provides a method to reduce the demonstra
tion that a partial correctness assertion is valid to showing the validity of an assertion in
Assn; the validity of a partial correctness assertion of the form {A }c{ B} is equivalent to
the validity of the assertion A =? w[c, B], from which the command has been eliminated.
In this way, given a theorem prover for predicate calculus we might hope to derive a the
orem prover for IMP programs. Unfortunately, the method we used to obtain w[c, B]
was convoluted and inefficient, and definitely not practical.

However, useful automated tools for establishing the validity of partial correctness
assertions can be obtained along similar lines once we allow a little human guidance. Let
us annotate programs by assertions. Define the syntactic set of annotated commands by:

c ::=skip I X := a I co; (X := a) I co; {D}cl I
if b then Co else Cl I while b do {D}c

where X is a location, a an arithmetic expression, b is a boolean expression, c, co, Cl

are annotated commands and D is an assertion such that in co; {D}cl, the annotated
command Cl, is not an assignment. The idea is that an assertion at a point in an
annotated command is true whenever flow of control reaches that point. Thus we only
annotate a command of the form co; CI at the point where control shifts from Co to CI.

lt is unnecessary to do this when Cl is an assignment X := a because in that case an
annotation can be derived simply from a postcondition. An annotated while-loop

while b do {D}e

Completeness of the Hoare rules 113

contains an assertion D which is intended to be an invariant.
An annotated partial correctness assertion has the form

{A}c{B}

where c is an annotated command. Annotated commands are associated with ordinary
commands, got by ignoring the annotations. It is sometimes convenient to treat an
notated commands as their associated commands. In this spirit, we sayan annotated
partial correctness assertion is valid when its associated (unannotated) partial correctness
assertion is.

An annotated while-loop

{A}while b do {D}c{B}

contains an assertion D, which we hope has been chosen judiciously so D is an invariant.
Being an invariant means that

{D 1\ b}c{D}

is valid. In order to ensure

{A} while b do {D}c{B}

is valid, once it is known that D is an invariant, it suffices to show that both assertions

A =? D, D 1\ -,b =? B

are valid. A quick way to see this is to notice that we can derive {A }while b do c{ B}
from {D 1\ b}c{D} using the Hoare rules which we know to be sound. As is clear, not
all annotated partial correctness assertions are valid. To be so it is sufficient to establish
the validity of certain assertions, called verification conditions for which all mention of
commands is eliminated. Define the verification conditions (abbreviated to vc) of an
annotated partial correctness assertion by structural induction on annotated commands:

vc({A}skip{B})

vc({A}X:= a{B})

vc({A}co;X:= a{B})

vc({A }co; {D}CI {B})

vc({A }if b then Co else CI {B})

vc({A}while b do {D}c{B})

{A =? B}

{A =? B[a/X]}

vc({A}co{B[a/ X]})

vc({A }co{ D}) U vc({D}CI {B})

where clis not an assignment

vc({A 1\ b }co{ B}) U vc({A 1\ -,b }CI {B})

vc({D 1\ b}c{D}) U {A =? D}

U{DI\-,b=?B}

114 Chapter 7

Exercise 7.11 Prove by structural induction on annotated commands that for all an
notated partial correctness assertions {A }c{ B} if all assertions in vc({A }c{ B}) are valid
then {A }c{ B} is valid. (The proof follows the general line of Lemma 7.6. A proof can
be found in [42], Section 3.5.) D

Thus to show the validity of an annotated partial correctness assertion it is sufficient
to show its verification conditions are valid. In this way the task of program verification
can be passed to a theorem prover for predicate calculus. Some commercial program
verification systems, like Gypsy [41], work in this way.

Note, that while the validity of its verification conditions is sufficient to guarantee
the validity of an annotated partial correctness assertion, it is not necessary. This can
occur because the invariant chosen is inappropriate for the pre and post conditions. For
example, although

{true }while false do {false }skip{ true}

is certainly valid with false as an invariant, its verification conditions contain

true =} false,

which is certainly not a valid assertion.
We conclude this section by pointing out a peculiarity in our treatment of annotated

commands. Two commands, built up as (Ci X := al)i X := a2 and Ci (X := ali X := a2),
are understood in essentially the same waYi indeed in many imperative languages they
would both be written as:

C· ,
X :=ali

X :=a2

However the two commands support different annotations according to our syntax of
annotated commands. The first would only allow possible annotations to appear in
C whereas the second would be annotated as Ci {D}(X := aliX := a2). The rules
for annotations do not put annotations before a single assignment but would put an
annotation in before any other chain of assignments. This is even though it is still easily
possible to derive the annotation from the postcondition, this time through a series of
substitutions.

Exercise 7.12 Suggest a way to modify the syntax of annotated commands and the
definition of their verification conditions to address this peculiarity, so that any chain of
assignments or skip is treated in the same way as a single assignment is presently. D

Completeness of the Hoare rules 115

Exercise 7.13 A larger project is to program a verification-condition generator (e.g.in
standard ML or prolog) which, given an annotated partial correctness assertion as input,
outputs a set, or list, of its verification conditions. (See Gordon's book [42] for a program
in lisp.) 0

7.5 Predicate transformers

This section is optional and presents an abstract, rather more mathematical view of
assertions and weakest preconditions. Abstractly a command is a function f : L; ---> L;.l
from states to states together with an element .1, standing for undefined; such functions
are sometimes called state transformers. They form a cpo, isomorphic to that of the
partial functions on states, when ordered pointwise. Abstractly, an assertion for partial
correctness is a subset of states which contains..1, so we define the set of partial correctness
predicates to be

Pred(L;) = {Q I Q ~ L;.l & ..1 E Q}.

We can make predicates into a cpo by ordering them by reverse inclusion. The cpo of
predicates for partial correctness is

(Pred(L;), 2).

Here, more information about the final state delivered by a command configuration
corresponds to having bounded it to lie within a smaller set provided its execution halts.
In particular the very least information corresponds to the element ..1 Pred = L; U {..1}.
We shall use simply Pred(L;) for the cpo of partial-correctness predicates.

The weakest precondition construction determines a continuous function on the cpo of
predicates-a predicate transformer. 4

Definition: Let f : ~ ---> L;.l be a partial function on states. Define

W f : Pred(L;) ---> Pred(L;);

(W f)(Q) = U- 1Q) U {..1}

i.e., (W f)(Q) = {a E ~.l I f(O') E Q} U {..1}.

A command c can be taken to denote a state transformer C[c] : ~ ---> L;.l with the
convention that undefined is represented by ..i. Let B be an assertion. According to this
understanding, with respect to an interpretation I,

(W(C[C]))(BI) = wl[c, B].

4This term is generally used for the corresponding notion when considering total correctness.

116 Chapter 7

Exercise 7.14 Write ST for the cpo of state transformers [E 1- -1- E1-] and PT for the
cpo of predicate transformers [Pred(E) - Pred(E)].
Show W : ST - 1- PT and W is continuous (Care! there are lots of things to check here).
Show W(Id~.J = IdPred(~) i.e., W takes the identity function on the cpo of states to
the identity function on predicates Pred(E).
Show W(f 0 g) = (Wg) 0 (WI). 0

In the context of total correctness Dijkstra has argued that one can specify the meaning
of a command as a predicate transformer [36]. He argued that to understand a command
amounts to knowing the weakest precondition which ensures a given postcondition. We
do this for partial correctness. As we now have a cpo of predicates we also have the cpo

[Pred(E) - Pred(E)]

of predicate transformers. Thus we can give a denotational semantics of commands
in IMP as predicate transformers, instead of as state transformers. We can define a
semantic function

Pt: Com - [Pred(E) - Pred(E)]

from commands to predicate transformers. Although this denotational semantics, in
which the denotation of a command is a predicate transformer is clearly a different
denotational semantics to that using partial functions, if done correctly it should be
equivalent in the sense that two commands denote the same predicate transformer iff
they denote the same partial function. You may like to do this as the exercise below.

Exercise 7.15 (Denotations as predicate transformers)
Define a semantic function

by

Pt: Com- PT

Pt[X := a]Q = {a E E1- I a[A[a]a / X] E Q}

Pt[skip]Q = Q

Pt[eo; Cl]Q = Pt[Co] (Pt[Cl]Q)

Pt[if b then Co else Cl]Q = Pt[co](iJ n Q) U Pt[Cl](...,b n Q)

where b = {a I a = ..1 or 8[b]a = true} for any boolean b

Pt[while b do c]Q = fix(G)

where G : PT - PT is given by G(p)(Q) = (b n Pt[eo] (P(Q)) U (...,b n Q).
Show G is continuous.

Completeness of the Hoare rules 117

Show W(C[clJ = Pt[c] for any command c. Observe

WJ=WJ'=>J=J'

for two strict continuous functions J, J' on 2:.L. Deduce

C[c] = C[c'] iff Pt[c] = Pt[c']

for any commands c, c' .
Recall the ordering on predicates. Because it is reverse inclusion:

nEw

This suggests that if we were to allow infinite conjunctions in our language of assertions,
and did not have quantifiers, we could express weakest preconditions directly. Indeed
this is so, and you might like to extend Bexp by infinite conjunctions, to form another
set of assertions to replace Assn, and modify the above semantics to give an assertion,
of the new kind, which expresses the weakest precondition for each command. Once we
have expressiveness a proof of relative completeness follows for this new kind of assertion,
in the same way as earlier in Section 7.2. 0

1.6 Further reading

The book "What is mathematical logic?" by Crossley et al [34] has an excellent expla
nation of Godel's Incompleteness Theorem, though with the details missing. The logic
texts by Kleene [54], Mendelson [61] and Enderton [38] have full treatments. A treatment
aimed at Computer Science students is presented in the book [11] by Kfoury, Moll and
Arbib. Cook's original proof of relative completeness in [33] used "strongest postcondi
tions" instead of weakest preconditions; the latter are used instead by Clarke in [23] and
his earlier work. The paper by Clarke has, in addition, some negative results showing
the impossibility of having sound and relatively complete proof systems for programming
languages richer than the one here. Apt's paper [8] provides good orientation. Alter
native presentations of the material of this chapter can be found in [58], [13]. Gordon's
book [42] contains a more elementary and detailed treatment of verification conditions.

8 Introduction to domain theory

Domain theory is the mathematical foundation of denotational semantics. This chap
ter extends the work on complete partial orders (domains) and continuous functions
with constructions on complete partial orders which are important for the mathematical
description of programming languages. It provides the mathematical basis for our subse
quent work on denotational semantics. A metalanguage to support semantic definitions
is introduced; functions defined within it are guaranteed to be continuous.

8.1 Basic definitions

In denotational semantics a programming construct (like a command, or an expression)
is given a meaning by assigning to it an element in a "domain" of possible meanings.
The programming construct is said to denote the element and the element to be a
denotation of the construct. For example, commands in IMP are denoted by elements
from the "domain" of partial functions, while numerals in IMP can denote elements of
N. As the denotational semantics of IMP in Chapter 5 makes clear it can sometimes
be necessary for "domains" to carry enough structure that they enable the solution of
recursive equations. Chapter 5 motivated complete partial orders as structures which
support recursive definitions, and these are reasonable candidates to take as "domains"
of meanings. Of course, the appropriateness of complete partial orders can only be
justified by demonstrating their applicability over a range of programming languages and
by results expressing their relation with operational semantics. However, experience and
results have born out their importance; while it is sometimes necessary to add structure
to complete partial orders, it appears they underlie any general theory capable of giving
compositional l semantic definitions to programming languages. Recall the definition
from Chapter 5:

Definition: A partial order (D, 1;:;;) is a complete partial order (abbreviated to cpo) if it
has has a least upper bound U nEw dn in D of any w-chain do I;:;; d1 I;:;; ••• I;:;; dn I;:;; ..• of
elements of D.
We say (D,I;:;;) is a cpo with bottom if it is a cpo which has a least element -L (called
"bottom").2

Occasionally we shall introduce a cpo as e.g.(D, I;:;; D) and make explicit to which cpo
the order I;:;;D and bottom element -LD belong. More often however we will write I;:;; and
-L because the context generally makes clear to which cpo we refer. Often, when it is
clear what we mean, we will write Un dn instead of UnEw dn.

1 Recall from Chapter 5 that a semantics is compositional if the meaning of a programming expression
is explained in terms of the meaning of its immediate subexpressions.

2The cpo's here are commonly called (bottomless) w-cpo's, or predomains.

120 Chapter 8

We have already encountered several examples of cpo's:

Example:
(i) Any set ordered by the identity relation forms a discrete cpo.
(ii) A powerset Pow(X) of any set X, ordered by ~, or by 2, forms a cpo as indeed does
any complete lattice (see Section 5.5).
(iii) The two element cpo 1. ~ T is called O. Such an order arises as the powerset of a
singleton ordered by ~.
(iv) The set of partial functions X ~ Y ordered by inclusion, between sets X, Y, is a
cpo.
(v) Extending the nonnegative integers w by 00 and ordering them in a chain

yields a cpo, called n. o

Complete partial orders give only half the picture. Only by ensuring that functions be
tween cpo's preserve least upper bounds of w-chains do we obtain a framework supporting
recursive definitions.

Definition: A function f : D ---; E between cpo's D and E is monotonic iff

Vd, d' E D. d ~ d' =:} f(d) ~ f(d').

Such a function is continuous iff it is monotonic and for all chains d 0 ~ d1 ~ ... ~ dn ~ ...

in D we have

nEw nEw

Example:
(i) All functions from discrete cpo's, i.e. sets, to cpo's are continuous.
(ii) Let the cpo's nand 0 be as in the above example. For n E n, define the function
f n : n ---; 0 to be

fn(x) = {T if n ~ ~,
1. otherwIse.

The continuous functions n ---; 0 consist of the constantly 1. function, AX.1., together
with all fn where nEw. Note, however, that the function foo is not continuous. (Why
not?) 0

Proposition 8.1 The identity function Id D on a cpo D is continuous. Let f : D -> E
and 9 : E ---; F be continuous functions on cpo's D, E, F. Then their composition
9 0 f : D -> F is continuous.

Introduction to domain theory 121

Exercise 8.2 Prove the previous proposition. o

In Section 5.4 we showed a central property of a cpo with .1.; any continuous function
on it has a least fixed point:

Theorem 8.3 (Fixed-Point Theorem)
Let f : D --> D be a continuous function on D a cpo with bottom .1.. Define

fix(f) = U r(.1.)·
nEw

Then fix(f) is a fixed point of f and the least prefixed point of f i. e.
(i) f(fix(f)) = fix(f) and (ii) if fed) ~ d then fix(f) [;:; d. Consequently fixC!) is the least

fixed point of f·

8.2 Streams-an example

Complete partial orders and continuous functions have been motivated in Chapter 5
from the viewpoint of inductive definitions associated with finitary rules, by extracting
those properties used to obtain least fixed points of operators on sets. Given that an
operational semantics can generally be presented as a set of finitary rules, the relevance of
continuity to computation is not surprising. However, the significance of continuity can
be understood more directly, and for this we will consider computations on sequences,
as an example.

As input values we take finite and infinite sequences of O's and 1 's where in addition we
allow, but don't insist, that a finite sequence can end with a special symbol "$". The idea
is that the sequences represent the possible input, perhaps from another computation
or a user; a sequence of O's or l's is delivered with the option of explicity notifying by
$ that the sequence is now ended. The sequence can grow unboundedly in length over
time unless it has been terminated with $. The sequences can remain finite without
being terminated; perhaps the inputting device breaks down, or goes into a diverging
computation, or, in the case of a user, gets bored, before inputting the next element of
the sequence or terminating it with $.

These sequences are sometimes called streams, or lazy lists or "stoppered sequences"
($ is the "stopper"). They admit an intuitive partial order. Say one sequence 8 is below
another 8' if 8 is a prefix of 8'. Increasing in the partial order is associated with sequences
containing increasing information. With respect to this partial order there is then a least
sequence, the empty sequence f. There are maximal sequences which are "stoppered",
like

OlOl$

122 Chapter 8

and infinite sequences, like
000···00·· .

which we abbreviate to Ow. In fact the sequences form a cpo with bottom element f.

Call the cpo S.
Imagine we wish to detect whether or not 1 appears in the input. It seems we would

like a function
isone : S ~ {true, false}

that given a sequence returned true if the sequence contained 1 and false if not. But this
is naive. What if the sequence at some stage contained no 1 's and then at a later time
1 appeared, as could happen through starting at the empty sequence f and becoming 10
say? We would have to update our original output of false to true? We would prefer
that when the isone returns false on some input it really means that no 1 's can appear
there. Whereas we require isone(OOO$) = false, because 1 certainly can't appear once
the sequence is terminated, we want isone (000) to be different from false, and certainly
it can't be true. We have two options: either we allow isone to be a partial function,
or we introduce a "don't know" element standing for undefined in addition to the truth
values. It is technically simpler to follow the latter course.

The new "don't know" value can be updated to false or true as more of the input
sequence is revealed. We take the "don't know" value to be ..1 below both true and
false, as drawn here:

Write {true, false}.L for this simple cpo with least element ..i. Now more information
about the input is reflected in more information about the output. Put in mathematical
terms, isone should be a monotonic function from S to {true, false} .L.

Deciding that
isone : S -------'; {true, false} .L

is monotonic does not fully determine it as a function, even when constraining it so

isone (Is)
isone (Os)

true,
isone (s),

isone ($)
isone (f)

false,
..1,

for any sequence s. What about isone (OW)? The constraints allow either isone (OW) =
false or isone (OW) =..1. However the former is not computationally feasible; outputting

Introduction to domain theory 123

false involves surveying an infinite sequence and reporting on the absence of 1 'so Its
computational infeasibility is reflected by the fact that taking isone (OW) to be false
yields a function which is not continuous. Any finite subsequence of 0 W takes the form
on consisting of nO's. The infinite sequence Ow is the least upper bound UnEw On. We
have isone (on) =1. and so

U is one (on) =1.
nEw

and continuity forces isone (OW) =1..

Exercise 8.4 Cpo's can be viewed as topological spaces and continuous functions as
functions which are continuous in the traditional sense of topology (You need no knowl
edge of topology to do this exercise however). Given a cpo (D,~) define a topology
(called the Scott topology after Dana Scott) as follows. Say U <::;: D is open iff

'rid, e E D. d ~ e & dE U =} e E U

and for all chains do ~ d1 (:;:; ... (:;:; dn (:;:; ... in D

U dn E U =} ::In E w. dn E U.
nEw

(i) Show this does indeed determine a topology on a cpo D (i.e. that 0 and D itself are
open and that any finite intersection of open sets is open and that the union of any set
of open sets is open.)
(ii) Show that for any element d of a cpo D, the set {x E D I x g d} is open.
(iii) Show that f : D ---. E is a continuous function between cpo's D, E iff f is
topologically-continuous. (Such a function f is topologically-continuous iff for any open
set V of E the inverse image I -1 V is an open set of D.)
(iv) Show that in general the open sets of a cpo D can be characterised as precisely
those sets I-I {T} for a continuous function I : D ---. O. Describe the open sets of the
particular cpo of streams considered in this section. 0

8.3 Constructions on cpo's

Complete partial orders can be formed in a rich variety of ways. This richness is im
portant because it means that cpo's can be taken as the domains of meaning of many
different kinds of programming constructs. This section introduces various constructions
on cpo's along with particular continuous functions which are associated with the con
structions. These will be very useful later in the business of giving denotational semantics
to programming languages.

124 Chapter 8

Sometimes in giving the constructions it is a nuisance to specify exactly what sets are
built in the constructions; there are many different ways of achieving essentially the same
construction. There was a similar awkwardness in the first introductory chapter on basic
set theory; there were several ways of defining products of sets depending on how we
chose to realise the notion of ordered pair, and, of course in forming disjoint unions we
first had to make disjoint copies of sets-we chose one way but there are many others. In
this section we will take a more abstract approach to the constructions. For example, in
forming a sum of cpo's Dl + ... + Dk, intuitively got by juxtaposing disjoint copies of the
cpo's D 1 , .. . , D k , we shall simply postulate that there are functions ini, for 1 s:; i s:; k,
which are 1-1 and ensure the elements inl(dl) and inm(dm) are distinct whenever Ii: m.
Of course, it is important that we know such functions exist; in this case they do because
one possibility is to realise ini(X) as (i, x). There is nothing lost by this more abstrart
approach because the sum construction will be essentially the same no matter how we
choose to realise the functions ini provided that they satisfy the distinctness conditions
required of them.

The mathematical way of expressing that structures are "essentially the same" is
through the concept of isomorphism which establishes when structures are isomorphic.
A continuous function f : D ---+ E between cpo's D and E is said to be an isomorphism
if there is a continuous function 9 : E ---+ D such that go f = IdD and fog = IdE-SO
f and 9 are mutual inverses. This is actually an instance of a general definition which
applies to a class of objects and functions between them (cpo's and continuous functions
in this case). It follows from the definition that isomorphic cpo's are essentially the same
but for a renaming of elements.

Proposition 8.5 Let (D, !:D) and (E, !:E) be two cpo's. A function f : D ---+ E is an
isomorphism iff f is a 1-1 correspondence such that

X [:;;D Y iff f(x) !:E f(y)

for all x,y E D.

8.3.1 Discrete cpo's

The simplest cpo's are simply sets where the partial ordering relation is the identity. An
w-chain has then to be constant. Cpo's in which the partial order is the identity relation
are said to be discrete. Basic values, like truth values or the integers form discrete cpo's,
as do syntactic sets. We remarked that any function from a discrete cpo to a cpo is always
continuous (so, in particular, semantic functions from syntactic sets are continuous).

Exercise 8.6 Precisely what kinds of functions are continuous from a cpo with ..1 to a
discrete cpo? 0

Introduction to domain theory 125

8.3.2 Finite products

Assume that D1, ... ,Dk are cpo's. The underlying set of their product is

consisting of k-tuples (d1,·· . , dk) for d l E D I, ... ,dk E Dk. The partial order is deter
mined "coordinatewise", i.e.

(d l , ... , dk) !;;; (d~, ... , dU iff d l !;;; d~ and ... and dk !;;; d~

It is easy to check that an w-chain (dIn,···, dkn), for nEw, of the product has least
upper bound calculated coordinatewise:

nEw nEw nEw

Thus the product of cpo's is itself a cpo. Important too are the useful functions associated
with a product DI x ... X Dk.

The projection function 1fi DI x ... X Dk -+ Di , for i = 1,···, k, selects the ith
coordinate of a tuple:

1fi(d1,···, dk) = di

Because least upper bounds of chains are got in a coordinatewise fashion, the projection
functions are easily seen to be continuous.

We can extend tupling to functions. Let II : E -+ DI, ... ,fk : E -+ Dk be continuous
functions. Define the function

by taking
(h,···, /k)(e) = (h(e),···, fn(e)).

The function (II,·· ., fn) clearly satisfies the property that

1fi 0 (h,···, fk) = Ii for i = 1,···, k,

and, in fact, (II,···, fn) is the unique function E ---+ Dl X ... X Dk with this property.
This function is easily seen to be monotonic. It is continuous because for any w-chain
eo !;;; el !;;; ... !;;; en !;;; ... in E we have

(h, ... , fk)(UnEw en) (fdUnEw en), ... ,/k (UnEw en))
(UnEw h (en), ... ,UnEw fk(en))
UnEw(h (en), ... ,fk(en))

by definition,
as each Ii is continuous,
as lubs of products are
formed coord 'wise,

126 Chapter 8

We can extend the product construction on cpo's to functions. For f 1

E 1,"', fk : Dk -. Ek define

by taking

In other words h x··· x!k = (h 07r1,"',!k 07rk). Each component fi 07ri is continuous,
being the composition of continuous functions, and, as we have seen, so is the tuple
(h 0 7r1,"', fk 07rk). Hence h x '" x !k is a continuous function.

Example: As an example of a product of complete partial orders consider T J. X T J. =
Tl which is most conveniently drawn from an "aerial" view:

(J, t) t+--_--'-(.=1.r-:-t-'---)_ (t, t)

(J, 1.) t+---~p-'l (1.=--=1.,-,--)...., (t, 1.)

(J,J) (1., J) (t, J)

We have used t and f to stand for the truth values true and false. o

Exercise 8.7 Draw the products 0 0 , 0 1 , 0 2 , and 0 3 . o

There are two easy-t(}-prove but important properties of products one of which we
shall make great use of later. (The first is an instance of a general fact from topology.)

Lemma 8.8 Let h : E -. D1 X ... X Dk be a function from a cpo E to a product of cpo's.

It is continuous iff for all i, 1 ::::; i ::::; k, the functions 7r i 0 h : E -. Di are continuous.

Proof:
"only if": follows as the composition of continuous functions is continuous.
"if": Suppose 7ri 0 h is continuous for all i with 1 ::::; i ::::; k. Then for any x E E

h(x) = (7rI(h(x)),···, 7rk(h(x))) = (7rl 0 h(x),"', 7rk 0 h(x)) = (7r1 0 h,"', 7rk 0 h)(x)

Therefore h = (7r1 0 h, ... ,7rk 0 h) which is continuous as each 7ri 0 h is continuous. 0

Introduction to domain theory 127

The second more useful lemma relies on the order. Its proof uses a little, but important,
result about least upper bounds of an "array" of elements of a cpo:

Proposition 8.9 Suppose en,m are elements of a cpo E for n, mEw with the property

that en,m ~ en' ,m' when n ::; n' and m ::; m'. Then the set {en,m I n, mEw} has a least
upper bound

n,mEw nEw mEw mEw nEw nEw

Proof: The proposition follows by showing that all of the sets

{en,m I n,mEw}, {U en,m I nEw}, {U en,m I mEw}, {en,n I nEw}
mEw nEw

have the same upper bounds, and hence the same least upper bounds. For example, it
is easy to see that {en,m I n, mEw} and {en,n I nEw} have the same upper bounds
because any element en,m can be dominated by one of the form en,n' Certainly the lub
of an w-chain Un en,n exists, and hence the lub Un,m en,m exists and is equal to it. Any
upper bound of {Urn en,m In E w} must be an upper bound of {en,m I n,m E w}, and
conversely any upper bound of {en,m I n, mEw} dominates any lub Um en,m for any
mEw. Thus we see {en,m I n, mEw} and {UmEwen,m I nEw} share the same upper
bounds, and so have equal lubs. The argument showing Um CUn en,m) = Un,m en,m is
similar. D

Lemma 8.10 Let f : Dl x ... X Dk ---+ E be a function. Then f is continuous iff
f is "continuous in each argument separately", i. e. for all i with 1 ::; i ::; k for any

dl, ... ,di-l,di+1, ... ,dk thefunctionD; ---+ E given bydi f-----> f(d 1 , ... ,di1 ... ,dk) is
continuous.

Proof:
"=}" obvious. (Why?)
"~" For notational convenience assume k = 2 (the proof easily generalises to more
arguments). Let (xo, Yo) ~ ... ~ (xn, Yn) ~ ... be a chain in the product Dl x D2 . Then

fCU X P ' U Yq) as lubs are determined coordinatewise,
n p q

U fCx p, U Yq) as f is continuous in its 1st argument,
p q

128 Chapter 8

Hence f is continuous.

U U f(xp, Yq) as f is continuous in its 2nd argument,
p q

U f(xn, Yn) by Proposition 8.9 above.
n

o

This last fact is very useful; on numerous occasions we will check the continuity of a
function from a product by showing it is continuous in each argument separately. 3

One degenerate case of a finite product is the empty product {O} consisting solely of
the empty tuple O. We shall often use 1 to name the empty product.

8.3.3 Function space

Let D, E be cpo's. It is a very important fact that the set of all continuous functions
from D to E can be made into a complete partial order. The function space [D -+ El
consists of elements

{f If: D -+ E is continuous}

ordered pointwise by
f ~ 9 iffVd ED. fed) ~ g(d).

This makes the function space a complete partial order. Note that, provided E has a
bottom element .lE, such a function space of cpo's has a bottom element, the constantly
.lE function .l[D-+El which acts so

.l[D-+E] (d) = .lE, for all d ED.

Least upper bounds of chains of functions are given pointwise i. e. a chain

fa ~ h ~ ... ~ fn ~ ...

of functions has lub UnEw fn which

n n

3 A property corresponding to Lemma 8.10 does not hold of functions in analysis of real and complex
numbers where a verification of the continuity of a function in several variables can be much more
involved. For example:

p(x) = { i'ly2 if (x, y) i- (0,0),
if x = y = o.

Introduction to domain theory 129

for dE D. The fact that this lub exists as a function in [D ~ EJ requires that we check
its continuity.

Suppose do ~ d1 ~ ... ~ dm ~ ... is a chain in D. Then

U fn(U dm) by the definition of lubs of functions,
n m m

U(U fn(dm)) as each fn is continuous,
n m

U(U fn(dm)) by Proposition 8.9,
m n

U((U fn)(dm)) by the definition of lubs of functions.
m n

Special function spaces of the form [1 ~ DJ, for 1 a set and D a cpo, are called powers
and will often be written as DI. Elements of the cpo DI can be thought of as tuples
(di)iEl ordered coordinatewise (though these tuples can be infinite if the set is infinite).
When 1 is the finite set {I, 2,···, k}, the cpo DI is isomorphic to the product D x· .. x D,
the product of k cpo's D, generally written D k.

There are two key operations associated with the function space construction, appli
cation and currying. 4 Define

apply: [D ~ EJ x D ~ E

to act as apply(f, d) = f(d). Then apply is continuous by Lemma 8.10 because it is
continuous in each argument separately:
Let fo ~ ... ~ fn ~ ... be a chain of functions. Then

apply (Un fn, d) Un fn(d)
Un apply(fn, d)

because lubs are given pointwise,
by the definition of apply.

Let do ~ ... ~ dn ~ ... be a chain in D. Then

n n n n

Assume F is a cpo and that
g:FxD~E

is continuous. Define
curry(g) : F ~ [D ~ EJ

4The operation of currying is named after the American logician Haskell Curry.

130 Chapter 8

to be the function
curry(g) = AV E FAd E D.g(v, d)

So (curry(g))(v) is the function which takes d E D to g(v,d). So writing h for curry(g)
we have

(h(v))(d) =g(v,d)

for any v E F, d ED. Of course, we need to check that each such h(v) is a continuous
function and that curry (g) is itself a continuous function F --> [D --> EJ:
Firstly assume v E F. We require that h(v) = Ad E D .g(v, d) is continuous. However
9 is continuous and so continuous in each argument separately making h(v) continuous.
Secondly, let

va G VI G ... G vn G ...

be an w-chain of elements in F. Let d ED. Then

g(U vn , d) by the definition of h,
n n

U g(vn, d) by the continuity of g,
n

U(h(vn)(d)) by the definition of h,
n

(U h(vn)) (d) by the definition of lub of a sequence of functions.
n

Thus h(Un vn) = Un h(vn) so h is continuous. In fact, curry(g) is the unique continuous
function h : F --> [D --> EJ such that

apply (h(v) , d) = g(v,d), for all v E F, dE D

Exercise 8.11 A power is a form of, possibly infinite, product with elements of a cpo
DI, for D a cpo and I a set, being thought of as tuples (di)iEI ordered coordinatewise
(these tuples are infinite if the set is infinite). As such, the notion of a function being
continuous in a particular argument generalises from Lemma 8.10. Show however that
the generalisation of Lemma 8.10 need not hold, i.e. a function from a power cpo D I
with the set I infinite need not be continuous even when continuous in each argument
separately. (Hint: Consider functions Ow --> 0.) 0

Introduction to domain theory 131

8.3.4 Lifting

We have already met situations where we have adjoined an extra element 1- to a set to
obtain a cpo with a bottom element (see, for example, Section 5.4 where the set of states
was extended by an "undefined state" to get a cpo ~.L)' It is useful to generalise this
construction, called lifting, to all cpo's. Lifting adjoins a bottom element below a copy
of the original cpo.

Let D be a cpo. The lifting construction assumes an element 1- and a function l -J
with the properties

ldoJ = ldd =} do = d1 , and

1-;;6 ldJ
for all d, do, d1 E D. The lifted cpo D.L has underlying set

D.L = {ldJ IdE D} U {1-},

and partial order

d~ ~ d~ iff (d~ =1-) or

(::Ido, d1 E D.d~ = ldoJ & d~ = ld1J & do ~D dd·

It follows that ldoJ ~ ldd in D.L iff do ~ d1 , so D.L consists of a copy of the cpo D below
which a distinct bottom element 1- is introduced. Clearly the function l -J : D -> D.L
is continuous. Although there are different ways of realising l -J and 1- they lead to
isomorphic constructions.

We can picture the lifting construction on a cpo D as:

D

1-
A continuous function f : D -> E, from a cpo D to a cpo E with a bottom element,

can be extended to a continuous function

by defining

j*(d') = { ~(d) if d' = ldJ for some d ED,
otherwise.

132 Chapter 8

Suppose the function f is described by a lambda expression Ax.e. Then we shall write

let x {::: d'. e

for the result
(Ax.e)*(d')

of applying 1* to an element d' E D 1.. This notation is suggestive; only if d' is a non-..l
value is this used in determining a result from e, and otherwise the result is .1.. E.

The operation (-) * is continuous: Let d' be an arbitrary element of D 1. and suppose
fo I;;;; ••• I;;;; fn I;;;; ... is an w-chain of functions in [D ----+ E]. In the case where d' = .1.. we
directly obtain that both (Un fn)*(d') and (Un f~)(d') are ..lE. Otherwise d' = ldJ and
we see

n n

= UUn(d)) as lubs are determined pointwise,
n

= U((f~)(d')) by the definition of (-)*,
n

= (U f~)(d') as lubs are determined pointwise.
n

As d' was arbitrary, we obtain (Un fn)* = UnU~), i.e. the operation (-)* is continuous.
We shall abbreviate

let Xl {::: CI· (let X2 {::: C2· (- .. (let Xk {::: Ck. e)···)

to
let Xl {::: CI, ... ,Xk {::: Ck. e

Operations on sets S can be extended to their liftings S 1. using the let-notation. For
example the or-function V TxT ----+ T, on truth values T = {true, false}, can be
extended to

by taking

Xl V 1. X2 =def (let tr {::: Xl, t2 {::: X2· l tr V t2J).

This extension is often called strict because if either X I is .1.. or X2 is .1.. then so is Xl V 1. X2.

There are other computable ways of extending V so e.g. trueV .1..= true (see the exercise
below). Similarly, arithmetic operations on N can be extended strictly to operations on
N 1.. For example,

Introduction to domain theory 133

Exercise 8.12 Describe in the form of "truth tables" all of the continuous extensions
of the usual boolean or-operation V. D

8.3.5 Sums

It is often useful to form disjoint unions of cpo's, for example to adjoin error values to the
usual values of computations. The sum construction on cpo's generalises that of disjoint
unions on sets. Let D1,"', Dk be cpo's. A sum Dl + ... + Dk has underlying set

and partial order

where all we need assume of the functions ini is that they are 1-1 such that

for all dEDi, d' E D j where i i= j. It is easy to see that Dl + ... + Dk is a cpo,
consisting as it does of disjoint copies of the cpo's D 1, ... ,Dk and that the injection
functions ini : Di ---t Dl + ... + Dk, for i = 1", . k, are continuous. Although there are
different ways of realising the functions ini they lead to isomorphic constructions.

Suppose h : Dl ---t E,"', ik : Dk ---t E are continuous functions. They can be
combined into a single continuous function

given by

for i = 1, ... ,k. In other terms,

for i = 1"", k, and this property on functions Dl +-. +Dk ---> E characterises [h,' ", fkJ
uniquely.

Exercise 8.13 Show the operation yielding [h,"', ikJ from h E [Dl ---> E],···, fk E
[Dk ---> EJ is continuous. (Use Lemma 8.lO.) D

134 Chapter 8

The truth values T = {true, false} can be regarded as the sum of the two singleton
cpo's {true} and {false} with injection functions in 1 : {true} --+ T taking true I---> true
and, similarly, in2 : {false} --+ T taking false I---> false. Let

AXl.el ; {true} --+ E and

AX2.e2 ; {false} --+ E

be two, necessarily continuous, functions to a cpo E. Then it is not hard to see that

behaves as a conditional, i. e.

if t = true,
if t = false

with arguments t E T and el, e2 E E. Because the truth value in a conditional will often
be the result of a computation we will make more use of a conditional where the test lies
in T.l. Assume that the cpo E has a bottom element .lE. The conditional defined as

acts so
if b = l true J ,
if b = l false J ,
if b = .l

where bET J. and el, e2 E E. The demonstration that both these conditionals are
continuous is postponed to the Section 8.4.

Exercise 8.14 Verify that the operations cond and (- --+ - I -) defined above do indeed
behave as the conditionals claimed. 0

The sum construction and its associated functions enable us to define a general cases
construction which yields different results according to which component of a sum an
element belongs. Assume that E is a cpo. Let (Dl + ... + D k) be a sum of cpo's with
an element d. Suppose

AXi .ei ; Di --+ E

are continuous functions for 1 :::: i :::: k. The intention is that a cases construction

Introduction to domain theory 135

should yield ei in the case where d = ini(di) for some di E Di. This is achieved by
defining the cases-construction to be

Exercise 8.15 Why? o

Finally, we remark that the empty cpo 0 is a degenerate case of a finite sum, this time
with no components.

8.4 A metalanguage

When defining the semantics of programming languages we shall often require that func
tions are continuous in order to take their least fixed points. This raises the issue that
we don't want always to interrupt definitions in order to check that expressions are well
defined and do indeed represent continuous functions. A great deal of tedious work can
be saved by noticing, once and for all, that provided mathematical expressions fit within
a certain informal syntax then they will represent continuous functions. Its expressions
constitute a metalanguage within which we can describe the denotational semantics of
particular programming languages.

We have already encountered an occasional use of lambda notation. In domain theory
we shall make frequent use of it. Let e be an expression which represents an element of
the cpo E, whenever x is an element of the cpo D. For example, e might be a conditional
"cond(x, 0,1)" where D is T, the truth values, and E is w, the natural numbers. We
write

.Ax E D. e

for the function h : D -+ E such that h(d) = e[d/x] for all d E D. Often we abbreviate
it to .Ax.e when x is understood to range over elements of D. Suppose e is an expression
which refers to elements x E Dl and y E D 2 . Instead of writing the somewhat clumsy

we can write
).,(x, y) E Dl X D 2 . e.

More usually though this function will be written as

or just
).,x,y. e.

136 Chapter 8

We would like to use lambda notation as freely as possible and yet still be assured that
when we do so we define continuous functions. We shall typically encounter expressions e
which represent an element of a cpo E and depend on variables like x in a cpo D. Say such
an expression e is continuous in the variable xED iff the function .Ax E D. e : D ---; E
is continuous. Say e is continuous in its variables iff e is continuous in all variables. Of
course, the expression e will depend on some variables and not on others; if a variable
xED does not appear in e then the function .Ax E D.e is constant, and so certainly
continuous.

We can build up expressions for elements of cpo's in the following ways, using the
operations we have seen, and be assured by the results of this chapter that the expressions
will be continuous in their variables:

Variables: An expression consisting of a single variable x ranging over elements of a
cpo E is continuous in its variables because, for y E D the abstraction .Ay.x is either the
identity function .Ax.x (if y is the variable x) or a constant function.

Constants: We have met a number of special elements of cpo's, for example, .1 D E D a
cpo with bottom, truth values true, false E T, projection functions like 7r1 E [D1 X D2 ---;
D1] associated with a product, apply E [[D ---; E] x D ---; E] with a function space, the
function (-) * associated with lifting, injection functions and the operation [, ... ,] with
a sum, and several others including fix E [[D ---; D] ---; D] (though the justification that
fix is a continuous function, and so indeed an element of the cpo claimed, is postponed
to the end of this section). Such constant expressions give fixed elements of a cpo and
so are continuous in their variables.

Tupling: Given expressions e 1 E E1, ... ,ek E Ek of cpo's E 1, ... ,Ek we can form the
tuple (e1,"', ek) in the product cpo E1 x ... X E k. Such a tuple is continuous in a
variable xED iff

.Ax.(e1,···, ek) is continuous

{::::::} 7ri 0 (.Ax.(e1,···, ek)) is continuous for 1 ::; i ::; k (by Lemma 8.8)

{::::::} .Ax.ei is continuous for 1 ::; i ::; k

{::::::} ei is continuous in x for 1 ::; i ::; k.

Hence tuples are continuous in their variables provided their components are.

Application: Given a fixed continuous function K of the kind discussed above (in
"Constants") we can apply it to an appropriate argument expression e. The result K(e)

Introduction to domain theory

is continuous in x iff

AX. K (e) is continuous

{=;. K 0 (Ax.e) is continuous

{= Ax.e is continuous (by Proposition 8.1)

{=;. e is continuous in x.

137

Hence such applications are continuous in their variables provided their arguments are.
In particular, it follows that general applications of the form e 1 (e2) are continuous in
variables if el,e2 are; this is because ede2) = apply(el,e2) the result of applying the
constant apply to the tuple (el' e2).

A-abstraction: Suppose e E E is continuous in its variables. Then choosing a particular
variable y ranging over a cpo D we can form the necessarily continuous function Ay.e :
D -+ E. We would like that this abstraction is itself continuous in its variables x.
Certainly if x happens to be the variable y this is assured, the result being a function
which is constantly Ay.e. Otherwise Ay.e is continuous in x iff

AX. Ay. e is continuous

{=;. curry (AX, y. e) is continuous

{= AX, y. e is continuous (as curry preserves continuity)

{=;. e is continuous in X and y.

Hence abstractions are continuous in their variables provided their bodies are. 5 In par
ticular, we obtain that function composition preserves the property of being continuous
in variables because:

el 0 e2 = AX. el(e2(x)).

Note that more general abstractions like AX, y E Dl X D2 . e are also admissible because
they equal AZ E Dl X D2. e[1l"1(z)/X,1l"2(Z)/yj.

Thus any expression is continuous in its variables when built up from fixed continuous
functions or elements in the ways above. It follows that other constructions preserve this
property, other important ones being:

let-construction: Assume D is a cpo and E is a cpo with bottom. If e lED.L and
e2 E E are continuous in variables then we can form the expression

5This condition is also necessary because the implication "¢o" in the argument can be replaced by an
equivalence" ¢==? ," though this has not yet been shown. It follows by Exercise 8.16 ending this section.

138 Chapter 8

also continuous in its variables. This is because

and the expression on the right can be built up from eland e2 solely by the methods
admitted above.

case-construction: Assume that E is a cpo. Let (Dl + ... + Dk) be a sum of cpo's with
an element e, an expression assumed continuous in its variables. Suppose expressions
ei E E are continuous in variables for 1 ::; i ::; k. Then the cases construction

is continuous in its variables because it is defined to be

a form obtainable by the methods above--recall the operation [- , ... , -] associated with
a sum has been shown to be continuous and is admitted as one of our constants. In
particular conditional expressions of the form cond(t, e 1, e2), introduced in Section 8.3.5,
where t is a truth value and e 1, e2 belong to the same cpo, are continuous in their variables
because they equal [Axl.el, AX2.e2](t). The variant b ---> el[e2, also from Section 8.3.5,
defined on cpo's with bottom elements is then continuous in its variables because it is
definable as let t {= b. cond(t, el, e2).

Fixed-point operators: Each cpo D with bottom is associated with a fixed-point
operator fix : [D ---> D] ---> D. In fact the function fix is itself continuous. To see this
note

fix = U (AI. r(.i)),
nEw

i. e. fix is the least upper bound of the w-chain of the functions

AI..l.. !;;;; AI.f(.l..) ~ AI.f(f(.l..)) ~ ...

where each of these is continuous and so an element of the cpo [[D ---> D] ---> D] by the
methods above. It follows that their lub fix exists in [[D ---> D] ---> D].

Notation: We shall often use f..J,x.e to abbreviate fix(Ax.e).

Introduction to domain theory 139

We shall use results like the above to show expressions are well-defined. Although we
shall be informal we could formalise the language above, saying precisely what the types
are, and what the constant operations are to form a particular typed A-calculus in whose
standard interpretation terms would denote elements of cpo's-the construction rules of
the language would ensure that no non-continuous functions could creep in. An approach
of this kind led to Dana Scott's LCF (Logic or Computable Functions) which consists of
a typed A-calculus like this with predicates and a proof rule (fixed-point induction, see
Chapter 10) for reasoning about least fixed points.

Exercise 8.16 Recall, from 8.3.3, the function curry = AgAvAd.g(v, d) from A = [F x
D ---> E to B = [F ---> [D ---> Ell. This exercise shows curry is an isomorphism from A to
B. Why is curry a continuous function A ---> B? Define a function uncurry : B ---> A
inverse to curry, i. e. so curry 0 uncurry = I dB and uncurry 0 curry = IdA. Show uncurry
is continuous and inverse to curry. 0

8.5 Further reading

The presentation is mainly based on Gordon Plotkin's lecture notes (both the "Pisa
notes" [80] and his later work [83]) though the presentation, while elementary, has been
influenced by Eugenio Moggi's work [67] and Andrew Pitts' presentation [75]. The es
sentials go back to work of Dana Scott in the late '60's. I'd also like to acknowledge
learning from Christopher Wadworth's excellent Edinburgh lecture notes which unfortu
nately never reached print. Larry Paulson's book [74] provides background on the logic
LCF and the proof assistant implemented in ML. Alternative introductions to denota
tional semantics can be found in: [88], [95], [91]. This chapter has in fact introduced the
category of cpo's and continuous functions and shown that it is cartesian closed in that
the category has products and function spaces; it also has coproducts given by the sum
construction. Elementary accounts of category theory are given in [10], [15].

9 Recursion equations

This chapter explores a simple language REC which supports the recursive definition
of functions on the integers. The language is applicative in contrast to the imperative
language of IMP. It can be evaluated in a call-by-value or call-by-name manner. For
each mode of evaluation operational and denotational semantics are provided and proved
equivalent.

9.1 The language REC

REC is a simple programming language designed to support the recursive definition of
functions. It has these syntactic sets:

• numbers n EN, positive and negative integers,

• variables over numbers x E Var, and

• function variables II, ... ,Ik E Fvar.

It is assumed that each function variable Ii E Fvar possesses an arityai E w which is
the number of arguments it takes-it is allowed for ai to be 0 when IiO, consisting of the
function Ii of arity 0 applied to the empty tuple, is generally written as just Ii. Terms
t, to, tl, ... of REC have the following syntax:

For simplicity we shall take boolean expressions to be terms themselves with 0 under
stood as true and all nonzero numbers as false. (It is then possible to code disjunction as
x, negation -,b as a conditional if b then 1 else 0 and a basic boolean like the equality
test (to = tr) between terms as (to - tl)-see also Exercise 9.1 below.) We say a term is
closed when it contains no variables from Var.

The functions variables I are given meaning by a declaration, which consists of equa
tions typically of the form

where the variables of ti are included in Xl, ... ,Xai , for i = 1, ... ,k. The equations can
be recursive in that the terms ti may well contain the function variable Ii and indeed
other function variables of it, ... , /k. Reasonably enough, we shall not allow two defining
equations for the same function variable.

142

In a defining equation
fi(Xl, ... ,Xa .} = ti

we call the term ti the definition of li.

Chapter 9

What to take as the operational semantics of REC is not so clear-cut. Consider a
defining equation

Jr(X) = Jr(x) + 1.

Computational intuition suggests that h (3), say, should evaluate to the same value as
Jr(3) + 1 which should, in turn, evaluate to the same value as (h(3) + 1) + 1, and so on.
The evaluation of h (3) should never terminate. Indeed if the evaluation of h (3) were
to terminate with an integer value n then this would satisfy the contradictory equation
n = n + 1. Now suppose, in addition, we have the defining equation

12(x) = 1.

In evaluating 12(t), for a term t, we have two choices: one is to evaluate the argument
t first and once an integer value n is obtained to then proceed with the evaluation of
12 (n); another is to pass directly to the definition of 12, replacing all occurrences of
the variable x by the argument t. The two choices have vastly different effects when
taking the argument t to be h (3); the former diverges while the latter terminates with
result 1. The former method of evaluation, which requires that we first obtain values for
the arguments before passing them to the definition is called call-by-value. The latter
method, where the unevaluated terms are passed directly to the definition, is called
call-by-name. It is clear that if an argument is needed then it is efficient to evaluate it
once and for all; otherwise the same term may have to be evaluated several times in the
definition. On the other hand, as in the example of 12(Jr(3)), if the argument is never
used its divergence can needlessly cause the divergence of the enclosing term.

Exercise 9.1 Based on your informal understanding of how to evaluate terms in REC
what do you expect the function s in the following declaration to compute?

s(x) = if x then 0 else f(x, 0 - x)

f(x,y) = if x then 1 else (if y then -1 else f(x -l,y -1))

Define a function It(x, y) in REC which returns 0 if x < y, and a nonzero number
otherwise. o

Recursion equations 143

9.2 Operational semantics of call-by-value

Assume a declaration d of

The term di is the definition of Ii, for i = 1, ... ,k. With respect to these we give rules
to specify how closed terms in REC evaluate.

We understand t ->~a n as meaning the closed term t evaluates to integer value n
under call-by-value with respect to the declaration d. The rules giving this evaluation
relation are as follows:

(num)

(op)

(condt)

(condf)

(In)

n ->d n va

h -->~a nl t2 -->~a n2

tl op tl -->~a nl op n2

to ->~a no t2 ->~a n2 no t 0

if to then tl else t2 -->~a n2

The rules are straightforward. Notice that we distinguish a syntactic operation op
from the associated operation on integers op; an instance of the rule (op) , in the case of
addition, is:

3 ->~a 3 4 ->~a 4

3 + 4 ->~a 7

The slightly odd rules for conditionals arise simply from our decision to regard 0 as true
and any non-zero value as false. Notice how the rules for the evaluation of functions
insist on the evaluation of arguments before the function definition is used.

144 Chapter 9

The evaluation relation is deterministic:

Proposition 9.2 If t ~~a nl and t ~~a n2 then nl == n2·

Proof: By a routine application of rule induction. D

9.3 Denotational semantics of call-by-value

Terms will be assigned meanings in the presence of environments for the variables and
function variables. An environment for variables is a function

p:Var~N

We shall write Envva = [Var ~ N] for the cpo of all such environments.
An environment for the function variables il, ... , ik is a tuple ({J = (({JI,"" ({Jk) where

We write Fenv va for [Na, ~ N.d x ... x [Na k ~ N -L], the cpo of environments for func
tion variables. As expected, a declaration determines a particular function environment.

Given environments ({J, p for function variables and variables, a term denotes an element
of N -L. More precisely, a term t denotes a function

[t]va E [Fenv va ~ [Env va ~ N-Lll

given by the following structural induction:

[n]va

[X]va

[tl op t2]va

[if to then it else t2]va

[!i(tl, ... , ta.)]va

A({JAp·l n J
A({JAp·lp(x) J
A'PAp. [tl]va({JP OP-L [t2]va({JP

for operations op taken as +, -, x

A({JAp. Cond([to]va({JP, [h]va({JP, [t2]va({JP)

A({JAp.

(let VI {= [tl]va({JP'''''Vai {= [ta;]va({JP. ({Ji(Vl, ... ,VaJ)

The definition has used the strict extensions + -L, - -L, X -L of the usual arithmetic opera
tions on N; recall, for instance, from 8.3.4 that

Zl = lntJ and Z2 = ln2J
for some nl,n2 EN,
otherwise

Recursion equations 145

for Zl, Z2 EN. The function

is used in defining the meaning of a conditional. It satisfies

{
Zl if

Cond(zo, Zl, Z2) = Z2 if
.1 otherwise

Zo = LOJ,
Zo = LnJ for some n E N with n i= 0,

for zo, Zl, Z2 E N.L. It can be obtained from the conditional introduced earlier in 8.3.5.
Let is zero : N -; T take the value true on argument 0 and false elsewhere. The function
iszero is continuous being a function between discrete cpo's, so its strict extension

iszero.L = Az E N.L. let n -¢= £. Liszero(n)J

is continuous and acts so

Now we see

{
LtrueJ

iszero.L(z) = ~alseJ
if z = LOJ,
if z = L n J & n i= 0,
otherwise.

