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ABSTRACT
Semantic integration is an active area of research in several
disciplines, such as databases, information-integration, and
ontologies. This paper provides a brief survey of the ap-
proaches to semantic integration developed by researchers in
the ontology community. We focus on the approaches that
differentiate the ontology research from other related areas.
The goal of the paper is to provide a reader who may not
be very familiar with ontology research with introduction to
major themes in this research and with pointers to different
research projects. We discuss techniques for finding corre-
spondences between ontologies, declarative ways of repre-
senting these correspondences, and use of these correspon-
dences in various semantic-integration tasks

1. ONTOLOGIES AND SEMANTIC INTE-
GRATION

Researchers and practitioners in the fields of databases
and information integration have produced a large body of
research to facilitate interoperability between different sys-
tems. This research ranges from techniques for matching
database schemas to answering queries using multiple sources
of data. Ontology research is another discipline that deals
with semantic heterogeneity in structured data. We refer
the reader to another article in this issue [24] for a detailed
discussion on the uses of ontologies, their differences from
database schemas, and challenges in semantic integration
that the ontology community faces. The goal of this paper
is to discuss the major thrusts of approaches to semantic in-
tegration produced by various projects in the ontology com-
munity and to provide readers with pointers to sources for
additional information. We will focus on the approaches that
highlight the use of ontologies, their emphasis on knowledge
sharing, and their use in reasoning. Note that this paper does
not attempt to provide a comprehensive review of the state of
the art in using ontologies for semantic integration. We refer
the reader to an excellent and thorough review by Kalfoglou
and Schorlemmer [15] for that purpose.

While there are many definitions of what an ontology is
[26], the common thread in these definitions is that an on-
tology is some formal description of a domain of discourse,
intended for sharing among different applications, and ex-

pressed in a language that can be used for reasoning. These
features of ontologies underscore the main trends that dis-
tinguish semantic-integration research in the ontology com-
munity: First, since the underlying goal of ontology devel-
opment is to create artifacts that different applications can
share, there is an emphasis on creating common ontologies
that can then be extended for more specific domains and ap-
plications. If these extensions refer to the same top-level on-
tology, the problem of integrating them can be greatly alle-
viated. Second, since ontologies are developed for use with
reasoning engines and semantics of ontology languages are
specified with reasoning in mind, inference and reasoning
takes center stage in ontology-integration approaches.

Ontologies have gained popularity in the AI community as
a means for establishing explicit formal vocabulary to share
between applications. Therefore, one can say that one of the
goals of using ontologies is not to have the problem of het-
erogeneity at all. It is of course unrealistic to hope that there
will be an agreement on one or even a small set of ontologies.
While having some common ground either within an appli-
cation area or for some high-level general concepts could
alleviate the problem of semantic heterogeneity, we will still
need to map between ontologies, whether they extend the
same top-level ontology or are developed independently.

So, what are the types of differences between ontologies?
In part summarizing earlier surveys, Klein [16] categorizes
different types of mismatches between ontologies. The first
class of mismatches are mismatches at the language level—
mismatches in expressiveness and semantics of ontology lan-
guage. The languages can differ in their syntax, but, more
important, constructs available in one language (e.g., stat-
ing that classes are disjoint) are not available in another.
Even semantics of the same language primitives could be
different (e.g., whether declaration of multiple ranges of a
property have union or intersection semantics). The normal-
ization process therefore often precedes ontology-matching
[15] and translates source ontologies to the same language,
resolving these differences.

However, even for ontologies expressed in the same lan-
guage, possible ontology-level mismatches abound. A par-
tial list of ontology-levelmismatches includes using the same
linguistic terms to describe different concepts; using differ-
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ent terms to describe the same concept; using different mod-
eling paradigms (e.g., using interval logic or points for tem-
poral representation); using different modeling conventions
and levels of granularity; having ontologies with differing
coverage of the domain, and so on.

We discuss three dimensions of semantic-integration re-
search in this paper:

Mapping discovery: Given two ontologies, how do we find
similarities between them, determine which concepts
and properties represent similar notions, and so on.

Declarative formal representations of mappings: Given two
ontologies, how do we represent the mappings between
them to enable reasoning with mappings.

Reasoning with mappings: Once the mappings are defined,
what do we do with them, what types of reasoning are
involved?

In the rest of this paper, we explore these dimensions.

2. DISCOVERING MAPPINGS
Many researchers agree that one of the major bottleneck

in semantic integration is mapping discovery. There are sim-
ply too many ontologies and database schemas available and
they are too large to have manual definition of correspon-
dences as the primary source of mapping discovery. Fur-
thermore, in the world where software agents will roam the
(semantic) web, they will need to map structures they know
about to new structures they come across on-the-fly. Hence,
the task of finding mappings (semi-) automatically has been
an active area of research in both database and ontology
communities [22, 15].