Cond(zo,Zl,Z2) = (iszero.L(zo) -; Zl[Z2)

for Zo, Zl, Z2 E N.L. Thus certainly it is a continuous function by Section 8.4. Indeed, for
any term t of REC, the semantic function [t]va is a continuous function. This follows
directly from the following lemma:

Lemma 9.3 For all terms t of REC, the denotation [t] va is a continuous function in

[Fenvva -; [Envva -; N.LJJ.

Proof: The proof proceeds by structural induction on terms t using the results from
Section 8.4. 0

We observe that the intuitively obvious fact that the result of the denotation of a term
in an environment does not depend on the assignment of values to variables outside the
term:

Lemma 9.4 For all terms t of REC, if environments p,p' E Envva yield the same

result on all variables which appear in t then, for any <p E Fenv va,

In particular, the denotation [t]varpp of a closed term t is independent of the environment

p.

146 Chapter 9

Proof: A straightforward structural induction on terms t. D

The semantics above expresses the meaning of a term with respect to a function envi
ronment 'P = ('Pl, ... ,'Pk). The exact function environment is determined by a declara
tion consisting of defining equations

This can be understood as recursive equations in II, ... , fk which must be satisfied by

the function environment 0 = (01'···' Ok):

We have used some new notation for updating the environment p. Define p[n/x], where
x E Var and n E N, to be the environment such that

(p[n/x])(y) = { ~(y) if y "=t x,

if y == x.

Alternatively we can define the updated environment in the metalanguage of Section 8.4.
Notice that the discrete cpo Var can be regarded as a sum of the singleton {x} and
Var \ {x} in which the injection functions in 1 : {x} -+ Var and in2 : (Var \ {x}) -+ Var
are the inclusion functions. Now we see that p[n/xJ is equal to

>.y E Var. case y of indx). n I

in2(w). p(w).

We have used terms like p[no/xo, nI/xIJ etc. to abbreviate (p[no/xo])[nI/xIJ etc.
(Note that this argument assumes nothing special about the cpo of integers, and in fact
similar updating operations can be defined in the metalanguage when variables are bound
to elements of other more complicated cpo's.)

The equations will not in general determine a unique solution. However there is a least
solution, that obtained as the least fixed point of the continuous function

F : Fenv va -+ Fenv va

Recursion equations

given by

F(rp) (Anl, ... ,na1 EN. [dI]varpp[nl/x1, ... ,nal!Xal],""

AnI, .. " nak EN. [ddvarpp[nl/xI,"" nak!XaJ).

147

The function F is continuous because it is built up from the functions [dI]va,"" [dk]va,
known to be continuous by Lemma 9.3, using the methods admitted in Section 8.4.

Now we can define the function environment determined by the declaration d to be
the least fixed point

6 = fix(F).

A closed term t denotes a result [t]va6p in NJ. with respect to this function environment,
independent of what environment p is used. Of course, we had better check it agrees
with the value given by the operational semantics. F~t this we do in the next section.

We conclude our presentation of the denotational semantics for the call-by-value eval
uation of REC by considering some examples to illustrate how the semantics captures
evaluation.

Example: To see how the denotational semantics captures the call-by-value style of
evaluation, consider the declaration:

h =It + 1

hex) =1

(Here It is a function taking no arguments, i. e. a constant, defined recursively.)
According to the denotational semantics, the effect of this declaration is that f 1, hare
denoted by 6 = (61 ,82) E NJ. x [N -> NJ.J where

(61 ,82) =J-trp. ([It + l]varpp, Am E N. [l]varpp[mjx])

=J-trp. (rpi + J. l1J, Am EN. l1J)

In this case it is easy to see that

(1-, Am E N. llJ)

is the required least fixed point (it can simply be checked that this pair is a fixed point
of Arp. (rpi + J. llJ, Am E N. llJ) and has to be the least). Thus

81 =1-

82 =Am E N. llJ

148 Chapter 9

from which
[h(h)]vabp =let n1 ~ b1· b2 (nt)

=-'-.
o

Example: This next example involves a more detailed analysis of a least fixed point.
Consider the declaration

f(x) = if x then 1 else x x f(x - 1).

In this example we are only interested in f, so for simplicity we take the function en
vironment Fenv va to simply be [N --+ N l.]. According to the denotational semantics
this declares f to be the function b where, letting t be the definition and p an arbitrary
environment for variables:

b /Lip. (Am. [t]vaipp[m/x])

fix(Aip. (Am. [t]vaipp[m/x]))

U b(r).

rEw

Above we have taken
F(ip) = (Am. [t]vaipp[m/x]).

and defined

From the denotational semantics, recalling the definition of Cond, we obtain

F(ip)(m) =Cond(Lmj, L1j, Lmj xl. ip(m -1))

=iszero 1. (l m J) --+ L 1 j I L m j x 1. ip(m - 1)

for ip E [N --+ N1.J and mEN. Now note

F(ip)(m) = cond(iszero(m), Llj, Lmj xl. ip(m -1))

where we make use of the function cond : T x N l. X N 1. --+ N 1. from Section 8.3.5 on
sums of cpo's. For an arbitrary mEN, we calculate:

cond(iszero(m), L1j, LmJ Xl. b(O)(m - 1))

Recursion equations

Generally we have

ifm = 0
otherwise.

cond(iszero(m), llj, lmj Xl. 8(1)(m - 1))

{ ..i
ll j if m = 0 or m = 1

otherwise.

8(r)(m) = F(8(r-l))(m) = cond(iszero(m), llj, lmj Xl. 8(r-l)(m -1))

and, by mathematical induction, we can obtain

ifO:::;m<r
otherwise.

149

As we expect the least upper bound 8 is the factorial function on non-negative integers
and ..i elsewhere:

8(m) = { r!j if 0:::; m
otherwise.

(This example is not changed substantially in moving to a call-by-name regime.) 0

9.4 Equivalence of semantics for call-by-value

The two semantics, operational and denotational, agree. Let 8 be the function environ
ment determined as a least fixed point of F got from the declaration d. The main result
of this section shows that for a closed term t, and number n

Because t is closed the environment P can be arbitrary-it does not affect the denotation.
The proof factors into two main lemmas, one for each direction of the equivalence.

The first's proof rests on a subsidiary fact to do with substitutions.

Lemma 9.5 (Substitution Lemma)
Let t be a term and n a number. Let IP E Fenvva , p E Envva . Then

[t~vaIPp[n/xl = [t[n/xHvaIPP·

Proof: The proof is a simple structural induction on t. o

150 Chapter 9

Lemma 9.6 Let t be a closed term and n a number. Let p E Env va . Then

t -+~a n ::::} [t]va 8p = lnJ.

Proof: We use rule-induction with the property

P(t,n) iff [t]va8p = lnJ,

for a term t and number n. (Here p can be any environment as t is closed.)
Consider a rule instance n -+~a n, for a number n. Certainly [n] va8p = l nJ, so pen, n)

holds.
Assume now the property P holds of the premises of the rule (op). Precisely, assume

It follows that

tl -+~a nl and [tl]vaOp = l nlJ, and
t2 -+~a n2 and [t2]va Op = l n2J.

[tlTIvaOP OPl. [t2TIvaop by definition,

lndoPl.ln2J
lnl op n2J.

Hence P(tl op t2, nl op n2), i.e. the property holds of the conclusion of the rule (op).
The two cases of rules for conditionals (condt), (condJ) are similar, and omitted.
Finally, we consider a rule-instance of (fn). Assume

[taJvaOP= lna,j, and

[di[ndxl, ... ,na)xa,]]vaop= lnJ.

We see

[Ii (tl, ... , taJTIvaOP =let Vi {= [tlTIvaOp, ... , Va, {= [taJvaOp· 8i (Vi, ... , VaJ

=Oi(nl, .. . , naJ

=[diTIvaOp[ndxl, ... , naj XaJ by o's definition as a fixed point,

=[di[ndxb .. ·, najxaJTIvaop by the Substitution Lemma,

= l n J by assumption.

Thus the property P holds of the conclusion of the rule (fn).
We conclude, by rule induction, that P(t, n) holds whenever t -+~a n. o

Recursion equations 151

Lemma 9.7 Let t be a closed term. Let p E Env va. For all n EN,

Proof: We first define the functions 'Pi : Na i -+ Nl., for i = 1, ... , k, from the opera
tional semantics by taking

if ddndxI"'.' na;/xaJ -+~a n,
otherwise.

We claim that 'P = ('PI, ... , 'Pk) is a prefixed point of the function F defined in 9.3, and
hence 8 I;;;; 'P. The claim will follow from a more general induction hypothesis.

We show by structural induction on t that provided the variables in t are included in
the list Xl, ... , Xl of variables then

(1)

for all n, nl, ... , nl E N. (We allow the list of variables to be empty, which is sufficient
when no variables appear in t.)

t == m: In this simple case the denotational and operational semantics yield the same
value.

t == x, a variable: In this case X must be a variable X j, for 1 ::::: j ::::: l, and clearly the
implication holds.

t == tl op t2: Suppose [tl op t2]va'Pp[ndxl, ... , nt/xtJ = LnJ, with the assumption that
all variables of h, t2 appear in Xl, ... , Xl. Then n = ml op m2 for some ml, m2 given by

Inductively,

whence

[tdva'Pp[ndxI' . .. , nt/xzl = LmtJ

[t2]va'Pp[ndxl, ... , nt/xtJ Lm2J

tt[nl/XI' ... ' nt/xzl -+~a ml

t2[ndxlo···, nt/xd -+~a m2

t == if to then tl else t2: The case of conditionals is similar to that of operations above.

152 Chapter 9

t == !i(t1 , ... , ta,): Suppose

and that all the variables of t are included in XI, ... , Xl. Recalling the denotational
semantics, we see

(let VI <:= [tl]valPp[nl/Xl, ... , nt/xd,

But, then there must be ml, ... , ma; EN such that

where, furthermore,

Now, by induction, we obtain

Note that IPi(ml, ... , maJ = lnJ means

Combining the facts about the operational semantics, we deduce

as was to be proved in this case.
We have established the induction hypothesis (1) for all terms t. As a special case of

(1) we obtain, for i = 1, ... , k, that

Recursion equations

for all n, nl, ... ,nai E N, and thus by the definition of cp that

But this makes cp a prefixed point of F as claimed, thus ensuring 8 I:;;; cpo
Finally, letting t be a closed term, we obtain

[t]va 8p = l n J =? [t]vaCPP = l n J
by monotonicity of [t]va given by Lemma 9.3

from (1) in the special case of an empty list of variables.D

Theorem 9.8 For t a closed term, n a number, and P an arbitrary environment

153

Proof: Combine the two previous lemmas. D

9.5 Operational semantics of call-by-name

We give rules to specify the evaluation of closed terms in REC under call-by-name.
Assume a declaration d consisting of defining equations

The evaluation with call-by-name is formalised by a relation t ~ ~a n meaning that the
closed term t evaluates under call-by-name to the integer value n. The rules giving this

154

evaluation relation are as follows:

n -'td n na

tl -'t~a nl t2 -'t~a n2

h op t2 -'t~a nl Op n2

to -'t~a no t2 -'t~a n2 no t 0

if to then tl else t2 -'t~a n2

ddtdxl,.'" ta)xaJ -'t~a n

!i(tI, ... , t a,) -'t~a n

Chapter 9

The only difference with the rules for call-by-value is the last, where it is not necessary
to evaluate arguments of a function before applying it. Again, the evaluation relation is
deterministic:

Proposition 9.9 If t -'t~a nl and t -'t~a n2 then nl == n2·

Proof: By a routine application of rule induction. o

9.6 Denotational semantics of call-by-name

As for call-by-value, a term will be assigned a meaning as a value in N.L with respect
to environments for variables and function variables, though the environments take a
slightly different form. This stems from the fact that in call-by-name functions do not
necessarily need the prior evaluation of their arguments. An environment for variables
is now a function

p : Var -'t N.L

and we will write Env na for the cpo

Recursion equations 155

of such environments. On the other hand, an environment for function variables f 1, ... ,fk
consists of'P = ('PI, ... ,'Pk) where each

'Pi : Ni' -> N1.

is a continuous function for i = 1, ... ,k; we write Fenv na for

the cpo of environments for function variables.
Now, we can go ahead and define [t]na : Fenvna -> [Envna -> N1.], the denotation of

a term t by structural induction:

[n]na

[X]na

[iI op t2]na

[if to then tI else t 2]na

[fi(tI, ... , taJ]na

A'PAp. l n J
A'PAp. p(x)

A'PAp. [h]na'PP op 1. [t2]na'PP

where op is +, -, or x

A'PAp. Cond([to]na'Pp, [tI]na'PP, [t2]na'PP)

A'PAp. 'Pi([tl]na'PP,···, [taJna'PP)

Again, the semantic function is continuous, and its result in an environment is inde
pendent of assignments to variables not in the term:

Lemma 9.10 Let t be a term of REC. The denotation [t]na is a continuous function
Fenvna -> [Envna -> N1.].

Proof: By structural induction using the results of Section 8.4. o

Lemma 9.11 For all terms t of REC, if environments p, p' E Envna yield the same
result on all variables which appear in t then, for any 'P E Fenv na,

[t]na'PP = [t]na'PP'·

In particular, the denotation [t] na'PP of a closed term t is independent of the environment
p.

Proof: A straightforward structural induction on terms t. D

156 Chapter 9

A declaration d determines a particular function environment. Let d consist of the
defining equations

Define F : Fenv na Fenv na by taking

As in the call-by-value case (see Section 9.4), the operation of updating environments is
definable in the metalanguage of Section 8.4. By the general arguments of Section 8.4,
F is continuous, and so has a least fixed point 8 = fix(F).

Exrunple: To see how the denotational semantics captures the call-by-name style of
evaluation, consider the declaration:

II =II+l
hex) = 1

According to the denotational semantics for call-by-name, the effect of this declaration
is that II, h are denoted by 8 = (81 ,82) E N 1. x [N 1. N 1.] where

(81 ,82) =f..l<p. ([II + l~na<PP, AZ E N1.. [l]na<PP[Z/X])

=f..l<p. ('PI +1. llJ, AZ E N1.. llJ)
=(1., AZ E N1.. llJ)

It is simple to verify that the latter is the required least fixed point. Thus

We can expect that

[t]na8p = lnJ iff t ~a n

o

whenever t is a closed term. Indeed we do have this equivalence between the denotational
and operational semantics.

Recursion equations 157

9.7 Equivalence of semantics for call-by-name

The general strategy for proving equivalence between the operational and denotational
semantics for call-by-name follows the same general outline as that for call-by-value. One
part of the equivalence follows by rule induction, and the other uses reasoning about fixed
points, albeit in a different way. We start with a lemma about substitution.

Lemma 9.12 (Substitution Lemma) Let t, t' be terms. Let'P E Fenvna and p E Envna .

Then
[t]na'Pp[[t']na'PP/X] = [t[t' /x]]na'PP·

Proof: The proof is by a simple induction on t, and is left as an exercise. o

Lemma 9.13 Letting t be a closed term, n a number, and P an environment for variables

t ~~a n =} [t]naDP = LnJ.
Proof: Let P be an environment for variables. The proof uses rule induction with the
property

P(t, n) {=}dej [t]naDP = LnJ
over closed terms t and numbers n. The only rule causing any difficulty is

ddtt/xl, ... , ta,lxaJ ~~a n

fi(tI, ... , taJ ~~a n

Suppose ddtt/Xl, ... ,ta,/xaJ ~~a n and, inductively, that P(ddtt/Xl, ... ,ta./xai],n),
i.e.

We deduce

Di([tt]naDp, ... , [taJnaDP)

[di]naOp[[tl]naOP/Xl, ... , [taJnaop/xaJ

by the definition of 0 as a fixed point,

[ddtt/Xl,.'.' ta,/xail]naop

by several applications of the Substitution Lemma 9.12,

as each tj is closed so [tj]naDP is independent of p,

LnJ.
Thus P(fi(tl, ... , taJ, n). Showing the other rules preserve property P is simpler. The
lemma follows by rule induction. 0

158 Chapter 9

The proof of the next lemma uses a mathematical induction based on the approximants
to the least fixed point 6. Recall 6 = fix(F) so

rEw

where

Write
6(r) = FrC!-)

for the r'th approximant. Then 6;0\Zl, ... , zaJ = .1 for all Zl, ... , zai E N.L, for 1 :::; i :::;
k. For r > 0, 6(r) = F(6(r-1)), i.e.

6;r) (Zl' ... ,zaJ = [di]na6(r-1) p[zI/ Xl, ... , Za) Xai], for i = 1, ... , k,

a recurrence relation which will be useful in the proof below.

Lemma 9.14 Let t be a closed term, n a number and p an environment for variables.
Then

Proof: Let p be an environment for variables. For a closed term t, define

res(t) = { ~nJ if t -+~a n,
otherwise

(This defines the result of t under the operational semantics.)
As above, let 6(r) be the r'th approximant to the recursively-defined, function environ

ment 6. We show by induction on r E w that

for all terms t, number n, closed terms U1, ... ,Us and variables Yl, ... ,Ys with the prop
erty that they contain all the variables appearing in t. Notice that condition (1) can be
recast as the equivalent:

Recursion equations 159

Basis, r = 0: For the basis of the mathematical induction, we require

for numbers n, closed terms Ul, ... ,Us and a term t with variables inside {Yl,"" Ys}.
This is proved by structural induction on t. One basic case is when t is a variable,
necessarily some Yj, with 1 S; j S; s. But then

and by definition res(Uj) = l n J implies Yj [udYl, ... ,us/Ys) == Uj ~a n. In the case
where tis fi(tl, ... , ta;)

not a value l n J, so the implication holds vacuously. The other cases are simple and left
to the reader.

Induction step: Suppose r > 0 and that the induction hypothesis holds for (r - 1). We
require

for all numbers n, closed terms Ul,"" us, and terms t with variables in {Yl, .. . , Ys}. This
is shown by structural induction on t, in a way similar to that above for r = 0, except in
one case, that when t has the form fi(t l , ... , ta,). Let pi = p[res(ud/Yl"'" res(us)/Ys].
By the definition of 8(r),

The variables of tj, for 1 S; j S; ai, certainly lie within {Yl,""Ys}, so by structural
induction,

[tj]na8(T)p[reS(Ul)/Yl, ... ,res(us)/Ys)

C res(tj[udYl,""us/Ys])'

Hence, by the monotonicity of the denotation [di]na-a consequence of Lemma 9.10, we
deduce

160 Chapter 9

where we have written tj to abbreviate tj [udYI' ... ,us/Ys], for 1 :::; j :::; ai. But now we
observe, by mathematical induction, that

-by our assumption about declarations, the variables of di lie within Xl, ... ,Xa ,. We
note from the operational semantics that

It follows that

[!i(tl, ... , ta.)]naO(r) p[res(UI) /YI, ... , res(us) /Ys]

~ res(J;(t l , ... , ta.)[udYI' ... , us/Ys]).

Thus, the induction hypothesis is established in this case.
The result of the mathematical induction permits us to conclude

for all r E w, for any closed term t. Now

r

r

by continuity of the semantic function (Lemma 9.10). Thus [t] naop
[t]nao(r)p = lnJ for some r E w, and hence that t -->~a n, as required.

lnJ implies
o

Combining the two lemmas we obtain the equivalence of the operational and denota
tional semantics for call-by-name.

Theorem 9.15 Let t be a closed term, and n a number. Then

Exercise 9.16 The method used in the proof of Lemma 9.14 above can be used instead
of that earlier in the call-by-value case. Give an alternative proof of Lemma 9.7 using
mathematical induction on approximants. 0

Recursion equations 161

9.8 Local declarations

From the point of view of a programming language REC is rather restrictive. In partic
ular a program of REC is essentially a pair consisting of a term to be evaluated together
with a declaration to determine the meaning of its function variables. Most functional
programming languages would instead allow programs in which function variables are
defined as they are needed, in other words they would allow local declarations of the
form:

let rec f(Xl,"', x a,) = din t.

This provides a recursive definition of f with respect to which the term t is evaluated.
The languages generally support simultaneous recursion of the kind we have seen in
declarations and allow more general declarations as in

let rec !I(Xl,""Xa,)

in t

This simultaneously defines a tuple of functions f 1, ... , fk recursively.
To understand how one gives a denotational semantics to such a language, consider

the denotation of
S == let rec A ~ t and B ~ U in v

where A and B are assumed to be distinct function variables of arity O. For definiteness
assume evaluation is call-by-name. The denotation of S in a function environment i.p E

Fenv na and environment for variables p E Env na can be taken to be

[S]i.pp = [v]i.p[aol A, ,801 Bjp

where (ao, ,80) is the least fixed point of the continuous function

(a,,8) f-> ([t]i.p[al A,,8 I B]p, [u]i.p[al A,,8 I B]p).

Exercise 9.17 Write down a syntax extending REC which supports local declarations.
Tty to provide a denotational semantics for the extended language under call-by-name.
How would you modify your semantics to get a semantics in the call-by-value case? D

In fact, perhaps surprisingly, the facility of simultaneous recursion does not add any
expressive power to a language which supports local declarations of single functions,

162 Chapter 9

though it can increase efficiency. For example, the program S above can be replaced by

T == let rec B <= (let rec A <= t in u)
in(let rec A <= t in v).

where A and B are assumed to be distinct function variables of arity o. The proof that
this is legitimate is the essential content of BekiC's Theorem, which is treated in the next
chapter.

9.9 Further reading

Alternative presentations of the language and semantics of recursion equations can be
found in [59], [21], [13J and [58J(the latter is based on [13]) though these concentrate
mainly on the call-by-name case. Zohar Manna's book [59J incorporates some of the thesis
work of Jean Vuillemin on recursion equations [99J. This chapter has been influenced by
some old lecture notes of Robin Milner, based on earlier notes of Gordon Plotkin, (though
the proofs here are different). The proof in the call-by-value case is like that in Andrew
Pitts' Cambridge lecture notes [75J. The operational semantics for the language extended
by local declarations can become a bit complicated, as, at least for static binding, it is
necessary to carry information about the environment at the time of declaration--see
[lOlJ for an elementary account.

1 0 Techniques for recursion

This chapter provides techniques for proving properties of least fixed points of continuous
functions. The characterisation of least fixed points as least prefixed points gives one
method sometimes called Park induction. It is used to establish Bekic's Theorem, an
important result giving different methods for obtaining least fixed points in products of
cpo's. The general method of Scott's fixed-point induction is introduced along with the
notion of inclusive property on which it depends; methods for the construction of inclusive
properties are provided. A section gives examples of the use of well-founded induction
extending our earlier work and, in particular, shows how to build-up well-founded rela
tions. A general method called well-founded recursion is presented for defining functions
on sets with a well-founded relation. The chapter concludes with a small but nontrivial
exercise using several of the techniques to show the equality of two recursive functions
on lists.

10.1 Bekic's Theorem

The Fixed-Point Theorem, Theorem 5.11, of Chapter 5 tells us that if D is a cpo with
..l and F : D --> D is continuous then jix(F) is the least prefixed point of F. In other
words,

F(d) r;::: d =? jix(F) r;::: d

for any d ED. Of course, fix(F) is a fixed point, i.e.

F(jix(F)) = jix(F)

(fixl)

(fix2)

Facts (fixl) and (fix2) characterise jix(F), and are useful in proving properties of fixed
points generallyl The fact (fixl) states a principle of proof sometimes called Park in
duction, after David Park. We will use (fixl) and (fix2) to establish an interesting result
due to Bekic. Essentially, BekiC's Theorem says how a simultaneous recursive definition
can be replaced by recursive definitions of one coordinate at a time.

Theorem 10.1 (Bekic)
Let F : D x E --> D and G : D x E --> E be continuous functions where D and E are
cpo's with bottom. The least jixed point of (F, G) : D x E --> D x E is the pair with
coordinates

j p,f. F(f,p,g. G(p,f. F(f,g),g))

9 p,g. G(p,f. F(f,g),g)

lin fact, because F is monotonic (fix2) could be replaced by F(fix(F)) [;;; fix(F). Then by mono
tonicity, we obtain F(F(fix(F))) [;;; F(fix(F)), i.e. F(fix(F)) is a prefixed point. Now from (fixl) we get
fix(F) I:;: F(fix(F)) which yields (fix2) .

164

Proof: We first show (j, g) is a fixed point of (F, G). By definition

j = ~f. F(f, g).

Chapter 10

In other words j is the least fixed point of Af. F(f, g). Therefore j = F(j, g). Also,
from the definition of g,

9 = G(~f. F(f,g), g) = G(j,g).

Thus (}, g) = (F, GHj, g) i.e. (j, g) is a fixed point of (F, G).
Letting (fo, go) be the least fixed point of (F, G) we must have

10 [::; j and go [::; g.

We require the converse orderings as well. As 10 = F(fo, go),

~f. F(f, go) [::; 10·

By the monotonicity of G

G(~f. F(f, go), go) ~ G(fo, go) = go·

Therefore

9 [::; go

as 9 is the least prefixed point of Ag. G(~f. F(f,g),g).
By the monotonicity of F,

F(fo, g) [::; F(fo, go) = 10·

Therefore
j [::; 10

as j is the least prefixed point of Af. F(f, g).
Combining (I), (2), (3) we see (j,g) = (fo,go), as required.

(1)

(2)

(3)

o

The proof only relied on monotonicity and the properties of least fixed points expressed
by (fix1) and (fix2) above. For this reason the same argument carries over to the situation
of least fixed points of monotonic functions on lattices (see 5.5).

BekiC's Theorem gives an asymmetric form for the simultaneous least fixed point. We
can deduce a symmetric form as a corollary: the simultaneous least fixed point is a pair

j = ~f. F(f, M·G(f, g»
9 = M· G(~f.F(f,g), g)

To see this notice that the second equation is a direct consequence of BekiC's Theorem
while the first follows by the symmetry there is between 1 and g.

Techniques for recursion 165

Example: We refer to Section 9.8 where it is indicated how to extend REC to allow
local declarations. Consider the term

T == let rec B ~ (let rec A ~ t in u)
in (let rec A ~ t in v).

where A and B are assumed to be distinct function variables of arity o. Let p, rp be
arbitrary variable and function-variable environments. Abbreviate

F(f,g) = [t]rp[J/A,g/Blp

G(f,g) = [u]rp[J/A,g/Blp

From the semantics we see that

where

and

[T]rpp = [v]rp[j / A, g/ Blp

g J.Lg. [let rec A ~ tin u]rp[g/ Blp
J.Lg. [u]rp[g/ B, J.Lf. [t]rp[J / A, g/ Blp/Alp
J.Lg. G(J.Lf.F(f, g), g).

j = J.Lf. [t]rp[J/A,g/Blp

= J.Lf. F(f,.9).

By BekiC's Theorem this means (j,g) is the (simultaneous) least fixed point of (F,G).
consequently we could have achieved the same effect with a simultaneous declaration; we
have

[T] = [let rec A ~ t and B ~ u in v].

The argument is essentially the same for function variables taking arguments by either
call-by-name or call-by-value. Clearly Bekic's Theorem is crucial for establishing program
equivalences between terms involving simultaneous declarations and others. 0

Exercise 10.2 Generalise and state Bekic's Theorem for 3 equations. 0

Exercise 10.3 Let D and E be cpo's with bottom. Prove that if f D -+ E and
9 : E -+ D are continuous functions on cpo's D, E then

fix(g 0 f) = g(fix(f 0 g)).

(Hint: Use facts (fixl) and (fix2) above.) o

166 Chapter 10

10.2 Fixed-point induction

Often a property can be shown to hold of a least fixed point by showing that it holds for
each approximant by mathematical induction. This was the case, for example, in Chapter
5 where, in the proof of Theorem 5.7, stating the equivalence between operational and
denotational semantics, the demonstration that

(1, (1') E CITc] =? (c, (1) -t (1',

for states (1, (1', in the case where the command c was a while-loop, was achieved by
mathematical induction on the approximants of its denotation. In this case it was obvious
that a property holding of all the approximants of a least fixed point implied that it held
of their union, the fixed point itself. This need not be the case for arbitrary properties.

As its name suggests fixed-point induction, a proof principle due to Dana Scott, is
useful for proving properties of least fixed points of continuous functions. Fixed-point
induction is a proof principle which essentially replaces a mathematical induction along
the approximants FnCl) of the least fixed point Un Fn(..1.) of a continuous function
F. However, it is phrased in such a way as to avoid reasoning about the integers. It
only applies to properties which are inclusive; a property being inclusive ensures that its
holding of all approximants to a least fixed point implies that it holds of the fixed point
itself.

Definition: Let D be a cpo. A subset P of D is inclusive iff for all w-chains do r:;;: d1 r:;;:

... r:;;: dn r:;;: ... in D if dn E P for all nEw then UnEw dn E P.

The significance of inclusive subsets derives from the principle of proof called fixed-point
induction. It is given by the following proposition:

Proposition 10.4 (Fixed-point induction-Scott)
Let D be a cpo with bottom ..1., and F : D -t D be continuous. Let P be an inclusive
subset of D. If..1. E P and t/x E D. x E P =? F(x) E P then fix(F) E P.

Proof: We have fix(F) = Un Fn(..1.). If P is an inclusive subset satisfying the condition
above then ..1. E P hence F(..1.) E P, and inductively Fn(..1.) E P. As we have seen, by
induction, the approximants form an w-chain

whence by the inclusiveness of P, we obtain fix(F) E P. o

Techniques for recursion 167

Exercise 10.5 What are the inclusive subsets of n? Recall n is the cpo consisting of:

o

Exercise 10.6 A Scott-closed subset of a cpo is the complement of a Scott-open subset
(defined in Exercise 8.4). Show a Scott-closed subset is inclusive. Exhibit an inclusive
subset of a cpo which is not Scott-closed. 0

As a first, rather easy, application of fixed-point induction we show how it implies Park
induction, discussed in the last section:

Proposition 10.7 Let F : D --+ D be a continuous function on a cpo D with bottom.
Let d ED. If F(d) ~ d then fix(F) ~ d.

Proof: (via fixed-point induction)
Suppose d E D and F(d) ~ d. The subset

P = {x E D I x ~ d}

is inclusive-if each element of an w-chain do ~ ... ~ dn ~ ... is below d then certainly
so is the least upper bound Un dn . Clearly J.. ~ d, so J.. E P. We now show x E P *
F(x) E P. Suppose x E P, i.e. x ~ d. Then, because F is monotonic, F(x) ~ F(d) ~ d.
So F(x) E P. By fixed-point induction we conclude fix(F) E P, i.e. fix(F) ~ d, as
required. o

Of course, this is a round-about way to show a fact we know from the Fixed-Point
Theorem. It does however demonstrate that fixed-point induction is at least as strong
as Park induction. In fact fixed-point induction enables us to deduce properties of least
fixed points unobtainable solely by applying Park induction.

A predicate Q(XI, ... ,Xk) with free variables Xl, ... ,Xk, ranging over a cpo's D I, ... , Dk
respectively, determines a subset of DI x ... X Dk, viz.the set

and we will say the predicate Q(Xl, ... , Xk) is inclusive if its extension as a subset of the
cpo Dl x ... X Dk is inclusive. As with other induction principles, we shall generally use
predicates, rather than their extensions as sets, in carrying out a fixed-point induction.
Then fixed-point induction amounts to the following statement:

168 Chapter 10

Let F : Dl x ... X Dk --+ Dl X ... X Dk be a continuous function on a product cpo
Dl x··· X Dk with bottom element (.1.. 1, ... , .1..k)' Assuming Q(Xl,"" Xk) is an inclusive
predicate on Dl x ... X Dk,

if Q(.1.. l , ... , .1..k) and

'r/Xl E D l ,'" ,Xk E Dk. Q(Xl, ... , Xk) => Q(F(Xl,"" Xk»

then Q(fix(F».

Fortunately we will be able to ensure that a good many sets and predicates are inclusive
because they are built-up in a certain way:

Basic relations: Let D be a cpo. The binary relations

{ (x, y) E D x D I x [;;; y} and {(x, y) E D x D I x = y}

are inclusive subsets of D x D (Why?). It follows that the predicates

x [;;; y, x=y

are inclusive.

Inverse image and substitution: Let f : D --+ E be a continuous function between
cpo's D and E. Suppose P is an inclusive subset of E. Then the inverse image

r l P = {x E D I f(x) E P}

is an inclusive subset of D.
This has the consequence that inclusive predicates are closed under the substitution of

terms for their variables, provided the terms substituted are continuous in their variables.
Let Q(Yl, ... , Yl) be an inclusive predicate of E 1 x ... X E l . In other words,

is an inclusive subset of El x ... X E1. Suppose el,"" el are expressions for elements of
E l , ... , El, respectively, continuous in their variables Xl, ... , Xk ranging, in order, over
Dl , ... , Dk-taking them to be expressions in our metalanguage of Section 8.4 would
ensure this. Then, defining f to be

ensures f is a continuous function. Thus f- 1 P is an inclusive subset of Dl x ... X Dk.
But this simply means

Techniques for recursion 169

is an inclusive subset, and thus that Q (e 1, ... , el) is an inclusive predicate of D 1 X ... x D k.

For instance, taking f = .Ax E D. (x, c) we see if R(x, y) is an inclusive predicate of
D x E then the predicate Q(x) {=> defR(x, c), obtained by fixing y to a constant c,
is an inclusive predicate of D. Fixing one or several arguments of an inclusive predicate
yields an inclusive predicate.

Exercise 10.8 Show that if Q(x) is an inclusive predicate of a cpo D then

R(x, y) {=> defQ(x)

is an inclusive predicate of D x E, where the extra variable y ranges over the cpo E.
(Thus we can "pad-out" inclusive predicates with extra variables. Hint: projection
function.) 0

Logical operations: Let D be a cpo. The subsets D and 0 are inclusive. Consequently
the predicates "true" and "false", with extensions D and 0 respectively, are inclusive.
Let P ~ D and Q ~ D be inclusive subsets of D. Then

PuQ and pnQ

are inclusive subsets. In terms of predicates, if P(Xl, ... ,Xk) and Q(Xl, ... ,Xk) are
inclusive predicates then so are

If Pi, i E I, is an indexed family of inclusive subsets of D then niEI Pi is an inclusive
subset of D. Consequently, if P(Xl, ... ,Xk) is an inclusive predicate of Dl x ... X Dk
then 't/Xi E Di. P(Xl, ... , Xk), with 1 SiS k, is an inclusive predicate of D. This is
because the corresponding subset

equals the intersection,

n ((Xl, ... ,Xi-l,Xi+!, ... ,Xk) E Dl x ···Di - 1 X DHI X ... X Dk
dEDi

P(Xl' ... , Xi-I, d, XHl, ... ,Xk)}

of inclusive subsets---each predicate P(XI, ... , Xi-I, d, Xi+! , ... , xd, for dEDi, is inclu
sive because it is obtained by fixing one argument.

However, note that infinite unions of inclusive subsets need not be inclusive, and
accordingly, that inclusive predicates are not generally closed under 3-quantification.

170 Chapter 10

Exercise 10.9
(i) Provide a counter example which justifies the latter claim.
(ii) Show that the direct image f P of an inclusive subset P ~ D, under a continuous
function f : D -+ E between cpo's, need not be an inclusive subset of E.
(iii) Also, provide examples of inclusive subsets P ~ D x E and Q ~ E x F such that
their relation composition

Q 0 P =def {(d, f) I 3e E E. (d, e) E P&(e, f) E Q}

is not inclusive.
(Hint for (iii): Take D to be the singleton cpo {T}, E to be the discrete cpo of nonnegative
integers wand F to be the cpo n consisting of an w-chain together with its least upper
bound 00.) 0

Athough the direct image of an inclusive subset under a general continuous function
need not be inclusive, direct images under order-manics necessarily preserve inclusiveness.
Let D, E be cpo's. A continuous function f : D -+ E is an order-monic iff

f(d) ~ f(d') => d ~ d'

for all d, d' E D. Examples of order-monics include the "lifting" function l- J and injec
tions ini associated with a sum. It is easy to see that if P is an inclusive subset of D
then so is its direct image fP when f is an order-monic. This means that if Q(x) is an
inclusive predicate of D then

3x E D. y = f(x) & Q(x),

with free variable y E E, is an inclusive predicate of E.

Now we can consider inclusive subsets and predicates associated with particular cpo's
and constructions on them:

Discrete cpo's: Any subset of a discrete cpo, and so any predicate on a discrete cpo,
is inclusive.

Products: Suppose Pi ~ Di are inclusive subsets for 1 :s; i :s; k. Then

is an inclusive subset of the product Dl x ... X D k . This follows from our earlier results,
by noting

Techniques for recursion 171

Each inverse image nil Pi is inclusive, for i = 1, ... , k, and therefore so too is their
intersection.
Warning: Let Db ... ,Dk be cpo's. It is tempting to believe that a predicate P(x 1, ... ,Xk),
where Xl E D 1 ,···, Xk E Dk, is an inclusive predicate of the product Dl x ... X Dk if
it is an inclusive predicate in each argument separately. This is not the case however.
More precisely, say P(Xl, . .. ,Xk) is inclusive in each argument separately, if for each
i = 1, ... , k, the predicate P(d l , ... ,di- l , Xi, di+l' ... , dk), got by fixing all but the ith
argument, is an inclusive predicate of D i . Certainly if P(Xl, .. . , Xk) is inclusive then it
is inclusive in each argument separately-we can substitute constants for variables and
preserve inclusiveness from the discussion above. The converse does not hold however.
The fact that P(Xl, ... , Xk) is inclusive in each argument separately does not imply that
it is an inclusive predicate of Dl x ... X D k .

Exercise 10.10 Let n be the cpo consisting of w together with 00 ordered:

By considering the predicate

P(X,y) <==> def(x=y&xi=oo)

show that a predicate being inclusive in each argument separately does not imply that
it is inclusive. 0

Function space: Let D and E be cpo's. Suppose P ~ D, and Q ~ E is an inclusive
subset. Then

P -t Q =def {f E [D -t Ell \:Ix E P. f(x) E Q}

is an inclusive subset of the function space [D -t EJ (Why?). Consequently, the predicate
\:Ix E D.P(x) :::::} Q(J(x)), with free variable f E [D -t EJ, is inclusive when P(x) is a
predicate of D and Q(y) is an inclusive predicate of E.

Lifting: Let P be an inclusive subset of a cpo D. Because the function L -J is an order
monic, the direct image L P J = {l d J IdE P} is an inclusive subset of D.l.. If Q(x) is an
inclusive predicate of D then

::Ix E D. y = LxJ & Q(x),

with free variable y E D.l., is an inclusive predicate of D.l..

Sum: Let Pi be an inclusive subset of the cpo Di for i = 1, ... , k. Then

172 Chapter 10

is an inclusive subset of the sum DI + ... + Dk. This follows because each injection is an
order-monic so each iniPi is inclusive, and the finite union of inclusive sets is inclusive.
Expressing the same fact using predicates we obtain that the predicate

with free variable y E Dl + ... + Dk, is an inclusive predicate of the sum if each Qi(Xi)
is an inclusive predicate of the component D i.

The methods described above form the basis of a a language of inclusive predicates.
Provided we build up predicates from basic inclusive predicates using the methods ad
mitted above then they are guaranteed to be inclusive. For example, any predicate
built-up as a universal quantification over several variables of conjunctions and disjunc
tions of basic predicates of the form e 1 ~ e2 for terms el, e2 in our metalanguage will be
inclusive.

Proposition 10.11 Any predicate of the form

is inclusive where Xl, ... ,Xn are variables ranging over specific cpo's, and P is built up

by conjunctions and disjunctions of basic predicates of the form e 0 ~ el or eo = el, where

eo and el are expressions in the metalanguage of expressions from Section 8.4.

Unfortunately, such syntactic means fail to generate all the predicates needed in proofs
and the manufacture of suitable inclusive predicates can become extremely difficult when
reasoning about recursively defined domains.

Example: Let T.L be the usual complete partial order of truth values {true, false} .L.
Abbreviate ltrueJ to tt and lfalseJ to ff. Let p: D ---> T.L and h : D ---> D be continuous
with h strict (i. e. h(..l) = ..l). Let f : D x D ---> D be the least continuous function such
that

f(x, y) = p(x) ---> y I h(f(h(x), y))

for all X, y E D. We prove

(i) h(b ---> die) = b ---> h(d)lh(e) for all bET.L and d, e E D, and
(ii) h(f(x, y)) = f(x, h(y)) for all X, y E D.

Part (i) follows easily by considering the three possible values ..l, tt, ff for bET .L.
If b =..l then h(b ---> die) = h(..l) = ..l = b ---> h(d)lh(e)

If b = tt then h(b ---> die) = h(d) = b ---> h(d)lh(e)

If b = ff then h(b ---> die) = h(e) = b ---> h(d)lh(e)

Techniques for recursion 173

Hence the required equation holds for all possible values of the boolean b.

Part (ii) follows by fixed-point induction. An appropriate predicate is

P(g) {o}deJ VX,y E D. h(g(x,y)) =g(x,h(y))

The predicate peg) is inclusive because it can be built-up by the methods described
earlier. Because h is strict we see that P(..L) is true. To apply fixed-point induction we
require further that

peg) =? P(F(g))

where F(g) = .Ax, y. p(x) -> y I (h(g(h(x), V))·
Assume peg). Let x, y E D. Then

h«F(g))(x, V)) h(p(x) -> y I h(g(h(x), V)))

p(x) -> hey) I h2(g(h(x), v)), by (i)

p(x) -> hey) I h(g(h(x), hey))), by the assumption peg)

(F(g))(x, hey))

Thus P(F(g)). Hence peg) =? p(F(g)).
By fixed-point induction, we deduce P(fix(F)) i.e. P(J) i.e. 'Ix, y E D. h(J(x, y)) =

f(x, hey)) as required. 0

Exercise 10.12 Define h : N -> N.l recursively by

hex) = hex) +.1 LIJ

Show h = ..1, the always-..L function, using fixed-point induction. o

Exercise 10.13 Let D be a cpo with bottom. Let p : D -> T.l be continuous and strict
(i. e. p(..L) = ..L) and h : D -> D be continuous. Let f : D -> D to be the least continuous
function which satisfies

f(x) = p(x) -> x I f(J(h(x)))

for all xED. Prove
'Ix E D. f(J(x)) = f(x).

(Hint:Take as induction hypothesis the predicate

peg) ~ deJVX E D. f(g(x)) = g(X).)

o

174 Chapter 10

Exercise 10.14 Let h, k : D ~ D be continuous functions on a cpo D with bottom,
with h strict. Let p : D ~ T 1- be a continuous function. Let f, 9 be the least continuous
functions D x D ~ D satisfying

f(x, y) = p(x) ~ y I h(f(k(x), y))

g(x, y) = p(x) ~ y I g(k(x), h(y))

for all x, y E D. Using fixed-point induction show f = g.

(Hint: Regard the solutions as simultaneous fixed points and take the inclusive predicate
to be

P(f,g) {::::::::> de/'<:fx,y. [f(x,y) = g(x,y) & g(x,h(y)) = h(g(x,y))].)

o

It is probably helpful to conclude this section with a general remark on the use of fixed
point induction. Faced with a problem of proving a property holds of a least fixed point
it is often not the case that an inclusive property appropriate to fixed point induction
suggests itself readily. Like induction hypotheses, or invariants of programs, spotting a
suitable inclusive property frequently requires fairly deep insight. The process of obtain
ing a suitable inclusive property can often make carrying out the actual proof a routine
matter. It can sometimes be helpful to start by exploring the first few approximants
to a least fixed point, with the hope of seeing a pattern which can be turned into an
induction hypothesis. The proof can then be continued by mathematical induction on
approximants (provided the property holding of each approximant implies it holds of the
least fixed point), or, often more cleanly, by fixed-point induction (provided the property
is inclusive).

10.3 Well-founded induction

Fixed-point induction is inadequate for certain kinds of reasoning. For example, suppose
we want to show a recursively defined function on the integers always terminates on
integer inputs. We cannot expect to prove this directly using fixed-point induction. To
do so would involve there being an inclusive predicate P which expressed termination
and yet was true of .1, the completely undefined function. An extra proof principle is
needed which can make use of the way data used in a computation is inductively defined.
An appropriate principle is that of well-founded induction. Recall from Chapter 3 that a
well-founded relation on a set A is a binary relation ~ which does not have any infinite
descending chains. Remember the principle of well-founded induction says:

Techniques for recursion 175

Let -< be a well founded relation on a set A. Let P be a property. Then Va E A. P(a)
iff

Va E A. ([Vb -< a. P(b)] =?- P(a)).

Applying the principle often depends on a judicious choice of well-founded relation.
We have already made use of well-founded relations like that of proper subexpression on
syntactic sets, or < on natural numbers. Here some well-known ways to construct further
well-founded relations are given. Note that we use x j y to mean (x -< y or x = y).

Product: If -<1 is well-founded on A1 and -<2 is well-founded on Az then taking

determines a well-founded relation -<= (j \1 Al xA 2) in A1 x A2 . However product
relations are not as generally applicable as those produced by lexicographic orderings.

Lexicographic products: Let -<1 be well-founded on A1 and -<2 be well-founded on
A2 . Define

Inverse image: Let f : A -> B be a function and -<B a well-founded relation on B.
Then -<A is well-founded on A where

a -<A a' {:}dej f(a) -<B f(a')

for a, a' EA.

Exercise 10.15 Let -< be a well-founded relation on a set X such that -< is a total
order. Show it need not necessarily satisfy

{x E X I x -< y}

is finite for all y EX.
(A total order is a partial order:::; such that x :::; y or y :::; x for all its elements x, y.)
(Hint: Consider the lexicographic product of < and < on w x w.) 0

Exercise 10.16 Show the product, lexicographic product and inverse image construc
tions do produce well-founded relations from well-founded relations. 0

Example: A famous example is Ackermann's function which can be defined in REC by
the declaration:

176 Chapter 10

A(x, y) = if x then y + 1 else
if y then A(x - 1,1) else

A(x - 1, A(x, y - 1))

Under the denotational semantics for call-by-value, this declares A to have denotation
the least function a in [N 2 ----> N.l] such that

{
In + IJ

a(m, n) = a(m - 1,1)
let l ¢= a(m, n - 1). a(m - 1, l)

if m = 0
if m i- O,n = 0
otherwise

for all m, n E N. The fact that Ackermann's function a(m, n) terminates on all integers
m, n :::: 0 is shown by well-founded induction on (m, n) ordered lexicographically. 0

Exercise 10.17 Prove Ackermann's function a(m, n) terminates on all integers m, n :::: 0
by well-founded induction by taking as induction hypothesis

P(m,n) {c}dej (a(m,n) i- J.. and a(m,n):::: 0)

for m,n:::: o. o

Exercise 10.18 The 91 function of McCarthy is defined to be the least function in
[N ----> N.l] such that

f(x) = cond(x > 100, lx - 10J, let y ¢= f(x + 11). f(y))·

(This uses the conditional of 8.3.5)
Show this implies

f(x) = cond(x > 100, lx -lOJ, 191J)

for all nonnegative integers x. Use well-founded induction on w with relation

n -< m {c} m < n S; 101,

for n, mEw. First show -< is a well-founded relation.

10.4 Well-founded recursion

o

In Chapter 3 we noticed that both definition by induction and structural induction allow a
form of recursive definition, that the length of an arithmetic expression can, for instance,
be defined recursively in terms of the lengths of its strict subexpressions; how the length
function acts on a particular argument, like (al + a2) is specified in terms of how the

Techniques for recursion 177

length function acts on strictly smaller arguments, like a 1 and a2. In a similar way
we are entitled to define functions on an arbitrary well-founded set. Suppose B is a set
with a well-founded relation -<. Definition by well-founded induction, called well-founded
recursion, allows the definition of a function f from B by specifying its value feb) at an
arbitrary b in B in terms of feb') for b' -< b. We need a little notation to state and justify
the general method precisely. Each element b in B has a set of predecessors

-<-1 {b} = {b' E Bib' -< b}.

For any B' ~ B, a function f : B -> C restricts to a function f f B' : B' -> C by taking

f f B' = {(b, feb)) I bE B'}.

Definition by well-founded recursion is justified by the following theorem:

Theorem 10.19 (Well-founded recursion)

Let -< be a well-founded relation on a set B. Suppose F(b, h) E C, for all b E Band
functions h : -< -1 {b} -> C. There is a unique function f : B -> C such that

Vb E B. feb) = F(b,f H- 1 {b}). (*)

Proof: The proof has two parts. We first show a uniqueness property:

Vy -<* x. fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v})

'* f(x) = g(x),

for any x E B. This uniqueness property P(x) is proved to hold for all x E B by well
founded induction on -<: For x E B, assume P(z) for every z -< x. We require P(x). To
this end suppose

fey) = F(y,! f-<-l {v}) & g(y) = F(y,g H-1 {v})

for all y -<* x. If z -< x, then as P(z) we obtain

fez) = g(z).

Hence

It now follows that

f(x) = F(x,f H-1 {x}) = F(x,g H-1 {x}) = g(x).

178 Chapter 10

Thus P(x).
It follows that there can be at most one function I satisfying (*). We now show that

there exists such a function. We build the function by unioning together a set of functions
Ix : -(*-l{X} - C, for x E B. To show suitable functions exist we prove the following
property Q(x) holds for all x E B by well-founded induction on -(:

31x :-(*-1{X} _ C.

Vy -(* x. Ix(Y) = F(y, Ix [-<-1 {y}).

Let x E B. Suppose Vz -< x. Q(z). Then we claim

h = U {Iz I z -(x}

is a function. Certainly it is a relation giving at least one value for every argument z -(x.
The only difficulty is in checking the functions I z agree on values assigned to common
arguments y. But they must--otherwise we would violate the uniqueness property proved
above. Taking

Ix = h U {(x, F(x, h))}

gives a function Ix: -< * -1 { x} - C such that

Vy -<* x. Ix(Y) = F(y, Ix H-1 {y}).

This completes the well-founded induction, yielding "Ix E B. Q(x).
Now we take I = UXEB Ix. By the uniqueness property, this yields I : B - C, and

moreover I is the unique function satisfying (*). 0

Well-founded recursion and induction constitute a general method often appropriate
when functions are intended to be total. For example, it immediately follows from the
recursion theorem that that there is a unique total function on the nonnegative integers
such that

{
n + 1 if m = 0

ack(m,n)= ack(m-l,l) if m:r!=O,n=O
ack(m - 1, ack(m, n - 1)) otherwise

for all m, n 2: 0; observe that the value of ack at the pair (m, n) is defined in terms of its
values at the lexicographically smaller pairs (m - 1,1) and (m, n - 1). In fact, a great
many recursive programs are written so that some measure within a well-founded set
decreases as they are evaluated. For such programs often the machinery of least fixed
points can be replaced by well-founded recursion and induction.

Techniques for recursion 179

10.5 An exercise

We round off this chapter with an exercise showing that two recursive functions on lists
are equal. The solution of this single problem brings together many of the techniques
for reasoning about recursive definitions. We have tended to concentrate on arithmetical
and boolean operations. Here we look instead at operations on finite lists of integers. An
integer-list is typically of the form

consisting of k elements from N. The empty list is also a list which will be written as:

[J

There are two basic operations for constructing lists. One is the constant operation
taking the empty tuple of arguments 0 to the empty list [J. The other is generally called
cons and prefixes an integer m to the front of a list l, the result of which is written as:

m:: (

Thus, for example,
1 :: [2; 3; 4J = [1; 2; 3; 4J.

The set of integer-lists forms a discrete cpo which we will call List. It is built up as
the sum of two discrete cpo's

List = in! {()} U in2(N x List) = {()} + (N x List)

with respect to the injection functions which act so:

ind) = [J and

in2(m, I) = m :: l.

That lists can be regarded as a sum in this way reflects the fact that the discrete cpo of
integer-lists is isomorphic to that of all tuples of integers including the o.

The sum is accompanied by a cases construction

case { of [J. ell
x:: ('. e2.

Its use is illustrated in a recursive definition of a function

append: List x List --+ (List) 1-

180 Chapter 10

which performs the operation of appending two lists:

append = Ma. AI, Is E List.

case I of []. llsJI
x:: l'. (let r {= a(l',ls). Lx:: rJ).

The function append is the least a function in the cpo [List x List ---t (List).d which
satisfies

a([], ls) = LlsJ

a(x :: l', ls) = (let r {= a(l', ls). Lx :: r J).

An induction on the size of list in the first argument ensures that append is always
total. Relating lists by l' -< I iff the list l' is strictly smaller than the list I, we might
instead define a slightly different append operation on lists @ : List x List ---t List by
well-founded recursion. By the well-founded recursion, Theorem 10.19, @ is the unique
(total) function such that

l@ls = case l of [J. ls I
x:: l'. x:: (l'@ls)

for alll, ls E List. The two functions can be proved to be related by

append(l,ls) = ll@lsJ,

for all lists I, ls, by well-founded induction.
Now we can state the problem:

Exercise 10.20 Assume functions on integers s : N x N ---t Nand r : N x N ---t List.
Let f be the least function in [List x N ---t N.lJ satisfying

f([], y) = lyJ
f(x :: xs, y) = f(r(x, y)@xs,s(x,y)).

Let 9 be the least function in [List x N ---t N.lJ satisfying

g([], y) = lyJ
g(x :: xs, y) = let v {= g(r(x, y), sex, y)). g(xs, v).

Prove f = g.

Hints: First show 9 satisfies

g(l@xs,y) = let v {= gel, y). g(xs, v)

Techniques for recursion 181

by induction on the size of list l. Deduce f ~ g. Now show f satisfies

(let u {:= f(l, y). f(xs, u)) ~ f(l@xs, y)

by fixed-point induction-take as inclusive predicate

P(F) ~ def [lyIxs,l,y. (let u {:= F(l,y). f(xs,u)) ~ f(l@xs,y)].

Deduce 9 ~ f. o

10.6 Further reading

The presentation of this chapter has been influenced by [80], [59], and [89]. In particular,
Manna's book [59] is a rich source of exercises in fixed point and well-founded induc
tion (though unfortunately the latter principle is called "structural induction" there). I
am grateful to Larry Paulson for the problem on lists. The reader is warned that the
terminology for the concept of "inclusive" property and predicate is not universal. The
term "inclusive" here is inherited from Gordon Plotkin's lecture notes [80]. Others use
"admissible" but there are other names too. The issue of terminology is complicated by
option of developing domain theory around directed sets rather than w-chains-within
the wide class of w-algebraic cpo's this yields an equivalent notion, although it does
lean on the terminology used. Other references are [13], [58] and [21] (though the latter
wrongly assumes a predicate on a product cpo is inclusive if inclusive in each argument
separately). Enderton's book [39] contains a detailed treatment of well-founded recursion
(look up references to "recursion" in the index of [39], and bear in mind his proofs are
with respect to a "well ordering," a transitive well-founded relation.)

11 Languages with higher types

We explore the operational and denotational semantics of languages with higher types, in
the sense that they explicitly allow the construction of types using a function space con
structor; functions become "first-class" values and can be supplied as inputs to functions
or delivered as outputs. Again, we will be faced with a choice as to whether evaluation
should proceed in a call-by-value or call-by-name fashion. The first choice will lead to a
language behaving much like the eager language Standard ML, the second to one closely
similar in behaviour to lazy languages Miranda 1, Orwell or Haskell. This begins a study
of the semantics of functional programming languages such as these. As an application
of the semantics it is studied how to express fixed-point operators in the eager and lazy
cases. This leads to a discussion of the adequacy of the denotational semantics with
respect to the operational semantics and to the concept of full abstraction. The main
constructions on types considered are products and function space, though the chapter
concludes by indicating how its results can be extended to include sums.

11.1 An eager language

In the context of functional programming, call-by-value evaluation is often called eager.

For efficiency, call-by-name evaluation is implemented in a call-by-need, or lazy way;
through careful sharing the implementation arranges that an argument is evaluated at
most once. Whether we choose a call-by-value (eager) or call-by-name (lazy) mode of
evaluation will influence the syntax of our language a little in the manner in which we
permit recursive definitions. We begin by studying call-by-value.

As in the language REC we will have terms which evaluate to basic printable values
like numbers. Such terms can be built up using numerals, variables, conditionals and
arithmetic operations and will yield numbers as values or diverge. However in addition
there will be terms which can yield pairs or even functions as values. (We will see shortly
how to make sense operationally of a computation yielding a function as a value.)

To take account of the different kinds of values terms can evaluate to, we introduce
types into our programming language. A term which evaluates to a number provided it
does not diverge, will receive the type into A term which evaluates to a pair as value will
have a product type of the form 71 * 72. A term which evaluates to a function will have
a function type of shape 71 - > 72. To summarise type expressions 7 will have the form

To simplify the language, we will assume that variables x, y, ... in Var are associated
with a unique type, given e.g. by type(x). (In practice, this could be achieved by building

1 Miranda is a trademark of Research Software Ltd

184 Chapter 11

the type 7 into the variable name, so variables x have the form x : 7). The syntax of
terms t, to, h, ... is given by

t ::= x I

n I t1 + t2 I t1 - t2 I t1 X t2 I if to then t1 else t2 I
(t1' t2) I fst(t) I snd(t) I
Ax.t I (h t2) I
let x {= h in t2 I

recy·(Ax.t)

The syntax describes how

• to write arithmetical expressions in a manner familiar from the language REC
of Chapter 9. Like there, the conditional branches according to an arithmetical
rather than a boolean term. However, unlike REC the branches need not evaluate
to numbers.

• to construct pairs (t1' t2), and project to first and second components with fst(t)
and snd(t).

• to define functions using A-abstraction and apply them-(h t2) stands for the
application of a function t 1 to t2.

• to force the prior evaluation of a term t1 before its value is used in the evaluation
of t2 with let x {= t1 in t2.

• to define a function y recursively to be Ax.t using rec y.(Ax.t)-the term t can
involve Y of course. Note, that in this eager language, any recursive definition has
to have a function type, i.e. if recy.(Ax.t) : 7 then 7 == 71-> 72 for types 71, T2.
With this choice of syntax, the treatment remains faithful to Standard ML.

We can write down arithmetical terms of the kind we saw in REC. However, it is
also possible to write down nonsense: to try to add two functions, or give a function too
many, or too few, arguments. The well-formed terms t are those which receive a type 7,

written t : 7.

We will say a term t is typable when t : 7 for some type 7, according to the following
rules:

Languages with higher types

Typing rules

Variables: x : 7 if type(x) = 7

Operations: n: int

Products:

Functions:

let:

rec:

t1 : int t2 :. int where op is +, -, or x
t1 op t2 : mt

to : int t1 : 7 t2 : 7

if to then t1 else t2 : 7

t1 : 71 t2: 72

(t11t2): 71 *72

x: 71 t: 72

AX.t : 71-> 72

t : 71 * 72 t : 71 * 72

fst(t) : 71 snd(t): 72

t1 : 71 - > 72 t2: 71

(t1 t2) : 72

X : 7) t) : 71 t2: 72

let x ~ h in t2 : 72

y : 7 AX.t: 7

rec y.(AX.t) : 7

Exercise 11.1 Say a term t is uniquely typed if

t : 7 and t : 7' implies 7,7' are the same type.

Show this property holds of all terms which are typable.

185

o

The set of free variables FV(t) of a term t can be defined straightforwardly by struc
tural induction on t:

FV(n)

FV(x)

FV(t1 op h)

FV(if to then h else t2)

FV((t1, t2))

FV(fst(t))

o
{x}

FV(td U FV(t2)

= FV(to) U FV(t1) U FV(t2)

FV(td u FV(t2)

FV(snd(t)) = FV(t)

186

FV(AX.t)

FV((tl t2))

FV(let x <¢= tl in t2)

FV(rec y.(AX.t))

FV(t)\{x}

FV(td U FV(t2)

FV(tl) U (FV(t2)\{X})

FV(AX.t)\{y}

Chapter 11

The clause for the let-construction is a little tricky: the variable x in t 2 is bound in the
let-construction. A term t is closed iff FV(t) = 0, i.e. a term t is closed when it has no
free variables.

The operational semantics will require in some cases that we substitute a closed term s

for a free variable x in a term t. We write t[s/x] for such a substitution. The reader will
have no difficulty formalising substitution. More generally, we write t[s I/xl,"" Sk/Xk]
for the simultaneous substitution of closed terms 81 for Xl,"" 8k for Xk in t-it is
assumed that Xl, ... , X k are distinct.

11.2 Eager operational semantics

So far the intended behaviour of the programming language has only been explained
informally. We consider a call-by-value, or eager, method of evaluation. Just as in the
case for REe, this means that to evaluate a function applied to certain arguments we
should first evaluate the arguments to obtain values on which the function can then act.
But what are values in this more general language? Certainly we expect numerals to be
values, but in the case where a function is applied to functions as arguments when do we
stop evaluating those argument functions and regard the evaluation as having produced
a function value? There is a choice here, but a reasonable decision is to take a term as
representing a function value when it is a A-abstraction. More generally, it can be asked
of every type which of its terms represent values. Traditionally, such terms are called
canonical forms. The judgement t E C~ that a term t is a canonical form of type, is
defined by the following structural induction on ,:

Ground type:

Product type:

numerals are canonical forms, i.e. n E Cint.

pairs of canonical forms are canonical, i. e.

(Cl,C2) E C~1*T2 if Cl E C~l & C2 E C;'2'

Function type: closed abstractions are canonical forms, i. e.

AX.t E C;'1->T2 if AX.t : '1->'2 and AX.t is closed.

Note that canonical forms are special kinds of closed terms.

Languages with higher types

Now we can give the rules for the evaluation relation of the form

where t is a typable closed term and c is a canonical form, meaning t evaluates to c.

Evaluation rules

Canonical forms: C -->e C where C E C~

Operations:

Product:

Function:

let:

rec:

h -->e Cl t2 -->e C2

(tt, t2) -->e (CI' C2)

t -->e (Cl' C2)
fst(t) -->e CI

t -->e (Cl' C2)

snd(t) -->e C2

tl -->e AX.tt t2 -->e C2 tt [cd xl -->e C

(tr t2) -->e C

tl _e Cl t2 [cd xl -->e C2

let x -¢= tl in t2 -->e C2

rec y. (AX.t) -->e AX. (t[rec y.(AX.t) /yj)

187

The rule for canonical forms expresses, as is to be expected, that canonical forms eval
uate to themselves. The rules for arithmetical operations and conditionals are virtually
the same as those for REC in Chapter 9. In this eager regime to evaluate a pair is
to evaluate its components, and the projection function fst and snd can only act once
their arguments are fully evaluated. A key rule is that for the evaluation of applications:
the evaluation of an application can only proceed once its function part and argument
have been evaluated. Notice how the rule for the evaluation of let x -¢= t 1 in t2 forces
the prior evaluation of tl. The rule for recursive definitions "unfolds" the recursion
recy.(Ax.t) once, leading immediately to an abstraction Ax.(t[recy.(Ax.t)/y]), and so a
canonical form. Note that to be typable, y: 71-> 72 with x: 71, for types 71,72. This
ensures that y and X are distinct so that we could just as well write (Ax.t)[rec (AX.t)/y]
instead of Ax. (t[rec y.(h.t)/yJ).

188 Chapter 11

It is straightforward to show that the evaluation relation is deterministic and respects
types:

Proposition 11.2 If t ___.e C and t ___.e c' then c == c' (i.e. evaluation is deterministic).
If t ---. e C and t : 7 then c : 7 (i. e. evaluation respects types).

Proof: Both properties follow by simple rule inductions. o

Exercise 11.3 Let fact == ree f.()..x.if x then 1 else xx f(x-l)). Derive the evaluation
of (fact 2) from the operational semantics. 0

11.3 Eager denotational semantics

The denotational semantics will show, for instance, how to think of terms of type 71 - > 72

as functions, so justifying the informal understanding one has in programming within
a functional language. Through interpreting the language in the framework of cpo's
and continuous functions, the programming language will become amenable to the proof
techniques of Chapter 10.

It should first be decided how to interpret type expressions. A closed term t of type r
can either evaluate to a canonical form of type r or diverge. It seems reasonable therefore
to take t to denote an element of (V;h where V; is a cpo of values of type 7, which
should include the denotations of canonical forms. With this guiding idea, by structural
induction on type expressions, we define:

Vi~t = N

V~*T2 V e X V e
1"1 1"2

V~->T2 = [V~ ---. (V~ hl

The final clause captures the idea that a function value takes a value as input and delivers
a value as output or diverges.

In general, terms contain free variables. Then denotational semantics requires a notion
of environment to supply values to the free variables. An environment for this eager
language is typically a function

p : Var ---. U{V': I 7 a type }

which respects types in that
x: r =? p(x) E V':

Languages with higher types 189

for any x E Var and type 7. Write Enve for the cpo of all such environments.
Now we can give the denotational semantics for the eager language; a term t, with

typing t : 7, will denote an element [t]ep E (V.,."h in an environment p.

Denotational semantics
The denotation of typable terms t is given by the following structural induction:

[x]e Ap.lp(x)J

[n]e Ap.lnJ

[tl op t2]e = Ap.([tl]ep OP..l. [t2]e p) where op is +, -, x

= Ap.Cond([to]ep, [tlrp, [t2]e p) [if to then tl else t2]e

[(tl, t2W =

[fst(tW

Ap.let VI <= [td eP,V2 <= [t2]e p. l(vI,V2)J

Ap.let V <= [t]e p. l7rI(V)J

[snd(tW = Ap.let V <= [t]e p. l7r2(V)J

[AX·W Ap·lAV E V'T~ . [Wp[v/xlJ

[(h t2W

[let x <= h in t2]e

[rec y.(AX.t)]e

where AX.t: 71-> 72

Ap.let r.p <= [tdep, v <= [t2]e p. r.p(v).

Ap.let v <= [tl]ep. [t2]e p[V/x]

Ap·lJ.Lr.p·(AV·[W p[v/x, r.p/ylJ

We have used a generalisation of the conditional Cond of Section 9.3 in the clause giving
the denotational semantics of conditionals. For a cpo D with bottom, the function

Cond : N..l. X D x D -t D

satisfies

{

ZI if
Cond(zQ, Zl, Z2) = Z2 if

1.. otherwise

Zo = lOJ,
Zo = lnJ for some n E N with n f= 0,

for Zo E N..l., ZI, Z2 E D. It can be shown to be continuous, as in Section 9.3. Notice
that the semantics is expressible in the metalanguage of Section 8.4 ensuring that it is
sensible to take fixed points.

Exercise 11.4 According to the denotational semantics, terms let x <= t I in t2 are
definable purely using the other constructions (and not let). How? 0

190 Chapter 11

Lemma 11.5 Let t be a typable term. Let p, p' be environments which agree on the free
variables oft. Then [t]e p = [Wp'.

Proof: A simple structural induction left to the reader. D

Lemma 11.6 (Substitution Lemma) Let s be a closed term with s: T such that [s]e p =

lvJ. Let x be a variable with x: T. Assume t : T'. Then t[s/x] : T' and [t[s/xWp =
[Wp[v/x].

Proof: A tedious structural induction. D

Exercise 11.7 Perform the induction steps in the proof of the Substitution Lemma
where t is an abstraction or a let construct. D

As is to be expected a general term of type T has a denotation in (V;h, while deno
tations of canonical forms are associated with values:

Lemma 11.8 (i) 1ft: T then [t]e p E (V;).l, for any p.
(ii) If c E C;. then [c]e p -I- .1.., the bottom element of (v;h, for any p.

Proof: The proof of (i) is by a simple structural induction on t. The proof of (ii) is by
structural induction on canonical forms c. D

Exercise 11.9 Prove part (ii) of Lemma 11.8. D

11.4 Agreement of eager semantics

Do the operational and denotational semantics agree? We shall see that they do, though
perhaps not to the extent one might at first expect. Previously the operational and
denotational semantics have matched each other rather closely, possibly leading us to
expect, incorrectly, that

for a closed term t and canonical form c. The "~" direction does not hold at any type
involving function spaces. The reason is essentially because there can be many canonical
forms with the same denotation and the evaluation of a term can yield at most one of
them (see the exercise below). We can however show the "=?" direction of this equivalence
does hold, no matter what the type of t:

(1)

Languages with higher types 191

In addition, the two styles of semantics, operational and denotational, do agree on
whether or not the evaluation of a closed term converges.

Consider a typable closed term t. Operationally, according to the evaluation rules, t
can either diverge or yield a canonical form. Define operational convergence of t by

t 1 e iff 3c. t -+ e c.

Denotationally, the computation of t is modelled as an element [t] € P of (V;).l, where
T is the type of t and p can be an arbitrary environment because t is closed-the idea
being that the denotation of t is J.. if t diverges or l v J, for some v, if t converges. Define
denotational convergence by taking

We can rightly hope that the two notions of convergence coincide, that

(2)

Indeed the "=:>" direction follows from (1) by using Lemma 1l.8(ii), which says that
canonical forms converge denotationally.

It follows, from (1) and (2), that if t : int then

(3)

To see that the last claim (3) is entailed by (1) and (2), notice that the "=:>" direction
is just a special case of (1) and that the converse "{:::" direction is entailed by the fact
that two canonical forms of type int which have the same denotation must be identical
numerals. It is said that (1) and (2) express the adequacy of the denotational semantics
with respect to the operational semantics. They justify our being able to reason from
the denotational semantics about results of the operational, evaluation relation.

Exercise 11.10 Show that for types in general the converse of (1), viz.

does not hold. (Hint: Take t == Ax.x, c == Ax.x + 0 where x = int.) o

We now prove (1) of the claims above, that the denotational semantics respects the
evaluation relation.

Lemma 11.11 1ft -+e C then [t]€p = [c]e p, for any environment p.

192 Chapter 11

Proof: The proof proceeds by rule induction on the rules for evaluation. Most rules
are seen straightforwardly to preserve the property above. Here we present the more
interesting cases.

Consider the rule:
t ---+e (CI' C2)
fst(t) ---+e CI

Assume [t]e p = [(CI' C2)]e p, for an arbitrary p. Then

[Wp = [(CI' C2)]e p

= let VI -¢= [Cd ep,V2 -¢= [C2]e p. L(VI,V2)J

= L(VI, V2)J where [Cl]ep = LVIJ and [cdep = LV2J

as (CI' C2) .u-e by Lemma 11.8. Hence

Consider the rule

[fst(tWp = let v -¢= [trp, L7rI(V)J

= LvIJ
= [CI]e p .

h ---+e Ax.ti t2 ---+e C2 tUc21 x] ---+e C

(tl t2) ---+e C

Assume [tl]e p = [AX.tUep, [t2]e p = [C2]e p and [ti[C2IxWp = [c]e p. Whence

[tl t 2]e p = let tp -¢= [tl]e p, v -¢= [t2]e p. tp(v)

Consider the rule

= let tp <= [AX.t~]e p, v <= [C2]e p. tp(v)

= let tp <= LAV.[t~]ep[vlxlJ,v <= [C2]e p. tp(v)

= [t~]ep[vlx] where [C2]e p = LvJ, using Lemma 1l.8

= [t~[c2/x]]ep by the substitution Lemma 1l.6

= [c]e p

rec y. (AX.t) ---+ e AX. (t[rec y. (AX.t) I y])

By definition [recy.(AX.t)]e p = LtpJ where tp is the least solution of

tp = Av·[Wp[vlx, tply]·

Languages with higher types

Now by the substitution Lemma 11.6,

[Ax.(t[recy·(Ax.t)/y]Wp = [AX.Wp[4'/Y]' recalling y and x are distinct,

= LAV·[Wp[v/x,4'/y]J

= L4' J
= [recy.(AX.t)]ep. 0

From Lemma 11.8 and Lemma 11.11 it follows that

t 1 e implies t .1J. e

193

for any typable closed term t. The proof of the converse uses a new idea, the technique
of logical relations. We want to prove that

t .1J. e implies t 1 e

for any typable closed term t. An obvious strategy is to use structural induction on t. So
let's proceed naively, with (*) as induction hypothesis. Consider the critical case where
t is an application (t 1 t2) and, inductively, assume

Suppose t .1J. e with the aim of establishing (*) for this case. BAcause

this ensures h .1J. e and t2 .1J. e, and so, by induction,

for appropriate canonical forms. Thus [t] e p = 4'(v) where 4'
Lv J = [C2]e p. Hence

[t]e p = [t~]e p[v / x]

= [t~[c2/XWp

by the Substitution Lemma. Because t.1J.e it follows that ti[C2/X].1J.e. At this point we'd
like to conclude that ti [C2/X] 1 e so tifC2/X] -4e C, and therefore, from the operational
semantics, that t -4e c. But we can't yet justify doing this, simply because ti [C2/ x]
bears no obvious structural relationship to t which would make the application of the
structural induction hypothesis legitimate.

194 Chapter 11

The solution to this difficulty is, as usual, to strengthen the induction hypothesis.
Instead of trying to show that the denotational convergence of a term implies its op
erational convergence we show a stronger, more detailed, relation of "approximation"
holds between the denotational and operational behaviour of a term. This is expressed
through relations ;S.,., for type T, between elements of the cpo (V:h and closed terms
of type T. The relations are defined by structural induction on the types of terms by
a method which is often useful in reasoning about higher types; the technique is called
that of logical relations. (Of course, we should also take better care of free variables than
we did when trying naively to verify (*) by structural induction.)

We will define a relation ;S~ ~ V: x C; on types T. We extend these principal relations
to relations between elements d of (V:h and closed terms t by defining

d ;S.,. t iff

Vv E V:. d = l v J '* 3c. t ---. e C & v;S~ c.

The principal relations ;S~ are defined by structural induction on types T:

Ground type: n ;Sint n, for all numbers n.

Function types: tp ;S~'->"'2 AX.t iff Vv E V~, c E C;,.V ;S~, c'* tp(v) ;S"'2 t[c/x].

The key property is expressed by the final clause which says that two representations of
functions (denotational and operational) are related iff they take related arguments to
related results. This property makes the family ;S.,., for types T, an example of a logical
relation.

It is important for the proof later to note some basic properties of the relations ;S.,.; in
particular, they are inclusive.

Lemma 11.12 Let t : T. Then

(i) l.(v.,').l ;S.,. t.
(ii) If d ~ d' and d' ;S.,. t then d ;S.,. t.

(iii) If do ~ d1 ~ ... ~ dn ~ ... is an w-chain in (v:h such that dn ;S.,. t for all nEw

then UnEw dn ;S.,. t.

Proof: Property (i) follows directly by definition. Properties (ii) and (iii) are shown
to hold for all terms by structural induction on types. Certainly they both hold at the

Languages with higher types 195

ground type into To illustrate the inductions we prove the induction step in the case
of a function type. Suppose do ~ ... ~ dn ~ ... is an w-chain in (VT~ _ >T2).L such
that dn ;ST1->T2 t for all nEw. Either dn = .1 for all nEw or we have t -t e AX.t'
and some n for which whenever m 2:: n dm = l¥?mJ and ¥?m ;S~'->T2 AX.t'. In the
former case Un dn = .1 ;STl->T2 t. In the latter case, assuming v ;S~, c we obtain
¥?m(v) ;ST2 t'[C/X] for m 2:: n. It follows inductively that Um(¥?m(v)) ;ST2 t'[c/x], and
so (Um ¥?m)(V) ;ST2 t'[C/X] whenever v ;S~, C. In other words (Um ¥?m) ;S~'->T2 AX.t'
whence Um dm = LUm ¥?mJ ;STI->T2 t, as required. 0

Exercise 11.13 Prove the remaining induction steps for (ii) and (iii) in Lemma 11.12.
o

The reader may find it instructive to compare the proof below in the case of application
with the naive attempt described above.

Lemma 11.14 Let t be a typable closed term. Then

t .IJ. e implies t 1 e .

Proof: We shall show by structural induction on terms that for all terms t : T with free

variables among Xl : Tl, ... ,Xk : Tk that if l VlJ ;STI Sl,·· . l vd ;STk Sk then

Taking t closed, it follows from the definition of;ST that ift.IJ.e then [t]€p = lvJ for some
v, and hence that t -t € C for some canonical form c, i. e. t 1 e .

First note that by Lemma 11.5, in establishing the induction hypothesis for a term t,
it suffices to consider the list of precisely those variables which are free in t.

t == X, a variable of type T: Suppose lvJ ;ST S. Then from the semantics, [x]ep[v/x] =

lvJ ;ST S == x[s/x], as required.

t == n, a number: By definition n;S~ tn, so the induction hypothesis holds. In

t == tl op t2: Suppose Xl : Tl,'" ,Xk : Tk are all the free variables of t. Suppose
lvIJ ;STI sl,···,lvkJ ;STk Sk· Assume [tl opt2]ep[vI/xl, ... ,Vk/Xk] = lnj. Then, from
the denotational semantics,

[hrp[vI/xl,"" Vk/Xk] = lnIJ and

[t2]e p[vI/ xl,'" ,Vk/Xk] = ln2J

196 Chapter 11

for integers nl, n2 with n = nl op n2. By induction,

[tdep[V!/Xl, ... , Vk/Xk] ;Sint tdS!/Xl,"" Sk/Xk]' and

[t2]e p[V!/Xl, ... ,Vk/Xk] ;Sint t2[S!/Xl, ... ,Sk/Xk]'

From the definition of ;Sint' we see

tdSl/Xl,"" Sk/Xk] e n1, and

t2[sl/X1,"" Sk/Xk] € n2·

Hence from the operational semantics

Thus

t == if to then t1 else t2: This case is similar to that when t == hop h above.

t == (t1' t2): Assume h : a1, t2 : a2. Suppose Xl : T1, ... , Xk : Tk are all the free variables
oft and that LVIJ;ST Sl,···, LVkJ ;STk Sk· Assume [(tl,t2Wp[vl/Xl, ... ,Vk/Xk] = luJ.
Then from the denotational semantics, there are u 1, U2 such that

[tdep[vdxl"'" Vk/Xk] = LUIJ
[t2]e p[vd Xl, ... ,Vk/ Xk] = L U2J

with U = (UI,U2)' By induction,

lU1J ;S0"1 tdS!/XI, ... , Sk/Xk]

lU2J ;S0"2 t2[S!/XI, ... , Sk/Xk]

and so there are canonical forms ClJ C2 such that

U1 ;S~I C1 & tdS!/XI, ... , Sk/Xk] e ClJ and

U2 ;S~2 C2 & t2[Sl/XI,"" Sk/Xk] e C2.

It follows that (U1, U2) ;S~'*0"2 (C1, C2), and (t1, t2)[sl/XlJ"" Sk/Xk] e (C1, C2) from the
operational semantics. Thus [(tl, t2)]e p[vl/xI,"" Vk/Xk] ;S0"1*0"2 (t1, t2)[S!/X1, ... , Sk/Xkj.

t == fst(s): We are assuming fst(s) is typable, so S must have type a1 * a2. Suppose
Xl : T1,··· ,Xk : Tk are all the free variables of t and that Lvd ;STI Sl,···, LVkJ ;STk Sk·

Languages with higher types 197

Assume [fst(s)]e p[VI/xl, ... , Vk/Xk) = l uJ. Then from the denotational semantics, u =
Ul where [s]ep[vI/xl, ... ,Vk/Xk] = l(U1,U2)J forsomeul E V;I,U2 E V;2' By induction,

Hence there is a canonical form (c 1, C2) such that

as required.

t = snd(s): Similar to the above.

t = AX.t2: Suppose x: 0"1, t2 : 0"2. Suppose Xl : 71,"" Xk : 7k are all the free variables of t
and that lvIJ ':srI Sl,"" lVkJ ':s'Tk Sk· Assume [AX.t2]e p[vI/x l"",Vk/Xk] = lcpJ· Then
AV E V;1 . [t2]e p[vI/xl , ... , Vk/Xk, v/x] = cp. We require cp ':s~1->0"2 AX.t2[sI/Xl, ... , Sk/Xk]'
However supposing v ':s~1 c, we have l v J ':s0"1 c, so by induction, we obtain

which is precisely what is required.

t = (t1 t2): Suppose t1 : 0"2-> 0", t2 : 0"2· Assume t has free variables Xl : 71, ... , Xk : 7k
and that lV1J ':srI Sl,···, lVkJ ':srk sk· From the denotational semantics, we see

[h t2]e p[vI/XI, ... ,Vk/Xk] =

let cp {:::: [h]ep[vI/x1,'" ,Vk/Xk]'V {:::: [t2]ep[vI/xl,'" ,Vk/Xk]' cp(v)

Assume [h t2]ep[vI/xl,'" ,Vk/Xk] = luJ, for U E V;. Then there are cp, v such that

[tl]ep[vI/XI, ... ,Vk!Xk] = lcpJ,
[t2]e p[vI/x l,'" ,Vk/Xk] = lvJ

with cp(v) = l u J. It follows by induction that

[tde p[vI/Xl, ... ,Vk/Xk] ':s0"2->0" trlSI/xl, ... ,Sk/Xk]' and

[t2]e p[vI/x l,"" Vk/Xk) ':s0"2 t2[sI/Xl,"" Sk/Xk]'

198 Chapter 11

Recalling the definition of ;S0"2->0" and ;S0"2 in terms of ;S~2->0" and ;S~2 we obtain the
existence of canonical forms such that

and
t2[sdxl, ... , sk/xk] -+e C2 & v ;S~2 C2.

Now, from the definition of ;S~2->0" we obtain

As <p(v) = luJ, there is C E C;. such that

We can now meet the premise of the evaluation rule (Function), and so deduce
(tl t2)[sd Xl, ... , Ski Xk] -+e c. Now because u ;S~ c, we conclude

t == let X ¢= tl in t2: Assume h : 01,t2 : 02· Let Xl: Tl,···,Xk : Tk be all the free
variables of t and lvd ;SrI Sl,···, lVkJ ;Srk Sk· From the denotational semantics, we see
that if [let X ¢= tl in t2]ep[vdxl,.·., Vk/Xk] = luJ then there is Ul E V:I , with

[h]e p[vd Xl, ... , Vk/ Xk] = l ud, and

[t2]e p[vd x l, ... , Vk/Xk][udx] = luJ.

(We need to write p[VdXl, ... , Vk/Xk][udx] instead of P[VdXl, ... , Vk/Xk, udx] because
X may occur in Xl,··· ,Xk.)
By induction there are canonical forms Cl, C2 such that

Ul ;S~I Cl & tl[sdxl, ... , Sk/Xk]-+e Cl, and

u ;S~2 C2 & t2[cdx][sdxl' ... , Sk/Xk] -+e C2.

(Again, because X may occur in Xl,···, Xk, we must be careful with the substitution

t2[cdx][sdxl' ... , Sk/Xk].)
Thus from the operational semantics,

Languages with higher types 199

We deduce

t == recy.(Ax.tr): Assume x : a and t1 : al· Let Xl : T1,.·. ,Xk : Tk be all the free
variables of t and suppose lvIJ ;:SrI Sl,···, lVkJ ;:Srk Sk· Suppose

for cp E V';->O'l' Then from its denotational definition, we see

Thus cp = UnEw cp(n) where each cp(n) E V';->O'l is given inductively by:

cp(O) = ..LV"
a->CTl

cp(n+1) = Av.[td€p[Vl/X1,"" Vk/Xk, v/x,cp(n) /y].

We show by induction that

(1)

By Lemma 11.12 it then follows that

Because

we can then conclude that

as required. We now prove (1) by induction:

Basis n = 0: We require cp(O) ;:S~->O'l Ax.tdsI/X1,"" Sk/Xk, t[SI/X1,"" Sk/XkJ/y] i.e.,
cpO (v) ;:SO'l h[sI/x1, ... , Sk/Xb t[SI/Xl,'''' Sk/Xk]/y, c/x] whenever v ;:S~ c. But this
certainly holds, by Lemma 11.12(i), as cp(O)(v) = .1.
Induction step: Assume inductively that

200 Chapter 11

Then
(2)

We require

i.e. for all v ~~ c

To this end, suppose v ~~ c, so
(3)

Recall !p(nH) (v) = [tde p[vI/ Xl, ... , VdXk, v Ix, !pen) lyJ, so, by the main structural in
duction hypothesis, using (2) and (3),

as was required. This completes the mathematical induction, and so the final case of the
main structural induction. D

As remarked early in this section, it follows that evaluation relation and denotational
semantics match identically at the ground type into

Corollary 11.15 Assume t is a closed term with t : into Then

for any n E N.

11.5 A lazy language

We now consider a language with higher types which evaluates in a call-by-name, or
lazy, way. Again we will give an operational and denotational semantics and establish
their agreement. The syntax is almost the same as that for the eager language; the only
difference is in the syntax for recursion.

A recursive definition can now take the form

recx.t

Languages with higher types 201

where, unlike the eager case, we do not insist that the body t is an abstraction. Accom
panying this is a slightly modified typing rule

x: 7 t: 7

recx.t : 7

But for this slightly more liberal attitude to recursive definitions the syntax of the lazy
language is the same as that for the eager one. Again, we will say a term t is typable when
there is a type 7 for which t : 7 is derivable from the typing rules. The free variables of
a term are defined as before but with the clause

FV(recx.t) = FV(t) \ {x}

for recursive definitions. A term with no free variables will be called closed.

11.6 Lazy operational semantics

Typable closed terms will evaluate to canonical forms. In the lazy regime canonical forms
of ground and function types will be numerals and abstractions respectively. However,
unlike the eager case a canonical form of product type will be any pair of typable closed
terms, which are not necessarily canonical forms. The lazy canonical forms C ~ are given
by induction on types 7:

Ground type: n E into

Function type: AX.t E C~1->T2 if AX.t : 71- > 72 with AX.t closed.

Lazy evaluation will be expressed by a relation

t -t1 C

between typable closed terms t and canonical forms c.

202

Evaluation rules

Canonical forms:

Operations:

Product:

Function:

let:

rec:

C -t l C

tJ -t l nl t2 -t l n2
h op t2 -t l nl op n2

t -t l (tl,t2) h -t Cl

fst(t) -t1 Cl

tl -t1 Ax.tl t1[t2/X] -t l C

(tl t2) -t l c

t[rec x.t/x] -t l C

recx.t -t l C

Chapter 11

where C E C~

where op is +, -, x

to -t1 n t2 -t l C2 n =t 0
if to then h else t2 -t1 C2

t -t l (h, t2) t2 -t C2

snd(t) -t l C2

A notable difference with eager evaluation occurs in the case of function application;
in lazy evaluation it is not first necessary to evaluate the argument to a function-the
essence of laziness. Notice too that the rules for product need no longer stipulate how to
evaluate pairs-they are already canonical forms and so no further rules are required to
formalise their evaluation. As the components of a pair need not be canonical, extraction
of the first and second components requires further evaluation. Because it is no longer
the case that one unwinding of a recursive definition yields a canonical form the rule
for the evaluation of recursive definitions is different from that with eager evaluation.
Here in the lazy case we have chosen to interpret the let -expression as simply a way to
introduce abbreviations.

For future reference we note here that lazy evaluation is deterministic and respects
types.

Proposition 11.16 1ft -t1 C and t -t1 C' then c == c'. 1ft -t1 C and t: T then c: T.

Proof: By rule induction. o

Languages with higher types 203

11. 7 Lazy denotational semantics

A typable closed term can evaluate lazily to a canonical form or diverge. Accordingly we
will take its denotation to be an element of (V;).L where V; is a cpo of values, including
the denotations of canonical forms of type 7.

We define V; by structural induction on the type 7:

Vi~t N

V;1*T2

V;I->T2

= (V;lh x (V;2h
[(V;lh --f (V;2hl

These definitions reflect the ideas that a value of product type is any pair, even with
diverging components, and that all that is required of a value of a function type is that it
be recognised as a function, and indeed a function which need not evaluate its arguments
first.

An environment for the lazy language is a function

p : Var --f U {(V;h 17 a type}

which respects types, i.e. if x : 7 then p(x) E (V;).L for any variable x and type 7. We
write Envl for the cpo of such lazy environments.

Now we give the denotational semantics of our lazy language. A term t of type 7 will
be denoted by a function from environments Env l to the cpo (V;h. The denotation of
typable terms t is given by structural induction, again staying within the metalanguage
of Section 8.4.

[X]l

[n]l

[t1 op t2]1

[if to then tl else t2]1

[(h, t2W

[fst(tW

[snd(tW

[AX.t]1

Ap.p(X)

Ap·lnJ
Ap.([tl]lp OP.L [t2]lp) where op is +, -, x

Ap. Cond([to]l p, [tl]l p, [t2]1 p)

Ap.l([tl]lp, [t2]lp)J

= Ap.let v <= [t]lp.lI'l(V)

Ap.let v <= [t]lp.1I'2(V)

Ap.lAd E (V;JJ...[t]lp[d/x]J

where AX.t : 71- > 72

>.p.let !.p <= [tl]lp.!.p([t2]lp)

204

[let x {::: tl in t2]l

[recx.t]l

We note a few facts for later.

}..p. [t2]l p[[tl]l pix]

= }..p.(f.td.[t]lp[d/x])

Chapter 11

Lemma 11.17 Let t be a typable term. Let p, p' be environments which agree on FV(t).
Then [t]lp = [t]lp'.

Proof: A simple structural induction. 0

Lemma 11.18 (Substitution Lemma)
Let s be a closed term with s : 7. Let x be a variable with x : 7. Assume t : 7'. Then
t[s/x] : 7' and [t[s/x]]lp = [t]lp[[s]lp/x].

Proof: By structural induction. 0

Lemma 11.19
(i) If t : 7 then [t] 1 P E (V; h for any environment p E Envl .

(ii) If c E C~ then [c]lp # .1, the bottom element of (v;h, for any p E Env l .

Proof: The proof of (i) is by a simple structural induction on t, and that of (ii) is by
structural induction on canonical forms c. 0

11.8 Agreement of lazy semantics

We show that the denotational semantics is adequate with respect to the operational
semantics in the sense that it respects the evaluation relation and agrees on when terms
converge.

Let t be a typable closed term. Define operational convergence with respect to lazy
evaluation by

Define denotational convergence by

t.ij.l iff 3v E V,!. [t]lp = LvJ

where p is an arbitrary environment in Env l .

Suppose t ! I. Then t -t1 C for some canonical form c. We will show it follows that
[t]lp = [c]lp for an arbitrary environment p, and because by Lemma 11.19 c .ij.l, this will
imply t .ij.l. We will also establish the (harder) converse that if t .ij.l then t ! I; if t denotes

Languages with higher types 205

Lv J according to the denotational semantics then its evaluation converges to a canonical
form c, necessarily denoting Lv J. The general strategy of the proof follows that in the
eager case quite closely.

First we show the denotational semantics respects the evaluation relation:

Lemma 11.20 1ft -t l C then [t]lp = [c]lp, for an arbitrary environment p.

Proof: A proof is obtained by rule induction on the lazy evaluation rules. It follows the
proof of Lemma 11.11 closely, and is left as an exercise. 0

Exercise 11.21 Prove Lemma 11.20 above. o

We turn to the proof of the harder converse that t -t I c, for some canonical form c,
if t is closed and t.jJ.l. As in the eager case, this will be achieved by showing a stronger
relationship, expressed by a logical relation, holds between a term and its denotation.
We will define logical relations ;S~~ V; x C; on types T. As before we extend these
principal relations between values and canonical forms to relations between elements d
of (V,!h and closed terms t by defining

d ;Sr t iff

'<Iv E V,!. d = LvJ => 3c. t -t l C & v;S~ c.

The principal relations ;S~ are defined by structural induction on types T:

Ground type: n ;Sint n, for all numbers n.

Function types: cp ;S~1->r2 AX.t iff'<ld E (V;JJ., closed u: Tl· d ;Srl U => cp(d) ;Sr2 t[u/x].

We observe facts analogous to those of Lemma 11.12:

Lemma 11.22 Let t : T. Then

(i) ..l(v.,!l.L ;Sr t.
(ii) If d ~ d' and d' ;Sr t then d ;Sr t.

(iii) If do ~ d1 ~ ••• ~ dn ~ ... is an w-chain in (V'!h such that dn ;Sr t for all nEw

then UnEw dn ;Sr t.

206 Chapter 11

Proof: The proof is like that of 11.12. Property (i) follows directly by definition. Prop
erties (ii) and (iii) are shown to hold for all terms by structural induction on types.

o

Lemma 11.23 Let t be a typable closed term. Then

t JJ.I implies t 11 .

Proof: The proof is very similar in outline to that of Lemma 11.14. It can be shown
by structural induction on terms that for all terms t : T with free variables among

Xl : Tl,···, Xk : Tk that if d l ~7"1 Sl,··· dk ~7"k Sk then

Taking t closed, it follows from the definition of ~7" that if t JJ.I then [t]lp = LvJ for some
v, and hence that t --+1 C for some canonical form c. Only the cases in the structural in
duction which are perhaps not straightforward modifications of the proof of Lemma 11.14
for eager evaluation are presented:

t == fst(s): We are assuming fst(s) is typable, so s must have type 0"1 * 0"2. Suppose
Xl : Tl,···, Xk : Tk are all the free variables of t and .that d l ~7"1 Sl,···, dk ~7"k Sk.
Assume [fst(s)]lp[dI/Xl, ... ,dk/Xk] = LVIJ. Then from the denotational semantics,
[s]lp[dI/xl' ... ' dk/Xk] = LuJ where LvIJ = 7rl(U). By induction,

Thus

s[sI/Xl, .. . , Sk/Xk] --+1 (tl, t2) where u ~~'*,,2 (tl' t2)·

From the definition of ~~, *a2 '

LvIJ ~al tl
and, further, by the definition of ~al we obtain

for some canonical form Cl. From the operational semantics we see

fst(S)[sI/Xl' ... ' Sk/Xk] == fst(S[SI/Xl, ... , Sk/Xk]) --+1 Cl

making [fst(s)]lp[dI/Xl' ... ' dk/Xk] ~al fst(s) [SI/Xl, ... , Sk/Xk]' as required.

Languages with higher types 207

t == tl t2: Suppose tl : (72-> CJ, t2 : CJ2. Assume t has free variables Xl : Tl,"" Xk : Tk

and that d l ~Tl Sl, ... ,dk ~Tk Sk. Let

From the denotational semantics, we see

[tl t2TIlp[ddxl"'" dk/Xkj =

let r.p ~ [tdlp[ddxl"" ,dk/Xkj. r.p(d)

with
r.p(d) = luJ.

Noting that by induction we have

we obtain

tl[sdxl)"') Sk/Xkj -t l >'x.t~ & r.p ~~2~>(T >'x.t~

for a canonical form >'x.t~. Also, by induction, as d = [t2TIl p[dl/ Xl, ... , dk/ Xk],

Now, from the definition of ~~2~>(T' we get

As r.p(d) = luJ, there is c E C~ such that

t~[t2[sdxl"'" Sk/Xkl/xj-tl c & u ~~ c.

From the operational semantics we deduce

and can conclude

208 Chapter 11

as required.

t :::: rec y.tl: Assume y : a and tl : a. Let Xl : 71, ... , Xk : 7k be all the free variables of t
and suppose dl .:s7"1 S1, . .. , dk .:s7"k Sk· From the denotational semantics, we see

Thus () = UnEw ()(n) where each ()(n) E (V;)J.. is given inductively by:

()(O) = ..1(V;).L

()(n+l) = [tl]l p[dl/ Xl, ... , dk/Xk, ()(n) /yj.

We show by induction that

(1)

(Note that all the free variables Xl,··· ,xk of recy.tl must be distinct from y so which
ever way we associate the substitution, as

or as

yields the same term.)
By Lemma 11.22 it then follows that

We now prove (1) by induction:
Basis n = 0: We require rp(O).:sa recY.h[sI/Xl, ... ,Sk/Xkj. This certainly holds, by
Lemma 11.22(i), as ()(O) = ..i.
Induction step: Assume inductively that

Now by structural induction

()(n+l) =[tl]lp[dl/Xl' ... ' dk/Xk, ()(n) /yj

.:satdSl/Xl, ... , Sk/Xk, recy.tdsl/xl, ... , Sk/Xkj/yj

::::tdrecy.tl/y][sl/X1, ... ,Sk/Xkj.

Languages with higher types 209

From the operational semantics we see that

for a canonical form c. Now, from the definition of ;5a we conclude

This completes the mathematical induction required in this case. o

As a corollary, we deduce that the evaluation relation and denotational semantics
match at the ground type into

Corollary 11.24 Assume t is a closed term with t : into Then

for any n E N.

11.9 Fixed-point operators

The denotational semantics give mathematical models in which to reason about the
evaluation of terms in our language with higher types. As an illustration we will study
how fixed-point operators can be expressed in both the eager and lazy variants of the
language.

At first we assume evaluation is lazy. A fixed-point operator is a closed term Y of type
(7-> 7)-> 7 which when applied to an abstraction F yields a fixed point of F i.e.

Given that Y should satisfy this equation, a reasonable guess of a suitable definition is

rec Y()..f.f(Y f)).

Indeed, according to the denotational semantics this does define a fixed-point operator.
To see this we consider the denotation of

R == rec Y()..f.f(Yf))

-assumed well-typed so R : (7-> 7)-> 7. According to the denotational semantics

/-tU.[)..f.f(Y f)]lp[U !Y]
/-tU l)..<p. let <p' {= <po <p' (let U' {= U. U' (<p)) j

210 Chapter 11

Before proceeding it is helpful to simplify this expression with the help of continuous
functions

downe : C J. ----+ C

to a cpo C, with bottom ..le, from its lifting CJ.. Such a function is given by

downc(rp) = let rp' ¢= rp. rp'

or, equivalently, as

downc(rp) = rp I rp = .rp { ' 'f l 'J
..le otherwIse.

We are concerned with such functions in the special case that C is a function space, say
of the form D -> E, with E a cpo with bottom. In this case:

Lemma 11.25 Let C be the cpo [D -> E] where E is a cpo with bottom element 1. E .

Then
(downc(rp))(d) = let rp' ¢= rp. rp'(d)

for rp E C J. , d ED.

Proof: The equality is clear in the case where rp has the form lrp' J. In the case where
rp = ..1, the right-hand-side is ..lE which agrees with the left-hand-side which is
()"d E D . ..lE)(d) = ..lE. 0

Both V;_>T and V(IT_>r)_>r are cpo's with bottom, of the form required by the lemma.
Accordingly, there are functions

down: (V;->rh -> V;_>T and

down: (V(lr_>T)_>Th -> V(~->T)-YT

(where it's hoped the dropped subscripts on the two different "down" functions are
forgiven).
Using them we can simplify [R]lp:

[R]l p = /LU.l)..rp.(down(rp)) ((down(U))(rp))J.

From this simplified form of denotation of R we see that

where UfO) ..L

U(I) l)..rp·(down(rp)) (..l(rp))J

l)..rp. (down(rp)) (..1) J

Languages with higher types

and, inductively,

Thus

u(n) l)..<p.(down(<p))((down(u(n-l)))(<p))J

l)..<p. (down(<p)) n(1-)J

U u(n)
nEw

UnEW l)..<p.(down(<p))n(1-)J

= lUnEw)..<p·(down(<p))n(..l)J by the continuity of l- J,
l)..<p. UnEw (down(<p))n (1-)J

as lubs of functions are determined pointwise,

l)"cp. fix(down(<p)) J by the definition of fix·

211

From this characterisation, it follows that R is a fixed-point operator. In the case
where F is an abstraction of type T-> T we have

for some <p' : (V;)J.. --+ (V;)J... Hence

[F(RFWp = <p'([RF]lp)

<p' (fix(down(l <p' J)))
<p' (fix(<p'))

fix(<p')

= [RF]lp

Exercise 11.26 Show even if [F]lp = 1- for F : T-> T it holds that

The characterisation of [R] I P enables us to show that the programs

R()..x.t) recx.t

o

212 Chapter 11

are equivalent in the sense of having the same denotation. We simply argue from the
denotational semantics that

[R(Ax.t)]lp fix(Ad. [t~l p[d/ xl)

JLd. [t~l p[d/x]

[rec x.t~lp

So the definition of fixed-point operators is reasonably straightforward with lazy eval
uation. What about under eager evaluation? The same definition no longer works, as
will now be shown. From the denotational semantics of the eager languages we see

[R~ep lJL U.(Aip.[!(Y!Wp[ip/!,U/Yl)J

lJL U.(Aip. let v ~ U(ip). ip(v))J.

Now we can argue that

JL U.(Aip. let v ~ U(ip).ip(v)) = Aip . ..1

by considering its approximants. We know this fixed point is UnEw u(n) where

U(O) Aip . ..1 and, inductively,

u(n) Aip.(let v ~ u(n-l)(ip). ip(v)) for n > O.

From this we see that
U(1) Aip.(let v ~ ..1. ip(v))

Aip . ..1

and similarly by a simple induction that

u(n) Aip.(let v {= un-l(ip).ip(v)
Aip . ..1

for all n > O. It follows that

JL U.(Aip. let v ~ U(ip). ip(v)) = Aip . ..1

and hence that

Hence
[R(Ax. tWp = ..1.

Languages with higher types 213

Instead of delivering a fixed point, an application R()..x.t) yields .1, a diverging com
putation. Note the key reason why this is so: According to the denotational semantics
the definition of u(n) involves the prior evaluation of u(n-l)(<p), on arguments <p, and
inductively this is always .i.

Exercise 11.27 Argue from the operational semantics that R()..x.t) diverges in the sense
that there is no canonical form c such that R()..x.t) ---+e c. 0

So how can we define a fixed-point operator under eager evaluation? The key idea is
to use abstraction to delay evaluation and in this way mimic the lazy language and its
simple expression of fixed-point operators.

Notice an anomaly. Under either eager or lazy evaluation the two terms

F(YF),)..x.((F(YF))x)

are not evaluated in the same way; the latter is a canonical form and so evaluates directly
to itself while the former involves the prior evaluation of F, and also (Y F) in the eager
case. This is in contrast to mathematics where a mathematical function

is always the same (i. e. the same set of ordered pairs) as the function

)..x E x.<p(x) : X ---+ Y.

We study how this distinction is reflected in the denotational semantics.
Assume T is a function type of the form (J - > (J I, and that

f : T-> T, Y: (T-> T)-> T and x : (J

are variables. We consider the denotations of the terms

fey!),)..x.((f(Y!))x),

both of type T, in an environment p where p(f) = <p and p(Y) = U. The simplification
of the denotations will make use of the function

down: (v:h ---+ V:
taking LvJ to v and .1 to the always .1 function in V;. As earlier, by Lemma 11.25, we
observe that for'1/! E (V:h we have

down('1/!) =)..w. let () ~ '1/!. O(w)

214 Chapter 11

a fact which we will make use of shortly. Now, from the denotational semantics, we see
on the one hand that

[J(YfWp = let v ~ U(4').4'(v)

which may be .1 E (v:h. On the other hand

lAW. let {} ~ [f(YJ)]e p. {}(w)J

lAW. (down([f(Y J)]e p)(w))J by (*)

ldown([f(Y f)]e p)J

a property of mathematical functions,

ldown(let v ~ U(4'). 4'(v))J

which is always a non-.1 element of (VTeh. This distinction is central to our obtaining a'
fixed-point operator under eager evaluation.