We identify two major architectures for mapping discov-
ery between ontologies. For the first approach, recall that
the goal of ontologies is to facilitate knowledge sharing. As
a result, ontologies are often developed with the explicit goal
of providing the basis for future semantic integration. Here,
the vision is that a general upper ontology is agreed upon by
developers of different applications, who then extend this
general ontology with concepts and properties specific to
their applications. As long as this extension is performed
in a way consistent with the definitions in the shared ontol-
ogy, finding correspondences between two extensions can
be facilitated by this common “grounding.” The second set
of approaches comprises heuristics-based or machine learn-
ing techniques that use various characteristics of ontologies,
such as their structure, definitions of concepts, instances of
classes, to find mappings. These approaches are similar to
approaches to mapping XML schemas or other structured
data (e.g., Cupid [17]) but tend to rely more heavily on fea-
tures of concept definitions or on explicit semantics of these
definitions.

2.1 Using a Shared Ontology
A number of very general ontologies formalizing notions

such as processes and events, time and space, physical ob-
jects, and so on, are being developed and some of them are

becoming accepted standards. The explicit goal of these on-
tologies is to have domain-specific ontologies extend them,
thus providing the grounding in common vocabulary for these
ontologies. Note that this scenario is different from the tra-
ditional information-integration scenario where the global
schema—the common view on different schemas to be integ-
rated—is usually developed after the schemas themselves
are developed and its design is therefore guided by the in-
dividual schemas to be integrated. The implication of this
difference is that in the information-integration scenario the
global schema is only general enough to provide access to
all the schemas that it integrates. The common top-level or
reference ontology is usually more general since it needs to
encompass the top level for ontologies yet to be developed.

Two of the ontologies that are built specifically with the
purpose of being formal top-level ontologies are the Sug-
gested Upper Merged Ontology (SUMO) [19] and DOLCE
[8]. SUMO is an effort by the IEEE Standard Upper Ontol-
ogy Working Group aimed at developing “a standard upper
ontology that will promote data interoperability, information
search and retrieval, automated inferencing, and natural lan-
guage processing.” The SUMO ontology defines such high-
level concepts Object, ContinousObject, Process, Quantity,
Relation, and so on, providing axioms in first-order logic that
describe properties of these concepts and relations among
them. Similarly, the DOLCE ontology is a formal foun-
dational ontology developed as a top-level ontology in the
WonderWeb project, which comprises a large number of Eu-
ropean research groups. The goal of DOLCE is to provide
a common reference framework for WonderWeb ontologies
to facilitate sharing of information among them. In its repre-
sentation, DOLCE aims at capturing “ontological categories
underlying natural language and human common-sense.”

While many researchers hope that domain- and application-
specific ontologies will reuse the foundational ontologies,
like SUMO and DOLCE, and that such reuse will indeed fa-
cilitate semantic interoperation between applications based
on these ontologies, we do not yet have enough experience
reports with such approaches to claim it a success. There
are reports on both the successes [21] and difficulties [25] of
such reuse. The Workshop on Core Ontologies in Ontology
Engineering1 in October 2004 will discuss both successful
and unsuccessful cases and best practices on reusing foun-
dational ontologies for specifying domain content.

There are also implemented semantic-integration tools that
exploit the idea that if two ontologies extend the same ref-
erence ontology in a consistent way, then finding correspon-
dences between their concepts is easier. For example, the
Process Specification Language (PSL) [11], developed at the
National Institute for Standards and Technology, is an on-
tology that is endorsed as an International Standard within
the InternationalOrganization of Standardisation (ISO). PSL
was designed to “facilitate correct and complete exchange of
process information among manufacturing systems such as

�www.loa-cnr.it/core_onto.html
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scheduling, process modeling, [and] process planning” [12].
The designers of PSL have developed it as an interlingua for
ontologies representing these different process. All theories
within the PSL ontology have been verified with respect to
the intended semantics of their terminology. Grüninger and
Kopena [12] developed an integration architecture with the
PSL ontology at the center and mappings between ontolo-
gies for specific manufacturing processes and the PSL ontol-
ogy. The mappings are defined semi-automatically by pre-
senting ontology developers with a set of questions (in nat-
ural language) helping them to map terms in their process-
specific ontology to the terms in PSL. The system then gen-
erates two-way mappings between the task-specific ontol-
ogy, such as scheduling and the PSL interlingua. Note that
the generation of these mappings is defined formally and is
not based on heuristics. These mappings can be composed
to provide mappings between any task-specific ontologies.

2.2 Using Heuristics and Machine-learning
It is certainly helpful to have ontologies that we need to

match to refer to the same upper ontology or to conform to
the same reference ontology. However, we often do not have
this “luxury” and need to create mappings between ontolo-
gies that perhaps use the same specification language but do
not have any vocabulary beyond the specification language
in common. Most researchers agree that automatic mapping
between ontologies in this context is beyond our grasp at the
moment, but many techniques have produced good results.

Heuristic-based approaches to ontology mapping are simi-
lar to heuristic-based approach to matching database schemas
and XML structures ([22, 17]) and use lexical and structural
components of definitions to find correspondences. How-
ever, ontology-based approaches often go further, exploiting
semantics of relationships in ontologies, such as, for exam-
ple, the semantics of the subclass