Redefine R to be
rec Y. (Af. AX.((f(YJ))x)).

Then, from the denotational semantics, we obtain

We have already simplified the denotation of Ax.((f(YJ))x), and using this we obtain

The fixed point

JLU.A4'·ldown(let v ~ U(4')'4'(v))J

is UnEw u(n), the least upper bound of approximants given inductively by:

U(O) A4' . .1,

urn) A4'.ldown(let v ~ u(n-1) (4'). 4'(v))J, for n > O.

Thus we obtain that

U(l) A4'.ldown(.1)J = A4'.l.1J

U(2) A4'.ldown(4'(.1))J = A4'·l(down o 4') (.1)J

and, by induction, that

Languages with higher types

It follows that

lUnEw u(n) J
lUnEW (Acp.l(down 0 cp) (n-I) (.1)J) J

l Acp·lUnEw (down 0 cp) (n-I) (.1) JJ
as lubs of functions are determined pointwise and l- J is continuous,

l Acp·lfix(down 0 cp)JJ.

It now can be shown that:

[R(Ay.AX.tWp = [rec y.(AX.t)]ep

Argue from the denotational semantics that

[R(Ay.AX.tWp

(Acp.lfix{ down 0 cp)J)(AO.l AV. [t] e p[v / x, O/ylJ)

lfix(down 0 (AO.l AV. [t] e p[v / x, O/ylJ))J

lfix{AO.AV.[t]ep[v/x,O/y])J by recalling how down acts,

ll1 O.AV.[t]ep[v/x, O/y]j

[rec y.(AX.t)]ep.

11.10 Observations and full abstraction

215

We have just seen examples of reasoning within the mathematical model provided by de
notational semantics to explain the behaviour of programs. According to the denotational
semantics certain terms behave as fixed-point operators. Such facts are hard to prove,
or even state correctly, solely in terms of the operational semantics. One might wonder
why it is we are justified in using the denotational semantics to make conclusions about
how programs would run on a machine, assuming of course that the implementation is
faithful to our operational semantics. Why are we justified? Because the operational
and denotational semantics agree on the "observations of interest." If the denotational
semantics says that a closed term of type int denotes a particular integer, then it will
evaluate to precisely that integer, and conversely. For other types, if a term converges,
in the sense of not denoting 1., then its evaluation will converge too, and again con
versely. The two semantics, denotational and operational, agree on observations telling
whether or not a term converges, and what integer a term of type int evaluates to. This

216 Chapter 11

agreement is the content of the results expressing the adequacy of the denotational with
respect to the operational semantics. In fact, we can restrict the observations to just
those of convergence. The adequacy with respect to convergence will ensure that the two
semantics also agree on how terms of type int evaluate. The simple argument is based
on enclosing terms in a context

if - then 0 else Diverge

where Diverge: int is a closed term which diverges. For a closed term t : int and number
n, argue for both the eager and lazy semantics that:

t -t n {::::::::? if (t - n) then 0 else Diverge!

{::::::::? if (t - n) then 0 else Diverge.lJ.

{::::::::? [t]p = n.

by adequacy,

Is the evaluation of type int and convergence a reasonable choice of observation?
Certainly many implementations report back to the user precisely the kind of convergence
behaviour we have discussed, only yielding concrete values for concrete datatypes like
integers or lists. From that point of view our choice is reasonable. On the other hand,
should one broaden one's interest to other properties, such as how long it takes to evaluate
a term, one would expect more detailed observations, and, to respect these, more detailed
semantics.

It is also possible to restrict the observations, for which a cruder denotational seman
tics can suffice for a fixed operational semantics. To illustrate this we give an alternative
denotational semantics for the lazy language. This one will ignore the convergence be
haviour at higher types in general, but still ensure that at ground type int

t -t l n iff [t]p = lnJ

for closed term t : int and integer n. It is concerned with observations of what printable
values ensue from the evaluation of terms of type into

Define Dr, the cpo of denotations at type T, by structural induction on T:

N.L

Dr! X Dr2

[Dr! -t Dr21

An environment for the lazy language is now taken to be a function

p: Var -t U {Dr' T a type}

Languages with higher types 217

such that if x: 7 then p(x) EDT for any variable x and type To Write Env for the cpo
of environments. As earlier, the denotation of typable terms t is an element [t~ given by
structural induction, staying within the metalanguage of Section 8.4.

[x])..p.p(x)

[n~ =)"p.lnJ
[tl op t2] =)..p.([h]p OP.l[t2]p) where op is +, -, x

[if to then it else t2]

[(it, t2)]

[fst(t)]

[snd(t)]

[)..x.t]

)"p. Cond([to]p, [tl]p, [t2]p)

)..p.([tt]p, [t2]p)

)..p.?Tt{[t]p)

)..p.?T2([t]p)

=)..p.)..d E DTl.[t]p[d/x]

where)..x.t : 71- > 72

[(tl t2)])..P·[tl]P([t2]p)

[let x {= tl in t2] =)..p.[t2]p[[h]p/x]

[recx.t~ =)..p.(t-td.[t]p[d/x])

Exercise 11.28
(1) Assume variables x : int- > int, W : int- > int, and y : into What are the
denotations of (()..x.x) 0) and (()..x.)..y.(x y))O), where 0 == recw.w?
(2) Show that with respect to the operational semantics of the lazy language

t ---+1 c =:} [t]p = [c]p,

for an arbitrary environment p. (In the argument, by rule induction, you need only do
enough cases to be convincing. You may assume a variant of the Substitution Lemma
but state it clearly.)
(3) Show for a closed term t : int that

t ---+1 n iff [t]p = lnJ
for any n E N. It is suggested that you use logical relations .:ST' between elements of DT
and closed terms of type 7, given by structural induction on types in the following way:

d .:Sint t {==:} '<In E N. d = lnJ =:} t ---+1 n,

218 Chapter 11

First show, by structural induction on types T, that

o

Results expressing the adequacy of a denotational semantics with respect to an oper
ational semantics, for a choice of observations, are vital to justify the use of the more
mathematically tractible model of denotational semantics to predict and reason about
program behaviour. There is another important criterion for a denotational semantics
to fit well with a choice of observations. This is that the semantics be fully abstract. Full
abstraction is often a much more difficult property for a denotational semantics to fulfil
than adequacy, and fortunately it is less vital. But it is a useful property to have and is
significant, in part, because attempts at obtaining fully abstract semantics have sparked
off important lines of research. This is because achieving full abstraction for languages
like those of this chapter, involves formalising key operational ideas like sequentiality
within the mathematics of domain theory.

To define full abstraction with respect to a particular choice of observations we first
show how such a choice induces an equivalence on terms. This requires the notion of a
context. Intuitively a context is a term C[] with a "hole" [] into which we can plug
typable term t to obtain a typable term Crt]; formally, it can be defined to be a term
with a distinguished free variable, which can be substituted for. With respect to some
choice of observations, for terms t 1, t2 of the same type, write tl '" t2 iff for all contexts
C[] for which C[tl] and C[t2] are closed, typable terms, the observations on C[tl] and
C[t2] agree. For example, if the observations of interest concern just the convergence
behaviour of terms, we would have

for all contexts C[] for which C[td and C[t2] are closed and typable. Note, that although
the equivalence relation rv has been defined via the operational semantics, it could equally
well have been defined from a denotational semantics, provided it is adequate. Say a
denotational semantics is fully abstract, with respect to the observations, iff

In fact, the "only if" direction of the equivalence follows provided the denotational se
mantics is adequate (why?), so the extra difficulty is in obtaining the converse "if"
direction.

Languages with higher types 219

So, in a sense, a fully abstract semantics is one which makes only those distinctions
which are forced by differences in the observations. Unfortunately, full abstraction can be
hard to achieve and, in particular, it does not hold of either our eager or lazy denotational
semantics with respect to observations of convergence (or of the denotational semantics
addressing just observations of evaluation at type int, considered in the exercise above).

We sketch why the quest for full abstraction for languages with higher types has moti
vated a study of sequentiality at higher types. The difficulty in obtaining full abstraction
comes about because there are terms, t 1, t2 say, which cannot be distinguished by con
texts definable in the programming language and yet which have different denotations.
How is this? It arises because in our cpo's of denotations there are elements like "parallel
or" 2 which cannot be defined by terms, and t 1, t2 act differently on these. The terms
have a sequential character not shared by these "parasitic" elements. So, a method sug
gests itself: to achieve full abstraction redefine the constructions on cpo's to stop these
undefinable elements from appearing, and in particular, instead of taking all continuous
functions in the function space restrict to "sequential" functions. This has proved very
hard to do, at least in a syntax-independent way, without resorting to some form of
encoding of the operational semantics in the cpo constructions. The quest for full ab
straction has spurred on the search for a general definition of sequentiality. It should be
born in mind that the success of this search, measured perhaps against some convincing
operational analysis of sequentiality, might not lead automatically to a solution of the
full abstraction problem.

11.11 Sums

We consider how to extend our language to include a sum on types. We include a
construction 71 + 72 between types 71, 72. Accordingly, the language of terms is extended
to include injections of terms, inl (t), inr (t), into the left and right of a sum. Functions
from a sum can be described with a case construction

Free occurrences of Xl in t1, and X2 in t2, are bound in this new construct which has free
variables

2 "Parallel or" is a continuous function par on T 1. extending the usual disjunction on truth values
but with the property that por(true,~) == por(~, true) = true; it is as if the the function inspects each
argument in parallel, and not sequentially, returning true if either argument is true.

220 Chapter 11

Informally, such a case construction examines the form of t, and evaluates according to
whether it lies in the left or right of a sum. There are these additional typing rules to
ensure the well-formedness of terms:

inlet) : 71 + 72 inr(t) : 71 + 72

t : 71 + 72 XI: 71 X2: 72 tl: 7 t2: 7
case t of inl (Xl).i], inr (X2).t2 : 7

Notice that because of the typing rules for injections, a term can now have more than
one type, for example

inl(5) : int + int and inl(5): int + (int -. int).

How terms involving sums are evaluated depends on whether evaluation is eager or,
lazy. In the operational semantics of the eager case we can sayan injection like inlet) is
a canonical form iff t is itself in canonical form. We define canonical forms of sum types
under eager evaluation by the clauses:

Again, such canonical forms evaluate to themselves. The rules for the operational se
mantics are extended by:

t -.e inl (Cl) i][CI/Xl]-.e C t -.e inr (C2) t2[C2/X2] -.e C

(case t of inl(Xl).f], inr(X2) .t2) -.e c (case t of inl (xd .tl, inr (X2). t2) -.e c

For the denotational semantics with eager evaluation, the cpo of values of a sum type is
just the sum of the cpo's of values of the components; i.e.

As before, a term t in an environment p is denoted by an element of (VTeh. However,
the extension to sums has meant that t need not have a unique type and, because
injection functions might be represented differently as the components of the sum vary,
the denotation of a term t is given for some typing t : 7:

In a lazy regime, a canonical form can be an injection of a closed term which has
not itself been evaluated. Following this idea, the canonical forms for the lazy language
include canonical forms for sums given by adding the clauses

inlet) E C~'+T2 if t : 71 and t is closed,

inr(t) E C~1+T2 if t : 72 and t is closed.

Languages with higher types 221

The lazy evaluation of the cases construction is described by the rules

t ---t1 inl (t') tIlt' /xd ---t1 C t ---t1 inr (t') t2[t' /X2] ---t 1 C

(case t of inl(xt).h, inr(x2).t2) ---t1 C (case t of inl (Xd.t1,inr (X2).t2) ---t1 C

Because the values of a sum type do not need the prior evaluation of the components,
the extended denotational semantics is based on the choice of values so

V;1+T2 = (V;J.l + (V;2h·

Again the semantics of a typed term t : 7, in an environment p, is described by an element

It is not hard to extend the results of this chapter to the language with sums.

Exercise 11.29 Write down the clauses for the denotational semantics of the injection
and case construction with respect to the typing

inlet) : 71 + 72

(case t ofinl(x1).t1' inr(x2).t2) : 7

for both eager and lazy evaluation. As a check that your denotational semantics is
correct, show by rule induction (you need only consider the new cases) that

t ---t e C =} [t : 7~ep = [c: 7~ep and

t ---t1 C =} [t : 7]lp = [c: 7]lp

for closed terms t and canonical forms c of type 71, and any environment p. o

11.12 Further reading

Three good books on functional programming: (eager) Standard ML [101] and [73];
(lazy) [22]. A good survey on logical relations, their history and use can be found in [65].
The two classic papers on full abstraction are Plotkin's [78] and Milner's [62]. These
are both concerned with full abstraction restricted to observations of the evaluation of
terms at the ground types integers and booleans. Plotkin shows that full abstraction can
be obtained, not just by cutting away the undefinable elements, but also by expanding
the language, so that a form of parallel conditional is included. The state of the art in
the full abstraction problem for languages like those considered here is conveyed in [94],
[16]-the latter was written around 10 years ago but is still a good survey. A recent paper
which is reasonably accessible is [27]. Languages like those here, and their relationship
to intuitionistic and linear logic, are discussed in [3].

12 Information systems

Information systems provide a representation of an important class of cpo's called Scott
domains. This chapter introduces information systems and shows how they can be used
to find least solutions to recursive domain equations, important for an understanding
of recursive types. The method is based on the substructure relation between informa
tion systems. This essentially makes information systems into a complete partial order
with bottom. Useful constructions like product, sum and (lifted) function space can
be made continuous on this cpo so the solution of recursive domain equations reduces
to the familiar construction of forming the least fixed point of a continuous function.
There are further technical advantages to working with information systems rather than
directly with domains. Properties of cpo's can be derived rather than postulated and the
representation makes them more amenable mathematically. In particular we obtain ele
mentary methods for showing such properties as the correspondence between operational
and denotational semantics with recursive types, presented in the next chapter.

12.1 Recursive types

To begin with let's remark on a familiar cpo satisfying a recursive domain equation. The
equation

X=l+X

is to be understood as specifying those cpo's (or domains) X which are equal to them
selves summed with the one-element cpo 1. This is a recursive equation for X. One
solution, though not the only one, is a copy of the discrete cpo of natural numbers w.

Many programming languages allow the definition of recursive types (the next chapter
treats such a language). Even if they don't it can often be that their semantics is most
straightforwardly described through the use of recursively defined cpo's. Programming
features like-dynamic binding are also conveniently modelled with help of recursively de
fined types. In fact, Dana Scott made a fundamental breakthrough with the discovery
of a model of the A-calculus in the form of a nontrivial (i.e. non singleton) solution to
the recursive type definition

D~[D-tD].

This is not strictly speaking an equation; rather the two cpo's D and [D -t D] are
in isomorphism with each other. It highlights the fact that we don't necessarily need
solutions to within equality-the more tolerant relation of isomorphism will do.

How are we to define types recursively? We have some of the machinery at hand in
the form of inductive definitions, as can be seen through a simple example. Finite lists
of integers (discussed in Section 10.5) can be identified with a set L satisfying

L = {()} + (N xL).

224 Chapter 12

The empty tuple represents the null list while the operation of "consing" an integer n
to the beginning of a list l is represented by the operation (n, l) of pairing. Finite lists
are not the only solution to (*). If L were taken to consists of finite and infinite lists
of integers then this too would be a solution. However, taking L to just have finite lists
of integers as elements yields the least set satisfying (*). To see this recognise that the
definition of finite lists fits the pattern of inductive definitions discussed in Chapter 4.
For L to be a solution of (*) requires precisely that L contains 0 and is closed under
con sing with an integer, i.e. L is closed under the rules

0/0, {l}/(n, l),

where n EN. The set of finite lists is the least set closed under such rules. Alternatively,
we can regard the set of finite lists as fixe '!j;) where '!j; is the monotonic and continuous
operator on sets acting so

'!j;(X) = {O} + (N x X).

Quite a few recursive types can be built up in a similar way using inductive definitions.

Exercise 12.1 Describe how to define the type of binary trees with integer leaves as an
inductive definition. 0

Exercise 12.2 Describe a set which is a solution to the domain equation X = 1 + X
and is not isomorphic to the natural numbers w. 0

There are, however, other recursive types which are not directly amenable to the
same technique. For example, how are we to define the type of streams, or "stoppered
sequences", of Section 8.2 which can be infinite? A reasonable guess would be that
streams are the least solution to

L = ({$} + N x Lh

an equation between complete partial orders. Although tentative, we can argue that any
complete partial order L satisfying this equation must first contain ..l, a copy l$J of the
"stopper", and consequently also sequences like l(n, ..l) J and l (n, L $ J) J, where n EN.
Continuing we can argue that L also contains sequences of the form

l (n 1, L (n2 ... , L $ J) ...) J) J and l (n 1, L (n2 ... , ..l) ...) J ,

where nl, n2, ... are integers. In other words, L contains all finite "stoppered" or "un
stoppered" sequences. But neither this style of argument, nor an inductive definition,
can ever yield infinite sequences such as:

Information systems 225

This limitation holds a clue as to how to define such recursive types: use the method of
inductive definitions to construct the finite elements and then derive the infinite elements
by some form of completion process, an infinite element being built up out of its finite
approximations.

An information system expresses how to build a cpo out of a notation for its finite
elements. Because they only deal explicitly with the finite elements they are amenable to
the technique of inductive definitions and so can be defined recursively. An information
system can be viewed as a prescription saying how to build a cpo. In more detail, an
information system can be thought of as consisting of assertions, or propositions, that
might be made about a computation, which are related by entailment and consistency
relations. An information system determines a cpo with elements those sets of tokens
which are consistent and closed with respect to the entailment relation; the ordering is
just set inclusion. The elements of the cpo can be thought of as the set of truths about
a possible computation and, as such, should be logically closed and consistent sets of
assertions. Although not all cpo's can be represented by information systems, they do
represent a rich class, the Scott domains.

We should note now that we cannot expect to solve all domain equations because our
cpo's do not necessarily have bottom elements. In particular, by Cantor's argument, we
cannot hope to have a solution to the domain equation

x ~ [X ---7 2]

where 2 is the discrete cpo with two elements. We get around this by only allowing a
"lifted function space" construction in domain equations; for two cpo's D, E their lifted
function space is [D ---7 E.d. The techniques of this chapter will yield least solutions to
any domain equation

X ~ F(X)

where F is built up from the unit domain 1 (with just one element) and empty domain
o using product, lifted function space, lifting and sum.

12.2 Information systems

An information system consists of a set of tokens, to be thought of as assertions, or
propositions, one might make about a computation, which are related by consistency
and entailment relations. The consistency relation picks out those finite subsets of tokens
which can together be true of a computation. For example, the computation of an integer
cannot simultaneously be 3 and 5, so tokens asserting these two outputs would not be

226 Chapter 12

consistent. It can be that the truth of a finite set of tokens entails the truth of another.
For instance, two tokens will entail a third if this stands for their conjunction.

Notation: To signify that X is finite subset of a set A we shall write X ~ fin A. We write
Fin(A) for the set consisting of all finite subsets of A, i.e. Fin(A) = {X I X ~ fin A}.

Definition: An information system is defined to be a structure A = (A, Con, f-), where
A is a countable set (the tokens), Con (the consistent sets) is a non-empty subset of
Fin(A) and f- (the entailment relation) is a subset of (Con \ {0}) x A which satisfy the
axioms:

l. X ~ Y E Con =} X E Con
2. a E A=}{ a} E Con
3. X f- a =} X U {a} E Con
4. X E Con & a EX=} X f- a
5. (X, Y E Con & Vb E Y. X f- b & Y f- c) =} X f- c.

The condition that f-~ (Con \ {0}) x A is equivalent to saying that 0 f- a never holds,
that nothing is entailed by the empty set. This has a much more specific character than
the axioms 1-5 which are reasonable assumptions about a fairly general class of logical
systems. Its assumption does however simplify constructions such as the sum, and helps
smooth some of the work later. As usually presented in the literature information systems
give rise to cpo's with bottom elements. Here the usual definition is modified slightly so
as to represent cpo's which do not necessarily have bottoms.

An information system determines a family of subsets of tokens, called its elements.
Think of the tokens as assertions about computations-assume that a token which is
once true of a computation remains true of it. Intuitively an element of an information
system is the set of tokens that can be truthfully asserted about a computation. This
set of tokens can be viewed as the information content of the computation. As such
the tokens should not contradict each other-they should be consistent-and should be
closed under entailment. In order to represent cpo's which do not necessarily have a
bottom element we insist that that elements also have to be non-empty-in this way the
empty set is ruled out.

Definition: The elements, IAI, of an information system A
subsets x of A which are

l. non-empty: x -I- 0
2. consistent: X ~fin X =} X E Con
3. f--closed: X ~ x & X f- a =} a E x.

(A, Con, f-) are those

Information systems 227

Thus an information system determines a family of sets. Such families have a simple
characterisation as can be seen in the next section. These families form cpo's when
ordered by inclusion. Notice that the empty set 0 is consistent and f--closed and so
would be the least element but for failing to be non-empty. Because the empty set is
removed the cpo's will not necessarily possess a bottom element.

Proposition 12.3 The elements of an information system ordered by inclusion form a
cpo.

Proof: Let A = CA,Con,f-) be an information system. We show IAI is a cpo. Suppose
Xo ~ ... ~ Xn ~ ... is an w-chain in IAI. We show Un Xn E IAI· Firstly Un Xn is non
empty as anyone of its elements is. Secondly Un Xn is consistent. Suppose X ~ fin Un X n .

Then, because X is finite, X ~ Xn for some nEw. Therefore X E Can. Thirdly Un Xn

is f--closed. Suppose X E Can, X f- a and X ~ Un X n . Then, as X is finite, X <;;; Xn for
some n. However Xn E IAI so a E X n · Thus a E Un X n . Hence IAI has unions of w-chains
and is a cpo. 0

So, an information system determines a cpo. The subtle idea of information introduced
by Scott in his theory of domains now has an intuitive interpretation. By representing
a cpo as an information system we see the information associated with a computation
as the set of tokens that are true of it and an increase in information as the addition of
true tokens to this set.

Not all cpo's can be generated as elements of an information system, though those cpo's
which can be obtained from information systems form a rich and important subclass.
Their structure is examined in the next section where elements arising as closures under
entailment of finite, but non-empty, consistent sets will playa special role.

Lemma 12.4 Let A = CA, Con, f-) be an information system. Suppose 0 =I- X E Can
and let Y be a finite subset of A.

1. If X f- b for every bEY then X U Y E Con and Y E Can.
2. The set X = {a E A I X f- a} is an element of A.

Proof:
(1) Suppose X f- b for every bEY. We show Xu Y E Can and Y E Can by a simple
induction on the size of Y. Clearly it holds when Y is empty. Suppose Y is non-empty,
containing a token b', and X f- b for all bEY. Then X f- b for all bEY \ {b'} so
by induction X U (Y \ {b'}) E Can. By axioms 4 and 5 on an information system,
Xu (Y \ {b'}) f- b'. By axiom 3, Xu Y E Can. By axiom 1, Y E Can too.

228 Chapter 12

(2) It follows from (1) that X = {a I X f- a} is consistent. It is f--closed because if
y ~ {a I X f- a} and Y f- a' then X f- a' by axiom 5 in the definition of information
systems. 0

Notation: The entailment relation, between consistent sets and tokens, extends in an
obvious way to a relation between consistent sets. Let A = (A, Con, f-) be an information
system. Let X and Y be in ConA. We write X f-* Y as an abbreviation for Va E Y. X f- a.
Using this notation we see that

o f-* Y {==} Y = 0,

a consequence of the original entailment f- being a subset of (Con \ {0}) x A. Directly
from the definition of f-*, we obtain

X f-* Y & X f-* y' =? X f-* (Y U Y'),

while we can rewrite axiom 5 on information systems as

X f-* Y & Y f-* Z =? X f-* Z,

which makes it clear that axiom 5 expresses the transitivity of entailment.
For X any subset of the tokens of an information system write

X =def {a I 3Z ~ X. Z f- a}.

Notice that 0" = 0 because X f- b only holds for non-empty X.

12.3 Closed families and Scott predomains

This section characterises those cpo's which arise from the elements of an information
system. It is not essential to the remainder of the book, and so might be omitted.
However, it does introduce the important and widely current notion of a Scott domain.
As a beginning we characterise precisely those families of subsets which can arise as
elements of an information system.

Definition: A closed family of sets is a set F of subsets of a countable set which satisfies

1. If x E F then x i= 0,
2. If Xo ~ Xl ~ ... ~ Xn ~ ... is is a w-chain in F then UnEw Xn E F and
3. If U is a non-empty subset of F with n U i= 0 then n U E F.

Information systems 229

As we now see there is a 1-1 correspondence between information systems and closed
families.

Theorem 12.5
(i) Let A be an information system. Then IAI is a closed family of sets.
(ii) Let :F be a closed family of sets. Define

AF = UF,
X E ConF {==} X = 0 or (::3x E :F. X ~fin x),

X rF a{==}0 =I X E ConF & a E AF & (\ix E :F. X ~ x =;. a EX).

Then I(F) = (A F , ConF, r F) is an information system.
(iii) The maps A f---+ IAI and F f---+ I(F) are mutual inverses giving a 1-1 correspondence
between information systems and closed families: if A is an information system then

I(IAI) = A; if F is a closed family then II(F)I = :F.

Proof:
(i) Let A = (A, Con, r) be an information system. We show IAI is a closed family.
Proposition 12.3 establishes 2 above. Suppose 0 =I u ~ IAI with n U not empty. We
show n U E IAI· Take u E U. We see n U is consistent as n U ~ u. Suppose X ~ n U
and X r a. Then X ~ u for all u E U. Each u E U is r-closed so a E u. Thus a E n U.

Therefore n U is non-empty, consistent and r-closed, so n U E IAI. This proves IAI is a
closed family.
(ii) Let F be a closed family. The check that I(F) is an information system is left to the
reader.
(iii) Let A = (A, Con, r) be an information system. To show I(IAI) = A we need

A=UIAI,
X E Con {==} X = 0 or (::3x E IAI. X ~fin x),

X r a{==}0 =I X E Con & a E A & (\ix E IAI. X ~ x =;. a Ex).

Obviously A = U IAI by axiom 2 on information systems.
Let X ~fin A. If X E Con then either X = 0 or X ~ X = {a I X r a} E IAI.
Conversely, if X = 0 or X ~ fin x, where x E IAI, then by the definition of such elements
x we must have X E Con.
Suppose X E Con and a E A. Clearly if X r a then from the definition of elements of
A we must have X ~ x =;. a E x for any x E IAI. Suppose (\ix E IAI. X ~ x =;. a Ex).
Then X = {b I X r b} E IAI so X r a. Therefore I(IAI) = A.

230 Chapter 12

Let :F be a closed family. We show II(:F) I = F If x E :F then x E II(:F) I, directly
from the definition of consistency and entailment in I(:F). Thus:F ~ II(:F)I. Now
we show the converse inclusion II(:F) I ~ F Write I(:F) = (A F , ConF, f-F) as above.
Suppose 0 =1= X E ConF. Then U = {y E :F I X ~ y} is a non-empty subset of :F from
the definition of ConF and X = n U from the definition f- F. As:F is a closed family
and n U is non-empty, X E F To complete the argument, let x E II(:F) I· Assume a
particular countable enumeration

of the elements of the set x-possible as U:F and so x are countable sets. Now x n , for
nEw, forms an w-chain in :F, where we define Xn = Xn in which

Xo = {eo},

X n +1 = Xn U {en +1}'

As :F is a closed family Un Xn E :F and clearly Un Xn = x. Thus II(:F) I ~ F The two
inclusions give II(:F) I = :F.

The facts, I(IAI) = A for all information systems A and II(:F) I = :F for all closed
families:F, provide a 1-1 correspondence between information systems and closed families.

o

Exercise 12.6 Do the proof of (ii) above. o

We turn now to consider the kinds of cpo's which can be represented by information
systems. In fact, the cpo's with bottom which can be presented this way are exactly a
well-known class of cpo's called Scott domains (after Dana Scott).

Definition: An element x of a cpo D is said to be finite iff, for every w-chain do ~ ... ~
dn ... such that x ~ UnEw dn , there is nEw for which x ~ dn- We will let DO denote
the set of finite elements of D.

A cpo D is w-algebraic iff the set of finite elements DO is countable and, for every
xED, there is an w-chain of finite elements eo ~ ... ~ en ... such that x = UnEw en.

A subset X of a cpo D is said to be bounded if there is an upper bound of X in D. A
cpo D is bounded complete if every non-empty, bounded subset of D has a least upper
bound.

In the case where a cpo has a bottom element, is a bounded complete and w-algebraic
it is often called a Scott domain. In general, when it need not have a bottom, we shall
call a bounded complete, w-algebraic cpo a Scott predomain.

Information systems 231

Exercise 12.7 Show that in a Scott predomain least upper bounds of finite sets of finite
elements are finite, when they exist. D

Proposition 12.8 Let A = (A, Con, f---) be an information system. Its elements, IAI,
ordered by inclusion form a Scott predomain. Its finite elements are of the form X =

{a E A I X f--- a}, where 0 =1= X E Con.

Proof: Let A = (A, Con, f---) be an information system with elements IAI. As IAI is a
closed family it is a cpo ordered by inclusion.

We require that IAI is bounded complete i.e. if Vx E V. x ~ y, for non-empty V ~ IAI
and y E IAI, then there is a least upper bound of V in IAI. However if Vx E v.x c:;; y
then U = {y I Vx E v.x ~ y} is a non-empty subset of the closed family IAI. As V is
non-empty it contains an element v, necessarily non-empty, of IAI. As v ~ n U this
ensures that n U is non-empty. Hence by property 3 in the definition of closed family
we have n U E IAI, and n U is clearly a least upper bound of V.

We now show IAI ordered by inclusion is an algebraic cpo. Firstly we observe a fact
about all elements of IAI. Let x E IAI. Take a countable enumeration ao, al,"" an,···
of x-possible as A is assumed countable. Define, as above, x n = X n where

Xo = {ao},

X n+1 = Xn U {an+d·

Then x = Un xn· We now go on to show that the finite elements of the cpo IAI are
precisely those of the form X, for X E Can. Hence it will follow that every element is
the least upper bound of an w-chain of finite elements.

Suppose in particular that x E IAI is finite. We have x = Un Xn, as above, which
implies x = Xn for some n. Thus x = X n for some Xn ~fin x, which is necessarily in
Can. Conversely, assume x is an element of the form X for some X E Can. Suppose
x c:;; U Xn for some chain Xo ~ ... ~ Xn c:;; ... of the cpo IAI· Then X c:;; Xn for some n,
making x c:;; Xn too. This argument shows the finite elements of the cpo IAI are precisely
those elements of the form X for 0 =1= X E Con.

We conclude that (IAI, C:;;) is a bounded complete w-algebraic cpo and so a Scott pre-
domain. D

An arbitrary Scott predomain is associated naturally with an information system. The
intuition is that a finite element is a piece of information that a computation realises
uses or produces-in finite time, so it is natural to take tokens to be finite elements.
Then the consistency and entailment relations are induced by the original domain. A
finite set of finite elements X is consistent if it is bounded and entails an element if its
least upper bound dominates the element.

232 Chapter 12

Definition: Let (D,~) be a Scott predomain. Define IS(D) = (DO,Con,f-) where DO
is the set of finite elements of D and Con and f- are defined as follows:

X E Con ~ X c;,fin DO & (X = 0 or X is bounded),

X f- e ~ 0 =1= X E Con & e G Ux.

Proposition 12.9 Let D be a Scott predomain. Then IS(D) is an information system
with a cpo of elements, ordered by inclusion, isomorphic to D. The isomorphism pair is

B: D -> IIS(D)I given by B : d f-+ {e E DO leG d},

cp: IIS(D)I -> D given by cp : x f-+ Ux.

Exercise 12.10 Prove the proposition above. o

Thus an information system determines a Scott predomain of elements and, vice versa,
a predomain determines an information system with an isomorphic cpo of elements. We
are justified in saying information systems represent Scott predomains. Notice that they
would represent Scott domains if we were to allow the empty element, which would then
always sit at the bottom of the cpo of elements.

The following exercise shows an important negative result: the function space of arbi
trary Scott predomains is not a Scott pre domain and therefore cannot be represented as
an information system. (We will, however, be able to define a lifted-function-space con
struction A -> 8.1. between information systems A, 8, with cpo of elements isomorphic

to [lAI -> 181.1.]·)

Exercise 12.11 Let Nand T be the (discrete) Scott pre domains of numbers and truth
values. Show that their function space, the cpo [N -> T] is not a Scott predomain and
therefore not representable as an information system.
(Hint: What are its finite elements? Do they form a countable set?) 0

Exercise 12.12 Cpo's are sometimes presented using the concept of directed sets in
stead of w-chains. A directed set of a partial order D is a non-empty subset S of D for
which, if s, t E S then there is u E S with s, t G u. Sometimes a complete partial order
is taken to be a partial order which has least upper bounds of all directed sets. In this
framework a finite element of a cpo is taken to be an element e such that if e GUS, for
S a directed set, then there is s E S with e G s. An w-algebraic cpo is then said to be a
cpo D for which, given any xED, the set S = {e G x I e is finite} is directed with least
upper bound x; it is said to be w-algebraic if the set of finite elements is countable. Show
the cpo's which are w-algebraic in this sense are the same as those which are w-algebraic

Information systems 233

in the sense we have taken outside this exercise. Show too that if in the definition of a
closed family we replace condition 2 by

If S is a directed subset of (F, ~) then USE F

then the same class of families of sets are defined. o

12.4 A cpo of information systems

Because we work with a concrete representation of cpo's, it turns out that we can solVE:
recursive domain equations by a fixed-point construction on a complete partial order of
information systems. The order on information systems, :g, captures an intuitive notion,
that of one information system being a subsystem, or substructure, of another.

Definition: Let A = (A,ConA,f--A) and B = (B,ConB,f-- B) be information systems.
Define A :g B iff

1. A ~ B
2. X E ConA <====> X ~ A & X E ConB
3. X f-- A a <====> X ~ A & a E A & X f-- B a

When A :g B, for two information systems A and B, we say A is a subsystem of B.

Thus one information system A is a subsystem of another B if the tokens of A are
included those of B and the relations of consistency and entailment of A are simply
restrictions of those in the larger information system B. Observe that:

Proposition 12.13 Let A = (A,ConA,f-- A) and B = (B,ConB,f-- B) be information
systems. If their token-sets are equal, i.e. A = B, and A :g B then A = B.

Proof: Obvious from the definition of :g. o

This definition of subsystem almost gives a cpo of information systems with a bottom
element. There is a least information system, the unique one with the empty set as
tokens. Each w-chain of information systems increasing with respect to :g has a least
upper bound, with tokens, consistency and entailment relations the union of those in the
chain. But information systems do not form a set and for this reason alone they do not
quite form a cpo. We could say they form a large cpo. This is all we need.

234 Chapter 12

Theorem 12.14 The relation::::! is a partial order with 0 =def (0, {0}, 0) as least ele
ment. Moreover if Ao ::::! At ::::! ... ::::! Ai ::::! ... is an w-chain of information systems
Ai = (Ai, Coni, f- i) then there exists a least upper bound given by

(Here and henceforth we use the union sign to denote the least upper bound of information
systems.)

Proof: That ~ is reflexive and transitive is clear from the definition. Antisymmetry of
::::! follows from the Proposition 12.13 above. Thus::::! is a partial order and 0 is easily
seen to be the ~-least information structure.

Let Ao ::::! Al ::::! ... ::::! A ::::! ... be an increasing w-chain of information systems
A = (Ai,Coni,f-i)· Write A = (A,Con,f-) = (UiAi,UiConi,Ui f- i). It is routine to
check that A is an information system.

It is an upper bound of the chain: Obviously each A i is a subset of the tokens A;
obviously Coni ~ Con while conversely, if X ~ Ai and X E Con then X E Conj for
some j ~ i but then X E Coni as Ai ::::! Aj; obviously f-i~f- while conversely if X ~ Ai,
a E Ai and X f- a then X f-j a for some j ~ i but then X f-i a as Ai ::::! A j .

It is a least upper bound of the chain: Assume B = (B, Con B, f- B) is an upper bound
of the chain. Clearly then A = Ui Ai ~ B. Clearly Con = Ui Coni ~ ConB. Also if
X ~ A and X E ConB then as X is finite, X ~ Ai for some i. So X E Coni ~ Con as
A ~ B. Thus X E Con ¢==? X ~ A & X E ConB. Similarly X f- a ¢=:> X ~ A & a E

A & X f- B a. Thus A ::::! B making A the least upper bound of the chain. 0

We shall be concerned with continuous operations on information systems and using
them to define information systems recursively. We proceed just as before-the argu
ments are unaffected by the fact that information systems do not form a set. An operation
F on information systems is said to be monotonic (with respect to ::::!) iff

A ::::! B '* F(A) ::::! F(B)

for all information systems A, B. The operation F is said to be continuous (with respect
to ::::!) iff it is monotonic and for any increasing w-chain of information systems

we have that

U F(A) = F(U A).

Information systems 235

(Since F is monotonic Ui F(Ai) exists.) Using the same arguments as before for least
fixed points for cpo's we know that any continuous operation, F, on information systems
has a least fixed point fix(F) given by the least upper bound, Ui Fi(O), of the increasing
w-chain 0 Sl F(O) Sl F2(O) Sl ... Sl Fn(O) Sl

The next lemma will be a great help in proving operations continuous. Generally it is
very easy to show that a unary operation is monotonic with respect to Sl and continuous
on the token sets, a notion we now make precise.

Definition: Say a unary operation F on information systems is continuous on token
sets iff for any w-chain, Ao Sl Al Sl ... Sl A Sl ... , each token of F(Ui Ai) is a token of

Ui F(Ai).

LemIlila 12.15 Let F be a unary operation on information systems. Then F is contin
uous iff F is monotonic with respect to Sl and continuous on token sets.

Proof:
"only if": obvious.
"if": Let Ao Sl Al Sl ... Sl Ai Sl ... be an w-chain of information systems. Clearly
Ui F(Ai) Sl F(Ui Ad since F is assumed monotonic. Thus from the assumption the
tokens of Ui F(Ai) are the same as the tokens of F(U i A). Therefore they are the same
information system by Proposition 12.13. 0

In general, operations on information systems can take a tuple of information systems
as argument and deliver a tuple of information systems as result. But again, just as before
for ordinary cpo's, in reasoning about the monotonicity and continuity of an operation
we need only consider one input and one output coordinate at a time. Lemma 8.8 and
Lemma 8.10 generalise straightforwardly. This means that such a general operation on
information systems is continuous with respect to Sl iff it is continuous in each argument
separately (i. e. , considered as a function in anyone of its argument, holding the others
fixed). Similarly it is continuous iff it is continuous considered as a function to each
output coordinate. Thus the verification that an operation is continuous boils down to
showing certain unary operations are continuous with respect to the subsystem relation

Sl·
The order Sl is perhaps not the first that comes to mind. Why not base the cpo of

information systems on the simpler inclusion order

We do not do so because the lifted-function-space construction on information systems,
introduced in the next section, is not even monotonic in its left argument (see Exer
cise 12.34).

236 Chapter 12

Exercise 12.16 This exercise relates the subsystem relation on information systems
to corresponding relations on families of sets and cpo's. Let A = (A, ConA, f- A) and
8 = (B, ConE, f- B) be information systems.
(i) Assume A :::] 8. Show the maps 0 : IAI ---- 181 and t.p : 181 ---- IAI u {0}, where

O(x) = {b E B I 3X ~ x. X f- B b} and

t.p(y) = y n A,

are continuous with respect to inclusion and satisfy

t.poO(x)=x and OOt.p(y)~y

for all x E IAI and y E 181.
(ii) For information systems A and 8, show

A:::] 8 ~ IAI = {y n A lyE 181 & y n A =1= 0}.
(This indicates another approach to solving recursive domain equations using inverse
limits of embedding-projection pairs of continuous functions 0 : D ---- E and t.p : E ---- D J..

between cpo's with the property that

t.p 0 O(d) = ldJ and OJ..t.p*(e') [;;; e'

for all d E D,e' E EJ... Recall, from 8.3.4, that t.p* : EJ.. ---- DJ.. satisfies t.p*(e') = let e «:=
e'.t.p(e), while OJ.. : DJ.. ---- EJ.. is defined so that OJ..(d') = let d «:= d'.lO(d)J.) 0

In the next section we shall see many examples of operations on information systems
and how we can use cpo of the subsystem relation to obtain solutions to recursively
defined information systems. Because the machinery works for operations taking more
than one information system as argument it can be used to define several information
systems simultaneously.

12.5 Constructions

In this section we give constructions of product, lifted-function space, lifting and sum
information systems. They induce the corresponding constructions on cpo's. We choose
them with a little care so that they are also continuous with respect to :::]. In this way
we will be able to produce solutions to recursive equations for information systems, and
so for cpo's, written in terms of these constructions. In fact, lifting D J.. of domains D
can be obtained to within isomorphism from other constructions, viz. [1 ---- D J..] where
we have used the lifted function space and the empty product 1 which we can define
on information systems. However, some work becomes a little smoother with the more
direct definition given here.

Information systems

12.5.1 Lifting

Our aim is to define lifting on information systems which reflects lifting on cpo's.

Definition: Define lifting on information systems A = (A, Con, f-) by taking A J.

(A', Con', f-') where:

1. A' = Con,
2. X E Con' ~ X c;:; Con & U'X E Con,
3. X f-' b ~ 0 1= X E Con' & U X f-* b.

237

Intuitively, lifting extends the original set of tokens to include a token, the empty set in
the above construction, true even in the absence of an original value as output. Lifting,
as hoped, prefixes the family by an element, in fact an element consisting of the single
extra token 0.

Definition: Define 1 = 0 J. .

The information system 1 has one token 0, consistent sets 0 and {0}, and entailment
relation {0} f- 0. Its only element is {0}.

Proposition 12.17 Let A be an information system. Then AJ. is an information system
with

Y E IAJ.I ~ y = {0} or::lx E IAI. y = {b I b c;:;fin x}.

Proof: Let A = (A, Con, f-) be an information system.
It is routine to check that AJ. = (A', Con', f-') is an information system. Of the axioms,

here we shall only verify that axiom 5 holds. Assume X f-' b for all bEY and Y f-' c.
Note first that X 1= 0 because if it were empty so would Y be, making Y f-' c impossible.
Now observe U X f-* b for all bEY. Therefore U X f-* U Y. As Y f-' c we obtain
U Y f-* c. Hence as axiom 5 holds for A we deduce U X f-* c. Recalling X 1= 0 we
conclude X f-' c.

Now we show

yEIAJ.1 ~ y={0}or::lxEIAI·y={blbc;:;fin x }.

"~": It is easily checked that {0} is consistent and f-'-closed; hence if y = {0} then
y E IAJ.I. Now suppose y = {b I b c;:;fin x} for x E IAI· Certainly 0 E Y so y 1= 0.
Suppose X c;:;fin y. Clearly U X c;:;fin x. Then X c;:; Con and U X E Con and hence
X E Con'. Suppose X c;:; y and X f-' b. Then U X f-* band U Xc;:; x. Hence b c;:;fin x.
Therefore bEy. We have thus shown that y E IAJ.I.

238 Chapter 12

"*": Suppose y E IA.l1 and y =I- {0}. Take x = Uy. We must check x E IAI and
y={blb~finx}.

First observe that x =I- 0 as y is neither empty nor {0}. Note if Z ~ fin X then
Z ~ U X for some X ~fin y. It follows that if Z ~fin X then Z E Can. Assume Z ~ x

and Z f- a-so Z =I- 0. Then again Z ~ U X for some X ~fin y where, as Z =I- 0, we
also have X =I- 0. Therefore X f-' {a}. Hence we must have {a} E y so a E x. We have
checked that x E IAI.

Clearly y ~ {b I b ~fin x}. We require the converse inclusion too. As y =I- 0 there is
some bEy. By definition {b} f-' 0. Hence 0 E y. Suppose 0 =I- b ~fin x. Then b ~ UX
for some X ~fin y. As b =I- 0 so must X =I- 0. Clearly UX f-* b. Thus X f-' b so bEy.
This establishes the converse inclusion, and we can conclude that y = {b I b ~ fin X}. 0

It follows that lifting on information systems induces lifting on the the cpo of its
elements:

Corollary 12.18 Let A be an information system. Then there is an isomorphism of

cpo's

given by
if x = {0},
otherwise.

Theorem 12.19 The operation A 1-+ A.l is a continuous operation on information sys

tems ordered by :::).

Proof: We use Lemma 12.15. We first show lifting is monotonic. Assume A :::) B for
two information systems A = (A, ConA, f- A) and B = (B, ConB, f-B). Write A.l =
(A',ConA',f-A') and B.l = (B',ConB',f-B'). Let us check A.l:::) B.l:

Obviously A' = ConA ~ ConB = B'. We argue:

Similarly,

X E ConA' ~ X ~ ConA & U X E ConA

~ X ~ ConA & U X E ConB

~ X ~ A' & X E ConB'.

Xf- A' c ~ X ~ A' & X =I- 0 & c E A' & U X rA c

~ X ~ A' & X =I- 0 & c E A' & U X r'B c

~ X~A' &cEA' &XrB'c.

Information systems 239

Thus A..L s:) B 1.. Therefore (-) 1. is monotonic. It remains to show that it acts continu
ously on token-sets. Let Ao s:) Al s:) ... s:) Ai s:) ... be an w-chain of information systems
Ai = (Ai, Coni, I-i)' However, the set of tokens of (Ui A) 1. and Ui (Ail.) are both clearly
equal to Ui Coni. Thus by Lemma 12.15 we know lifting is a continuous operation on
information systems ordered by s:). 0

Exercise 12.20 Draw the domains of elements of 11.1. and 11.1.1.' o

Exercise 12.21 Because lifting is continuous with respect to s:) it has a least fixed point
n = D1.' Work out the set of tokens and show that its cpo of elements Inl is isomorphic to
the cpo (seen previously with the same name) consisting of an w-chain with an additional
"infinity" element as least upper bound. 0

Exercise 12.22 Let A be an information system. Let X be a consistent set of A1. and
b a token of A. Show

o

12.5.2 Sums

We have already seen a special case of sum construction, that of the empty sum O. In
general, we can reflect sums of Scott predomains by sums of information systems which
are formed by juxtaposing disjoint copies of the two information systems. The tokens
then correspond to assertions about one component or the other.

The construction will rely on these simple operations.

Notation: For two sets A and B, let A ttl B be the disjoint union of A and B, given by
A ttl B = ({I} x A) u ({2} x B). Write injl : A A ttl Band inh : B A ttl B be the
injections taking injl : a f--> (1, a) for a E A and inj2 : b f--> (2, b) for bE B.

Definition: Let A = (A, ConA, I-A) and B = (B, ConB, I-B) be information systems.
Define their sum, Al + A 2 , to be C = (C, Con, 1-) where:

1. C=AttlB
2. X E Con ~ :3Y E ConA.X = inj1Y or:3Y E ConB·X = inj2Y'
3. X I- c ~

(:3Y, a. X = injl Y & c = injl (a) &Y I-A a) or

(:3Y, b. X = inj2Y & c = injz(b) & Y I- B b).

240 Chapter 12

Example: Let T be the sum 1 + 1. Then ITI is isomorphic to the discrete cpo of truth
values; its tokens are (1, O) and (2, O) with elements consisting of precisely the singletons
{(1,0)} and {(2,0)}. D

Proposition 12.23 Let A and 8 be information systems. Then their sum A + 8 is an
information system such that

x E IA + 81 ~ (3y E IAI· x = injlY) or (3y E IBI· x = inj2Y)'

Proof: It is necessary to verify that if A and 8 are information systems then so is their
sum A + 8. That A + B satisfies the properties 1 to 5 follows, property for property, from
the fact that A and 8 satisfy 1 to 5. It is a routine matter to check that the elements of
A + B consist of disjoint copies of elements of A and B (exercise!). D

It follows that the cpo of elements of a sum of information systems is the same to
within isomorphism as the sum of the cpo's of elements:

Corollary 12.24 Let A and B be information systems. There is an isomorphism of
cpo's

IA+81 ~ IAI + 181
given by

if x = injlY,
if x = ini2Y·

Theorem 12.25 The operation + is a continuous operation on information systems
ordered by :9.

Proof: We show that + is continuous with respect to :9. By definition of continuity we
must show that + is continuous in each argument. We prove + continuous in its first
argument. Then, by symmetry, it is easy to see that + will be continuous in its second
argument too.

First we show + is monotonic in its first argument. Let A = (A, ConA, f--- A), A' =
(A',COnA',f---A') and 8 = (B,ConB,f---B) be information systems with A :9 A'. Write
C = (G, Con, f---) = A + Band C' = (G' , Con', f---/) = A' + 8. We require C :9 C' i.e.

1. G ~ G'
2. XECon ~ X~G&XECon'
3. X f--- a ~ X ~ G & a E G & X f--- 'a

Information systems 241

l. From the definition of + and the assumption A <":::J A' we get C <:;,; C'.
2. "=>". Let X E Con. Then X = {I} X Xl for some Xl E ConA or X = {2} X X 2 for
some X 2 E ConB. Assume X = {I} X Xl. Then clearly X <:;,; C and Xl E ConA' since
A <":::J A'. Therefore by the definition of +, X E Con'. Now assume X = {2} X X 2 where
X 2 E ConB. Then directly from the definition of + we have X E Con'.
2. "{=". Suppose X E Con' and X <:;,; C. Then either X = {I} x X I for some X I E Con A'

or X = {I} X X 2 for some X 2 E ConB. In the former case Xl <:;,; A so, as A :<":::J A', we
obtain X I E Con A . In the latter case X E Con trivially.
3. is very similar to 2.

This shows + monotonic in its first argument. It remains to show that + acts contin
uously on the token-sets. Let Ao <":::J Al <":::J ••• <":::J Ai <":::J .•• be an w-chain of information

systems Ai = (Ai, Coni, f-i). The set of tokens of (Ui Ai) + B is ((UiEw Ai) ttJ B which is
equal to UiEw(Ai ttJ B) the set of tokens of Ui(A + B).

Thus + is continuous in its first and, symmetrically, in its second argument, and is
therefore continuous. o

Example: Because + is continuous we can construct the least information system N
such that N = 1 + N. Its elements form a discrete cpo isomorphic to the integers, with
tokens:

(1, {0}), (2, (1, {0})), ... , (2, (2,··· (2, (1, {0}))·· .), ...

o

12.5.3 Product

The product construction on cpo's is the coordinatewise order on pairs of their elements.
The desired effect is obtained on information systems by forming the product of the
token sets and taking finite sets to be consistent if their projections are consistent and a
consistent set to entail a token if its projections entail the appropriate component.

The construction will rely on these simple operations.

Notation: We use the product A x B of sets, A and B, consisting of pairs, together
with projections Projl : A x B -+ A and Proj2 : A x B -+ B acting so Projl (a, b) = a and

proj2(a, b) = b.

Definition: Let A = (A,ConA,f- A) and B = (B,ConB,f-B) be information systems.
Define their product, A x B, to be the information system C = (C, Con, f-) where:

l. C=AxB
2. X E Con {==> projlX E ConA & proj2X E ConB

242 Chapter 12

As intended the elements of the product of two information systems have two com
ponents each corresponding to an element from each information system. Intuitively a
token of the product Al x A2 is a pair of assertions about the two respective components.

Proposition 12.26 Let A and B be information systems. Then A x B is an information
system and

Proof: It is routine to check that the product of two information systems is an infor
mation system.

It remains to show
x E IA x BI ~ x = Xl X X2

for some Xl E IAI, X2 E IBI·
"{=": If Xl E IAI and X2 E IBI it follows straightforwardly that their product X I X X2 E

IAxBI·
"=}": Suppose X E IA x BI. Define Xl = Projlx and X2 = Proj2x, It is easy to check
that Xl E IAI and X2 E IBI· Clearly X ~ Xl X X2. To show the converse inclusion assume
(a, b) E Xl X X2. Then there must be a', b' such that (a, b'), (a', b) Ex. By the definition
of entailment in the product we see {(a, b'), (a', b)} f- (a, b) from which it follows that
(a,b) Ex. Thus X = Xl X x2. 0

Consequently the cpo of elements of the product of information systems is isomorphic
to the product of their cpo's of elements:

Corollary 12.27 Let A and B be information systems. There is an isomorphism of
cpo's

IA x BI ~ IAI x IBI

Theorem 12.28 The operation x is a continuous operation on information systems
ordered by :'9.

Proof: We show that the product operation is monotonic and continuous on token-sets.
Then by Lemma 12.15 we know it is continuous with respect to :'9.
Monotonic: Let A:'9 A' and B be information systems. The tokens of A x B obviously
form a subset of the tokens of A' x B. Suppose X is a subset of the tokens of A x B.
Then X is consistent in A x B iff Projl X and prohX are both consistent in A and B

Information systems 243

respectively. Because A SI A' this is equivalent to X being consistent in A' x 8. Suppose
X is a finite set of tokens of Ax 8 and c is a token of A x 8. Then X I- c in A x 8 iff
c = (aI, a2) and Projl X I- A al and proj2X I- B a2· Because A ::9 A' this is equivalent to
X I- c in A' x 8. Thus A x 8 ::9 A' x 8. Thus x is monotonic in its first argument.
Continuous on token-sets: Now let Ao ::9 Al ::9 ... ::9 Ai ::9 ... be an w-chain of informa
tion systems. A token of (Ui Ai) x 8 is clearly a token in Ai x 8 for some i E w, and so
a token of Ui(A x 8).

Thus by Lemma 12.15, x is continuous in its first argument. Similarly it is continuous
in its second argument. Thus x is a continuous operation on information systems with
respect to ::9. 0

The information system 1, representing a singleton domain, can be taken to be the
empty product of information systems, a special case of the product construction.

12.5.4 Lifted function space

Let A and 8 be information systems. It is not possible to represent the space of contin
uous functions IAI - 181 for arbitrary 8 (see Exercise 12.11 above). Nor can we hope to
solve domain equations such as

X~ [X-2]

where 2 is the two element discrete cpo. However, the function spaces which arise in
denotational semantics most often have the form D - E 1- where the range is lifted.
This operation can be mimicked on arbitrary information systems:

Definition: Let A = (A, ConA, I-A) and 8 = (B, ConB, I-B) be information systems.
Their lifted function space, A - 81-, is the information system (C, Con, 1-) given by:

1. C = ((ConA \ {0}) x ConB) U {(0, 0)}
2. {(Xl, YI), ... , (Xn' Yn)} E Con -¢=}

VI ~ {1, ... , n}. U {Xi liE I} E ConA =::;, U {Yi liE I} E ConB
3. {(Xl, YI), ... , (Xn' Yn)} I- (X, Y) -¢=}

{(Xl, Yr), ... , (Xn, Yn)} '" 0 & U {Yi I X 1-:4 Xd r-8 Y.

The intention is that tokens (X, Y) of the function space assert of a function that if its
input satisfies X then its output satisfies Y. We check that this construction does indeed
give an information system and give an alternative characterisation of the elements of
the function space of information systems.

Lemma 12.29 LetA=(A,ConA,I-A) and8=(B,ConB,I-B) be information systems.
Then A - 81- is an information system.

244 Chapter 12

We have r E IA -+ 8..L I iff r S;;; ConA x ConE, so r is a relation, which we write in an
infix way, which satisfies

(a) 0rY ~ Y = 0,
(b) XrY & XrY' =} Xr(Y U Y')
(c) X' 1-:4 X & XrY & Y 1-3 Y' =} X'rY'

for all X,X' E ConA, Y, Y' E ConE·

Proof: Let A and 8 be information systems. We should first check that A -+ 8..L is an
information system. The more difficult conditions are axioms 3 and 5 in the definition
of information system, which we verify, leaving the others to the reader:

Axiom 3. Suppose {(Xl, Yd, ... , (Xn' Yn)} I- (X, Y). We require

Thus we require that if J S;;; {I, ... , n} and U {Xj I j E J} U X E Con A then

U {Yj I j E J} U Y E ConE.

Assume U {Xj I j E J} U X E ConA. Then

U {Xj I j E J} U U {Xi I X 1-:4 X;} E ConA·

But U {Yi I X 1-:4 X;} 1-3 Y, because {(Xl, Yd,···, (Xn, Yn)} I- (X, Y). Consequently

so U {Yj I j E J} U Y E ConE, as required to verify 3.

Axiom 5. Suppose

We require {(Xl, Yd, ... , (Xn' Yn)} I- (U, W) i.e.

U {Yi I U 1-:4 Xi} 1-3 w.

Information systems 245

Suppose U f-:4. Zj. Then because U {Yi I Zj f-:4. Xd f-:B Vj we have U {Yi I U f-:4. Xi} f-:B
Vj . Therefore

U {1'i I U f-:4. Xd f-:B U {Vj I U f-:4. Zj} f-:B w.
By the transitivity of f-:B we obtain the required result, and have verified 5.

It remains to verify the characterisation of the elements of A ----> B 1. as those relations
satisfying (a), (b) and (c) above:
"only if": Suppose r is an element of A ----> B 1.. Then r is nonempty and so contains
some (X, Y). By 3 in the definition of entailment of A ----> B 1. we obtain that (0,0) E r.
This establishes (a) "~." The converse, (a) "=>", holds as the only token of form (0, Y)
in the lifted function space is (0,0). The properties (b) and (c) follow fairly directly from
2 and 3 in the definition of A ----> B 1..

"if": Assume r ~ ConA x ConB satisfies (a), (b) and (c). Then certainly r is a nonempty
subset of (ConA \ {0}) x ConB U {(0,0)}. In order that r E IA ----> B1.I, we also require
that r is consistent and f--closed.

Suppose {(X1,Yd, ... ,(Xn,Yn)} ~ r. Assume I ~ {1,···,n} and that X =deJ

U {Xi liE I} E ConA. Then for all i E I we have X f-:4. Xi which with (Xi, Yi) E r en
sures (X, Yi) E r by (c). Using (b), we see U {Yi liE I}) E ConB. Hence r is consistent.

Now we show r is closed under f-. Suppose

We require that (X, y) E r. By (c), if X f-:4. Xi then (X, Yi) E r, as (Xi, Yi) E r. It
follows by several applications of (b) that (X, Y') E r where Y' =deJ U {Yi I X f-:4. Xi}.
But now by the definition of f- we see Y' f-:B Y. Hence, by (c), we obtain (X, Y) E r. 0

Scott calls relations like those above approximable mappings. Intuitively, an approx
imable mapping expresses how information in one information system entails information
in another. For an approximable mapping r E IA ----> B 1.1, the situation that XrY can
be read as saying information X in A entails Y in B. In particular the relation r might
be induced by a computation which given input from A delivers output values in B. In
fact such approximable mappings, which coincide with the elements of

are in 1-1 correspondence with continuous functions

the correspondence determines an order isomorphism between the elements IA ----> B 1.1
ordered by inclusion and the continuous functions [IAI ----> IBI1.J ordered pointwise.

246 Chapter 12

The correspondence is most easily shown for a particular way of representing lifting
on cpo's of elements of information systems. Recall from Section 8.3.4 that the lifting
construction D 1. on a cpo D assumes an element 1. and a 1-1 function l- J with the
property that

1.# lxJ
for all xED. The lifted cpo D 1. is then a copy of D, consisting of elements l x J , for xED,
below which the element 1. is adjoined. When lifting a cpo IAI, formed from elements
of an information system, we can take advantage of the fact that the elements of A are
always nonempty, and choose ..1 = 0 and lxJ = x. The following proposition assumes
this particular choice of interpretation for lifting. The choice simplifies the associated
operation (-)*, introduced in Section 8.3.4. Suppose f : IAI ~ 1811. is a continuous
function between cpo's of elements of information systems A and 8. The function f
extends to a function

which with our choice of ..1 and l -J, is given by

j*() {0 if z = 0,
z = f(z) otherwise.

Theorem 12.30 Let A and 8 be information systems. Define

by taking

I-I : IA ~ 81.1 ~ [lAI ~ 1811.],
'-': [lAI ~ 1811.] ~ IA ~ 81.1,

Irl = AX E IAI. U {Y I 3X ~ x. (X, Y) E r},

'f'= {(X,Y) E ConA x ConB I Y ~ j*(X)}.

Then I -I, '- ' are mutual inverses, giving an isomorphism IA ~ 8 1.1 ~ [lAI ~ 181.1]·
The function '- ' satisfies:

'f' = {(X, Y) I 0 # X E ConA & Y ~fin f(X)} U {(0, 0)}.

Proof: It is easy to check that I-I is well-defined-that 1- I gives values which are con
tinuous functions. Showing that '- ' yields elements of A ~ 81. is left as an instructive
exercise (see Exercise 12.31). It is clear from their definitions that both I-I and '-' are
monotonic.

We claim
(X, Y) E r *=> Y ~ Irl*(X)

Information systems 247

for r E 1.4 ---- B.1I, X E ConA and Y E ConE. The direction "=?" follows directly
from the definition of I-I. The direction "<=" follows from Lemma 12.29 above, using
properties (b) and (c) of r:
Assume Y ~ Irl*(X) for X E ConA, Y E ConE. By the definition of Ir/ there must be

such that
Xl"",Xn~X, i.e., Xr*XIU···UXn (1)

with
(2)

Because X1U·· ,UXn r* Xi and XirYi we obtain by (c) that (X1U" ·UXn)rYi, whenever
1 ::; i ::; n. Hence by repeated use of (b),

But now by (c), from (1) and (2) we get XrY, as required to prove the claim.
Now we have justified the claim, we can show I-I and' -' give a 1-1 correspondence.

We see, for r E IA ---- B.1I, X E Con A and Y E ConE, that

(X, Y) E r <==? Y ~ Ir/*(X)

<==? (X, Y) E'lr/'

directly from the definition of '- '. Therefore r = 'Ir/'. We also see, for J E [lAI---- IBI.1],
X E ConA and Y E ConE,

Y ~ reX) <==? (X, Y) E '1' <==? Y ~ 1'1'I*(X);

this follows immediately from the definition of '-' and the claim above. A continuous
function is determined uniquely by the values it gives on finite elements in IAI of the form
X, for X E ConA: any dement x is a least upper bound of an w-chain X 0 ~ X 1 ~ ...

and by continuity J(x) = Un J(Xn). Therefore J = I'J'1-
We conclude that 1- I and '- ' determine an isomorphism.
The alternative characterisation of '-' follows directly from the particular way the

extension 1*, of J : I AI ---- I B 1.1, is defined. 0

Exercise 12.31 Show that the' - ' of Theorem 12.30 above is well-defined as a function,
i.e. , that given a continuous function

J : IAI ---- IB/.1

248

then
'1' = {(X, Y) E ConA x ConE I Y ~ reX)}

is an element of A -+ B-1.

Chapter 12

o

Exercise 12.32 Describe the tokens in the bottom element of A -+ B-1, for information
systems A and B. 0

Theorem 12.33 The operation of lifted function space is a continuous operation on
information systems ordered by :'9.

Proof: We show that lifted function space is a continuous operation on information
systems in each argument separately with respect to :'9. We use Lemma 12.15.

First we show the construction is monotonic in its first argument. Suppose A :':l A'
and B are information systems. Write C = (C, Con, f-) = A -+ B-1 and
C' = (C', Con', f-') = A' -+ B-1. We require C :'9 C' so we check conditions 1, 2, 3 in the
definition of :':l hold:

1. Clearly the tokens of C are included in those of C'.
2. Let (Xl, Yd, ... , (Xn, Yn) be tokens of C. Because A :':l A' we have UtEI Xi E ConA

iff UiEI Xi E ConA' , for any subset I ~ {I, ... , n}. So inspecting the definition of the
consistency predicate for the lifted function space we see that

{(Xl, Yd,··· (Xn, Yn)} E Con iff {(Xl, Yd,··· (Xn' Yn)} E Con'.

3. Suppose (Xl, YI), ... (Xn, Yn) and (X, Y) are tokens of C. Because A :'9 A' we have
X I-A Xi iff X I-Af Xi. So inspecting the definition of the entailment relation for the
lifted function space we see that

{(Xl, Yd,··· (Xn, Yn)} I- (X, Y) iff {(Xl, Yd, ... (Xn, Yn)} f-' (X, Y).

Thus C :'9 C' so lifted function space is monotonic in its first argument.
Now we show it is continuous on token-sets in its first argument. Let Ao :':l Al :':l ... :'9

Ai :':l ... be an w-chain of information systems Ai = (Ai, Coni, I-i). Let (X, Y) be a token
of (Ui Ai) -+ B-1. Then X is a consistent set of Ui Ai' But then X E Coni, for some i,
so (X, Y) is a token of A -+ B-1. Thus as required (X, Y) is a token of Ui(A -+ B i -1)'

By Lemma 12.15 we deduce that lifted function space is continuous in its first argument.
A similar but even simpler argument shows that it is continuous in its second argument
too, and therefore continuous. 0

We can now give definitions of information systems by composing the operations lifting,
sum, product, and lifted function space, starting from the information system O. Because
these operations are all continuous with respect to :':l the definitions can be recursive.
These constructions can be used to give a semantics to a language with recursive types.

Information systems 249

Example: The operation X f---t (X --+ X .1.) is a continuous operation on information
systems. It has a least fixed point 12 = (12 --+ 12 .1.). This information system, has a cpo
of elements D = 1121 such that the following chain of isomorphisms hold:

These follow from the fact that the information-system construction of lifted function
space achieve the same effect as the corresponding cpo constructions to within isomor
phism. Thus D ~ [D --+ D J.J. 0

Exercise 12.34 Why do we build a large cpo from the relation :::l rather than the simpler
relation based on coordinatewise inclusion of one information in another? This is a partial
order and does indeed give another large cpo. Verify that it suffers a major drawback; the
lifted-function-space construction on information systems, while being continuous in its
right argument, is not even monotonic in its left argument with respect to this inclusion
order. 0

12.6 Further reading

Informations systems were introduced by Dana Scott in [90J which is recommended read
ing, though the presentation here has been more closely based on [103J. Note that usually
information systems are used to represent Scott domains with a bottom element. The
recent book [87] on domain theory, for undergraduate mathematicians, is based on in
formation systems and is quite accessible. Lecture notes of Gordon Plotkin use a variant
of information systems to represent predomains (not necessarily with bottoms) as does
[19]. Information systems can be regarded as special kinds of locales for "pointless topol
ogy" (see [53, 98]) in which neighbourhoods rather than points are taken as primary.
This view has uses in both topology and logic. Information systems can be given an
even more logical character by taking the tokens to be propositions built up syntacti
cally. Such a development coupled to the duality between spaces and their presentation
via neighbourhoods led Samson Abramsky to a "logic of domains" [2]. To handle the
Plotkin powerdomain requires a generalisation so that a wider class of domains (SFP
objects) can be represented. Suitable generalisations can be found in [2] and [108]. In
the late '70's Gerard Berry discovered an alternative "stable" domain theory which gives
another foundation for much of denotational semantics. Here the cpo's are restricted to
special Scott domains called dI-domains and functions are stable as well as continuous.
This alternative domain theory has its own special representation in which the role of to
kens of an information system is replaced that of "events"; the work here on information
systems can be paralleled on "event structures" (see [104, 105]).

13 Recursive types

The functional languages of Chapter 11, their syntax, operational and denotational se
mantics, are extended to include recursive types. The denotational semantics makes use
of information systems to denote such types. Recursive types of natural numbers, lists,
and types forming models of A-calculi are considered for the eager and lazy languages.
The use of information systems has an an extra pay-off. It yields relatively simple proofs
of adequacy, and characterisations of fixed-point operators in the eager and lazy A-calculi.
The treatment provides a mathematical basis from which to reason about eager func
tionallanguages like Standard ML, and lazy functional languages like Miranda, I Orwell
or Haskell.

13.1 An eager language

In the last chapter we saw a way to understand recursively-defined types. With this in
mind we introduce the facility to define types recursively into the language of Chapter
11. Type expressions T will have the form:

where X ranges over an infinite set of type variables, and /-LX.T is a recursively-defined
type. There are the familiar type constructors of product, function space and sum. There
is only one basic type 1, to be thought of as consisting of a single value, the empty tuple
O. Other types like numbers and lists and their operations will be definable. The free
and bound variables of a type expression are defined in the standard way and, as usual,
we will say a type expression is closed when all its variables are bound.

The raw (untyped) syntax of terms is given by

t .. = 0 I (tl' t2) I fst(t) I snd(t) I
x I Ax.t I (tl t2) I
inl(t) I inr(t) I case t of inl(xI).tl' inr(x2).t2. I
abs(t) I rep(t) I
rec f.(Ax.t)

where x, Xl, X2, f are variables in Var. The syntax includes operations familiar from
Chapter 11. The two new operations of abs and rep accompany recursively defined
types and will be explained shortly. The syntax does not include a construction

let X ~ tl in t2.

1 Miranda is a trademark of Research Software Ltd

252 Chapter 13

But this can be defined to stand for ((AX.t2) td.
We assume each variable x has as unique closed type, type(x). So as not to run out of

variables we will assume
{x E Var I type(x) = 7}

is infinite for each closed type 7.

The assignment of types to variables is extended to a general typing judgement t : 7

where t is a term and 7 is a closed type, by the following rules:

Typing rules

Variables:

Products:

Function types:

Sums:

Recursive types:

rec:

if type(x) = 7
X:7

0:1

t1 : 71 t2: 72
(t1,t2): 71 *72

t : 71 * 72

fst(t) : 71

t : 71 * 72

snd(t) : 72

x: 7) t: 72

>'x.t ; 71-> 72

t1 : 1) - > 72 t2: 71

(tr t2) : 72

inlet) : 71 + 72 inr(t) : 71 + 72

t ; 71 + 72 Xl: 71 X2: 72 t1; 7 t2; 7

case t of inl(xd.tl' inr(x2).t2 : 7

t : 7 [j.lX7 j Xl
abs(t) : j.lX7

f : 7 >'x.t: 7

rec f.(AX.t) : 7

t : JLX7
rep(t) : 7[j.lX.7jXl

As before, a term t is said to be typable when t : 7 for some type 7. The free vari
ables FV(t) of a typable term t are defined exactly as in Chapter 11 (see Section 11.1).
Henceforth we will restrict attention to typable terms.

Recursive types 253

The language allows the definition of recursive types like the natural numbers

N =def IlX.(l + X),

or lists of them

L =def /LY(l + N * y),

or more bizarre types such as

A =def /LZ.(Z-> Z),

which as we will see is a model of an (eager) A-calculus. The term constructors abs
and rep serve as names of the isomorphisms between a type /LX.T and its unfolding
T[/LX.T / Xl. They play an important role in defining useful operations on recursive types.
The constructor rep takes an element t : /LX.T to its representing element rep(t) :
T[/LX.T / Xl· The constructor abs takes such a representation u : T[/LX.T / Xl to its
abstract counterpart abs(u) : /LX.T. To understand the use of abs and rep we look at
two simple types, natural numbers and lists, and how to define functions involving them.

Exrunple: Natural numbers
The type of natural numbers can be defined by

N =def /LX.(1 + X).

For this type rep can be thought of as a map

N
rep
--> l+N

and abs as a map

N abs
f--- 1 +N.

The constant Zero can be defined as:

Zero =def abs(inl())

The successor operation can be defined by taking

Succ(t) =def abs(inr(t))

for any term t : N. The successor function is then given as the term

AX. Succ(x) : N-> N

254 Chapter 13

where x is a variable of type N. These operations allow us to build up "numbers" of
type N as

Zero,

Succ(Zero),

Succ(Succ(Zero)),

We also want to define functions on natural numbers, most often with the help of a cases
construction

Case x of Zero. tl,

Succ(z). t2.

yielding tt in the case where x is Zero and t2, generally depending on z, in the case
where x is a successor Succ(z). This too can be defined; regard it as an abbreviation for

case rep(x) of inr(w).tl,

inl(z) .t2.

Now, for example, addition is definable by:

add =dej rec f. (AX.Ay. Case x of Zero. y,

Succ(z). Succ((fz) y),

a term of type (N -> (N -> N)).

Example: Lists
A type of lists over natural numbers N is defined by

L =dej p,y'(l + N * Y).

We can realise the usual list-constructions. The empty list is defined by:

Nil =dej abs(inIO)

The consing operation is defined by taking

Cons(p) =dej abs(inr(p))

o

for any p : N * L. The operation Cons acts on a pair (n, l) : N * L, consisting of terms
n: Nand l : L, to produce the list Cons(n, l) with "head" n and "tail" l. It is associated
with the function term

AX. Cons(x) : N * L-> L

Recursive types 255

where x is a variable of type N * L. Functions on lists are conveniently defined with the
help of a cases construction. The usual cases construction on lists

Case l of Nil. tl,

Cons(x, l'). t2

yields tl in the case where the list l is empty and t2 in the case where it is Cons (x, l').
It is definable by

case rep (l) of inl(w). tl,

inr(z). t2 [fst(z) I x, snd(z) Il'].
o

13.2 Eager operational semantics

As before, eager evaluation will be expressed by a relation

t -+ c

between typable closed terms t and canonical forms c. The canonical forms of type 7,

written Cr , are closed terms given by the following rules:

CI E CT] C2 E Cr2

(CI' C2) E Cr, *r2

>'x.t: 71-> 72 >'x.t closed
>.x.t E Cr] ->T2

c E CT[pX.r/Xj

abs(c) E C"X.r

C E CT2

The only rule producing canonical forms of recursive types is the last, expressing that
the canonical forms of type pX.7 are copies abs(c) of canonical forms of 7[pX.7/X].
Because T[pX.7 I X] is generally not smaller than fLX.7, the canonical forms cannot be
defined by structural induction on types-the reason they have an inductive definition.

256 Chapter 13

Example: Natural numbers
The type N == p,X.(l + X) of natural numbers has canonical forms associated with the
two components of the sum. There is a single canonical form

Zero ==def abs(inl())

associated with the left-hand-side. Associated with the right-hand-side are canonical
forms

abs(inr(c))

where c is a canonical form of N. With the abbreviation

Succ(t) == abs inr(t)

we obtain these canonical forms for N: Succ(Zero), Succ(Succ(Zero)),
The canonical forms, which serve as numerals, are built-up from Zero by repeatedly
applying the successor operation. In the denotational semantics N will denote the infor
mation system with elements isomorphic to the discrete cpo of natural numbers. 0

Example: Lists
The type of lists over natural numbers, defined by L == p,Y.(1 + N * Y), has canonical
forms

Nil == abs(inl()) : L

Cons(n, l) == abs(inr(n, l))

for canonical forms n : Nand l : L. In other words, a canonical forms of type L is either
the empty list or a finite list of natural numbers [nl' n2,· .. J built up as

Cons(nl' Cons(n2' Cons(· ..) ...).

o

The eager evaluation relation between typable closed terms t and canonical forms c is
defined by the following rules:

R.ecursive types

Evaluation rules

if C is canonical
C-tC

t I -t CI t2 -t c2

(tl' t2) ---t (CI' C2)

t ---t (CI' C2)
fst(t) ---t CI

tl ---t Ax.ti

t ---t (CI' C2)
snd(t) ---t c2

case t of inl(xd.tl' inr(x2).t2 ---t C

t ---t C

abs(t) ---t abs(c)

t ---t abs(c)

rep(t) ---t C

rec f.(AX.t) ---t Ax.t[rec f. (AX.t) / fJ

Evaluation is deterministic and respects types:

257

Proposition 13.1 Let t be a typable, closed term and c, c I and C2 canonical forms.
Then

(i) t ---t c & t: T =? c: T,

(ii) t -t Cl & t ---t C2 =? Cl == C2.

Proof: By rule induction. o

13.3 Eager denotational semantics

A typable, closed term can evaluate to a canonical form or diverge. Accordingly we will
take its denotation to be an element of (VT h where VT is a cpo of values, including those

258 Chapter 13

for canonical forms, of the type T. This time the language allows types to be defined
recursively. We use the machinery of the last chapter to define an information system of
values for each type.

A type environment X is a function from type variables to information systems. By
structural induction on type expressions, define

V[lh (0, {0}, 0h (also called 1)

V[TI * T2TIX (V[TlTIX) x (V[T2TIX)
V[TI - > T2]x (V[Tlh) ---> (V[T2]x) J.

V[TI + T2TIX (V[TIDx) + (V[T2TIX)
V[X]X X(X)
V[MX.Th MI.V[Th[I/ Xl

All the operations on the right of the clauses of the semantic definition are operations
on information systems. The type expression MX.T, in an environment X, is denoted by
the ~-least fixed point of

I f--> V[Th[I/ Xl
in the cpo of information systems.

A closed type T is thus associated with an information system

whose elements form a cpo of values

where the type environment X does not affect the resulting denotation and can be arbi
trary. With respect to an environment for its free variables a term of type T will denote
an element of (Vr h. For simplicity we choose the following interpretation of .1 and the
lifting function l -J : Vr ---> (Vr h· Because the elements of an information system are
always non-empty, the conditions required of l- J and .1 are met if we take

.1 = 0, the emptyset, and lxJ = x, for all x E Vr .

The cpo of environments Env consists of

p : Var ---> U {Vr I T a closed type expression}

such that p(x) E vtype(x), ordered pointwise.
In presenting the denotational semantics it helps if we make certain identifications.

Instead of regarding the sum construction on cpo's of elements of information systems as
merely isomorphic to the cpo of elements of the sum of information systems, as expressed

Recursive types 259

by Corollary 12.24, we will actually assume that the two cpo's are equal. That is, for
information systems A and B we will take

IAI + IBI = IA + BI

with the injection functions inl : IAI ---> IAI + IBI, in2 : IBI ---> IAI + IBI given by

inl(X) =def inj1x = {(l,a) I a EX},

in2(x) =def inj2x = {(2,b) I bE x}.

More noteworthy is a similar identification for product. The product IAI x IBI, of cpo's
of information systems IAI and IBI, will be taken to equal the cpo IA x BI. For emphasis:

IAI x IBI = IA x BI

Recall from Corollary 12.27 that a pair of elements x E IAI, y E IBI is represented as the
element x x y E IA x BI. SO the identification of IAI x IBI with IA x BI means that the
operation of pairing in IAI x IBI is represented as the product of sets

(x, y) = x x y

for elements x E IAI and y E IBI· The projection functions 7rl IAI x IBI ---> IAI and
7r2 : IAI x IBI ---> IBI are given by2

7rl (z) =def Projl Z = {a I ::lb. (a, b) E z}

7r2(Z) =def Proj2 z = {b I ::la. (a,b) E z}.

With these identifications we avoid the clutter of explicitly mentioning isomorphisms in
the semantic definitions associated with sum and product types. We won't however iden
tify continuous functions with their representation as approximable mappings because
this might be too confusing. We will use the isomorphisms

I-I : IA ---> B.L I ---> [lAI ---> IBI.L],
'- ' : [IAI ---> IBI.LJ ---> IA ---> B.L I,

of Theorem 12.30, for information systems A and B. Recall, the functions are given by:

Irl = AX E IAI· U{Y I::lX ~ x. (X,Y) E r},

'I' = {(X, Y) I ° =1= X E ConA & Y ~fin f(X)} U {(0,0)}.

20ur convention only holds in representing pairs (x, y) in a product of cpo's of information systems
as x x y; in particular the convention does not extend to pairs of tokens like (a, b) seen here, which is an
example of the usual pairing operation of set theory.

260 Chapter 13

As is to be expected, the denotational semantics on terms of nonrecursive types is
essentially the same as that of the eager language of Chapter 11 (Section 11.3). There
are occasional, superficial differences due to the fact that the elements associated with
function types are not functions but instead approximable mappings representing them.
So, sometimes the isomorphisms associated with this representation intrude into the
semantic definition. The fact that we use information systems means that the clauses of
the semantic definitions can be presented in an alternative, more concrete way. These
are indicated alongside the semantic definitions. Comments and explanations follow the
semantics.

Denotational semantics

[()] =deJ)..p. L{0}J
)..p. {0}

[(tl, t2)] =deJ >..p. let VI ¢= [t l]p,V2 ¢= [t2]p.L(VI,V2)J
>..p. [tl]p x [t2]p (1)

[fst(t)] =deJ >..p. let V ¢= [t]p. 7l'1 (v)
>..p. Projl [t]p (2)

[snd(t)] =deJ >..p. let v <= [t]p. 1f2(V)
)..p. Proj2 [t]p

[x] =def >..p. Lp(x)J
)..p. p(x)

[)..x.t] =deJ)..p. L'().. v E Vtype(x)' [t]p(vlx])'J
)..p. {(U, V) 10 =I U E Contype(x) & V r;;.fin [t]p (U Ix]) u

{(0,0)} (3)

[tl t2] =deJ)..p. let r ¢= [tl]p, v ¢= [t2]P' Irl (v)
>..p. U{V I 3U r;;. [t2]p. (U, V) E [ir]p} (4)

[inl(t)] =deJ)..p. let v ¢= [t]p. Linl(V)J
)..p. injl [t]p (5)

[inr(t)] =deJ >..p. let v ¢= [t]p. Lin2 (v)J
>..p. inj2 [t]p

[case t of inl(xl).tl, inr(x2).t2]

=deJ >..p. let v ¢= [t]p.
case v of inl(vI).[tl]p(Vr/xrll in2(v2).[t2]p(v2Ix2J

Recursive types

[abs(t)~

[rep(t)~

=deJ [t~

=deJ [t~

[rec f.(AX.t)~ =deJ Ap. Lp,r·'(AV.[t~p[v/x,r/f])'j
Ap. p,r.[Ax.t~p[r/ fJ

Explanation

261

(6)

(7)

(1) Recall that pairing of elements VI, V2 in the product of information systems is
represented by the product of sets VI x V2. Thus, with our understanding of lifting,

This returns the bottom element 0 in the case where either [tl~P or [t2]P is 0, and
hence equals

(2) With our understanding of the form of products IAI X IBI, for information systems
A and B, we see

[fst (t)~p = let V ~ [t~p. Projl v
= projl [t]p

because the projection, under projl, of 0 is 0.
(3) Recall the isomorphism between approximable mappings and continuous functions

given by the two functions 1- 1 and' -' in Theorem 12.30. We see that

[AX.t~p l'(AV.[t]p[V/X])'j by definition,

'(AV.[t]p[v/x])' from our understanding of lifting,

{(U, V) 101= U E Contype(x) & V ~Jin [t]p[U Ix]} U {(0, 0)}.

(4) Suppose h : 17-> T, t2 : 17. In the case where [tl~P = lrj and [t2]p = lvj, by
Theorem 12.30, we see

[tl t2]p Irl(v)

U{V 13U ~ v. (U, V) E r}

Thus in this case, the two expressions in (4) agree. Morever they also coincide,
yielding 0, in the other case, where [h]p or [t2]p is empty.

262 Chapter 13

(5) In the light of the discussion of Section 11.11, we might expect to have to specify
the type 71 + 72 of inl(t)-the component 72 is left unspecified by the type of tl,
and could conceivably affect the denotation of inlet). However, because of our
particular representation of injections of a sum IAI + IBI, for information systems
A and B, we can get away without specifying the component 72; whatever it is, the
denotation of inlet) will be the same. Again, the definition simplifies:

[inl(tHp let v {= [t]p. linl(v)j

let v ~ [t]p. injl v

injl [t]p.

(6) The two halves of the isomorphism between information systems denoted by /1X.7
and 7[/1X.7/X], expressed by abs and rep are equalities.

(7) From our choice of operations associated with lifting, we simplify:

[rec f.(.\x.t)]p =def l/1r.'(.\v.[t]p [v/x,r/f])'j

w·l'(.\v.[t]p [v/x,r/f])'j

/1r.[.\x.t]p[r / fl.

The denotational semantics satisfies the expected properties.
Denotations depend only on the free variables of a term:

Lemma 13.2 If p, pi agree on the free variables of t then [t]p = [t]pl.

Proof: By structural induction.

Canonical forms denote values:

Lemma 13.3 If c E C r then [c]p i- 0, any p.

Proof: By structural induction on c.

13.4 Adequacy of eager semantics

D

D

Both the operational and denotational semantics agree on whether or not the evaluation
of a term converges. For a typable, closed term t, define

t! iff 3c. t --t C

t.IJ. iff [t]p i- 0,

Recursive types 263

for an arbitrary environment p. So, t 1 means the evaluation of the closed term t
terminates in a canonical form, while t .jJ. means its denotation is not bottom.

The proof that the denotational semantics respects evaluation proceeds routinely on
the lines of Section 11.4, with the help of a Substitution Lemma:

Lemma 13.4 (Substitution Lemma)

Let s be a typable, closed term such that [s]p i= 0. Then

[t[s/x]]p = [t]p[[s]p/x]

Proof: By structural induction. o

Lemma 13.5 If t ---+ c then [t]p = [c]p for any typable, closed term t and canonical

form c, and arbitrary environment p.

Proof: By rule induction. o

Exercise 13.6 Establish the cases of the above rule induction for the rules for sum and
recursive types. 0

By Lemma 13.3, canonical forms denote values. So, it follows that

if t 1 then t .jJ.,

for any typable, closed term t.
As usual, the converse is harder to prove and is done by means of a logical relation in

a manner similar to that followed in Chapter 11. However, this time we have the extra
complication of recursive types. In Chapter 11, we could define the logical relations :S r
by structural induction on the types T. We can no longer do this when types can be
defined recursively; the definition of :S/l-X.r cannot be given straightforwardly in terms of
:Sr[/l-X.rjX) as such a definition would not be well-founded. Fortunately we can still give
a simple definition of the relations :Sr by taking advantage of the information-systems
representation. Suitable relations

for a token a E Tokr , type T and canonical form c E C r are definable by well-founded
recursion (see Section 10.4). For d E (Vr hand t : T, we then take

The definition of the relation c makes use the size of tokens:

264 Chapter 13

Definition: For sets built up inductively from the empty set by forming finite subsets,
pairing with 1 and 2, and pairing define:

size(0)
size(X)
size((a, b»
size((l, a»
size((2, b»

1

1 + I;a E x size(a) (where X is a finite, nonempty subset)
1 + size(a) + size(b)
1 + size(a)
1 + size(b)

Lemma 13.7 For each closed type T there is a relation E r between tokens of Vr and
canonical forms CT with the following properties:

• 0 EI0
• (a, b) Er, *T2(Cl, C2) iff a Er, C1 & b cr2C2

• (U, V) CT1->T2 AX.t iffVc E CT1 · U .:'STl C =? V.:'ST2 t[c/x].
• (1,a)cTl+T2 inI(c) iffacTlc

(2, b) CT1+T2 inr(c) iff b CT2C.

• aCj.LX.T abs(c) iffaET[j.Lx.TjXj c

where we write
U .:'Sr s,

for U a subset of tokens of VT and s : T a closed term, iff

Vb E U 3c E CT.(b Cr C & s --+ c).

Proof: The relation C exists by well-founded recursion on the size of tokens and canonical
forms combined lexicographically. More precisely, defining

(a, c) < (a', c/) iff size(a) < size(a') or

(size(a) = size(a') & c is a proper subterm of c/),

for tokens a, a' and canonical forms c, c' , produces a well-founded set. On a typical
member (a, c) we can define by well-founded recursion those types T for which a ETC

holds. 0

Lemma 13.8 Assume t is a closed term of type T, and that U, V E CanT' Then

U f--; V & U .:'ST t =? V .:'ST t.

Recursive types 265

Proof: A necessary and sufficent condition is that

U I-r a & (Vb E U. b Cr c) =} a Cr C,

for any U E Conn a E Tokr and C E Cr. This is shown by well-founded induction
on size(U U {a}), and the structure of c ordered lexicographically. The proof proceeds
according to the form of 7.

For example, suppose 7 == 71-> 72. In this case, assume

(1)

and
(Xi, Xi) Cr,->r2 AZ.t, for 1::; i::; n. (2)

To maintain the induction hypothesis, we require (X, Y) C T->T2 AZ.t, i.e.

Suppose X ;Sri CI with CI E Cr1 · If X 1-;1 Xi then, by well-founded induction,
Xi ;S CI· Hence by (2) it follows that Y i ;Sr2 t[cd z]. Thus

Now by (1),

By well-founded induction,

as required.
The proof for the other cases of T proceeds more simply; when T == /LX.a the well

founded induction relies on a decrease in the second component of the lexicographic
order. 0

Theorem 13.9 For any typable, closed term t,

if t JJ- then t 1 .

Proof: It is shown by structural induction on terms t that:
If t has type 7 and free variables Xl : 71,···, Xk : Tk and

266 Chapter 13

for VI E Vrl , ... ,Vk E Vrk , and closed terms 81, ... ,8k, then

We consider two cases of the structural induction, leaving the remainder to the reader.

Case (h t2): Inductively suppose the property above holds of t 1 : (j- > T and t2 :
(j. Assume (t1 t2) has free variables amongst Xl : Tb··· ,Xk : Tk matched by VI ;SrI
81,···, Vk ;Sk 8k, for VI E Vrl ,··· ,Vk E Vrk and closed terms 81,·· ., 8k·

Suppose b E [ti t2]p[vdxI,··-j. We require the existence of a canonical form c such
that b Er C and (ti t2)[sdx1,···J -t c. From the denotation of [t1 t2TI,

for some U, V with b E V. By induction,

and

By the property of approximable mappings, V being non-empty ensures U non-empty.
Thus there are canonical forms C2 and Ay.t1 such that

Now, by definition of E(7->Tl

In particular,

Thus

for some canonical form c. Combining the various facts about the evaluation relation,
from the rule for evaluation of applications, we see that

Recursive types 267

Case >..y.t: Let y : a and t : T in a typable abstraction >..y.t. Assume >..y.t has free
variables amongst Xl : T1,·· ., Xk : Tk matched by

for VI E V.,.,,···, Vk E V"'k and closed terms Sl,···, Sk. We require that any token in
[>..y.t]P[VI/x1'···J, necessarily of the form (U, V), satisfies

(U, V) Ca->.,. (>..y.t)[stfxl,··-j.

Suppose (U, V) E [>..y.t]P[VI/Xl,··-j. If U = 0 then so is V = 0 which ensures
(U, V) Ca->-r >..y.t[SI/XI,··-j. Assume otherwise, that U =1= 0. Recalling the definition of
Ca->.,., we require

Vc E Ca. U ;S.,. C => V ;S.,. t[c/Y][SI/X1,···j

Let U ;S.,. c, for cECa· Then by Lemma 13.8, U ;S" c. From the denotation of >..y.t,

V r;;.fin [t]p[vI/xl,·· ·][U /yj.

But from the induction hypothesis,

which implies

Hence,
(U, V) Ca->.,. (>..y.t) [SI/X1, ... j

also in the case where U =1= 0. D

Exercise 13.10 Carry through the case of the structural induction of the proof above
for terms of the form ree x.t. D

Corollary 13.11 For any typable, closed term t,

t 1 iff t.IJ..

13.5 The eager >..-calculus

In the eager language we can define the recursive type

A == /-Lx. (X -> X).

268 Chapter 13

This type denotes the :SJ-least information system 1: such that

-an information system equal to its own lifted function space. The terms built solely
out of those of type A without rec can be described quite simply. They are those terms
given by:

where x ranges over variables of type A, and we use the abbreviations

tl·t2 == (rep(td t2)

AX.t == abs(Ax.t)

-it is easy to check from the typing rules that if t, t 1, t2 are terms of type A then so are
applications tl.t2 and abstractions AX.t. This is the syntax of a A-calculus in which we
can do paradoxical things like apply functions to themselves and, as we shall see, even
define a fixed-point operator.

The only canonical forms amongst the terms are those closed abstractions AX.t. Their
evaluation to themselves is captured in the rule

AX.t ---+ AX.t
(1)

which is, of course, derivable from the operational semantics. It remains to see how
applications (tl.t2) evaluate. From the operational semantics we obtain the derivation:

h ---+ abs(Ax.tJJ == AX.tJ.
rep(td ---+ Ax.ti

This condenses to the derived rule:

h ---+ Ax.ti t2 ---+ C2 ti[C2/X] ---+ c

(td2) ---+ C
(2)

It is not hard to see that all derivations in the operational semantics determining evalu
ations of terms in the A-calculus can be built up out of these derived rules. The second
derived rule expresses that applications (t 1.t2) evaluate in an eager way. The terms form
an eager A-calculus.

Recursive types 269

The eager A-calculus inherits a denotational semantics from that of the larger language.
Simply by restricting the denotational semantics to its terms we obtain:

[x~p = p(x)

[tl.t2~P = [tl~p. [t2~P

where the application <p.d of <p E 1£1.1 to dE 1£1.1 is defined by

<p.d =def U{V 1 :3 U S;;; d. (U, V) E <p},

[AX.t~p = {(U, V) 10-; U E ConA & V S;;;fin [t~p [U Ix]} u {(0,0)}

We could have proceeded differently, and defined the syntax, operational and denota
tional semantics of the eager A-calculus from scratch, simply by taking (1) and (2) as
the evaluation rules, and the denotational semantics above as a definition (though then
environments would not involve variables other than those of type A). The adequacy
result for the full language restricts to an adequacy result for the eager A-calculus: a
closed term of the eager A-calculus denotes a non-bottom (i.e. nonemptyelement) iff it
converges with respect to an operational semantics given by the rules (1) and (2) above.

13.5.1 Equational theory

In general we can regard two terms of the same type as equivalent iff they have the same
denotation, i. e. for t 1, t2 of the same type, define

i.e. , terms tl , t2 are equivalent iff [tl~P = [t2~P' for all environments p. Similarly, we
can define

t! iffVp.[t~p -; 0,

which holds of a typable term t iff it converges in every environment.
Let us examine what rules hold of two relations = and 1 but, for brevity, just on

terms of the eager A-calculus. Firstly, the relation = is an equivalence relation-it is
reflexive, symmetric and transitive. The relation = is also substitutive: if two terms
have the same denotation then replacing one by the other in any context will yield the
same denotation. To state such a property in generality, we need to address the issues
involved in the substitution of terms which are not closed.

Substitution: An occurrence of a variable x in a term t of the A-calculus is bound if it
is inside some subterm of t of the form AX.t'; otherwise it is free. We use t[ulx] to mean

270 Chapter 13

the term obtained from t by substituting u for every free occurrence of x in t. However
care must. be taken as the following example shows. The two functions denoted by Ay.X
and AW.X are the same constant function in any environment; we have

Ay.X = AW.X.

However, substituting y for the free occurrence of x we obtain

(Ay.X)[Y/X] == Ay.y,

denoting the identity function in one case, and

(AW.X)[Y/X] == AW.y,

the constant function we would hope for, in the other. Certainly it is not true that

Ay.y = AW.y.

The difficulty is due to the substitution leading to the free variable y becoming bound in
the first case. Substitutions t[u/x] only respect the semantics provided no free variable
of u becomes bound in t.

We now state the rules for equality, taking care with the substitutions:
Equality rules:

(reft) -
t = t

(eql) it = t2
t[tI/x] = t[t2/X]

tl = t2 (sym)
t2 = it

provided no free variables of tl and t2 become bound by the substitutions into t. The
last rule says if h always converges and tl has the same denotation as t2 then t2 always
converges.

Variables and abstractions of type A are convergent:

Convergence rules:

xi if x is a variable of type A,
Ax.d

Recall the denotation of a variable in an environment p is the value p(x), which is
necessarily convergent. This explains why variables are always regarded as convergent.

The remaining rules are slight variants of the conversion rules from the classical .A
calculus, adjusted to take account of eager evaluation.

Recursive types 271

Conversion rules:

(a)
AX.t = Ay.(t[y/X])

provided y does not occur (free or bound) in t.

(13)
(AX.t)U = t[u/x)

provided no free variable of u becomes bound in t.

(7]) t! provided x is not a free variable of t.
t = AX.(t.X)

The first rule (a) says we can always rename bound variables provided this doesn't make
unwelcome identifications. The second rule (13) expresses the essence of eagerness, that
an application needs the prior evaluation of the argument. The soundness of the final
rule (7]) becomes apparent on examining the denotational semantics.

Exercise 13.12 Prove the soundness of the rule (7]) from the denotational semantics.
o

Exercise 13.13 Show the following two rules are also sound:

provided no free variables of s become bound in t 1, t2 or t. Explain why anything derived
using these rules in addition to the system of rules listed could also have been derived in
the original system. 0

Exercise 13.14 Show the soundness of the following two "strictness" rules:

t.u!

if
t.u!

u!

Explain why anything derived using these rules in addition to the system of rules listed
could also have been derived in the original system. 0

Exercise 13.15 Give rules for = and! for the full eager language (not just the eager
'x-calculus). 0

272 Chapter 13

13.5.2 A fixed-point operator

Like its ancestor the A-calculus, the eager A-calculus is amazingly expressive. As there
it is possible to encode, for example, the natural numbers and computable operations ,on
them as terms within it. In particular it has a term Y which behaves like a fixed-point
operator. Here it is:

Y == Af.(AX.Ay.(f.(X.x).y)).(AX.Ay.(f.(X.x).y))

(In writing this term we have adopted the convention that f.g.h means (f.g).h.) Imagine
we apply Y to a term F == Ag.(AZ.h)-so F is a function which given a function 9 returns
the function (Az.h) possibly involving g. Using the equational laws of the last section,
we derive:

Y.F (AX.Ay.F.(x.x).y).(AX.Ay.F.(x.x).y) by ((3) as F 1, (1)
Ay.(F.((AX.Ay.F.(X.x).y) (AX.Ay.F.(X.x).y)).y)

by ((3) as AX.Ay.(F.(X.x).y)!,
Ay.(F.(Y.F).y) by (eq1) using (1).

In particular, it follows that y.F! by (eq2). Hence, by ((3),

F.(Y.F) = (Az.h)[Y.F/g]

where because it is an abstraction (Az.h)[Y.F/g]!. So F(y.F)! by (eq2). Thus, by (''7),

Ay.(F.(Y.F).y) = F.(Y.F)

and we conclude
Y.F = F.(Y.F).

In other words, Y.F is a fixed-point of F.

Exercise 13.16
(i) Show from the operational semantics that Yl.F diverges for any closed term F of the
eager .A-calculus where

Yl == Af.(AX.f.(X.X)).(AX.f.(X.X)).

(ii) Suppose F is a term Ag.AZ.h of of the eager A-calculus. Let

Y' == Af.(AX.f.(Ay.X.X.y)).(AX.f.(Ay·X.X.y)).

Show Y'.F = F.(Y'.F). o

Recursive types 273

To see how Y is related to the least-fixed-point operator fix, we try to imagine what
the denotation of Y.f is, for a variable f : A, assigned value 'P in an environment p.

Certainly, p(f) = 'P E 1£1· Automatically, from Cs definition, 'P E 1£ -> £oll· Hence
I'PI : 1£1 -> 1£lol· We cannot take the least fixed point of 'P as it stands. However, note
that 1£1 has a bottom element .l1.CI, given by

.lICI = {(X, 0) I X E ConAl·

Thus we can define a continuous function

acting so

down: 1£lol -> 1£1

down (d) = { d.l
I·CI

if dE 1£1,
if d = 0.

Or, equivalently, down can be described as acting so that

down(d) = d U .l1.CI,

for any d E 1£lol. The function

down 0 I'PI : 1£1 -> 1£1

has a least fixed point. This is the denotation of [Y.f]p in an environment p with
p(f) = 'P. We claim:

[Y.f]p = fix(down 0 Ip(f)I).

We begin the proof of this claim by studying the properties of application of the eager
A-ca1cul us in the model 1£ Iol· Recall, that application in the model 1£ Iol is defined by

'P.d = U{V I :J U ~ d. (U, V) E 'P},

Lemma 13.17 For 'P, dE 1£lol, b a token and V a subset of tokens,

V ~fin 'P.d {=} (V = 0 or:JU ~ d. (U, V) E 'P)'

Proof: In the proof we refer to the properties of an approximable mapping stated in
Lemma 12.29. From the definition of 'P.d,

274 Chapter 13

V ~fin cp.d ¢:} V = 0 or

V ~ VI U··· U Vk for some UI,···, Uk ~ d
such that (UI, VI),···, (Uk, Vk) E cpo

In the latter case, taking U = UI U ... U Uk, we obtain (U, V) E cp because cp is an
approximable mapping. 0

The function down is associated with protecting a term from evaluation by enclosing
it in an abstraction:

Lemma 13.18 Let t be a term of the eager .>.-calculus which does not contain y as a free
variable. Then,

[Ay.(t.y)]p = down([t]p).

Proof: The desired equation follows immediately from the definition of down, once we
have shown that, for a token b and arbitrary environment p,

bE [Ay.(t.y)]p ¢:} (:lU E ConA. b = (U, 0)) or bE [t]p. Ct)

To show this, recall from the semantics, that

(U, V) E [Ay.(t.y)]p ¢:} U = V = 0 or

0=1- U E Con A & V ~fin [t.y]p[U /yj.

This can be simplified to (t) by the equivalences:

V ~fin [t.y]p[U /yj ¢:} V ~fin [t]p.U
as y is not free in t-see Lemma 13.2

¢:} V = 0 or
:lU' ~ U. (U' , V) E [t]p by Lemma 13.17,

¢:} V = 0 or
:lU'. U f-* U' & (U' , V) E [t]p

¢:} V = 0 or (U, V) E [t]p
by the properties of an approximable mapping. 0

Let f be a variable of type A. By equational reasoning, just like that above, we derive

Y.f = .>.y.f.(Y.J).y and Y·f!

from which we obtain directly that

[Y.J]p = [.>.y.f.(Y.f).y]p =I- 0

f

Recursive types

for any environment p. Whence, by Lemma 13.18, we see that

[Y·np =down([f·(Y·f)~p)

=down 0 Ip(f)I([Y.np)

275

from the denotational semantics. Thus [Y.f~p is a fixed point of down olp(f)I. It follows
that

fix (down 0 Ip(f)I) ~ [Y·np

As claimed, the converse inclusion holds too.

Theorem 13.19 Let

Y =: >..f.(>..x.>..y.f.(x.x).y)(>..x.>..y.f.(x.x).y).

Then, for an arbitrary environment p,

[Y·f~p = fix (down 0 Ip(f)I)·

Proof: In presenting the proof a particular environment p will be assumed. With respect
to p, we will identify a term with its denotation, writing, for example,

bEt for b E [t~p.

We will write Fixf for fix(down 0 Ip(f)I). Note, that Fixf has an inductive charac
terisation as the least set d such that

d = U{V 13U ~ d. (U, V) E f} U J../£/.

From the preceding discussion, it is clear that it remains to prove Y.f ~ Fixf. The
({3) rule yields

Y.f = (>..x.>..y.f.(x.x).y).(>..x.>..y.f.(x.x).y).

Consequently,

V ~!in Y.f {::? V ~!in (>..x.>..y.f.(x.x).y).(>..x.>..y.f.(x.x).y)

{::? V = 0 or
3U ~ (>..x.>..y.f.(x.x).y). (U, V) E (>..x.>..y.f.(x.x).y).

To establish Y.f ~ Fixf it is thus sufficient to show that the property P(U) holds of all
U E ConA where

P(U) {::::::} de!

"iV. [U ~ (>"X.>..y.f.(X.x).y) & (U, V) E (>..x.>..y.f.(x.x).y)] =} V ~ Fixf.

276 Chapter 13

This is shown by induction on the size of U.
Let U E ConA. Suppose the induction hypothesis P(U') holds for all U' E ConA for

which size(U') < size(U). We require

[U ~ (>.x.>.y.f.(x.x).y) & (U, V) E (>.x.>.y.f.(x.x).y)] =} V ~ Fixf,

for any V. This holds trivially when V is empty. In fact, by the following argument,
it also suffices to show this not just for nonempty V but also only for the case where
V n 1..1£1 = 0. Of course, in general, V = Vo U VI where Vo n 1..1£1 = 0 and VI ~ 1.. 1£1. It
is then clear that VI ~ Fixf, while (U, Vo) E (>.x.>.y.f.(x.x).y), from the properties of
approximable mappings. The original problem reduces to showing

[U ~ (>.x.>.y.f·(x.x).y) & (U, Yo) E (>.x.>.y.f.(x.x).y)] =} Vo ~ Fixf,

where Vo n 1..1£1 = 0.
Suppose

U ~ (>.x.>.y.f.(x.x).y) & (U, V) E (>.x.>.y.f.(x.x).y)

where we assume V is nonempty and V n 1..1£1 = 0, i. e., V n {(X, 0) I X E ConAl = 0.
Under these assumptions,

(U, V) E (>.x.>.y.f.(x.x).y) # V ~ [>.y.f.(x.x).yTIP[U Ix] from the semantics,

V ~ down([f.(x.x)TIp[U/x]) by Lemma 13.18,

V ~ [f.(x.x)TIp[U Ix] U 1..1£1

V ~ [f.(x.x)TIp[U Ix] as V n 1..1£1 = 0,
V ~ p(J).(U.U) from the semantics,

3W ~ (U.u). (W, V) E f by Lemma 13.17 as V =1= 0.

Thus we have deduced the existence of W E ConA such that

W ~ (U.u) & (W, V) E f.

Because V is nonempty and (W, V) is a token, W is nonempty too. From W ~ (U.U)
we obtain

3X ~ U. (X, W) E U,

i.e. 3X.U ~A X & U ~A (X, W).

But this simplifies to
U ~A (U, W),

Recursive types 277

by the properties of entailment in I:- = I:- -> I:- -L. However this is defined to mean precisely
that

U{Y I 3Z. U f-A Z & (Z, Y) E U} f-A W.

Consider arbitrary Z, Y for which

U f-A Z & (Z, Y) E U.

Then size(Z) < size(U), and hence P(Z) by the induction hypothesis. By assumption

U ~ (>.x.>.y.f.(x.x).y).

Thus
(Z, Y) E (>.x.>.y.f.(x.x).y), and also Z ~ (>.x.>.y.f.(x.x).y),

as denotations are f- A-closed. By P(Z) we obtain Y ~ Fixf. Because Y, Z were arbitrary,

Fixf d U{y I 3Z. U f-A Z & (Z, Y) E U} f-A w.

Hence, as Fix f is f- A -closed, W ~ Fix f.
Recall the inductive characterisation of Fixf. Because

W ~ Fixf and (W, V) E f

we finally get V ~ Fixf. This concludes the proof by induction on the size of U. D

Exercise 13.20 Let
fl == (>.x.x.x).(>.x.x.x),

a term of the eager A-calculus. Show

[fl]p = 0

i.e., fl denotes the bottom element of II:-I-L, with respect to an arbitrary environment p.

(Hint: Adopting the same conventions as used in the proof of Theorem 13.19, first remark
that the denotation of fl is nonempty, so we have nonempty V ~ fin fl, iff

U ~ (>.x.x.x) & (U, V) E (>.x.x.x),

for some U E ConA. Secondly, show

(U, V) E (>.x.x.x) => U f- A (U, V).

Finally, obtain a contradiction to there being a smallest U with property (t), for some
V, by examining the definition of f- A') D

278 Chapter 13

13.6 A lazy language

In moving over to a language with lazy evaluation it's appropriate to modify the syntax
of Section 13.1 slightly. The types are the same as the eager case but for one small
change: in the lazy case the smallest type is 0 (and not 1). The type 0 will have no
values; all the terms of type 0 will diverge. The types are:

where X ranges over an infinite set of type variables, and p,X.T is a recursively-defined
type. The role of 0 in the eager case will now be taken over by a term. of type 0 which
is to denote the diverging computation--it will not be a canonical form. The precise
syntax of untyped terms in the lazy case is:

t "= • I (tt, tz) I fst(t) I snd(t) I
x I AX.t I (tl tz) I
inl(t) I inr(t) I case t of inl(xt}.tl' inr(x2).tZ. I
abs(t) I rep(t) I
ree x.t

where x, Xl, x2 are variables in Var. The only differences with the eager case are the
replacement of 0 by. and a more general form of recursive definition. Just as in Chapter
11, a recursive definition in the lazy case can now take the form reex.t where, unlike the
eager case, we do not insist that the body t is an abstraction.

Again, any closed type is associated with infinitely many term variables of that type.
Accompanying the changes in syntax are the typing rules

.:0

X: T t: T

reex.t : T

-the other term constructions are typed as in the eager case. The definition of the free
variables of a term and the notion of closed term are defined as usual.

13.7 Lazy operational semantics

The canonical forms CT of type T given by the rules: 3

3Here. as in the remainder of this chapter. we use the same notation in the lazy case as we used
for the corresponding eager concepts. The two treatments are kept separate so this should not cause
confusion.

Recursive types

tl : Tl t2: T2 t] and t2 closed
(tl' t2) E Crl *T2

AX.t : T]-> T2 AX.t closed
AX.t E C rl ->r2

tl : Tl tl closed
inl(td E C rl +r2

c E Cr[/.Lx.r/Xj

abs(c) E C/.LX.r

t2 : T2 t2 closed
inr(t2) E C rl+r2

279

The canonical forms can have unevaluated components. Apart from the last, these rules
have already appeared in Chapter 11. Canonical forms of recursive types are handled as
in the eager case.

Example: The lazy natural numbers
Consider the type

nat ==de/ {.Lx. (0 + X).

in the lazy language. It has canonical forms associated with the left and right components
of the sum.

Associated with the left summand are the canonical forms

abs(inl(tt})

where tl is a closed term of type o. There are in fact infinitely many closed terms
tl : 0 (Why?); though, of course, they all denote the same element of I 0 -L I, namely
bottom-there are no others. In particular, e : 0 denotes bottom. With it we define

Zero == abs(inl(e)).

Then Zero: nat is a canonical form. Canonical forms associated with the right-hand-side
of the sum in nat == {.LX. (0 + X) have the form

where t2 is a closed term of type nat. If we abbreviate abs(inr(t2)) to SUCC(t2) we can
generate canonical forms:

Zero, Succ(Zero) , Succ(Succ(Zero)) , ...

280 Chapter 13

These canonical forms are obtained, starting from Zero by repeatedly applying the "suc
cessor function"

AX.SUCC(X) : nat-> nat.

Such canonical forms correspond to natural numbers. There are many other canonical
forms however: one given by Succ(recx.Succ(x» corresponds to an "infinite" number,
while others like Succ(Succ(recx.x», where x: nat, correspond to partial natural num
bers, as we will discuss further following the denotational semantics. 0

We define the evaluation relation between closed terms and canonical forms by the
rules:

Evaluation rules

if c is a canonical form
c-->c

t --> (tl ,t2) tl --> c

fst(t) --> c

tl --> Ax.ti ti [t2/xj --> c

(tl t2) --> c

t --> c

abs(t) --> abs(c)

t[rec x.tlx] --> c

rec x.t --> c

t --> (tl,t2) t2 --> c

snd(t) --> c

t --> abs(c)

rep(t) --> C

Evaluation is deterministic and preserves types:

Proposition 13.21 Let t be a closed term and c, CI and C2 canonical forms. Then

(i) t --> c & t : T implies c : T,

(ii) t --> CI & t --> C2 implies CI == C2·

Proof: By rule induction. o

R.ecursive types 281

13.8 Lazy denotational semantics

To each type T we associate an information system with elements the values at type T.

The type T may contain free type variables, so we need a type environment X which to
each of these assigns an information system. We define the information system denoted
by T by structural induction:

V[O~x

V[TI * T2~X
V[TI-> T2h

V[TI + T2h

V[Xh

V[jlX.T~X

(0, {0}, 0) (also called 0)

(V[Tlhh x (Vhhh

(V[Tl~xh ----> (V[Tdxh

(V[Tl~xh + (V[T2~xh
x(X)

jlI.V[T]x[I / Xl

All the operations on the right hand sides are operations on information systems. Again
a recursive type expression jlX.T denotes, in an environment X, the ::::)-least fixed point
of

in the cpo of information systems.
A closed type T has an information system of values

for some arbitrary type environment X, which we will write as

The corresponding cpo of values is IV.,. I· With respect to an environment for its free
variables, a term will denote an element of the lifted cpo of values. This time, it turns
out to be simpler to represent this cpo at type T as an information system, and define

which we will write as

V"'.L = (Tok"'.L,Con"'.L,I-.,..L).

A term t of type T is to denote an element

[t~p E IV.,..L I

282 Chapter 13

with respect to an environment p: Var --> IVT.LI. We choose the following interpretation
of ..L and the lifting function l- J : IV T I -> IVT.L I: the conditions required by the lifting
construction on cpo's in Section 8.3.4 are met if we take

..L = {0},

the singleton consisting of the empty set, and

lxJ = Fin(x),

consisting of all the finite subsets of x, for all x E V T • Lifting is associated with the
operation f I-> f* extending a continuous function f : IAI --> IBI to f* : IA.l1 --> IBI when
the elements IBI have a bottom element ..LB. Our choice of lifting construction leads to
the following characterisation of f* and the closely-coupled let-notation.

Proposition 13.22 Let A, B be information systems. Assume IBI has a bottom element
..LB. Let f : IAI --> IBI be a continuous function. Its extension

is given by

r : IA.lI --> IBI

f*(x) = {f(UX)
..LB

if xi- {0},
if x = {0},

for x E IA.lI. Consequently,

(let v {= x. f(v)) = { feu x)
..LB

if xi- {0},
if x = {0} .

Proof: The extension f* is defined to act on x E IA.lI so

rex) = {f(V) if x = lvJ,
..LB if x = {0}.

However, x = lvJ is equivalent to x = Fin(v), which implies v = Ux. With the remark
that the case where x = l v J, for some v, coincides with that where x i- {0}, we obtain
the characterisation claimed in the proposition. Finally, note that, by definition,

(let v {= x. f (v)) = f* (x) .

o

Recursive types 283

Remark: The extension of the function f* : IAt I --+ 181 of f : IAI --+ 181 will be
used most often in situations where f is described as a set-theoretic operation for which
f(0) = 0. In these situations f*(x) = f(Ux) U 1.B·

In presenting the denotational semantics we shall again identify a sum of cpo's IAI + 181
with IA + 81, and a product IAI x 181 with IA x 81, for information systems A and 8.
The treatment of the the lazy-function-space type will use the following isomorphisms
between elements of information systems and continuous functions:

Proposition 13.23 Let A and 8 be information systems. Define

by taking

II-II :IA1- --+ 81-1 --+ [IA1-1 --+ 181-1],
"-" :[lA1-1 --+ 181-1J--+ IA1- --+ 81-1,

Ilrll = Ax E IA1-I· {Y I :3X ~ x. (X, Y) E r},

"!" = {(X, Y) I 0 i- X E ConA.L & Y E f(X)} U {(0, 0)}.

Then II -II and "-" are mutual inverses, giving an isomorphism

Proof: By Theorem 12.30, we have the mutual inverses

given by:

I-I : IA1- --+ 81-1 --+ [IA1-1 --+ 1811-],
'-': [IA1-I--+ 1811-]--+ IA1- --+81-1,

Irl = Ax E IA1-I· U {Y I :3X ~ x. (X, Y) E r},

'1' = {(X, Y) 10 i- X E ConA.L & Y ~fin f(X)} U {(0, 0)}.

There is, in addition, an isomorphism between 1811- and 181-1 given by the mutual inverses
Fin: 1811- --+ 181-1 and U: 181-1--+ 1811-· Thus defining lid = Fin 0 Irl and "1" =' Uol'
yields an isomorphism pair "-", II-II between IA1- --+ 81-1 and [IA1-I--+ 181-1]. From the
definition of 1- I, we see:

Ilrll (x) =Fin(Irl (x))

=Fin(U {Y I :3X ~ x. (X, Y) E r}),

={Y I :3X ~ x. (X, Y) E r}.

284

From the definition of ' - " we obtain:

"f" ='Uof'

={(X, Y) I 0 -# X E ConA.L & Y c;;.Jin U f(X)} U {(0, 0)}

={(X, Y) I 0-# X E COnA.L & Y E f(X)} U {(0, 0)}.

Stated precisely, the cpo of environments consists of

p : Var -> U {IVT.L II T a closed type},

Chapter 13

D

such that p(x) E Ivtype(x).L I, ordered pointwise. The denotational semantics extends to
recursive types that of Chapter 11 (Section 11.7). We accompany the semantic definitions
by alternatives expressed using the information-system representation.

Denotational semantics

[.] =def

[(h, t2)] =def

[fst(t)] =def

[snd(t)] =def

[x] =def

[.\x.t] =deJ

.\p. {0}

.\p. l([tl]p, [t2]p)J

.\p. l[tl]P x [t2]p J

.\p. let v {= [t]p. 7fl (v)

.\p. (projl U[t]p) U {0}

.\p. let v {= [t]p. 7f2(V)

.\p. (projz U[t]p) U {0}

.\p. p(x)

.\p. l"(.\ d E IVtype(x)J [t]p[d/x])"J

.\p. l {(U, V) I ° -# U E Contype(x).L & V E [t]p[U /x]} U

(1)

(2)

(3)

{(0,0)}J (4)

[tl t2] =deJ .\p. let r {= [tl]P· IlrII([t2]p)
.\p. {V I 3U c;;. [t2]p. (U, V) E U[tdp} U {0} (5)

[inlet)] =def .\p. linl([t]p)J
.\p. l injl [t]p J (6)

[inr(t)] =deJ .\p. l in2([t]p)J
.\p. linjz [t]pJ

Recursive types

[case t of inl(xt).t1 , inr(x2).t2]

=def >..p. case [t]p of inl(dd·[tl]p[ddxlJI in2(d2)·[t2]P[d2/X2J.

[abs(t)] =def [t]

[rep(t)] =def [t]

[rec x.t] =def >..p. j.Ld.[t]p[d/x]

Explanation

(1) The term. denotes the bottom and only element of 101.1, viz. {0}.

(2) We identify the pair ([tl]p, [t2]p) with [tl]P x [t2]p.

285

(7)

(3) The characterisation of the denotation [fst(t)]p depends on Proposition 13.22.
From the proposition

let v {= [t]p. 1l"l(V) = {1l"l(U[t]P) ~f [t]p i- {0},
{0} If [t]p = {0}

= {proj l U[t]p if [t]p i- {0},
{0} if [t]p = {0}

=(projl U[t]p) u {0}

where the final step follows from the fact that proj10 = 0.

(4) This equality follows by Proposition 13.23.

(5) The characterisation of the let-construction in Proposition 13.22 yields

let r {= [tl]p. Ilrll([t2]P) = {~~[tl]pll([t2]P) !~ [!~~~ ~ ~~~'
= {{V 1 :lU ~ [t2]P' (U, V) E U[tl]P} if [tl]p i- {0},

{0} if [tl]p = {0}

={V 1 :lU ~ [t2]P' (U, V) E U[tdp} u {0}

because the first component gives 0 when [tl]P = {0}.

(6) We identify injections inl(dt),in2(d2) of a sum with the image inj1d1 and inhd2'

(7) The two halves of the isomorphism between information systems denoted by j.LX. r
and T[j.LX.r/x], expressed by abs and rep are equalities.

286 Chapter 13

Example: The lazy natural numbers
The information system denoted by the lazy natural numbers

nat == ,ux.(O + X)

will be the :'9-least solution to

Terms of type nat will denote elements of £..L where

with cpo of elements

We can picture its cpo of elements as:

Indeed the cpo 1 £..LI has the form:

rec x.Suee(x)
Suec(··· Suee(Zero)·· .) •

~~(SU«(n)) Suce(Zero)

Zero Suce(n)

Above, the denotations of various terms of type nat are indicated. We have written n
for the term recx.x, with x: nat. The elements

Zero, Succ(Zero), Succ(Succ(Zero)),···

Recursive types 287

denote numbers while the maximal element, denoted by recx.Succ(x), can be thought
of as the "infinite" number

Succ(Succ(··· Succ·· .)).

It is the least upper bound of the "partial" numbers:

n, Succ(n), Succ(Succ(n)),···

In fact, all but the bottom element are denoted by canonical forms-the "infinite number"
is the denotation of the canonical form Succ(recx.Succ(x)). The operation of addition
on the lazy natural numbers can be defined as a term just as in the eager case. 0

Exercise 13.24 Explain why it is not possible to define the cpo N 1. of lifted natural
numbers as a cpo of values or denotations associated with a type of the lazy language.
(Lazy languages generally take this type as primitive.) 0

Example: Lazy lists
Let a be some closed type expression-for example a could be the type of lazy natural
numbers. The type of lazy lists over a is given by the type term

L=ftY.(O+a*y).

Assume A is the information system denoted by a. This type term denotes the ::=;I-Ieast
information system satisfying:

£ = 01. +A1. X £1..

Terms of type L will denote members of D = 1£1.1, the domain of lazy lists over IAIJ.,
where

D ~ (1011. + IAIJ. x Dh·
The lazy programming language provides the constant Nil as the canonical form

Nil =de! abs(inl(e)) : L

and the list constructor Cons as

Cons =de! AX. abs(inr(x)) : a * L-> L,

where X is a variable of type L. In the lazy language we can also define infinite lists. For
example, the term

rec l. Cons(a, l),

defines an infinite list in which each component is a : a. o

Exercise 13.25 Classify the different kinds of canonical forms of type lazy lists over a
type a, indicating the form of their denotations. 0

288 Chapter 13

13.9 Adequacy of lazy semantics

Let t : T be a closed term. We say its evaluation converges with respect to the operational
semantics iff it evaluates to some canonical form, i.e.

t 1 iff ::lc. t -> c.

As expected, we take t to converge if its denotation is not bottom in the cpo IVT.L I.
Recalling that the bottom element of IVT.L 1 is {0}, this amounts to:

t.J,i. iff U[t~p =1= 0 for an arbitrary environment p.

It is straightforward to show that t 1 implies t .J,i., for typable, closed terms t. The
appropriate lemmas are listed here:

Lemma 13.26 If p and pi agree on the free variables of t, then [t~p = [t]p'.

Proof: By structural induction on t. o

Lemma 13.27 If c E C T then c .J,i..

Proof: By rule induction. 0

Lemma 13.28 (Substitution Lemma)
Let s be a closed term with s : a. Let x be a variable with x : a. Assume t : T. Then
t[s/x] : T and [t[s/x]] = [tH[s]/x].

Proof: By structural induction on t. 0

Lemma 13.29 If t -> c then [t~p = [dp for any closed term t, canonical form c and
arbitrary environment p.

Proof: By rule induction. o

Showing the converse, that t .J,i. implies t L for typable, closed terms t, uses a logical
relation ;ST between subsets of tokens VT and canonical forms CT. It is derivable from
the relation C T constructed in the following lemma:

Lemma 13.30 For each closed type T there exists a relation C T between tokens TokT

and canonical forms C T with the following properties:

Recursive types 289

• (U, V) CTd>T2 AX.t iff (U U .:5T1 s:::} V .:5T2 t[s/x] for any closed s : Td
• (1, a) CTI +T2 inl(t) iff a .:5Tl t
• (2, b) CTI+T2 inr(t) iff b .:5T2 t

• a CJ1.X.T abs(c) iff a CT[J1.X.T!X] c

where we write

iff
Vb E U3c E CT. (b CT c & t -> c),

for U a subset of tokens of V T and t a closed term.

Proof: The relation exists by well-founded recursion on the size of tokens and the struc
ture of canonical forms ordered lexicographically. D

Lemma 13.31 For U E CanT -L and t : T a closed term

u U .:5T t :::} U U .:5T t.

Proof: The lemma follows from

U U .:5T C & U I-T -L a :::} a .:5T c

for U E ConT -L' a E TokT -L and c E CT. This is shown by well-founded induction on
size(U U {a}), and the structure of c ordered lexicographically. The proof proceeds
according to the form of T. D

Lemma 13.32 For each typable, closed term t, ift J). then t 1.

Proof: The proof proceeds by structural induction on terms to show that for all terms
t : T with free variables among Zl : 0"1, ... , Zk : O"k that if U d1 .:50"1 Sl,···, U dk .:5O"k Sk

for di E \VeT i 1.1 and Si closed terms then

The case where t is an abstraction makes recourse to Lemma 13.31.
Taking t closed, it then follows from the definition of .:5T that if t J)., i.e., U[t]p =1= 0,

then t -> c for some canonical form c. D

290 Chapter 13

13.10 The lazy .A.-calculus

In the lazy language we can define the recursive type

A == pX.(X -> X).

This type denotes the ::9 -least information system £ such that

an information system equal to its own lazy function space. This implies that the deno
tations of terms at type A lie in the cpo D = 1 £ 1- I, satisfying

Just as in the eager case, the type A has terms which form a .A.-calculus:

t ::= X 1 h·t2 1 AX.t

where x ranges over variables of type A, where again we use the abbreviations

tl·t2 == ((rep(td t2)

AX.t == abs(.A.x.t).

We inherit an operational and denotational semantics from the full language. The only
canonical forms amongst them are those terms which are closed abstractions AX.t. From
the operational semantics we derive the rules:

AX.t -; AX.t
h --> Ax.ti ti [t21 xl -; c

(h .t2) --> c

The two rules are sufficient to derive any instance of the evaluation relation t --> c where
t is a closed term of the .A.-calculus. Because of the way applications are evaluated, the
terms under such evaluation form a lazy .A.-calculus.

By restricting the denotational semantics to terms of the .A.-calculus we obtain:

[x]p= p(x)

[tl·t2]p = [tl]P· [t2]p

where the application cp.d of cp E 1£1-1 to dE 1£1-1 is defined by

cp.d =def {V 13 U ~ d. (U, V) E U cp} u {0},

[AX.t]p = l{(U, V) 1 0 -I U E ConA.L & V E [t]p [U Ix]} u {(0, 0)} J

Recursive types 291

As far as the lazy .\-calculus is concerned, the only relevant part of an environment p is
how it takes variables x: A to elements 1£1-1.
13.10.1 Equational theory

We regard two terms of the lazy .\-calculus as equivalent iff they have the same denotation,
i.e. for tl, t2 of the same type, define

We can define

We list rules which hold of two relations = and!. They differ from those in the eager .\
calculus in that variables do not converge (because they need not in the lazy case denote
only values) and (/3) conversion holds irrespective of convergence of the argument.
Equality rules:

(reft) -
t = t

provided no free variables of tl and t2 become bound by the substitutions into t.

Convergence rule:

Conversion rules:

(0:)
>"x.t = >..y.(t[y/x])

provided y does not occur (free or bound) in t.

(13)
(>..x.t)u = t[u/x]

provided no free variable of u becomes bound in t.

tl provided x is not a free variable of t.
t = >..x.(t.x)

292 Chapter 13

Exercise 13.33 Prove the soundness of the rules from the denotational semantics. 0

Exercise 13.34 Show the soundness of the "strictness" rule:

t.u!
tf·

o

Exercise 13.35 Propose rules for = and! for the full lazy language. o

13.10.2 A fixed-point operator

The lazy A-calculus has a simpler fixed-point operator than that for the eager calculus-it
is no longer necessary to protect arguments from evaluation with an abstraction. Define

Y == >..f.(>..x.f.(x.x)).(>..x.f.(x.x)).

By equational reasoning, we see that

Y.f = (>..x.f.(x.x)).(>..x.J.(x.x)) by ((3), (1)

= f.((>..x.f.(x.x)).(>..x.f.(x.x))) by ((3),

= f.(Y.f) by (eq1) using (1).

To understand the denotation of Y we introduce a function down : I.e J.I --> I.e I, defined
using the bottom element of l.el. Because

and, by convention,

the bottom element of .e is

Define down: 1.eJ.I--> l.el by taking

down(d) = (U d) U -L,£,.
Lemma 13.36 Let <p, dE 1.eJ.I. Then

<p.d = IIdown(<p)IICd).

Recursive types 293

Proof: Let cp, d E 1£1.1. By the definition of II-II, we obtain

Ildown(cp)ll(d) = {V I ::lU ~ d. (U, V) E down(cp)}.

By definition, down(cp) = (Ucp) U {(U,0) I U E ConA-t.}. Hence

Ildown(cp)ll(d) = {V I ::lU ~ d. (U, V) E Ucp} U {0} = cp.d. 0

Now, by Lemma 13.36, from the fact that Y.J = j.(Y.f), we obtain

[Y.j]p = p(J).[Y.j]p = Ildown(p(J))II([Y.j]p).

Thus [Y.J]p is a fixed point of the function Ildown(p(J)) II : 1£1.1-+ 1£1.1. Hence

jix(lldown(p(J))ID ~ [Y.j]p.

As we will now show, the converse inclusion holds too, yielding equality.

Theorem 13.37 Let
Y =' Aj.(AX.f.(X.X)).(AX.f.(X.X)).

Then, Jor an arbitrary environment p

[y.j]p = Jix(lldown(p(J))II)·

Proof: The proof of the required converse inclusion is very similar to that of Theo
rem 13.19, and we will adopt similar abbreviations. A particular environment p will be
assumed throughout the proof. We write FixJ for Jix(lldown(p(J))II). With respect to
p we will identify a term with its denotation, writing

bEt for b E [t]p,

and even
bE Ut for b E U[t]p.

Before embarking on the proof, we note that FixJ can be characterised as the least
dE 1£1.1 such that d = p(J).d, i.e.

d = {V I ::lU ~ d. (U, V) E U J} u {0}.

The (13) rule yields
y.! = (AX.f.(X.X)).(AX.f.(X.X)).

So, we see

294 Chapter 13

V E Y.f {::} V E (AX.f.(X.X)).(AX.f.(X.X))

{::} V = 0 or 3U <;;; (AX.f.(X.X)). (U, V) E U(AX.f.(X.X)).

If V = 0 it is clear that V E Fixf so it is sufficient to show that for all U E ConA.L' the
property P(U) holds, where

P(U) {==} de!

VV.[U <;;; (AX.f.(X.X)) & (U, V) E U(Ax.f.(x.x))] =? V E Fixf.

This is proved by induction on the size of U.
Let U E COnA.L. Suppose the induction hypothesis P(U') holds for all U' E ConA.L for

which size(U') < size(U). Assume

U <;;; (AX.f.(X.X)) & (U, V) E U(AX.f.(x.x)).

If V = 0 it is clear that V E Fixf. Suppose otherwise, that V =I- 0. Because (U, V) is a
token, it follows that U =I- 0. Under this supposition, we argue

(U, V) E U(AX.f.(x.x)) {::} V E [f.(x.x)]p[U Ix]

from the denotational semantics of 13.10,

{::} V E p(f).(U.U) again from the semantics,

{::} 3W <;;; (U.U). (W, V) E U f.
Thus from the assumption that (U, V) E U(AX.f.(X.X)) we have deduced the existence

of W E ConA.L such that

(W, V) E Uf and VC E W. C E (U.U).

We show that consequently W <;;; Fixf, from which it follows that V E Fixf.
With the aim of showing W <;;; Fixf, let C E W. If C = 0 then clearly C E Fixf. So,

suppose otherwise, that C =I- 0. Directly from the fact that C E (U.U) we see

3Z <;;; U. (Z,C) E UU.

But
(Z,C) E Uu {::} Uu I-A (Z,C)

-an instance of a general property of the lifting construction on information systems
(el Exercise 12.22). Hence

3Z. U I-L Z & Uu I-A (Z,C)

Recursive types 295

and thus
U U f-A (U, C).

Recall A denotes .c = .c1. -> .cJ., a lifted function space of information systems. By the
definition of its entailment relation:

U{Y I :3Z. U f-L Z & (Z, Y) E U U}f-A C.

Consider arbitrary Z, Y for which

U f-A.L Z & (Z, Y) E U U.

Then size(Z) < size(U), and hence P(Z) by the induction hypothesis. By assumption

U ~ (>..x.f.(x.x)).

Thus
Z ~ (>..x.f.(x.x)),

as the denotation of (>..x.f.(x.x)) is closed under entailment, and also

(Z, Y) E U(>"x.f.(x.x)).

By P(Z) we obtain Y E Fixf. Thus as Z, Y were arbitrary

Fixf;> {Y I :3Z. U f-A.L Z & (Z, Y) E U U} f-A.L C.

Hence C E Fixf, because Fixf is closed under entailment. But C was an arbitrary
member of W, so we deduce W ~ Fixf.

From the characterisation of Fixf, we now finally get V E Fixf. This concludes the
proof by induction on the size of U. 0

13.11 Further reading

The books [101] by Wikstrom on the eager language of Standard ML and [22] by Bird
and Wadler on a lazy functional language, give clear, elementary explanations of the
uses of recursive types. The technique used in proving adequacy follows closely that
in Gordon Plotkin's lecture notes-similar methods of proof have been used by Per
Martin-Lof in his domain interpretation of type theory (1983), and by Samson Abramsky
[1]. The same method of proof also works to prove adequacy for an extension of the
language to include polymorphic types as in the student project [17J. Plotkin was early

296 Chapter 13

to study different modes of evaluating the 'x-calculus in [77]. The rules of for the eager
'x-calculus in Section 13.5.1 are essentially those of Eugenio Moggi's 'xp-calculus [66].
The lazy 'x-calculus is studied by Abramsky in [1] and the rules of the lazy 'x-calculus
in Section 13.10.1 correspond to Chih-Hao Ong's rules in [71]. Lazy 'x-calculus is also
treated in [87], which contains another proof of Theorem 13.37. A recent advance on the
methods for proving properties of recursive domains is described in Andrew Pitts' article
[76]. The classic book on the classical 'x-calculus is Barendregt's [14]. See also Hindley
and Seldin's [45]. See Gordon's book [42] for an elementary exposition of the 'x-calculus.

14 N ondeterminism and parallelism

This chapter is an introduction to nondeterministic and parallel (or concurrent) pr<r
grams and systems, their semantics and logic. Starting with communication via shared
variables it leads through Dijkstra's language of guarded commands to a language closely
related to Occam and Hoare's CSP, and thence to Milner's CCS. In the latter languages
communication is solely through the synchronised exchange of values. A specification
language consisting of a simple modal logic with recursion is motivated. An algorithm is
derived for checking whether or not a finite-state process satisfies a specification. This
begins a study of tools for the verification of parallel systems of the kind supported by the
Edinburgh-Sussex Concurrency Workbench and the Aalborg TAV system. The chapter
concludes with an indication of other approaches and some current research issues in the
semantics and logic of parallel processes.

14.1 Introduction

A simple way to introduce some basic issues in parallel programming languages is to
extend the simple imperative language IMP of Chapter 2 by an operation of parallel
composition. For commands co, C1 their parallel composition Co II C1 executes like Co and
C1 together, with no particular preference being given to either one. What happens, if,
for instance, both Co and C1 are in a position to assign to the same variable? One (and
by that it is meant either one) will carry out its assignment, possibly followed by the
other. It's plain that the assignment carried out by one can affect the state acted on
later by the other. This means we cannot hope to accurately model the execution of
commands in parallel using a relation between command configurations and final states.
We must instead use a relation representing single uninterruptible steps in the execution
relation and so allow for one command affecting the state of another with which it is set
in parallel.

Earlier, in Chapter 2, we saw there was a choice as to what is regarded as a single
uninterruptible step. This is determined by the rules written down for the execution
of commands and, in turn, on the evaluation of expressions. But assuming these have
been done we can explain the execution of the parallel composition of commands by their
rules:

(co, a) ----1 (Co, at)

Look at the first two rules. They show how a single step in the execution of a command

298 Chapter 14

Co gives rise to a single step in the execution of Co II cl-these are two rules corresponding
to the single step in the execution of Co completing the execution of Co or not. There are
symmetric rules for the right-hand-side component of a parallel composition. If the two
component commands Co and Cl of a parallel composition have locations in common they
are likely to influence each others execution. They can be thought of as communicating
by shared locations. Our parallel composition gives an example of what is often called
communication by shared variables.

The symmetry in the rules for parallel composition introduces an unpredictability
into the behaviour of commands. Consider for example the execution of the program
(X := 0 II X := 1) from the initial state. This will terminate but with what value at X?
More generally a program of the form

(X := 0 II X := 1); if X = 0 then Co else Cl

will execute either as Co or Cl, and we don't know which.
This unpredictability is called nondeterminism. The programs we have used to illus

trate nondeterminism are artificial, perhaps giving the impression that it can be avoided.
However it is a fact of life. People and computer systems do work in parallel leading
to examples of nondeterministic behaviour, not so far removed from the silly programs
we've just seen. We note that an understanding of parallelism requires an understanding
of nondeterminism.

14.2 Guarded commands

Paradoxically a disciplined use of nondeterminism can lead to a more straightforward
presentation of algorithms. This is because the achievement of a goal may not depend on
which of several tasks is performed. In everyday life we might instruct someone to either
do this or that and not care which. Dijkstra's language of guarded commands uses a
nondeterministic construction to help free the programmer from overspecifying a method
of solution. Dijkstra's language has arithmetic and boolean expressions a E Aexp and
b E Bexp which we can take to be the same as those for IMP as well as two new
syntactic sets that of commands (ranged over by c) and guarded commands (ranged over
by gc). Their abstract syntax is given by these rules:

c ::= skip I abort I X:= a I CO;Cl I if gc fi I do gc od

gc ::= b ---+ C I gcO~gCl

Nondeterminism and parallelism 299

The constructor used to form guarded commands gco ~gCl is called alternative (or "fat
bar"). The guarded command typically has the form

In this context the boolean expressions are called guards - the execution of the command
body Ci depends on the corresponding guard bi evaluating to true. If no guard evalu
ates to true at a state the guarded command is said to fail, in which case the guarded
command does not yield a final state. Otherwise the guarded command executes nonde
terministically as one of the commands Ci whose associated guard bi evaluates to true.
We have already met skip, assignment and sequential composition in our treatment of
IMP. The new command abort does not yield a final state from any initial state. The
command if ge fi executes as the guarded command gc, if gc does not fail, and otherwise
acts like abort. The command do gc od executes repeatedly as the guarded command
ge, while ge continues not to fail, and terminates when gc fails; it acts like skip if the
guarded command fails initially.

We now capture these informal explanations in rules for the execution of commands
and guarded commands. We inherit the evaluation relations for Aexp and Bexp from
IMP in Chapter 2. With an eye to the future section on an extension of the language
to handle parallelism we describe one step in the execution of commands and guarded
commands. A command configuration has the form (c, a) or a for commands c and states
a.

Initial configurations for guarded commands are pairs (gc, a), for guarded commands
gc and states a, as is to be expected, but one step in their execution can lead to a
command configuration or to a new kind of configuration called fail. Here are the rules
for execution:

Rules for commands:

(skip, a) ~ a

(a, a) ~ n

(X := a, a) ~ a[n/ Xl

(co, a) ~ a' (co, a) ~ (co, a')

300

(ge, a) -> (e, a')

(if ge fl, a) -> (e, a')

(ge, a) -> fail
(do ge od, a) --f a

Rules for guarded commands:

(b, a) -> true

(b -> e, a) -> (e, a)

(gCQ, a) -> (e, a')

(b, a) -> false
(b -> e, a) --f fail

(ge, a) -> (e,a')

(do ge od, a) -> (e; do ge od, a')

(gel, a) -> (e, a')

(gCQ, a) --f fail (gCl' a) -> fail

(gCQ~gel' a) ----> fail

Chapter 14

The rule for alternatives geo ~gel introduces nondeterminism-such a guarded command
can execute like geo or like gel. Notice the absence of rules for abort and for commands
if ge fi in the case where the guarded command ge fails. In such situations the com
mands do not execute to produce a final state. Another possibility, not straying too far
from Dijkstra's intentions in [36], would be to introduce a new command configuration
abortion to make this improper termination explicit. 1

As an example, here is a command which assigns the maximum value of two locations
X and Y to a location MAX:

if

X :,?: Y -> MAX := X

Y :,?: X -> MAX := Y

fi

IThe reader may find one thing curious. As the syntax stands there is an unnecessary generality
in the rules. From the rules for guarded commands it can be seen that in transitions (ge, tJ) --+ (e, d)
which can be derived the state is unchanged, i. e. tJ = tJ'. And thus in all rules whose premises are a
transition (ge, tJ) --+ (c, tJ') we could replace tJ' by tJ. Of course we lose nothing by this generality, but
more importantly, the extra generality will be needed when later we extend the set of guards to allow
them to have side effects.

Nondeterminism and parallelism 301

The symmetry between X and Y would be lost in a more traditional IMP program.
Euclid's algorithm for the greatest common divisor of two numbers is particularly

striking in the language of guarded commands:

do

X > Y --> X := X - Y

Y > X --> Y := Y - X

od

Compare this with its more clumsy program in IMP in Section 3.3, a clumsiness which
is due to the asymmetry between the two branches of a conditional. See Dijkstra's book
[36] for more examples of programs in his language of guarded commands.

Exercise 14.1 Give an operational semantics for the language of guarded commands
but where the rules determine transitions of the form (c, a") --> (7' and (ge, (7) --> (7'

between configurations and final states. 0

Exercise 14.2 Explain why this program terminates:

do (21X --> X := (3 x X)/2)~(3IX --> X := (5 x X)/3) od

where e.g. 31X means 3 divides X, and (5 x X)/3 means 5 x X divided by 3. 0

Exercise 14.3 A partial correctness assertion {A}e{B}, where e is a command or
guarded command and A and B are assertions about states, is said to be valid if for
any state at which A is true the execution of e, if it terminates, does so in a final state
at which B is true. Write down sound proof rules for the partial correctness assertions
of Dijktra's language. In what sense do you expect the proof rules to be complete? As a
test of their completeness, try to use them to prove the partial correctness of Euclid's al
gorithm, (cf. Exercise 6.16). How would you prove its termination under the assumption
that initially the locations hold positive numbers? ['

Exercise 14.4 Let the syntax of regular commands c be given as follows:

e := skip I X := e I b? I e; e I c + e I e*

where X ranges over a set of locations, e is an integer expression and b is a boolean
expression. States (7 are taken to be functions from the set of locations to integers. It is
assumed that the meaning of integer and boolean expressions are specified by semantic

302 Chapter 14

functions so I[e]a is the integer which integer expression e evaluates to in state a and
B[b]a is the boolean value given by b in state a. The meaning of a regular command c
is given by a relation of the form

(c,a) -+ a'

which expresses that the execution of c in state a can lead to final state a'. The relation
is determined by the following rules:

(skip, a) -+ a

B[b]a = true
(b?, a) -+ a

(eo, a) -+ a'

I[e]a = n

(X := e, a) -+ a[n/ Xl

(eo, a) -+ a" (CI, a") -+ a'

(eo; CI, a) -+ a'

(eo + Cl, a) -+ a'

(C*, a) -+ a
(c, a) -+ a" (c*, a") -+ a'

(c*, a) -+ a'

(i) Write down a regular command which has the same effect as the while loop

while b do c,

where b is a boolean expression and c is a regular command. Your command C should
have the same effect as the while loop in the sense that

(C, a) -+ a' iff (while b do c, a) -+ a'.

(This assumes the obvious rules for while loops.)
(ii) For two regular commands Co and Cl write eo = Cl when (co, a) --> a' iff (Cl' a) -+ a'
for all states a and a'. Prove from the rules that

C* = skip + c; c*

for any regular command c.
(iii) Write down a denotational semantics of regular commands; the denotation of a
regular command C should equal the relation

{(a,a')I(c,a) -+ a'}.

Nondeterminism and parallelism 303

Describe briefly the strategy you would use to prove that this is indeed true of your
semantics.
(iv) Suggest proof rules for partial correctness
form b?, Co + Cl and c*.

14.3 Communicating processes

assertions of regular commands of the
o

In the latter half of the seventies Hoare and Milner independently suggested the same
novel communication primitive. It was clear that systems of processors, each with its
own store, would become increasingly important. A communication primitive was sought
which was independent of the medium used to communicate, the idea being that the
medium, whether it be shared locations or something else, could itself be modelled as a
process. Hoare and Milner settled on atomic actions of synchronisation, with the possible
exchange of values, as the central primitive of communication.

Their formulations are slightly different. Here we will assume that a process commu
nicates with other processes via channels. We will allow channels to be hidden so that
communication along a particular channel can be made local to two or more processes.
A process may be prepared to input or output at a channel. However it can only suc
ceed in doing so if there is a companion process in its environment which performs the
complementary action of output or input. There is no automatic buffering; an input or
output communication is delayed until the other process is ready with the corresponding
output or input. When successful the value output is then copied from the outputting
to the inputting process.

We now present the syntax of a language of communicating processes. In addition to
a set of locations X E Loc, boolean expressions b E Bexp and arithmetic expressions
a E Aexp, we assume:

Channel names
Input expressions

0'.,/3, {, ... E Chan
a? X where X E Loc

Output expressions ala where a E Aexp

Commands:
C .. - skip I abort I X := a I a? X I ala I Co; Cl I if gc fi I do gc od I Co II Cl I c \ a

Guarded commands:
gc .. - b ----> C I b A a? X ----> C I b A ala ----> C I gCdgCl

Not all commands and guarded commands are well-formed. A parallel composition
Co II Cl is only well-formed in case the commands Co and Cl do not contain a common

304 Chapter 14

location. In general a command is well-formed if all its subcommands of the form coil Cl
are well-formed. A restriction c \ a hides the channel a, so that only communications
internal to c can occur on it.

How are we to formalise the intended behaviour of this language of communicating
processes? As earlier, states will be functions from locations to the values they contain,
and a command configuration will have the form (c, a) or a for a command c and state
a. We will try to formalise the idea of one step in the execution. Consider a particular
command configuration of the form

(a?X;c,a).

This represents a command which is first prepared to receive a synchronised communica
tion of a value for X along the channel a. Whether it does or not is, of course, contingent
on whether or not the command is in parallel with another prepared to do a comple
mentary action of outputting a value to the channel a. Its semantics should express this
contingency on the environment. This we do in a way familiar from automata theory.
We label the transitions. For the set of labels we take

{a?n I a E Chan & n E N} U {a!n I a E Chan & n E N}

Now, in particular, we expect our semantics to yield the labelled transition

(a?X;co,a) ~ (co,a[njX]).

This expresses the fact that the command a? X; Co can receive a value n at the channel a
and store it in location X, and so modify the state. The labels of the form a!n represent
the ability to output a value n at channel a. We expect the transition

provided (e, a) --t n. Once we have these we would expect a possibility of communication
when the two commands are set in parallel:

((a?X;co) II (a!e;cd,a) --t (co II cl,a[njX])

This time we don't label the transition because the communication capability of the two
commands has been used up through an internal communication, with no contingency on
the environment. We expect other transitions too. Afterall, there may be other processes
in the environment prepared to send and receive values via the channel a. So as to not
exclude those possibilities we had better also include transitions

Nondeterminism and parallelism 305

and
",In

((a?X;eo) II (a!e;ed,a-) ---.:...., ((a?X;co) II cl,o-[n/X]).

The former captures the possibility that the first component receives a value from the
environment and not from the second component. In the latter the second component
sends a value received by the environment, not by the first component.

Now we present the full semantics systematically using rules. We assume that arith
metic and boolean expressions have the same form as earlier from IMP and inherit the
evaluation rules from there.

Guarded commands will be treated in a similar way to before, but allowing for com
munication in the guards. As earlier guarded commands can sometimes fail at a state.

To control the number of rules we shall adopt some conventions. To treat both labelled
and unlabelled transitions in a uniform manner we shall use ,\ to range over labels like
a?n and a!n as well as the empty label. The other convention aims to treat both kinds
of command configurations (e,o-) and 0- in the same way. We regard the configuration a
as configuration (*,0-) where * is thought of as the empty command. As such * satisfies
the laws

*; e == c; * == * II c == c II * == c and *; * == * II * == (* \ a) = *

which express, for instance, that * II e stands for the piece of syntax e.
Rules for commands

(skip, 0-) -+ 0-
(a, 0-) -+ n

(X := a, 0-) -+ a[n/ Xl

",?n
(a? X, 0-) --:.. o-[n/ Xl

(a,o-) -+ n

(') ",!n a.a,o- -+ 0-

(eo, 0-) ~ (co, 0-')

oX (ge,o-) -+ (C,o-')

(if gc fi, 0-) ~ (c,o-')

306

>. (gc, u) -t (c, u') (gc, u) -t fail
>. (do gc od, u) -t (c; do gc od, u') (do gc od, u) -t U

(Cl' u) ~ (c~, u')

(e,u) -7 (c',u') provided neither A == a?n nor A == a!n
(c \ a, u) -t (c' \ a, u')

Rules for guarded commands

(b, u) -t true

(b -t e, u) -t (c, u)

(b, u) -t false

(b, u) -t false

(b -t c, u) -t fail

(b, u) -t false

(b /\ a? X -t C, u) -t fail (b /\ a!a -t c, u) -t fail

(geo, u) -t fail (gel, u) -t fail

(gCo~gcl' u) -t fail

(b, u) -t true (b, u) -t true (a, u) -t n
",?n

(b /\ a? X -t C, u) ...:.., (c, u[n/ Xl)
",In

(b /\ a!a -t c, u) ...:.., (c, u)

(gcO, u) ~ (c, u')
>.

(gCo~gCl' u) -t (c, u')

(gCl, u) ~ (c, u')

(geo ~gcl' u) ~ (c, u')

Chapter 14

Nondeterminism and parallelism 307

Example: The following illustrate various features of the language and the processes it
can describe (several more can be found in Hoare's paper [49]):
A process which repeatedly receives a value from the a channel and transmits it on
channel/3:

do (true 1\ a?X ---+ /3!X) od

A buffer with capacity 2 receiving on a and transmitting on T

(do (true 1\ a?X ---+ /3!X) od II do (true 1\ /3?Y ---+ flY) od) \ /3

Notice the use of restriction to make the /3 channel hidden so that all communications
along it have to be internal.

One use of the alternative construction is to allow a process to "listen" to two channels
simultaneously and read from one should a process in the environment wish to output
there; in the case where it can receive values at either channel a nondeterministic choice
is made between them:

if (true 1\ a?X ---+ co)~(true 1\ /3?Y ---+ cd fi

Imagine this process in an environment offering values at the channels. Then it will not
deadlock (i.e., reach a state of improper termination) if neither Co nor Cl can. On the
other hand, the following process can deadlock:

if (true ---+ (a? X; co)) ~ (true ---+ (/3?Y; Cl)) fi

It autonomously chooses between being prepared to receive at the a or /3 channel. If, for
example, it elects the right-hand branch and its environment is only able to output on
the a channel there is deadlock. Deadlock can however arise in more subtle ways. The
point of Dijkstra's example of the so-called "dining philosophers" is that deadlock can
be caused by a complicated chain of circumstances often difficult to forsee (see e.g. [49]).

o

The programming language we have just considered is closely related to Occam, the
programming language of the transputer. It does not include all the features of Occam
however, and for instance does not include the prialt operator which behaves like the
alternative construction ~ except for giving priority to the execution of the guarded
command on the left. On the other hand, it also allows outputs a!e in guards not
allowed in Occam for efficiency reasons. Our language is also but a step away from
Hoare's language of Communicating Sequential Processes (CSP) [49]. Essentially the
only difference is that in CSP process names are used in place of names for channels; in
CSP, P? X is an instruction to receive a value from process P and put it in location X,
while P!5 means output value 5 to process P.

308 Chapter 14

14.4 Milner's CCS

Robin Milner's work on a Calculus of Communicating Systems (CCS) has had an impact
on the foundations of the study of parallelism. It is almost true that the language for his
calculus, generally called CCS, can be derived by removing the imperative features from
the language of the last section, the use of parameterised processes obviating the use of
states. In fact, locations can be represented themselves as CCS processes.

A CCS process communicates with its environment via channels connected to its poris,
in the same manner as we have seen. A process p which is prepared to input at the 0:

and /3 channels and output at the channels 0: and 1 can be visualised as

P?07!
o:!

with its ports labelled appropriately. The parallel composition of p with a process q, a
process able to input at 0: and output at /3 and 6 can itself be thought of as a process
p II q with ports 0:?,0:!,/3?,/3!,I!,6!.

The operation of restriction hides a specified set of ports. For example restricting
away the ports specified by the set of labels {o:, I} from the process p results in a process
p\ {o:, I} only capable of performing inputs from the channel /3; it looks like:

Often it is useful to generate several copies of the same process but for a renaming of
channels. A relabelling function is a function on channel names. After relabelling by the
function J with J(o:) = I, J(/3) = 6 and Jb) = 1 the process p becomes p[J] with this

interface with its environment: 0
6? . I!

In addition to communications o:?n,o:!n at channels 0: we have an extra action T

which can do the duty of the earlier skip, as well as standing for actions of internal
communication. Because we remove general assignments we will not need the states (J"

of earlier and can use variables x, y, ... in place of locations. To name processes we have
process identifiers P, Q, ... in our syntax, in particular so we can define their behaviour

Nondeterminism and parallelism 309

recursively. Assume a syntax for arithmetic expressions a and boolean expressions b,
with variables instead of locations. The syntax of processes P, Po, PI,·' . is:

P .. - nil I
(T-'>p) I (a!a-'>p) I (a?x-'>p) I (b-'>p)

Po + PI I Po II PI I
p\L I p[J] I
P(al,"',ak)

where a and b range over arithmetic and boolean expressions respectively, x is a variable
over values, L is a subset of channel names, f is a relabelling function, and P stands for
a process with parameters aI, ... , ak-we write simply P when the list of parameters is
empty.

Formally at least, a?x -'> P is like a lambda abstraction on x, and any occurrences of
the variable x in P will be bound by the a?x provided they are not present in subterms
of the form f3?x -'> q. Variables which are not so bound will be said to be free. Process
identifiers P are associated with definitions, written as

where all the free variables of P appear in the list x I, ... ,Xk of distinct variables. The
behaviour of a process will be defined with respect to such definitions for all the process
identifiers it contains. Notice that definitions can be recursive in that P may mention P.
Indeed there can be simultaneous recursive definitions, for example if

() def
P XI,"',Xk = P

() def
Q YI,'" ,Yl = q

where P and q mention both P and Q.
In giving the operational semantics we shall only specify the transitions associated with

processes which have no free variables. By making this assumption, we can dispense
with the use of environments for variables in the operational semantics, and describe
the evaluation of expressions without variables by relations a -'> nand b -'> t. Beyond
this, the operational semantics contains few surprises. We use >. to range over actions
a?n, a!n, and T.

nil process: has no rules.

310 Chapter 14

Guarded processes:

a->n
orin

(o:!a -> p) ~ P
or?n

(o:?x -> p) ~ p[n/x]

..\ b -> true P -----> pi
..\ (b -> p) -----> pi

(By p[n/x] we mean P with n substituted for the variable x. A more general substitution
p[al/xI,···, ak/xk]' stands for a process term P in which arithmetic expressions ai have
replaced variables xd
Sum:

Composition:

Restriction:

..\ I
Po -----> Po

..\ I
Po + PI -----> Po

..\ I
Po -> Po

Po II PI ~ Po II PI

..\ I
PI -> PI

Po II PI ~ Po II pi

..\ I
PI -----> PI

..\ I
Po + PI -----> PI

a?n I adn,
Po -----> Po PI -----> PI

Po II PI ~ Po II pi

a:!n I o:?n I
Po -----> Po PI -----> PI

Po II PI ~ Po II pi

..\
P -----> p'

..\ ' p\L -----> p'\L

where if A == o:?n or A == o:!n then 0: 1- L
Relabelling:

Identifiers:

..\
P -----> p'

p[J] ~pl[J]

p[al/xI,···,ak/xk] ~pl
P(al,···,ak) ~pl

Nondeterminism and parallelism 311

() def
where P Xl,"',Xk = p.

We expand on our claim that it is sufficient to consider processes without free variables
and so dispense with environments in the operational semantics. Consider the process

(a?x ---t (a!x ---t nil)).

It receives a value n and outputs it at the channel a, as can be derived from the rules.
From the rules we obtain directly that

(a?x ---t (a!x ---t nil)) ~ (a!x ---t nil) [n/x]

which is
(a?x ---t (a!x ---t nil)) ~ (a!n ---t nil).

Then
I

(a!n ---t nil) ~ nil.

As can be seen here, when it comes to deriving the transitions of the subprocesses
(a!x ---t nil) the free variable x has previously been bound to a particular number n.

14.5 Pure CCS

Underlying Milner's work is a more basic calculus, which we will call pure CCS. Roughly
it comes about by eliminating variables from CCS.

We have assumed that the values communicated during synchronisations are numbers.
We could, of course, instead have chosen expressions which denote values of some other
type. But for the need to modify expressions, the development would have been the
same. Suppose, for the moment, that the values lie in a finite set

V={vl, ... ,vd·

Extend CCS to allow input actions a?n where a is a channel and v E V. A process

(a?n ---t p)

first inputs the specific value v from channel a and then proceeds as process Pi its
behaviour can be described by the rule:

a?n
(a?n ---t p) -.:....... p

312 Chapter 14

It is not hard to see that under these assumptions the transitions of a?x --t P are the
same as those of

The two processes behave in the same way. In this fashion we can eliminate variables
from process terms. Numbers however form an infinite set and when the set of values
is infinite, we cannot replace a term a?x --t P by a finite summation. However, this
problem is quickly remedied by introducing arbitrary sums into the syntax of processes.
For a set of process terms {Pi liE I} indexed by a set I, assume we can form a term

LPi.
iEI

Then even when the values lie in the infinite set of numbers we can write

L (a?m --t p[m/x])

mEN

instead of (a?x --t p).

With the presence of variables x, there has existed a distinction between input and
output of values. Once we eliminate variables the distinction is purely formal; input
actions are written a?n as compared with a!n for output actions. Indeed in pure CCS
the role of values can be subsumed under that of port names. It will be, for example,
as if input of value v at port a described by a?n is regarded as a pure synchronisation,
without the exchange of any value, at a "port" a?n.

In pure CCS actions can carry three kinds of name. There are actions f (corresponding
to actions a?n or a!n), complementary actions l (corresponding to a?n being comple
mentary to a!n, and vice versa) and internal actions T. With our understanding of

complementary actions it is natural to take f to be the same as f, which highlights the
symmetry we will now have between input and output.

In the syntax of pure CCS we let>. range over actions of the form f, land T where f
belongs to a given set of action labels. Terms for processes P,PO,PllPi,'" of pure CCS
take this form:

P ::= nil I >..p I LPi I (Po II Pl) I p\L I pUll P
iEI

The term >..p is simply a more convenient way of writing the guarded process (>. --t p).

The new general sum 2:iEI Pi of indexed processes {Pi liE I} has been introduced. We
will write Po +Pl in the case where I = {O, I}. Above, L is to range over subsets of labels.
We extend the complementation operation to such a set, taking L =def {ll f E L}. The

Nondeterminism and parallelism 313

symbol J stands for a relabelling function on actions. A relabelling function should obey
the conditions that J(t) = J(i) and J(T) = T. Again, P ranges over identifiers for
processes. These are accompanied by definitions, typically of the form

P clef
= p.

As before, they can support recursive and simultaneous recursive definitions.
The rules for the operational semantics of CCS are strikingly simple:

nil has no rules.
Guarded processes:

Sums:

Composition:

Restriction:

Relabelling:

Identifiers:

,\
A.p ----+ P

>.
Pj ----+ q j E I

>.
LiE! Pi ----+ q

>. I
Po ----+ Po

>. I
PI ----+ PI

Po II PI ~ p~ II PI Po II PI ~ Po II pi

I I I I
Po ----+ Po PI ----+ PI

Po II PI ~ p~ II pi

>.
p----+q A¢.LuL

>.
p\L ----+ q\L

>.
P ----+ q

p[J] ~q[J]

>.
P ----+ q def

where P = p. >.
P----+q

We have motivated pure CCS as a basic language for processes into which the other
languages we have seen can be translated. We now show, in the form of a table, how
closed terms t of CCS can be translated to terms t of pure CCS in a way which preserves
their behaviour.

314 Chapter 14

T.p

(a!a -+ p) am.p where a denotes the value m

~

(a?x -+ p) I:mEN(am.p[m/x])

(b -+ p) P if b denotes true
nil if b denotes false

Po + PI Po+Pi

Po II PI Po II Pi

p\L P\ {am I a E L & mEN}

where aI,···, ak denote the values mI,···, mk.

To accompany a definition P(x I, ... ,Xk) d~f P in CCS, where p has free variables x I, ... , Xb

we have a collection of definitions in the pure calculus

indexed by mI, ... ,mk EN.

Exercise 14.5 Justify the table above by showing that

for closed process terms p, q, where

;;?n = an, a!n = an.

o

Nondeterminism and parallelism 315

Recursive definition: In applications it is useful to use process identifiers and defining
equations. However sometimes in the study of CCS it is more convenient to replace the
use of defining equations by the explicit recursive definition of processes. Instead of

defining equations such as P ~f p, we then use recursive definitions like

rec(P = p).

The transitions of these additional terms are given by the rule:

p[rec(P = p)/P] ~ q

rec(P = p) ~ q

Exercise 14.6 Use the operational semantics to derive the transition system reachable
from the process term rec(P = a.b.P). 0

Exercise 14.7 Let another language for processes have the following syntax:

p := 0 I a I p;p I p + pip x piP I rec(P = p)

where a is an action symbol drawn from a set ~ and P ranges over process variables
used in recursively defined processes rec(P = p). Processes perform sequences of actions,
precisely which being specified by an execution relation p -> s between closed process
terms and finite sequences s E ~*; when p -> s the process p can perform the sequence
of actions s in a complete execution. Note the sequence s may be the empty sequence E

and we use st to represent the concatenation of strings sand t. The execution relation
is given by the rules:

0-> f a->a
p->s q->t

p; q -> st

p->s
p+q->s

p->s q->s
pxq->s

q->s
p+q->s

p[rec(P = p)/Pj-> s
rec(P = p) -> s

The notation p[q/ P] is used to mean the term resulting from substituting q for all free
occurrences of P in p.

Alternatively, we can give a denotational semantics to processes. Taking environments
p to be functions from variables Var to subsets of sequences P(~ *) ordered by inclusion,

316 Chapter 14

we define:
[O]p = if} [a]p = {a}

[Piq]P = {st I s E [PDp and t E [q]p}

[P + q]p = [PDp u [q]p [P x q]p = [PDp n [q]p

[X]p = p(X)

[rec(P = p)]p = the least solution S of S = [P]p[SjP]

The notation p[Sj P] represents the environment p updated to take value S on P.
(i) Assuming a and b are action symbols, write down a closed process term with denota
tion the language {a, b} * in any environment.
(ii) Prove by structural induction that

[P[qj P]]p = [P]p[[q]p/ P]

for all process terms p and q, with q closed, and environments p.

(iii) Hence prove if p -> s then s E [PDp, where p is a closed process term, s E I; * and p
is any environment. Indicate clearly any induction principles you use. 0

14.6 A specification language

We turn to methods of reasoning about parallel processes. Historically, the earliest
methods followed the line of Hoare logics. Instead Milner's development of CCS has
been based on a notion of equivalence between processes with respect to which there are
equational laws. These laws are sound in the sense that if any two processes are proved
equal using the laws then, indeed, they are equivalent. They are also complete for finite
state processes. This means that if any two finite-state processes are equivalent then
they can be proved so using the laws. The equational laws can be seen as constituting
an algebra of processes. Different languages for processes and different equivalences
lead to different process algebras. Pointers to other notable approaches are given in the
concluding section of this chapter.

Milner's equivalence is based on a notion of bisimulation between processes. Early
on, in exploring the properties of bisimulation, Milner and Hennessy discovered a logical
characterisation of this central equivalence. Two processes are bisimilar iff they satisfy
precisely the same assertions in a little modal logic, that has come to be called Hennessy
Milner logic. The finitary version of this logic has a simple, if perhaps odd-looking syntax:

A ::= T I F I Ao 1\ Al I Ao V Al I ..,A I (>')A

Nondeterminism and parallelism 317

The final assertion (>')A is a modal assertion (pronounced "diamond>' A") which involves
an action name >.. It will be satisfied by any process which can do a >. action to become
a process satisfying A. To be specific, we will allow>. to be any action of pure ees. The
other ways of forming assertions are more usual. We use T for true, F for false and build
more complicated assertions using conjunctions (1\), disjunctions (V) and negations (-,).
Thus (-,(a)T) 1\ (-,(b)T) is satisfied by any process which can do neither an a nor a b
action. We can define a dual modality in the logic. Take

[>']A,

(pronounced "box>. A"), to abbreviate -,(>.)-,A. Such an assertion is satisfied by any
process which cannot do a >. action to become one failing to satisfy A. In other words,
[>']A is satisfied by a process which whenever it does a >. action becomes one satisfying
A. In particular, this assertion is satisfied by any process which cannot do any>. action
at all. Notice [elF is satisfied by those processes which refuse to do a e action. In writing
assertions we will assume that the modal operators (a) and [a] bind more strongly than
the boolean operations, so e.g. ([e]F 1\ [dlF) is the same assertion as (([e]F) 1\ ([d]F)).
As another example,

(a)(b)([e]F 1\ [d]F)

is satisfied by any process which can do an a action followed by a b to become one which
refuses to do either a e or a d action.

While Hennessy-Milner logic does serve to give a characterisation of bisimulation equiv
alence (see the exercise ending this section), central to Milner's approach, the finitary
language above has obvious shortcomings as a language for writing down specifications of
processes; a single assertion can only specify the behaviour of a process to a finite depth,
and cannot express, for example, that a process can always perform an action throughout
its possibly infinite course of behaviour. To draw out the improvements we can make
we consider how one might express particular properties, of undeniable importance in
analysing the behaviour of parallel processes.

Let us try to write down an assertion which is true precisely of those processes which
can deadlock. A process might be said to be capable of deadlock if it can reach a state
of improper termination. There are several possible interpretations of what this means,
for example, depending on whether "improper termination" refers to the whole or part
of the process. For simplicity let's assume the former and make the notion of "improper
termination" precise. Assume we can describe those processes which are properly termi
nated with an assertion terminal. A reasonable definition of the characteristic function
of this property would be the following, by structural induction on the presentation of

318 Chapter 14

pure CCS with explicit recursion:

terminal(nil) = true

terminal()".p) = false

terminal(LPi) = {true if terminal(pi) = true for all i E I,
iEI false otherwise

terminal(po II PI) = terminal(po) I\T terminal(PI)

terminal(p\L) = terminal(p)

terminal(p[f]) = terminal(p)

terminal(P) = false

terminal(rec(P = p)) = terminal(p)

This already highlights one way in which it is sensible to extend our logic, viz. by adding
constant assertions to pick out special processes like the properly terminated ones. Now,
reasonably, we can say a process represents an improper termination iff it is not properly
terminated and moreover cannot do any actions. How are we to express this as an
assertion? Certainly, for the particular action a, the assertion [alF is true precisely of
those processes which cannot do a. Similarly, the assertion

is satisfied by those which cannot do any action from the set {a 1, ... , ak}. But without
restricting ourselves to processes whose actions lie within a known finite set, we cannot
write down an assertion true just of those processes which can (or cannot) do an arbitrary
action. This prompts another extension to the assertions. A new assertion of the form

(.)A

is true of precisely those processes which can do any action to become a process satisfying
A. Dually we define the assertion

which is true precisely of those processes which become processes satifying A whenever
they perform an action. The assertion [.IF is satisfied by the processes which cannot do
any action. Now the property of immediate deadlock can be written as

Dead =def ([.IF 1\ ,terminal).

Nondeterminism and parallelism 319

The assertion Dead captures the notion of improper termination. A process can dead
lock if by performing a sequence of actions it can reach a process satisfying Dead. It's
tempting to express the possibility of deadlock as an infinite disjunction:

Dead V (.)Dead V (.)(.)Dead V (.) (.)(.)Dead V ... V ((.) ... (.)Dead) V ...

But, of course, this is not really an assertion because in forming assertions only finite
disjunctions are permitted. Because there are processes which deadlock after arbitrarily
many steps we cannot hope to reduce this to a finite disjunction, and so a real assertion.
We want assertions which we can write down!

We.need another primitive in our language of assertions. Rather than introducing ex
tra primitives on an ad hoc basis as we encounter further properties we'd like to express,
we choose one strong new method of defining assertions powerful enough to define the
possibility of deadlock and many other properties. The infinite disjunction is remini
scient of the least upper bounds of chains one sees in characterising least fixed points of
continuous functions, and indeed our extension to the language of assertions will be to
allow the recursive definition of properties. The possibility of deadlock will be expressed
by the least fixed point

IlX.(Dead V OX)

which intuitively unwinds to the infinite "assertion"

Dead V (.)(Dead V (.)(Dead V (.J(- ..

A little more generally, we can write

possibly(B) =deJ J.1X.(B V OX)

true of those processes which can reach a process satisfying B through performing a
sequence of actions. Other constructions on properties can be expressed too. We might
well be interested in whether or not a process eventually becomes one satisfying assertion
B no matter what sequence of actions it performs. This can be expressed by

eventually(B) =deJ J.1X.(B V ((.)T /\ [.]X)).

As this example indicates, it is not always clear how to capture properties as assertions.
Even when we provide the mathematical justification for recursively defined properties
in the next section, it will often be a nontrivial task to show that a particular assertion
with recursion expresses a desired property. However this can be done once and for all
for a batch of useful properties. Because they are all defined using the same recursive

320 Chapter 14

mechanism, it is here that the effort in establishing proof methods and tools can be
focussed.

In fact, maximum (rather than minimum) fixed points will play the more dominant
role in our subsequent work. With negation, one is definable in terms of the other. An
assertion defined using maximum fixed points can be thought of as an infinite conjunction.
The maximum fixed point vX.(B 1\ [.]X) unwinds to

B 1\ [.](B 1\ [.](B 1\ [.](B 1\ ...

and is satisfied by those processes which, no matter what actions they perform, always
satisfy B. In a similar way we can express that an assertion B is satisfied all the way
along an infinite sequence of computation from a process:

vX.(B 1\ OX).

Exercise 14.8 What is expressed by the following assertions?

(i) p,X.((a)T V [.]X)
(ii) vY((a)T V (.)T 1\ [.]Y))

(Argue informally, by unwinding definitions. Later, Exercise 14.13 will indicate how to
prove that an assertion expresses a property, at least for finite-state processes.) 0

Exercise 14.9 In [63], Milner defines a strong bisimulation to be a binary relation R
between ees processes with the following property: If pRq then

(i)Va,p'. p ~ p'::::} 3q'.q ~ q' and

(ii)Va,q'. q ~ q'::::} 3p'.p ~ p'

Then strong bisimulation equivalence "-' is defined by

"-'= U {R I R is a strong bisimulation}.

An alternative equivalence is induced by Hennessy-Milner logic, including a possibly
infinite conjunction, where assertions A are given by

A ::= 1\ Ai I -,A I (a)A
iEI

where I is a set, possibly empty, indexing a collection of asertions Ai, and a ranges over
actions. The notion of a process p satisfying an assertion A is formalised in the relation

Nondeterminism and parallelism

p ~ A defined by structural induction on A:

p ~ /\ Ai iff P ~ Ai for all i E I,
iEI

p ~ -,A iff not p ~ A,

p ~ (a)A iff p ~ q & q ~ A for some q.

321

(An empty conjunction fulfils the role of true as it holds vacuously of all processes.)
Now we define p::::: q iff (p ~ A) {:} (q ~ A) for all assertions A of Hennessy-Milner logic.
This exercise shows::::: coincides with strong bisimulation, i.e. :::::="':

(i) By structural induction on A show that

Yp, q. p '" q =} (p ~ A {:} q ~ A).

(This shows :::::2"'.)
(ii) Show::::: is a strong bisimulation.

(From the definition of'" it will then follow that :::::S;;"', Hint: this part is best proved
by assuming that::::: is not a bisimulation, and deriving a contradiction.) 0

14.7 The modal v-calculus

We now provide the formal treatment of the specification language motivated in the
previous Section 14.6.

Let P denote the set of processes in pure ees. Assertions determine properties of
processes. A property is either true or false of a process and so can be identified with
the subset of processes P which satisfy it. In fact, we will understand assertions simply
as a notation for describing subsets of processes. Assertions are built up using:

• constants: Any subset of processes S S;; P is regarded as a constant assertion taken
to be true of a process it contains and false otherwise. (We can also use finite
descriptions of them like terminal and Dead earlier. In our treatment we will
identify such descriptions with the subset of processes satisfying them.)

• logical connectives: The special constants T, F stand for true and false respectively.
If A and B are assertions then so are -,A ("not A"), A!\ B ("A and B"), A V B
("A or B")

• modalities: If a is an action symbol and A is an assertion then (a)A is an asser
tion. If A is an assertion then so is (.)A. (The box modalities [alA and [.lA are
abbreviations for -,(a)-,A and -'(')'A, respectively.)

322 Chapter 14

• maximum fixed points: If A is an assertion in which the variable X occurs positively
(i. e. under an even number of negation symbols for every ocurrence) then 1I X.A (the
maximum fixed point of A) is an assertion. (The minimum fixed point /-LX.A can
be understood as an abbreviation for -1// X. ,A[,X/X].)

In reasoning about assertion we shall often make use of their size. Precisely, the size
of an assertion is defined by structural induction:

size(S) = size(T) = size(F) = 0 where S is a constant

size(,A) = size((a)A) = size(vX.A) = 1 + size(A)

size(A /I. B) = size(A V B) = 1 + size(A) + size(B).

Assertions are a notation for describing subsets of processes. So for example, A /I. B
should be satisfied by precisely those processes which satisfy A and satisfy B, and thus
can be taken to be the intersection An B. Let's say what subsets of processes all the
assertions stand for. In the following, an assertion on the left stands for the set on the
right:

S S where S ~ P
T P
F 0
A/l.B AnB
AvB AUB
,A P\A
(a) A {p E PI :Jq.p ~ q and q E A}
(.)A {p E PI :Ja, q.p ~ q and q E A}
vX.A U{S ~ PIS ~ A[S/X]}

Note, this is a good definition because the set associated with an assertion is defined
in terms of sets associated with assertions of strictly smaller size. Most clauses of the
definition are obvious; for example, ,A should be satisfied by all processes which do
not satisfy A, explaining why it is taken to be the complement of A; the modality {a)A
is satisfied by any process p capable of performing an a-transition leading to a process
satisfying A. If X occurs only positively in A, it follows that the function

Sf---> A[S/X].

is monotonic on subsets of P ordered by~. The Knaster-Tarski Theorem (see Section 5.5)
characterises the maximum fixed point of this function as

U{S ~ PIS ~ A[S/X]}

Nondeterminism and parallelism 323

is the union of all postfixed points of the function S ~ A[S/ X]. Above we see the use
of an assertion A[S/X] which has a form similar to A but with each occurrence of X
replaced by the subset S of processes.

Exercise 14.10 Prove the minimum fixed point }.LX.A, where

}.LXA = n{S ~ PI A[S/X] ~ S},

is equal to -,vX-,A[-,X/X].
(Hint: Show that the operation of negation provides a 1-1 correspondence between pre
fixed points of the function S ~ A[S/X] and postfixed points of the function S ~
-,A[-,S/X].) D

Exercise 14.11 Show [alA = {p E P I Vq E P. p ~ q =i> q E A}. By considering e.g.a

process I;nEwa.Pn where the Pn, nEw, are distinct, show that the function S ~ [a]S is
not continuous with respect to inclusion (it is monotonic). D

We can now specify what it means for a process P to satisfy an assertion A. We define
the satisfaction assertion P F A to be true if pEA, and false otherwise.

It is possible to check automatically whether or not a finite-state process P satisfies
an assertion A. (One of the Concurrency-Workbench/TAV commands checks whether
or not a process P satisfies an assertion A; it will not necessarily terminate for infinite
state processes though in principle, given enough time and space, it will for finite-state
processes.) To see why this is feasible let p be a finite-state process. This means that
the set of processes reachable from it

Pp =def {q E Plp"':"'* q}

is finite, where we use p ...:... q to mean p ~ q for some action a. In deciding whether or
not p satisfies an assertion we need only consider properties of the reachable processes
Pp. We imitate what we did before but using Pp instead of P. Again, the definition is
by induction on the size of assertions. Define:

Sip
Tip
F Ip
A 1\ B Ip
AvB Ip
-,A Ip
(a)A Ip
(.)A Ip
vX.A Ip

snpp where S ~ P
Pp
o
Alp n B Ip
Alp U Alp
Pp \ (A Ip)
{r E Pp I :lq E Pp.r ~ q and q E Alp}

= {r E Pp I :la, q E Pp.r ~ q and q E Alp}
U{S ~ Pp I S ~ A[S/X]lp}

324 Chapter 14

Fortunately there is a simple relationship between the "global" and "local" meanings
of assertions, expressed in the following lemma.

Lemma 14.12 For all assertions A and processes p,

Proof: We first observe that:

This observation is easily shown by induction on the size of assertions A.
A further induction on the size of assertions yields the result. We consider the one

slightly awkward case, that of maximum fixed points. We would like to show

vX.Alp = (vX.A) n Pp

assuming the property expressed by the lemma holds inductively for assertion A. Recall

vX.A = U{S ~ PIS ~ A[S/X]} and

vX.Al p = U {S' ~ Pp I s' ~ A[S'/X]lp}·

Suppose S ~ P and S ~ A[S/X]. Then

snpp ~ A[S/X] npp

= A[S/X]lp by induction

= A[S n Pp/ X)lp by the observation.

Thus snpp is a postfixed point of S' r--> A[S'/Xllp, so snpp ~ vX.Alp' Hence
vX.A n Pp ~ vX.Alp.

To show the converse, suppose S' ~ Pp and S' ~ A[S' / Xll p. Then, by induction,
S' ~ A[S' / Xl n Pp. Thus certainly S' ~ A[S' / X], making S' a postfixed point of
S r--> A[S/ X] which ensures S' ~ vx.A. It follows that vX.Alp ~ vX.A.

Whence we conclude vX.Alp = (vX.A) n Pp, as was required. 0

One advantage in restricting to Pp is that, being a finite set of size n say, we know

vX.A Ip= n Ai[T/X) Ip
O~i~n

Nondeterminism and parallelism 325

where AO = T, AHI = A[Ai/X). This follows from our earlier work characterising
the least fixed point of a continuous function on complete partial order with a bottom
element: The function S A[S/ X)lp is monotonic and so continuous on the the finite cpo
(Pow(Pp), ;:2)-the least fixed point with respect to this cpo is of course the maximum
fixed point with respect to the converse order ~.

In this way maximum fixed points can be eliminated from an assertion A for which we
wish to check P F A. Supposing the result had the form (a)B we would then check if
there was a process q with P ~ q and q F B. If, on the other hand, it had the form of a
conjunction B 1\ C we would check P F Band P F C. And no matter what the shape of
the assertion, once maximum fixed points have been eliminated, we can reduce checking a
process satisfies an assertion to checking processes satisfy strictly smaller assertions until
ultimately we must settle whether or not processes satisfy constant assertions. Provided
the constant assertions represent decidable properties, in this way we will eventually
obtain an answer to our original question, whether or not P F A. It is a costly method
however; the elimination of maximum fixed points is only afforded through a possible
blow-up in the size of the assertion. Nevertheless a similar idea, with clever optimisations,
can form the basis of an efficient model-checking method, investigated by Emerson and
Lei in [37).

However, we seek another method, called "local model checking" by Stirling and
Walker, which is more sensitive to the structure of the assertion being considered, and
does not always involve finding the full, maximum-fixed-point set vX.A I p. It is the
method underlying the algorithms in the Concurrency Workbench and TAV system.

Exercise 14.13 (i) Let S be a finite set of size k and <I> : Pow(S) ---; Pow(S) a
monotonic operator. Prove

JLx. <I> (X) UnEw <I>n(0)
vX.<I>(X) nnEw <I>n(s)

(ii) Let P be a finite-state process. Prove P satisfies vX.((a)X) iff P can perform an
infinite chain of a-transitions.
What does JLx.((a)X) mean? Prove it.

In the remainder of this exercise assume the processes under consideration are finite-state
(so that (i) is applicable). Recall a process P is finite-state iff the set Pp is finite, i.e.
only finitely many processes are reachable from p.

(iii) Prove the assertion vX.(A 1\ [.)X) is satisfied by those processes p which always
satisfy an assertion A, i.e. q satisfies A, for all q E Pp-

326 Chapter 14

(iv) How would you express in the modal v-calculus the property true of precisely those
processes which eventually arrive at a state satisfying an assertion A? Prove your
claim.
(See the earlier text or Exercise 14.15 for a hint.)

o

In the remaining exercises of this section assume the processes are finite-state.

Exercise 14.14

(i) A complex modal operator, often found in temporal logic, is the so-called until
operator. Formulated in terms of transition systems for processes the until operator
will have the following interpretation:

A process P satisfies A until B (where A and B are assertions) iff for all
sequences of transitions

. . .
P = Po ----> PI ----> ••• ----> Pn

it holds that

W(O:S i :S n). Pi 1= A

or 3i(0 :S i :S n). (pi 1= B & V'j(O :S j :S i). Pj 1= A).

Formulate the until operator as a maximum-fixpoint assertion.
(See Exercise 14.15 for a hint.)

(ii) What does the following assertion (expressing so-called "strong-until") mean?

J.1,X.(B V (A 1\ (.)T 1\ [.]X))

o

Exercise 14.15 What do the following assertions mean? They involve assertions A and
B.

(i) inv(A) == vX.(A 1\ [.]X)
(ii) eV(A) == J.1,X.(A V ((.)T 1\ [.]X))

(iii) un(A, B) == vX.(B V (A 1\ [.]X))

o

Nondeterminism and parallelism 327

Exercise 14.16 A process P is said to be unfair with respect to an action a iff there is
an infinite chain of transitions

ao al an-l an
P = Po --+ PI --+ . .. --+ Pn --+ ...

such that

(a) 3q. Pi ~ q, for all i ~ 0, and
(b) ai =1= a, for all i ~ O.

Informally, there is an infinite chain of transitions in which a can always occur but never
does.

(i) Express the property of a process being unfair as an assertion in the modal v
calculus, and prove that any finite-state process P satisfies this assertion iff p is
unfair with respect to a.

(ii) A process p is said to be weakly unfair with respect to an action a iff there is an
infinite chain of transitions in which a can occur infinitely often but never does.
Write down an assertion in the modal v-calculus to express this property.

o

14.8 Local model checking

We are interested in whether or not a finite-state process p satisfies a recursive modal
assertion A, i.e in deciding the truth or falsity of P F A. We shall give an algorithm
for reducing such a satisfaction assertion to true or false. A key lemma, the Reduction
Lemma, follows from the Knaster-Tarski Theorem of Section 5.5.

Lemma 14.17 (Reduction Lemma)
Let r.p be a monotonic function on a powerset Pow (S). For S c,;: S

S c,;: vXr.p(X) ¢:} S c,;: r.p(vX(S U r.p(X))).

Proof:
"=:}" Assume S c,;: vX.r.p(X). Then

S u r.p(vXr.p(X)) = S u vXr.p(X) = vXr.p(X).

Therefore vXr.p(X) is a postfixed point of X f--t S U r.p(X). As vX.(S u r.p(X)) is the
greatest such postfixed point,

vXr.p(X) c,;: vX(S u r.p(X)).

328 Chapter 14

By monotonicity,

vX.<p(X) = cp(vX.cp(X) ~ <p(vX.(S U <p(X))).

But S ~ vx.<p(X) so S ~ cp(vX(S U <p(X))), as required.
"¢::" Assume S ~ cp(vX.(SUcp(X)). As vX.(SU<p(X)) is a fixed point of X f--+ SUcp(X),

vX.(S U cp(X)) = S U cp(vX.(S U <p(X))).

Hence, by the assumption

vX.(S U <p(X)) = <p(vX.(S U <p(X)),

i.e. vX.(S U cp(X)) is a fixed point, and so a postfixed point of cp. Therefore

vX.(S U cp(X)) ~ vX.<p(X)

as vX.cp(X) is the greatest postfixed point. Clearly S ~ vX.(SU<p(X)) so S ~ vX.cp(X),
as required. 0

We are especially concerned with this lemma in the case where S is a singleton set
{p}. In this case the lemma specialises to

P E vX.<p(X) ¢:} P E <p(vX.({p} U cp(X))).

The equivalence says a process P satisfies a recursively defined property iff the process
satisfies a certain kind of unfolding of the recursively defined property. The unfolding
is unusual because into the body of the recursion we substitute not just the original
recursive definition but instead a recursive definition in which the body is enlarged to
contain p. As we shall see, there is a precise sense in which this small modification,
p E <p(vX.({p} U cp(X))), is easier to establish than p E vX.cp(X), thus providing a
method for deciding the truth of recursively defined assertions at a process.

We allow processes to appear in assertions by extending their syntax to include a more
general form of recursive assertion, ones in which finite sets of processes can tag binding
occurrences of variables:
If A is an assertion in which the variable X occurs positively and PI,· .. , Pn are pro
cesses, then v X {PI, ... , Pn} A is an assertion; it is to be understood as denoting the same
property as vX.({PI,··· ,Pn} V A).
(The latter assertion is sensible because assertions can contain sets of processes as con
stants.)
We allow the set of processes {PI,···, Pn} to be empty; in this case v X { } A amounts
simply to vX.A. In fact, from now on, when we write vX.A it is to be understood as an
abbreviation for v X { } A.

Nondeterminism and parallelism 329

Exercise 14.18 Show (p F l/X{PI,'" ,Pn}A) = true if P E {PI,'" ,Pn}. o

With the help of these additional assertions we can present an algorithm for establish
ing whether a judgement P F A is true or false. We assume there are the usual boolean
operations on truth values. Write 'T for the operation of negation on truth values; thus
'T (true) = false and 'T (false) = true. Write I\T for the operation of binary conjunction
on T; thus to I\T tl is true if both to and tl are true and false otherwise. Write V T for
the operation of binary disjunction; thus to VT tl is true if either to or tl is true and false
otherwise. More generally, we will use

for the disjunction of the n truth values t I, ... , t n ; this is true if one or more of the truth
values is true, and false otherwise. An empty disjunction will be understood as false.

With the help of the Reduction Lemma we can see that the following equations hold:

(p F S) true if pES

(p F S) false if P ~ S

(p F T) true

(p F F) false

(P F ,B) 'T(p F B)

(p F Ao 1\ AI) (p != Ao) I\T (p F AI)

(p F Ao V AI) (p F Ao) V T (p F A I)

(p F (a)B) (qi FB)VToo,VT(qn FB)

where {ql,"', qn} {q!p ~ q}

(p F (.)B) (qi FB)VToo,VT(qn FB)

where {ql,oo·,qn} {q!:3a.p ~ q}

(p F l/X {r}B) true ifp E {r}

(p F l/X {r}B) (p F B[l/X{p, r}B/X]) if P ~ {r}

(In the cases where P has no derivatives, the disjunctions indexed by its derivatives are
taken to be false.)
All but possibly the last two equations are obvious. The last equation is a special case
of the Reduction Lemma, whereas the last but one follows by recalling the meaning of a
"tagged" maximum fixed point (its proof is required by the exercise above).

The equations suggest reduction rules in which the left-hand-sides are replaced by
the corresponding right-hand-sides, though at present we have no guarantee that this

330 Chapter 14

reduction does not go on forever. More precisely, the reduction rules should operate on
boolean expressions built up using the boolean operations /\, V" from basic satisfaction
expressions, the syntax of which has the form p I- A, for a process term p and an assertion
A. The boolean expressions take the form:

b ::= p I- A I true I false I bo /\ b1 I bo V b1 I .b

The syntax p I- A is to be distinguished from the truth value p F A.
To make the reduction precise we need to specify how to evaluate the boolean opera

tions that can appear between satisfaction expressions as the reduction proceeds. Rather
than commit ourselves to one particular method, to cover the range of different methods
of evaluation of such boolean expressions we merely stipulate that the rules have the
following properties:

For negations:
(b -... * t {=} .b -... * 'Tt), for any truth value t.

For conjunctions:
If bo -...* to and b1 -...* tl and to,tl E T then

(bo 1\ bI) -... * t {=} (to I\T tt} = t, for any truth value t.

For disjunctions:
If bo -...' to and b1 -... * tl and to, tl E T then

(bo V bI) -...* t {=} (to VT h) = t, for any truth value t.

More generally, a disjunction b1 V b2 V ... V bn should reduce to true if, when all of
b1 , ... , bn reduce to values, one of them is true and false if all of the values are false.
As mentioned, an empty disjunction is understood as false.

Certainly, any sensible rules for the evaluation of boolean expressions will have the
properties above, whether the evaluation proceeds in a left-to-right, right-to-Ieft or par
allel fashion. With the method of evaluation of boolean expressions assumed, the heart
of the algorithm can now be presented in the form of reduction rules:

(p I- S) -... true

(p I- S) -... false

(p I- T) -; true

(p I- F) -; false

if pES

if P tic S

Nondeterminism and parallelism 331

(p f-- -,B) -+ .(p f-- B)

(p f-- Ao 1\ Ad -+ (p f-- Ao) 1\ (p f-- Ad

(p f-- Ao V Ad -+ (p f-- Ao) V (p f-- AI)

(p f-- (a)B) -+ (ql f-- B) V ... V (qn f-- B)

where {ql,···, qn} {qlp ~ q}

(p f-- (.)B) -+ (ql f-- B) V ... V (qn f-- B)

where {ql,···, qn} {qlja.p ~ q}

(p f-- vX (r}B) -+ true if p E (r}

(p f-- vX(r}B) -+ (p f-- B[vX{p, r}BjX]) ifp ~ {r}

(Again, in the cases where p has no derivatives, the disjunctions indexed by its derivatives
are taken to be false.)
The idea is that finding the truth value of the satisfaction assertion on the left is reduced
to finding that of the expression on the right. In all rules but the last, it is clear that
some progress is being made in passing from the left- to the right-hand-side; for these
rules either the right-hand-side is a truth value, or concerns the satisfaction of strictly
smaller assertions than that on the left. On the other hand, the last rule makes it at least
thinkable that reduction may not terminate. In fact, we will prove it does terminate,
with the correct answer. Roughly, the reason is that we are checking the satisfaction of
assertions by finite-state processes which will mean that we cannot go on extending the
sets tagging the recursions forever.

Under the assumptions to do with the evaluation of boolean expressions the reduction
rules are sound and complete in the sense of the theorem below. (Notice that the theorem
implies the reduction terminates.)

Theorem 14.19 Let pEP be a finite-state process and A be a closed assertion. For
any truth value t E T,

(p f-- A) -+* t iff (p FA) = t.

Proof: Assume that p is a finite-state process. Sayan assertion is a p-assertion if for all
the recursive assertions vX{rl,···,rdB within it rl,···,rk E P p , i.e. all the processes
mentioned in the assertion are reachable by transitions from p. The proof proceeds by
well-founded induction on p-assertions with the relation

A' -< A iff A' is a proper subassertion of A

or A, A' have the form

A == vX(r}B and A' == vX{p, r'}B with p ~ {r}

332 Chapter 14

As Pp is a finite set, the relation -< is well-founded.
We are interested in showing the property

Q(A) ~def 'r:/q E Pp'r:/t E T. [(q f- A) ~* t ~ (q F= A) = t]

holds for all closed p-assertions A. The proof however requires us to extend the property
Q to p-assertions A with free variables FV(A), which we do in the following way:
For p-assertions A, define

Q+(A) ~def WJ, a substitution from FV(A) to closed p-assertions.

[('r:/X E FV(A). Q(O(X))) =} Q(A[O])].

Notice that when A is closed Q+(A) is logically equivalent to Q(A). Here 0 abbreviates a
substitution like Bd XI, ... ,Bk/ Xk and an expression such as O(Xj) the corresponding
assertion B j .

We show Q+(A) holds for all p-assertions A by well-founded induction on -<. To this
end, let A be an p-assertion such that Q+(A') for all p-assertions A' -< A. We are
required to show it follows that Q+(A). SO letting 0 be a substitution from FV(A) to
closed p-assertions with 'r:/X E FV(A). Q(e(X)), we are required to show Q(A[O]) for all
the possible forms of A. We select a few cases:

A == Ao /\ AI: In this case A[O] == Ao[e]/\ AI[e]. Let q E Pp. Let (q F= Ao[e]) = to and
(q F= Ade]) = h· As Ao -< A and Al -< A we have Q+(Ao) and Q+(AI). Thus Q(Ao[e])
and Q(Ade]), so (q f- Ao[e]) ---.* to and (q f- AI[e]) ~* tl' Now, for t E T,

(q f- Ao[O]/\ Al [0]) ~* t ~ «q f- Ao[O]) /\ (q f- AdO])) ~* t
~ to /\T tl = t

Hence Q(A[O]) in this case.

by the property assumed for the evaluation of conjunctions

~ (q F= Ao[e]) /\T (q F= Ade]) = t
~ (q F= Ao [0]/\ AdO]) = t

A == X: In this case, when A is a variable, Q(A[O]) holds trivially by the assumption on
e.

A == vX (r}B: In this case A[O] == vX (rHB[e])-recall e is not defined on X because
it is not a free variable of A. Let q E P p . Either q E (r} or not. If q E (r} then it is
easy to see

(q f- vX(rHB[O])) ~* t ~ t = true, for any t E T,

and that (q F= vX (rHB[e])) = true. Hence Q(A[e]) when q E (r} in this case. Oth
erwise q ~ {r'}. Then vX{q, "T}B -< A, so Q(vX{q, "THB[e])). Define a substitution 0'

Nondeterminism and parallelism 333

from Y E FV(B) to closed p-assertions by taking

, { O(Y) if Y 'I=- X
o (Y) = vX{q, r'}(B[O]) ifY == X

Certainly Q(O'(Y)), for all Y E FV(B). As B -< A we have Q+(B). Hence Q(B[O']).
But B[O'] == (B[O]) [vX{q, r'}(B[O])jX]. Thus from the reduction rules,

(q I- vX{r'}(B[O])) ->* t {:> (q I- (B[O]) [vX{q, r'}(B[O])jX]) ->* t

{:> (q I- B[O']) ->* t

{:> (q F B[O']) = t as Q(B[O'])

{:> (q F (B[O])[vX{q, r'}(B[O])jX]) = t

{:> (q F vX {r'}(B[O])) = t by the Reduction Lemma.

Hence, whether q E {r'} or not, Q(A[B]) in this case.

For all the other possible forms of A it can be shown (Exercise!) that Q(A[B]). Using
well-founded induction we conclude Q+(A) for all p-assertions A. In particular Q(A) for
all closed assertions A, which establishes the theorem. 0

Example: Consider the two element transition system given in CCS by

P d;j a.Q

Q d;j a.P

-it consists of two transitions P ~ Q and Q ~ P. We show how the rewriting algorithm
establishes the obviously true fact that P is able to do arbitrarily many a's, formally that
P F vX.(a)X. Recalling that vX.(a)X stands for vX{ }(a)X, following the reductions
of the model-checking algorithm we obtain:

PI- vX{ }(a)X -> PI- (a)X[vX{P}(a)XjX]

i.e. P I- (a)vX {P}(a)X

-> Q I- vX {P}(a)X

-> Q I- (a)X[vX{Q,P}(a)XjX]

i.e.Q I- (a)vX{Q,P}(a)X

-> PI- vX {Q, P}(a)X

-> true.

o

334 Chapter 14

Hence provided the constants of the assertion language are restricted to decidable
properties the reduction rules give a method for deciding whether or not a process satisfies
an assertion. We have concentrated on the correctness rather than the efficiency of an
algorithm for local model checking. As it stands the algorithm can be very inefficient in
the worst case because it does not exploit the potential for sharing data sufficiently (the
same is true of several current implementations). The next section contains references
to more careful and efficient algorithms.

Exercise 14.20
(i) For the CCS process P defined by

P d;J a.P

show p f- vX.(a)T 1\ [aJX reduces to true under the algorithm above.
(ii) For the CCS definition

P d;J a.Q

Q de! P .1 = a. + a.nl

show P f- /Lx. [a]F V (a)X reduces to true. o

Exercise 14.21 (A project) Program a method to extract a transition system table for
a finite-state process from the operational semantics in e.g. SML or Prolog. Program
the model checking algorithm. Use it to investigate the following simple protocol. 0

Exercise 14.22 A simple communication protocol (from [72]) is described in CCS by:

Sender a.Sender'

Sender' ii.(d.Sender + c.Sender')

Medium b.(c.Medium + e.Medium)

Receiver eId.Receiver

Protocol (Sender II Medium II Receiver)\ {b,c,d,e}

Use the tool developed in Exercise 14.21 (or the Concurrency Workbench or TAV system)
to show the following:
The process Protocol does not satisfy Inv([a](ev(f)T)).

Nondeterminism and parallelism 335

Protocol does satisfy Inv([f](ev(a)T)).
(Here Inv(A) == vX.(A/\ [.]X) and ev(A) == p;X.(A V ((.)T /\ [.]X)), with Inv(A) satisfied
by precisely those processes which always satisfy A, and ev(A) satisfied by precisely those
processes which eventually satisfy A.) 0

Exercise 14.23 (Bisimulation testing) Strong bisimulation can be expressed as a maxi
mum fixed point (see Exercise 14.9). The testing of bisimulation between two finite-state
processes can be automated along the same lines as local model checking. Suggest how,
and write a program, in e.g. SML or Prolog, to do it? (The method indicated is close to
that of the TAV system, though not that of the Concurrency Workbench.) D

14.9 Further reading

The mathematical theory of how to model and reason about parallel systems is alive,
and unsettled. The brief account of this chapter is necessarily incomplete.

We have focussed on Dijkstra's language of guarded commands from [36], its extension
by Hoare to communicating sequential processes (CSP) [49], and Milner's approach to a
calculus of communicating systems (CCS). Milner's book on CCS [63] is highly suitable
as an undergraduate text. Milner's handbook chapter [64] gives a quick run through
the more theoretical contents of his book. Hoare's book [50] concentrates on another
equivalence ("failures" equivalence) and represents another influential branch of work.
A more mathematical treatment of closely related matters is given in Hennessy's book
[48]. The programming language Occam [70] is based on the ideas of CCS and CSP. The
logic, the modal v-calculus, follows that presented by Kozen in [55]. To date (1992) this
contains the best result that's known on completeness of axiom at is at ions of the logic
the question of a complete axiomatisation for the full logic is still open! The logic is more
traditionally called the (modal) p;-calculus. The emphasis in our treatment on maximum
rather than minimum fixed points led to the slight change of name for our treatment.

Class work on CCS is best supplemented by work with tools such as the Edinburgh
Sussex Concurrency Workbench [30] and the Aalborg TAV system [46].2 Walker's paper

2The Concurrency Workbench is available from Edinburgh University or North Carolina State Uni
versity:
George Cleland, LFCS, Dept. of Computer Science, University of Edinburgh, The King's Buildings,
Edinburgh EH9 3JZ, Scotland. E-mail: lfcs@ed.ac.uk.
Anonymous FTP: ftp.dcs.ed.ac.uk (Internet no. 129.215.160.150).
Rance Cleaveland, Department of Computer Science, N.C. State University, Raleigh, NC 27695-8206,
USA. E-mail: rance@adm.csc.ncsu.edu,
Anonymous FTP: science.csc.ncsu.edu (IP address: 152.1.61.34).

The TAV system is available from Kim G.Larsen or Arne Skou, Institute for Electronic Systems,
Department of Mathematics and Computer Science, Aalborg University Centre, Fredrik Bajersvej 7,
9200 Aalborg 0, Denmark. E-mail: kgl@iesd.auc.dk

336 Chapter 14

[100] gives a good account of the Concurrency Workbench in action in investigating
parallel algorithms. The Concurrency Workbench is extended to handle priorities of the
kind found in Occam in [52]; the paper [18] in addition provides an equational proof
system with respect to a suitably generalised bisimulation. The theoretical basis to the
Concurrency Workbench is found in [93, 25] following from that of [57] (the model
checking section of this chapter is based on [106]). Model checking itself has evolved into
a flourishing area in recent years. At the time of writing (1992), the Edinburgh-Sussex
Concurrency Workbench can take exponential time in both the size of the formula and
the size of the transition system (even with only one fixed-point operator). The algorithm
described here suffers the same defect. They do not reuse information obtained during
a computation as much as possible. For a particular "alternation depth"-a measure of
how intertwined the minimum and maximum fixed-points of an assertion are-the TAV
system is polynomial in the size of assertion and transition system. To date, the most
efficient algorithms for local model checking up to alternation depth 2 are described in
[6, 7]. There are many other ways to perform model checking ([37] has already been
mentioned) often on logics rather different from that treated here (see e.g., [24] for an
accessible paper).

Throughout the book, except in this chapter, we have presented both operational and
denotational semantics of programming languages. We have not given a denotational
semantics to process languages because within domain theory this involves "powerdo
mains", not dealt with in this book. Powerdomains are cpo analogues of powersets
enabling denotations to represent sets of possible outcomes. They were invented by
Plotkin in [79] which also gives a good indication of their use (though the articles [92]
and [102] are perhaps less intimidating).

The recent book by Apt and Olderog [9] is concerned with extensions of Hoare logic to
parallel programs. Temporal logic has been strongly advocated as a medium for reasoning
about parallel processes (see e.g.[60, 56]).

The presentation of parallelism here has, in effect, treated parallel composition by
regarding it as a shorthand for nondeterministic interleaving of atomic actions of the
components. There are other models like Petri nets and event structures which repre
sent parallelism explicitly as a form of independence between actions, and so make a
distinction between purely nondeterministic processes and those with parallelism. An
introductory book on Petri nets is [85]. There has recently been success in trying to
achieve the expressive power of Petri nets within more mathematically amenable frame
works such as structural operational semantics. The forthcoming handbook chapter [107]
provides a survey of a range of different models for parallel processes.

A Incompleteness and undecidability

This appendix furnishes a brief introduction to the theory of computability. 1 The basic
notions of computable (partial recursive) function, recursively enumerable and decidable
set are introduced. The "halting-problem" is shown undecidable and through it that
the valid assertions of Assn are not recursively enumerable. In particular, it fleshes
out the proof in Section 7.3 of Godel's Incompleteness Theorem. A discussion of a
"universal IMP program" leads to an alternative proof. The chapter concludes with a
closer examination of what it is about Assn's which makes their truth (and falsehood)
not recursively enumerable.

A.1 Computability

A command c of IMP can be associated with a partial function on N. Throughout we
assume locations are listed Xl, X 2 , X 3 ,···. Let ao be the state in which each location is
assigned O. For n E N, define

{
a(xI)

{ c}(n) = undefined
if a = C[c]ao [n/ X 1]
if C[c]ao[n/X I] is undefined.

Any partial function N ~ N which acts as n 1-+ {c}(n) , on n E N, for some command
c, is called IMP -computable. Such functions are also called "partial recursive", and
"recursive" when they are total. More generally, we can associate a command with a
partial function taking k arguments, so defining IMP-computable functions from N k to
N. For nI, ... ,nk E N, define

{
a(XI)

{c}(nI,···, nk) = undefined
if a = C[c]ao[nI/ Xl,···, nl,) X k]
if C[c]ao[nI/ Xl,···, nk/ Xk] is undefined.

To show that IMP-computable functions compose to give an IMP-computable func
tion we introduce the idea of a tidy command, one which sets all its non X 1 locations
to 0 when it terminates.

Definition: Sayan IMP command c is tidy iff for all states a and numbers n

C[c]ao[n/Xd = a =? a[O/Xd = ao.

Exercise A.I Show that if f is IMP-computable then there is a tidy IMP command
c such that fen) = m iff {c}(n) = m, for all m,n. 0

It is now easy to see that the following holds:

lThe Appendix is based on notes of Albert Meyer which were used to supplement Chapters 1-7 in an
undergraduate course at MIT. I'm very grateful to Albert for permission to use his notes freely.

338 Appendix A

Proposition A.2 Let Co and C1 be commands. Assume Co is tidy. For any n, mEN,

{cl}({eo}(n)) = m iff {co;ct}(n) = m.

Notation: For a partial function f and argument n we write f(n) 1 to mean 3m. f(n) =
m, i.e. the result is defined, and f(n)t to signify the result is undefined.

Note that {c}(n) 1 coincides with termination of the command c starting from the
state 0"0 [n/ Xl]' A subset M of N is IMP -checkable iff there is an IMP command c such
that

n E M iff { c }(n) 1 .

That is, given input n in location Xl, with all other locations initially zero, command c
"checks" whether n is in M and stops when its checking procedure succeeds. The com
mand will continue checking forever (and so never succeed) if n is not in M. Checkable
sets are usually referred to as "recursively enumerable" (r.e.) sets.

Closely related is the concept of an IMP-decidable set. A subset M ~ N is IMP
decidable iff there is an IMP command c such that

n EM implies {c}(n) = 1,

and
n ~ M implies {c}(n) = O.

That is, given input n, command c tests whether n EM, returning output 1 in loca
tion Xl if so, and returning output 0 otherwise. It terminates with such an output for
all inputs. Decidable sets are sometimes called "recursive" sets.

If c is a "decider" for M, then

c; if Xl = 1 then skip else Diverge

is a "checker" for M, where Diverge == while true do skip. Thus:

Lemma A.3 If M is decidable, then M is checkable.

Exercise A.4 Show that if M is decidable, so is the complement M = N \ M. 0

Exercise A.5 Show that if M is checkable, then there is a checker c for M such that
{c}(n) 1 implies C[c)0"0[n/X1] = 0"0 for all n E N. In other words, c only halts after it
has "cleaned up all its locations." (cf. Exercise A.I.) 0

Incompleteness and undecidability 339

Conversely, if CI is a checker for M, and C2 is a checker for M, then by constructing a
command C which "time-shares" or "dovetails" CI and C2, one gets a decider for M.

In a little more detail, here is how C might be written: Let T, F, S be "fresh" locations
not in LOC(CI) U LOC(C2). Let "Cleari" abbreviate a sequence of assignments setting
LOC(Ci) \ {Xd to O. Then C might be:

T:=X I ;

F :=0;
S:= 1;

[while F = 0 do
Clearl; Xl := T;
"do CI for S steps or until CI halts";
if "CI has halted in ::::; S steps" then

if F = 1 then skip else
Clear2; X I := T;

F:= 1;
X I := 1;

else 5 := 5 + 1;

"do C2 for 5 steps or until C2 halts";
if "C2 has halted in ::::; 5 steps" then

F:= 1;
X I := 0;

else5:=5+1];
Clearl; Clear2; T:= 0; F := 0; 5 := 0

% save Xl in T
% F is a flag
% how many steps to try

% all done
%TisinM
% increase the step counter

% all done
% T is not in M
% increase the step counter
% clean up except for X I

Exercise A.6 Describe how to transform a command CI into one which meets the de
scription "do CI for 5 steps or until CI halts (whichever happens first)." 0

So we have

Theorem A.7 A set M is decidable iff M and M are checkable.

A.2 Undecidability

By encoding commands as numbers we can supply them as inputs to other commands.
To do this we encode commands C as numbers #c in the following way. Let mkpair be a
pairing function for pairs of integers. For example,

mkpair(n, m) = 2sg(n) .31nl .5sg(m) ·71ml

340

will serve, where

sg(n) = {I ~f n ~ 0,
o If n < O.

Appendix A

The details of the pairing function don't matter; the important point is that there are
functions "left" and "right" such that

left (mkpair(n, m)) n,

right (mkpair(n, m)) m,

and moreover there are IMP commands which act like assignment statements of each
of the forms

Exercise A.S

x .- mkpair(Y, Z),

X .- left(Y), and

X .- right(Y).

(i) Produce IMP-commands Mkpair, Left, Right realising the functions above, i.e. so

for all n,m E N.

{Mkpair}(n,m) = mkpair(n,m)

{Left}(n) = left(n)

{Right}(n) = right(n)

(ii) Let c be a text which is of the form of an IMP command, except that c contains as
signment statements of the form "X := left(Y)." Describe how to construct an authentic
IMP command c which simulates c up to temporary locations.
(iii) Suppose that the definition of Aexp, and hence of IMP, was modified to allow
Aexp's of the form "mkpair(al' a2)," "left(a)" and "right(a)" for a, aI, a2 themselves
modified Aexp's. Call the resulting language IMP'. Explain how to translate every
c' E Com' into acE Com such that c simulates c'. D

To encode commands as numbers, we make use of the numbering of the set of locations
Lac as Xl, X 2 , We use 0 as the "location-tag" and define

#(Xi) = mkloc(i) = mkpair(O, i).

We also encode numerals, using 1 as the "number-tag":

#(n) = mknum(n) = mkpair(l, n).

Incompleteness and undecidability 341

We proceed to encode Aexp's by using 2,3,4 as tags for sums, differences, and products,
for example:

We encode Bexp's using tags 5, 6, 7, 8, 9 for ::;, =, /\, V, -', for example:

#(al ::; a2) = mkleq(#al, #a2) = mkpair (5, mkpair(#al, #a2)) ,

#(b1 V b2) = mkor(#b1 , #b2) = mkpair (8, mkpair(#b1 , #b2)).

Finally, encode Com using tags 10-14 for :=, skip, if, sequencing, while, e.g.,

#(if b then Co else Cl) mkif(#b, #co, #cd

mkpair (12, mkpair (#b, mkpair(#co, #Cl))) .

This method of numbering syntactic or finitely structured objects was first used by Kurt
Codel in the 1930's, and #(c) is called the Godel number of c.

Now that commands are numbered, it makes sense to talk about supplying a command
as an input to another command, namely, supply its number. We shall say a subset S of
commands is checkable (respectively decidable) if their set of codes

{#c ICE S}

is checkable (respectively decidable).

Exercise A.9 Describe how to write an IMP command which decides whether or not
a number encodes a well-formed IMP command. Deduce that the set {c ICE Com} is
decidable. D

Let H be the "self-halting" subset of commands:

H = {c I {c}(#c) n·
Write

fl =deJ {c E Com I c tf. H}

Theorem A.10 fl is not IMP-checkable.

Proof: Suppose C was an IMP-command which checked fl. That is, for all commands
c,

c E fl iff {C}(#c) is defined.

342 Appendix A

Now C is itself a command, so in particular, recalling the definition of H,

{C}(#CH iff { C}(#C) 1,

a contradiction. Hence, H cannot be checkable. D

Corollary A.ll (Halting problem) The set H is undecidable.

The undecidability of other properties follows from that of the undecidability of the
halting problem. Define

Ho = {c E Com I C[c]o'o =1= ..1 }.

Note that
Ho = {c E Com I {c}(O) !}.

It follows from the fact that H is not checkable that neither is fio = {c E Com I c ~ Ho}:

Theorem A.12 (Zero-state halting problem) The set fio is not checkable.

Proof: The proof makes use of a command realising the function g such that, for any
command c,

g(#c) = #(XI := #c; c).

Such a function is obtained by defining

g(n) = mkseq (mkassign (mkloc(I), mknum(n)), n) ,

for n E N. However, by Exercise A.8, there is a command G such that

{G}(n) = g(n).

By Exercise A.I we can assume the command G is tidy.
With the aim of obtaining a contradiction, assume fio were checkable, i.e. that there

is a command C such that
c E fio iff {C}(#c) 1

for any command c. Then

iff {c}(#cH

iff {Xl := #c; c}(OH

iff (Xl := #c; c) E fio

iff {C}(#(XI := #c; c)) 1
iff {C}(g(#c)) 1
iff {C}({G}(#c)) 1
iff {G; C}(#c) 1 .

Incompleteness and undecidability 343

The final step is justified by Proposition A.2. But this makes the command G; C a
checker for H, a contradiction. Hence flo is not checkable. 0

Exercise A.13
(i) Describe an IMP command C which given the G6del number #c of a command c
outputs the maximum k for locations X k in c. Hence show there is an IMP computable
function which for input #c outputs the G6del number of the command

Xl := 0; X 2 := 0; "'; Xk := 0

clearing all locations up to the last occurring in c.

(ii) Let
D = {c E Com I Va. C[c]a = ..l}.

Using part (i), argue from the fact that flo is not checkable that D is not checkable
either. 0

A.3 Godel's incompleteness theorem

If there were a theorem-proving system which was powerful enough to prove all (and of
course, only) the valid assertions in Assn, then we would expect to be able to write a
program which given input (a code of) an assertion A, searched exhaustively for a proof
of A, and halted iff it found such a proof. Such a program would thus be a validity
checker.

In more detail, imagine we encode assertions A by G6del numbers #A in a way similar
to that used for expressions and commands. Any system which could reasonably be
called a "theorem-prover" would provide a method for how to decide if some structured
finite object-commonly a finite sequence of Assn's-was a "proof" of a given assertion.
A provability checker would work by exhaustively searching through the structured finite
objects to find a proof object. Thus, in order to be worthy of the name "theorem-prover,"
we insist that the set

Provable = {A E Assn I f- A }

be IMP-checkable. As before, with commands, we say a subset of assertions is checkable
iff its corresponding set of G6del numbers is. Let the valid assertions form the set

Valid = {A E Assn I 1= A}.

A theorem prover for validity would make this set checkable. However:

Theorem A.14 Valid is not checkable.

344 Appendix A

Proof: The proof makes use of a command W which realises the function h such that,
for any command c,

h(#c) = #(w[c,false][O/Loc(c)]).

(The hopefully self-evident notation above means substitute 0 for each location of c, and
hence every location, which appears in the assertion.)
The existence of such a command follows from constructive nature of the proof of The
orem 7.5; it describes how to construct an assertion w[c, A], expressing the weakest
precondition, for a command c and assertion A, so that in principle we could write an
IMP command to achieve this on the Godel numbers. The remaining proof will rest on
there being a command W such that

{W}(#c) = #(w[c,false][O/Loc(c)]).

We won't give the detailed construction of W. We will assume W is a tidy command.
Assume that Valid were checkable, i.e. that there is a command C such that, for any

assertion A,
A E Valid iff {C}(#A) 1 .

Let A == w[c, false] [O/Loc(c)]. Then

c E flo iff A E Valid

iff {C}(#A) 1
iff {C}({W}(#c)) 1
iff {W; C}(#c) 1 by Proposition A.2.

This makes flo checkable by the command W; C, a contradiction. Hence Valid is not
checkable. 0

The proof above can be carried through equally well for that special subset of valid
assertions which are closed and location-free in the sense that they do not mention
any locations. Such assertions are either true or false independent of the state and
interpretation. We let

Truth = {A E Assn I A closed & location-free & F= A}.

Notice that the assertions "w[c, false] [O/Loc(c)]" in the proof above are closed and
location-free, so that the same argument would carry through to show that Truth is
not IMP-checkable. Therefore, for all theorem-provers, Provable -=J Truth. At best,
because we want a sound proof system, Provable ~ Truth, and so, for any theorem
prover whose provable assertions are indeed true, there must be some true assertion which

Incompleteness and undecidability 345

is not provable. So the theorem-prover cannot completely prove the true assertions. This
is Godel's (first) Incompleteness Theorem. In abstract form, it is simply:

Theorem A.I5 Truth is not checkable.

The proof of G6del's Incompleteness Theorem has been based on the construction of
an assertion expressing the weakest proecondition. In the next section there is another
proof, this time based on the existence of a "universal program."

A.4 A universal program

It is nowadays a commonplace idea (although it was a strikingly imaginative one in the
1930's) that one can write a "simulator" for IMP commands; in fact, the simulator itself
could be programmed in IMP. That is, we want a command 81M which, given as input a
pair (#c, n), will give the same output as c running on input n. The precise specification
is

{8IM}(#c,n) = m iff {c}(n) = m

for any command c and n, mEN.
(Note that we can exclude numbers not encoding commands by Exercise A.9.)

Theorem A.16 (Universal Program Theorem) There is an IMP command, 81M,
meeting the above specification.

Proof: A long programming exercise to construct 81M, and a longer, challenging exercise
to prove it works correctly. 0

Corollary A.17 The self-halting set H is IMP-checkable.

Proof: The command "X2 := Xl; 81M" describes an IMP-checker for H. o

A set M ~ N is expressible iff there is an A E Assn with no locations and only one
free integer variable i such that

1= A[n/i] iff n E M.

In other words, the meaning of A is "i is in M." Once i is instantiated with a number,
say 7, the resulting assertion A[7/i] is true or false (depending on whether 7 E M)
independent of the state IJ or interpretation I used to determine its truth value.

Theorem A.1S Every IMP-checkable set M ~ N is expressible.

346 Appendix A

Proof: Let C E Com be an M checker. Let w[c, false] E Assn mean the weakest
precondition of false under c. Then

(...,w[c, false]) [if X l][O/Loc(c)]

expresses M. o

Once we assign G6del numbers to Assn just as we did for Com, we obtain a numbering
which has the following important property: for any assertion A with no locations and
a single free integer variable i, let f(n) = #(A[n/i]); then we claim there is an IMP
command S which realises f, i.e.

{S}(n) = f(n)

for any n E N.
One way to see this is to assume that A is of the form

3j.j = i 1\ A'

where A' has no free occurrences of i. There is essentially no loss of generality in this
assumption, since any A E Assn is equivalent to an assertion of the form above. Now
we see that

f(n) = mkexistential(#(j), mkand (mkeq (#(j), mknum(n)), #(A'))),

so f(n) is definable by an Aexp extended with a "mkpair" operator, and therefore by
the Exercise A.8 above we know there is an IMP command S such that {S}(n) = f(n),
for all n. By Exercise A.I we can assume S is tidy.

This property is the only fact about the numbering of closed assertions which we need
to use in the following alternative proof of the Incompleteness Theorem, as we now show.

Another proof of the Incompleteness Theorem:
Suppose C E Com was a Truth checker. Since the self-halting set H is checkable,

there is an assertion B such that, for all commands c,

c E H iff F B[#c/i].

Letting A be ...,B, we have

c E fI iff F A[#c/i]

iff A[#c/i] E Truth

iff {C}(#(A[#c/i])) 1
iff {C}({S}(#c)) 1
iff {S; C}(#c) 1

Incompleteness and undecidability 347

where 5 is the tidy command achieving substitution into A.
But then "5; e" describes an fI checker, a contradiction. o

Exercise A.19 Show that Truth is not checkable either. o

Exercise A.20 Prove or give counter-examples to the claims that decidable (checkable,
expressible) sets are closed under complement (union, intersection). Note, this asks nine
questions, not three. 0

Exercise A.21 Show that Ho = {c E Com I C[c]ao i- .l} is checkable. o

A.5 Matijasevic's Theorem

We now examine more closely what it is about Assn's which makes their truth (and
falsehood) not even checkable, let alone decidable. It might seem that the source of the
problem was the quantifiers ""i" and "3" whose checking seems to require an infinite
search in order to complete a check. However, this is a case where naive intuition is
misleading. The "hard part" of Assn's has more to do with the interaction between
additive and multiplicative properties of numbers than with quantifiers. In particular,
if we let PlusAssn's be assertions which do not contain the symbol for multiplication
and likewise TimesAssn be assertions which do not contain the symbols for addition or
subtraction, then validity for PlusAssn's and also for TimesAssn's is actually decidable,
and there are logical systems of a familiar kind for proving all the valid PlusAssn's and
likewise for TimesAssn's. These facts are not at all obvious, and the long, ingenious
proofs won't be given here.

On the other hand, when we narrow ourselves to Assn's without quantifiers, that is
Bexp's, it turns out that validity is still not checkable. This is an immediate consequence
of the undecidability of "Hilbert's 10 th Problem," which is to decide, given a E Aexp,
whether a has an integer-vector root. More precisely, let

H 10 = { a E Aexp I a F a = 0 for some a E ~}.

Remember this is understood to mean that the set

{ #a I a E Aexp and a F a = 0 for some a E ~}.

is not a decidable subset of N.

Theorem A.22 (Matijasevic, 1970) H 10 is not decidable.

348 Appendix A

This is one of the great results of 20th century Mathematics and Logic. Matijasevic,
a Russian, building on earlier work of Americans Davis, Putnam and Robinson, learned
how to "program" with polynomials over the integers and so obtained this theorem. The
proof uses only elementary number theory, but would take several weeks to present in a
series of lectures.

Exercise A.23 Explain why H 10 is checkable, and so HlO = Aexp\HlO is not checkable.
D

Matijasevic actually proved the following general result:

Theorem A.24 (Polynomial Programming) Let M be an r.e. set of nonnegative
integers. Then there is an a E Aexp such that M is the set of nonnegative integers in
the range of a.

Remember that an a E Aexp can be thought of as describing a polynomial function
on the integers. In particular, the range of a is Rge(a) =def {A[ak I a E E}.

Exercise A.25
(i) Show that it follows from the Polynomial Programming Theorem that

{a E Aexp I #a E Rge(a)}

is not checkable.
(ii) Explain why the undecidability of Hilbert's 10 th Problem follows from the Polynomial
Programming Theorem. D

We now can conclude that the validity problem for Assn's of the simple form
".(a = 0)" is not checkable. Let

ValidNonEq = { .(a = 0) I a E Aexp and 1= .(a = O)}.

Corollary A.26 ValidNonEq is not checkable.

Proof: We have a E HlO iff .(a = 0) E ValidNonEq. So

X 1 := mkneg(mkeq(X1 ,mknum(0))); c

would describe an HlO checker if c were a ValidNonEq checker. D

Incompleteness and undecidability 349

On the other hand, an easy, informative example which is both decidable and even
nicely axiomatizable are the valid equations, i. e. , Assn's of the form "a 1 = a2."

We begin by giving the inductive definition of the "provable" equations. We write f- e
to indicate that an equation e is provable.

f-a=a

f- al = a2

f- a2 = al

f- al = a2 f- a2 = a3

f- al = a3

f- al = a2

f- al op a = a2 op a

f- al = a2

f-a+O=a

f-axl=a

f-a-a=O

f-a-b=a+((-1)xb)

f- (-n) = (-1) x n

f- 1 + 1 = 2, f- 2 + 1 = 3, f- 3 + 1 = 4,

(reflexi vi ty)

(symmetry)

(transitivity)

(right congruence)

(left congruence)

where op E {+, -, x}

(associativity)

(commutativity)

where op / E {+, x}

(+-identity)

(x -identity)

(additive inverse)

(minus-one)

(distributivity)

(negative numeral)

(successor)

350 Appendix A

Proof: (::::}) This direction of the "iff" is called soundness of the proof system. It follows
immediately from the inductive definition of "1-," once we note the familiar facts that all
the rules (including the axioms regarded as rules with no antecedents) preserve validity.

({=) This direction is called completeness of the proof system. The axioms and rules
were selected to be sufficient to reduce every expression a to a "canonical form" a with
the property that

1= al = a2 iff (h == (h·

A canonical form is either "0" or a sum-of-distinct-monomials representation, with each
monomial (product of locations) having its locations occurring in increasing order of
subscript, and parenthesized to the left. Moreover, each monomial has a "coefficient" of
the form "n" where n is a nonzero numeral, and these monomials-with-coefficients are
added in decreasing order of degree (i. e. , length), in alphabetical order of the monomials
for monomials of the same degree, with the sum associated to the left also. 0

For example, let a be the Aexp corresponding to

Then a would be described as

We have described a and a using the usual mathematical abbreviations in which paren
theses and multiplication symbols are omitted, exponents indicate repeated products, etc.
The canonical form a E Assn would be written formally as follows:

(((1 X (((X2 x X 2) x X 2) x X 3)) + (3 x (((X2 x X 2) x X 2) x X 4)))

+ ((~1) X (X3 x X 3))) + (2 xl).

Note that we regard "1" as a monomial of degree zero.
The idea is that, first, subtractions can be eliminated using the (minus-one) axiom.

Then distributivity can be applied repeatedly to remove occurrences of products over
sums. The result is an expression consisting of sums of products of locations and numbers.
The products can be internally sorted using associativity and commutativity, as can
the order of the products in the sum. Coefficients of identical monomials can then be
combined by distributivity. The monomials will have a sum of numerical products for
their coefficients, and these can be simplified in turn to a sum of ones and then a single
number using the numerical and identity axioms with associativity, commutativity and
distributivity. Enough said; we thus have:

Incompleteness and undecidability 351

Lemma A.28 For every a E Aexp, there is a canonical form 0, E Aexp such that
f- a = 0,.

We now state the following fact about polynomial functions on the integers.

Fact If aJ. and 62 are syntactically distinct canonical forms, then A[ad =1= A[62].

Exercise A.29 Prove the Fact. o

Proof: (Completeness) We now can prove completeness. Suppose F a 1 = a2, i. e. ,
A[a1] = A[a2]. By the Lemma, f- ai = 5i, so by soundness, F ai = 5i for i = 1,2. So
A[aJ.] = A[a1] = A[a2] = A[62]. Then by the Fact above, a1 is actually syntactically
identical to 62, so we have

and by symmetry and transitivity, we conclude f- al = a2. o

A.6 Further reading

The treatment here is based on lecture notes of Albert Meyer, with some modifications by
the author. A proof of Matijasevic theorem can be found in [35]. The books by Crossley
[34], Kleene [54], Mendelson [61] and Enderton [38] have already been mentioned in
Chapter 7, as has [11] by Kfoury, Moll and Arbib which gives a treatment close to that
here. A nice book with a more traditional mathematical presentation is Cutland's [20]
which might be a warm-up to the encyclopaedic book of Rogers [86].

Bibliography

[1] Abramsky, S., "The lazy lambda calculus." In Research Topics in Functional Programming (ed.
Turner,D.A.), The UT Year of Programming Series, Addison-Wesley, 1990.

[2J Abramsky, S., "Domain theory in logical form." In IEEE Proc. of Symposium on Logic in Computer
Science, 1987. Revised version in Annals of pure and Applied Logic, 51, 1991.

[3J Abramsky, S., "A computational interpretation of linear logic." To appear in Theoretical Computer
Science.

[4] Aczel, P., "An introduction to inductive definitions." A chapter in the Handbook of Mathe
matical Logic, Barwise, J., (ed), North Holland, 1983.

[5J Alagic, S., and Arbib, M., "The design of well-structured and correct programs." Springer-Verlag,
1978.

[6J Andersen, H.R., "Model checking and boolean graphs." Proc. of ESOP 92, Springer-Verlag Lecture
Notes in Computer Science vo1.582, 1992.

[7] Andersen, H.R., "Local computation of alternating fixed-points." Tehnical Report No. 260, Com
puter Laboratory, University of Cambridge, 1992.

[8] Apt, K.R., "Ten years of Hoare's Logic: a survey." TOPLAS, 3, pp. 431-483, 1981.
[9J Apt, K.R, and Olderog, E-R, "Verification of Sequential and Concurrent Programs,"

Springer-Verlag, 1991.
[10J Arbib, M., and Manes, E., "Arrows, structures and functors." Academic Press, 1975.
[11J Kfoury, A.J., Moll, R.N. & Arbib, M.A., "A programming approach to computability."

Springer-Verlag, 1982.
[12J Backhouse, R, "Program construction and verification." Prentice Hall, 1986.
[13J de Bakker, J., "Mathematical theory of program correctness." Prentice-Hall, 1980.
[14] Barendregt, H., "The lambda calculus, its syntax and semantics." North Holland, 1984.
[15J Barr, M., and Wells, C., "Category theory for computer science." Prentice-Hall, 1990.
[16] Berry, G., Curien, P-L., and Levy, J-J., "Full abstraction for sequential languages: the state of the

art. In Nivat, M., and Reynolds, J., (ed), Algebraic Methods in Semantics, Cambridge University
Press, 1985.

[17] S0rensen, B.B., and Clausen, C., "Adequacy results for a lazy functional language with recursive
and polymophic types." DAIMI Report, University of Aarhus, submitted to Theoretical Computer
Science.

[18] Camilleri, J.A., and Winskel, G., "CCS with priority choice." Proc. of Symposium on Logic in
Computer Science, Amsterdam, IEEE, 1991. Extended version to appear in Information and Com
putation.

[19J Crole, R, "Programming metalogics with a fixpoint type." University of Cambridge Computer
Laboratory Technical Report No. 247, 1992.

[20] Cutland, N.J., "Computability: an introduction to recursive function theory." Cambridge Univer-
sity Press, 1983.

[21J Bird, R, "Programs and machines." John Wiley, 1976.
[22J Bird, R., and Wadler, P., "Introduction to functional programming." Prentice-Hall, 1988.
[23J Clarke, E.M. Jr., "The characterisation problem for Hoare Logics" in Hoare, C.A.R and Shep-

herdson, J.C. (eds.), " Mathematical logic and programming languages." Prentice-Hall, 1985.
[24J Clarke, E.M., Emerson, E.A., and Sistla, A.P., "Automatic verification of finite state concurrent

sytems using temporal logic." Proc. of 10th Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, 1983.

[25J Cleaveland, R., "Tableau-based model checking in the propositional mu-calculus." Acta Informat
ica, 27, 1990.

[26J Clement, J., Despeyroux, J., Despeyroux, T., and Kahn, G., "A simple applicative language:
mini-ML." Proc. of the 1986 ACM Conference on Lisp and Functional Programming, 1986.

[27J Cosmadakis, S.S., Meyer, A.R, and Riecke, J.G., "Completeness for typed lazy languages (Pre
liminary report)." Proc. of Symposium on Logic in Computer Science, Philadelphia, USA, IEEE,
1990.

[28J Despeyroux, J., "Proof of translation in natural semantics." Proc. of Symposium on Logic in
Computer Science, Cambridge, Massachusetts, USA, IEEE, 1986.

[29J Despeyroux, T., "Typol: a formalism to implement natural semantics." INRIA Research Report
94, Roquencourt, France, 1988.

354 Bibliography

[30] Cleaveland, R., Parrow, J. and Steffen. B., "The Concurrency Workbench." Report of LFCS,
Edinburgh University, 1988.

[31] Clocksin, W.F., and Mellish, C., "Programming in PROLOG." Springer-Verlag, 1981.
[32] Cohen, "Programming for the 1990's". Springer-Verlag, 1991.
[33] Cook, S.A., "Soundness and completeness of an axiom system for program verification." SIAM J.

Comput. 7, pp. 70-90, 1978.
[34] Crossley, J.N., "What is mathematical logic?." Oxford University Press, 1972.
[35] Davis, M., "Hilbert's tenth problem is unsolvable." Am.Math.Monthly 80, 1973.
[36] Dijkstra, E.W., "A discipline of programming." Prentice-Hall, 1976.
[37] Emerson, A. and Lei, C., "Efficient model checking in fragments of the propositional mu-calculus."

Proc. of Symposium on Logic in Computer Science, 1986.
[38] Enderton, H.B., "A mathematical introduction to logic." Academic Press, 1972.
[39] Enderton, H.B., "Elements of set theory." Academic Press, 1977.
[40] Girard, J-Y., Lafont, Y., and Taylor, P., "Proofs and types." Cambridge University Press, 1989.
[41] Good, D.l., "Mechanical proofs about computer programs." in Hoare, C.A.R., and Shepherdson,

J.C. (eds.), "Mathematical Logic and Programming Languages." Prentice-Hall, 1985.
[42] Gordon, M.J.C., "Programming language theory and its implementation." Prentice-Hall,

1988.
[43] Gordon, M.J.C., HOL: A proof generating system for higher-order logic, in VLSI Specification,

Verification and Synthesis, (ed. Birtwistle, G., and Subrahmanyam, P.A.) Kluwer, 1988.
[44] Gries, D., "The science of programming." Springer Texts and Monographs in Computer Sci

ence, 1981.
[45] Hindley, R., and Seldin, J.P, "Introduction to combinators and lambda-calculus." Cam

bridge University Press, 1986.
[46] Godskesen, J.C., and Larsen, KG., and Zeeberg, M., "TAV (Tools for Automatic Verification) users

manual." Technical Report R 89-19, Department of Mathematics and Computer Science, Aalborg
University, 1989. Presented at the workshop on Automated Methods for Finite State Systems,
Grenoble, France, June 1989.

[47] Halmos, P.R., "Naive set theory." Litton Ed Publ. Inc., 1960.
[48] Hennessy, M.C, "Algebraic theory of processes." MIT Press, 1988.
[49] Hoare, C.A.R., "Communicating sequential processes." CACM, vo1.21, No.8, 1978.
[50] Hoare, C.A.R., "Communicating sequential processes." Prentice-Hall, 1985.
[51] Huet, G., "A uniform approach to type theory." In Logical Foundations of Functional Pro

gramming (ed. Huet,G.), The UT Year of Programming Series, Addison-Wesley, 1990.
[52] Jensen, C.T., "The Concurrency Workbench with priorities." To appear in the proceedings of

Computer Aided Verification, Aalborg, 1991, Springer-Verlag Lecture Notes in Computer Science.
[53] Johnstone, P.T., "Stone spaces." Cambridge University Press, 1982.
[54] Kleene, S.C., "Mathematical logic." John Wiley, 1967.
[55] Kozen, D., "Results on the propositional mu-calculus," Theoretical Computer Science 27, 1983.
[56] Lamport, L., "The temporal logic of actions." Technical Report 79, Digital Equipment Corporation,

Systems Research Center, 1991.
[57] Larsen, KG., "Proof systems for Hennessy-Milner logic." Proc. CAAP, 1988.
[58] Loeckx, J. and Sieber, K "The foundations of program verification." John Wiley, 1984.
[59] Manna, Z., "Mathematical theory of computation." McGraw-Hill, 1974.
[60] Manna, Z., and Pnueli, A., "How to cook a temporal proof system for your pet language." Proc.

of 10th Annual ACM Symposium on Principles of Programming Languages, Austin, Texas, 1983.
[61] Mendelson, E., "Introduction to mathematical logic." Van Nostrand, 1979.
[62] Milner, A.J.R.G., "Fully abstract models of typed lambda-calculi." Theoretical Computer Science

4, 1977.
[63] Milner, A.J.R.G., "Communication and concurrency." Prentice Hall, 1989.
[64] Milner, A.J .R.G., "Operational and algebraic semantics of concurrent processes." A chapter in

Handbook of Theoretical Computer Science, North Holland, 1990.
[65] Mitchell, J.C., "Type systems for programming languages." A chapter in Handbook of Theo

retical Computer Science, North Holland, 1990.

Bibliography 355

[66] Moggi, E., "Categories of partial morphisms and the lambdap-calculus." In proceedings of Category

[67]

[68]

[69]

[70]
[71]

[72]
[73]
[74]

[75]

[76]

[77]

[78]
[79]
[80]

[81]

[82]

[83]
[84]

[85]

[86]

[87]
[88]

[89]

[90]

[91]

[92]
[93]

[94]
[95]

[96]

[97]

Theory and Computer Programming, Springer-Verlag Lecture Notes in Computer Science vo1.240,
1986.
Moggi, E., "Computational lambda-calculus and monads." Proc. of Symposium on Logic in Com
puter Science, Pacific Grove, California, USA, IEEE, 1989.
Mosses, P.D., "Denotational semantics." A chapter in Handbook of Theoretical Computer
Science, North Holland, 1990.
Nielson. H.R., and Nielson, F., "Semantics with applications: a formal introduction." John
Wiley, 1992.
inmos, "Occam programming manual." Prentice Hall, 1984.
Ong, C-H.L., "The lazy lambda calculus: an investigation into the foundations of functional pro
gramming." PhD thesis, Imperial College, University of London, 1988.
Parrow, J., "Fairness properties in process algebra." PhD thesis, Uppsala University, Sweden, 1985.
Paulson,L.C., "ML for the working programmer." Cambridge University Press, 1991.
Paulson, L.C., "Logic and computation: interactive proof with Cambridge LCF." Cam
bridge University Press, 1987.
Pitts, A., "Semantics of programming languages." Lecture notes, Computer Laboratory, University
of Cambridge, 1989.
Pitts, A., "A co-induction principle for recursively defined domains." University of Cambridge
Computer Laboratory Technical Report No.252, 1992.
Plotkin, G.D., "Call-by-name, Call-by-value and the lambda calculus" Theoretical Computer Sci
ence 1, 1975.
Plotkin, G.D., "LCF considered as programming language." Theoretical Computer Science 5, 1977.
Plotkin, G.D., "A powerdomain construction." SIAM J. Comput.5, 1976.
Plotkin, G.D" "The Pisa lecture notes." Notes for lectures at the University of Edinburgh, extend
ing lecture notes for the Pisa Summerschool, 1978.
Plotkin, G.D., "Structural operational semantics." Lecture Notes, DAIMI FN-19. Aarhus Univer
sity, Denmark, 1981 (reprinted 1991).
Plotkin, G.D., "An operational semantics for CSP." In Formal Description of Programming Con
cepts II, Proc. of TC-2 Work. Conf. (ed. Bj0rner, D.), North-Holland, 1982.
Plotkin, G.D., "Types and partial functions." Notes of lectures at CSLI, Stanford University, 1985.
Prawitz, D., "Natural deduction, a proof-theoretical study." Almqvist & WikselL Stock
holm, 1965.
Reisig, W., "Petri nets: an introduction." EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1985.
Rogers, H., "Theory of recursive functions and effective computability." McGraw-Hill,
1967.
Roscoe,A.W., and Reed,G.M .• "Domains for denotational semantics." Prentice Hall, 1992.
schmidt, D., "Denotational semantics: a methodology for language development." Allyn
& Bacon, 1986.
Scott, D.S., "Lectures on a mathematical theory of computation." PRG Report 19, Programming
Research Group, Univ. of Oxford, 1980.
Scott, D.S., "Domains for denotational semantics." In proceedings of ICALP '82, Springer-Verlag
Lecture Notes in Computer Science vo1.l40, 1982.
Scott, D.S., and Gunter, c., "Semantic domains." A chapter in Handbook of Theoretical
Computer Science, North Holland, 1990.
Smyth, M., "Powerdomains." JCSS 16(1), 1978.
Stirling, C. and Walker D., "Local model checking the modal mu-calculus." Proc.of TAPSOFT,
1989.
Stoughton, A., "Fully abstract models of programming languages." Pitman, 1988.
Stoy, J., "Denotational semantics: the Scott-Strachey approach to programming lan
guage theory." MIT Press, 1977.
Tarski, A., "A lattice-theoretical fixpoint theorem and its applications." Pacific Journal of Mathe
matics, 5, 1955.
Tennent, R.D., "Principles of programming languages." Prentice-Hall, 1981.

356 Bibliography

[98] Vickers, S., "Topology via logic." Cambridge University Press, 1989.
[99] Vuillemin, J.E., "Proof techniques for recursive programs." PhD Thesis, Stanford Artificial Intel

ligence Laboratory, Memo AIM-218, 1973.
[100] Walker, D., "Automated analysis of mutual exclusion algorithms using CCS." Formal Aspects of

Computing 1, 1989.
[101] Wikstrom, A. "Functional programming using Standard ML." Prentice-Hall, 1987.
[102] Winskel, G., "On powerdomains and modality." Theoretical Computer Science 36, 1985.
(103] Winskel, G. and Larsen, K., "Using information systems to solve recursive domain equations

effectively." In the proceedings of the conference on Abstract Datatypes, Sophia-Antipolis, France,
Springer-Verlag Lecture Notes in Computer Science vol.l73, 1984.

[104] Winskel, G., "Event structures." Lecture notes for the Advanced Course on Petri nets, September
1986, Springer-Verlag Lecture Notes in Computer Science, vol.255, 1987.

[105] Winskel, G., "An introduction to event structures." Lecture notes for the REX summerschool in
temporal logic, May 88, Springer-Verlag Lecture Notes in Computer Science, vol.354, 1989.

[106] Winskel, G., "A note on model checking the modal nu-calculus." Theoretical Computer Science
83, 1991.

[107] Winskel, G., and Nielsen, M., "Models for concurrency." To appear as a chapter in the Handbook
of Logic and the Foundations of Computer Science, Oxford University Press.

[108] Zhang, G-Q., "Logic of domains." Birkhiiuser, 1991.

Index

A

abstract syntax, 12, 26
Ackermann's function, 175
adequacy, 191, 216, 262, 288
application, 129
applicative, 141
approximable mapping, 245
axiomatic semantics, 77, 89

B

Backus-Naur form, 11
Bekic's theorem, 162, 163
binary trees, 224
bisimulation, 316, 317, 320, 335, 336
BNF,l1
bound variable, 81

c

Calculus of Communicating Systems, 308
call-by-name, 142
call-by-need, 183
call-by-value, 142
canonical forms,

call-by-name, 201
call-by-value, 186
eager, 186, 255
lazy, 201

Cantor's diagonal argument, 8
cases-notation for cpo's, 134, 138
category, 139

cartesian closed, 139
coproducts, 139
products, 139

CCS, 308, 335
operational semantics, 313
pure, 311
recursive definition, 315
syntax, 309, 312

channel, 303
checkable, 338
closed family, 228
closed under rules, 42
commands, 13
communicating processes, 303
Communicating Sequential Processes, 307
communication by shared variables, 298
complete lattice, 74
complete partial order (cpo), 68, 70
compositional, 60
computability, 337
computationally feasible, 122

concrete syntax, 12
concurrency, 297
Concurrency Workbench, 335
conditional on cpo's, 134
configuration, 14, 19
context, 218
continuous function, 68, 120
continuous in each argument separately, 127
continuous in variables, 136
convergence,

eager, 191, 262
lazy, 204, 288

cpo, 68, 70, 119
algebraic, 230
bounded complete, 230
constructions, 123
function space, 128
lifting, 131
product, 125
sum, 133

discrete, 120, 124
discrete (flat), 70
finite element, 230
injection function, 133
isomorphism, 124
omega algebraic, 230
projection function, 125
with bottom, 70, 119

CSP, 307, 335
currying, 129

D

deadlock, 307, 317
decidable, 338
declaration, 141

local, 161
denotational semantics, 55

higher types,
eager, 188
lazy, 203

IMP, 58
REC,
call-by-name, 154
call-by-value, 144

recursive types,
eager, 257
lazy, 281

derivation, 14, 16
induction on, 35
subderivation, 35

deterministic evaluation, 28
dI-domains, 249
Dijkstra's guarded commands, 298
domain, 119

358

domain theory, 119
metalanguage, 135, 172
application, 136
cases-notation, 138
lambda abstraction, 137
let-notation, 137
mu-notation, 138
tupling, 136

E

eager evaluation, 183
eager language,

recursive types, 251
embedding-projection pairs, 236
environment, 144, 154, 188, 203, 258, 284

for types, 258, 281
Euclid's algorithm, 33, 96, 301
expressible set, 345
expressiveness, 100, 101
extension of assertion, 86

F

fairness, 327
finite-state process, 323
Fixed-point induction, 166
fixed-point operator, 209

eager, 214, 272, 275
lazy, 209, 292, 293

Fixed-Point Theorem, 71, 121
Floyd-Hoare rules, 77
free variable, 81
full abstraction, 215, 221
function, 6

composition, 7
continuous, 68, 71, 120
continuous in each argument separately, 127
direct image, 9
fixed point, 71
identity, 8
IMP computable, 337
inverse image, 9
maximum fixed point, 75
monotonic, 71, 120
order-monic, 170
partial, 7
prefixed point, 71
recursive, 337
stable, 249
strict, 132
total, 7

function space of cpo's, 128
function type,

eager, 251

lazy, 278
functional language, 251, 295

eager, 183, 251
lazy, 200, 278

G

gcd, 33, 96
glb,74
Godel number, 341
Godel's beta predicate, 101, 110

Index

Godel's Incompleteness Theorem, 99, 110, 343
greatest common divisor (gcd), 33
greatest lower bound, 74
guarded commands, 298, 335

H

halting problem, 342
Haskell, 251
Hennessy-Milner logic, 316
Hilbert's Tenth Problem, 347
Hoare logic, 89, 97
Hoare rules, 77, 89

completeness, 91, 99
relative completeness, 99, 100
soundness, 91

HOL,93

I

IMP, 11
checkable, 338
computable, 337
decidable, 338
denotational semantics, 60
evaluation rules, 14, 17
execution rules, 20
syntax, 11

imperative language, 11
inclusive in each argument separately, 171
inclusive predicates, 167

constructions,
logical operations, 169
substitution, 168

inclusive properties, 166
constructions,
finite unions, 169
function space, 171
intersections, 169
inverse image, 168
lifting, 171
products, 170
sum, 171

incompleteness, 337
induction, 27

Index

inductive definition, 41, 54
information system, 223

consistency relation, 226
constructions, 236
lifted function space, 243
lifting, 237
product, 241
sums, 239

cpo of information systems, 233
definition, 226
entailment relation, 226
tokens, 226

interpretation, 84
invariant, 78, 90
isomorphism, 124

K

Knaster-Tarski Theorem, 74, 322

L

lambda calculus, 296
eager, 267
equational theory, 269

eager typed, 183
denotational semantics, 188
operational semantics 186

lazy,290 '
equational theory, 291

lazy typed, 200
denotational semantics, 203
operational semantics, 201

lambda notation, 7
lazy evaluation, 183
lazy language,

recursive types, 278
lazy lists, 121. 287
lazy natural numbers, 279, 286
LCF, 93, 139
least common multiple, 84
least upper bound (lub), 69
let-notation, 132
lifting of cpo's, 131
lists, 179, 224, 254, 256

append, 179
cons, 179
lazy, 287
of integers, 179

local model checking, 325, 327
location, 11, 39, 48
logical operations, 1
logical relation, 217

eager, 193, 263
lazy, 205

lower bound, 74
lub,69 .

M

mathematical induction, 27
Matijasevic Theorem, 351
Matijasevic's Theorem, 347
metavariables, 11
Miranda, 251
modal logic, 316
modal mu-calculus, 321
modal nu-calculus, 321
model checking, 325

local, 325
monotonic function, 120
mu-calculus, 321, 335

N

natural semantics, 16, 26
Noetherian induction, 32
nondeterminism, 297
nu-calculus, 321, 335

o

observation, 215
Occam, 307, 335
omega chain, 70
operational semantics 11

CCS, 309 '
communicating processes, 303
guarded commands, 298
higher types,
eager, 186
lazy, 201

IMP, 13
pure CCS, 313
REC,
call-by-name, 153
call-by-value, 143

recursive types,
eager, 255
lazy, 278

shared-variable communication, 297
operator on sets,

least fixed point. 59
operators on sets, 52

continuous, 54
fixed points, 52
increasing, 54
monotonic, 52

order-monic, 170
Orwell, 251

359

360

p

parallel composition, 303
parallelism, 297
Park induction, 163
part.ial correctness,

proof rules, 89
partial correctness assertion, 79

annotated, 113
partial correctness predicate, 115
partial order, 69
partial recursive function, 337
Petri nets, 336
Plotkin powerdomain, 249
polynomial programming, 348
ports, 308
powerdomain, 249, 336
predicate calculus, 81
predicate transformer, 115
predomain,

Scott, 230
predomains, 70, 249
product of cpo's, 125
product type,

eager, 251
lazy, 278

Q

quantifiers,

R

REe,141
call-by-name,
denotational semantics, 154
operational semantics, 153

call-by-value,
denotational semantics, 144
operational semantics, 143
semantics equivalent, 149

syntax, 141
recursion equations, 141
recursive function, 337
recursive set, 338
recursive types, 251, 295

eager language, 251
denotational semantics, 257
operational semantics, 255
typing rules, 252

lazy language, 278
operational semantics, 278

lazy lists, 287
lazy natural numbers, 279, 286

lists, 254, 256
natural numbers, 253, 256

recursively enumerable, 338
relation, 6

composition, 7
direct image, 9
equivalence relation, 9
identity, 10
inverse image, 9
transitive closure, 10
well-founded, 31

restriction, 304
rule, 35

axiom, 35
conclusion, 35
finitary, 35, 71
instance, 15, 35
premise, 35
set defined by rules, 41

rule induction, 41
general principle, 41
special principle, 44

rules,
set closed under rules, 42

Russell's paradox, 3

s

Scott closed, 167
Scott domain, 228
Scott predomain, 230
Scott topology, 123
Scott's fixed-point induction, 166
sequentiality, 218
set,

closed under rules, 42
defined by rules, 41
inductively defined, 41

sets, 2
constructions, 4
foundation axiom, 6
functions, 6
relations, 6
Russell's paradox, 3

SFP objects, 249
side effects, 26
size of token, 263
Standard ML, 251
state, 13
state transformer, 115
stoppered sequences, 121, 224
streams, 121, 224
strict extension of a function, 132
strongest postcondition, 117
structural induction, 28

Index

Index

structural operational semantics, 16, 26
subderivation, 35
substitution, 82, 103, 269
sum of cpo's, 133
sum type,

eager, 251
lazy, 278

sum types, 219
eager, 219
lazy, 219

T

Tarski's Theorem, 74, 322
TAV System, 335 .
temporal logic, 336
tidy command, 337
transition relations, 21
transition systems, 21
truth values, 11

cpo, 122
operations, 57

typable term, 184
type environment, 258, 281
type variables, 251, 278
types, 183

eager, 251
function,
eager, 251
lazy, 278

higher, 183
lazy, 278
product,
eager, 251
lazy, 278

recursive, 223
eager, 251
lazy, 278

sum,
eager, 251
lazy, 278

typing rules, 185
typing rules, 252

u

undecidability, 337, 339
universal program, 345
until operator, 326
upper bound, 69

v

validity, 87
values, 186

eager, 188, 258
lazy, 203, 281

verification condition, ll2, ll3
generator, ll5

w
weakest liberal precondition, 101
weakest precondition, 100
well ordering, 181
well-founded induction, 31, 174

principle, 32
well-founded recursion, 40, 176, 264, 289
well-founded relation,

inverse image, 175
lexicographic product, 175
product, 175

while programs, 11

361

The MIT Press, with Peter Denning as general consulting editor, publishes computer
science books in the following series:

ACL-MIT Press Series in Natural Language Processing
Aravind K. Joshi, Karen Sparck Jones, and Mark Y. Liberman, editors

ACM Doctoral Dissertation Award and Distinguished Dissertation Series

Artificial Intelligence
Patrick Winston, founding editor
J. Michael Brady, Daniel G. Bobrow, and Randall Davis, editors

Charles Babbage Institute Reprint Series for the History of Computing
Martin Campbell-Kelly, editor

Computer Systems
Herb Schwetman, editor

Explorations with Logo
E. Paul Goldenberg, editor

Foundations of Computing
Michael Garey and Albert Meyer, editors

History of Computing
I. Bernard Cohen and William Aspray, editors

Logic Programming
Ehud Shapiro, editor; Fernando Pereira, Koichi Furukawa, Jean-Louis Lassez, and David
H. D. Warren, associate editors

The MIT Press Electrical Engineering and Computer Science Series

Research Monographs in Parallel and Distributed Processing
Christopher Jesshope and David Klappholz, editors

Scientific and Engineering Computation
Janusz Kowalik, editor

Technical Communication and Information Systems
Edward Barrett, editor

	Cover
	Foundations of Computing
	The Formal Semantics of Programming Languages: An Introduction
	Copyright
	0262231697

	Contents
	Series foreword
	Preface
	1 Basic set theory�������������������������
	1.1 Logical notation���������������������������
	1.2 Sets���������������
	1.2.1 Sets and properties��������������������������������
	1.2.2 Some important sets��������������������������������
	1.2.3 Constructions on sets����������������������������������
	1.2.4 The axiom of foundation������������������������������������

	1.3 Relations and functions����������������������������������
	1.3.1 Lambda notation����������������������������
	1.3.2 Composing relations and functions��
	1.3.3 Direct and inverse image of a relation���
	1.3.4 Equivalence relations����������������������������������

	1.4 FUrther reading��������������������������

	2 Introduction to operational semantics��
	2.1 IMP-a simple imperative language���
	2.2 The evaluation of arithmetic expressions���
	2.3 The evaluation of boolean expressions��
	2.4 The execution of commands������������������������������������
	2.5 A simple proof�������������������������
	2.6 Alternative semantics��������������������������������
	2.7 Further reading

	3 Some principles of induction�������������������������������������
	3.1 Mathematical induction���������������������������������
	3.2 Structural induction�������������������������������
	3.3 Well-founded induction���������������������������������
	3.4 Induction on derivations�����������������������������������
	3.5 Definitions by induction�����������������������������������
	3.6 Further reading��������������������������

	4 Inductive definitions������������������������������
	4.1 Rule induction�������������������������
	4.2 Special rule induction���������������������������������
	4.3 Proof rules for operational semantics��
	4.3.1 Rule induction for arithmetic expressions��
	4.3.2 Rule induction for boolean expressions���
	4.3.3 Rule induction for commands��

	4.4 Operators and their least fixed points���
	4.5 Further reading��������������������������

	5 The denotational semantics of IMP��
	5.1 Motivation���������������������
	5.2 Denotational semantics���������������������������������
	5.3 Equivalence of the semantics���������������������������������������
	5.4 Complete partial orders and continuous functions���
	5.5 The Knaster-Tarski Theorem�������������������������������������
	5.6 Further reading��������������������������

	6 The axiomatic semantics of IMP���������������������������������������
	6.1 The idea�������������������
	6.2 The assertion language Assn��������������������������������������
	6.2.1 Free and bound variables�������������������������������������
	6.2.2 Substitution�������������������������

	6.3 Semantics of assertions����������������������������������
	6.4 Proof rules for partial correctness��
	6.5 Soundness��������������������
	6.6 Using the Hoare rules-an example���
	6.7 Further reading��������������������������

	7 Completeness of the Hoare rules��
	7.1 Codel's Incompleteness Theorem���
	7.2 Weakest preconditions and expressiveness���
	7.3 Proof of Codel's Theorem�����������������������������������
	7.4 Verification conditions����������������������������������
	7.5 Predicate transformers���������������������������������
	7.6 Further reading��������������������������

	8 Introduction to domain theory��������������������������������������
	8.1 Basic definitions����������������������������
	8.2 Streams-an example�����������������������������
	8.3 Constructions on cpo's���������������������������������
	8.3.1 Discrete cpo's���������������������������
	8.3.2 Finite products����������������������������
	8.3.3 Function space���������������������������
	8.3.4 Lifting��������������������
	8.3.5 Sums�����������������

	8.4 A metalanguage�������������������������
	8.5 Further reading��������������������������

	9 Recursion equations����������������������������
	9.1 The language REC���������������������������
	9.2 Operational semantics of call-by-value���
	9.3 Denotational semantics of call-by-value��
	9.4 Equivalence of semantics for call-by-value���
	9.5 Operational semantics of call-by-name��
	9.6 Denotational semantics of call-by-name���
	9.7 Equivalence of semantics for call-by-name��
	9.8 Local declarations�����������������������������
	9.9 Further reading��������������������������

	10 Techniques for recursion����������������������������������
	10.1 Bekic's Theorem
	10.2 Fixed-point induction���������������������������������
	10.3 Well-founded induction����������������������������������
	10.4 Well-founded recursion����������������������������������
	10.5 An exercise�����������������������
	10.6 Further reading���������������������������

	11 Languages with higher types�������������������������������������
	11.1 An eager language�����������������������������
	11.2 Eager operational semantics���������������������������������������
	11.3 Eager denotational semantics��
	11.4 Agreement of eager semantics��
	11.5 A lazy language���������������������������
	11.6 Lazy operational semantics��������������������������������������
	11.7 Lazy denotational semantics���������������������������������������
	11.8 Agreement of lazy semantics���������������������������������������
	11.9 Fixed-point operators���������������������������������
	11.10 Observations and full abstraction��
	11.11 Sums�����������������
	11.12 Further reading����������������������������

	12 Information systems�����������������������������
	12.1 Recursive types���������������������������
	12.2 Information systems�������������������������������
	12.3 Closed families and Scott predomains��
	12.4 A cpo of information systems��
	12.5 Constructions�������������������������
	12.5.1 Lifting���������������������
	12.5.2 Sums������������������
	12.5.3 Product���������������������
	12.5.4 Lifted function space�����������������������������������

	12.6 Further reading���������������������������

	13 Recursive types�������������������������
	13.1 An eager language�����������������������������
	13.2 Eager operational semantics���������������������������������������
	13.3 Eager denotational semantics��
	13.4 Adequacy of eager semantics���������������������������������������
	13.5 The eager A-calculus��������������������������������
	13.5.1 Equational theory�������������������������������
	13.5.2 A fixed-point operator������������������������������������

	13.6 A lazy language���������������������������
	13.7 Lazy operational semantics��������������������������������������
	13.8 Lazy denotational semantics���������������������������������������
	13.9 Adequacy of lazy semantics��������������������������������������
	13.10 The lazy λ-calculus
	13.10.1 Equational theory��������������������������������
	13.10.2 A fixed-point operator�������������������������������������

	13.11 Further reading����������������������������

	14 Nondeterminism and parallelism
	14.1 Introduction������������������������
	14.2 Guarded commands����������������������������
	14.3 Communicating processes�����������������������������������
	14.4 Milner's CCS������������������������
	14.5 Pure CCS��������������������
	14.6 A specification language������������������������������������
	14.7 The modal v-calculus��������������������������������
	14.8 Local model checking��������������������������������
	14.9 Further reading���������������������������

	A Incompleteness and undecidability��
	A.1 Computability
	A.2 Undecidability
	A.3 Godel's incompleteness theorem
	A.4 A universal program
	A.5 Matijasevic's Theorem
	A.6 Further reading

	Bibliography�������������������
	Index������������

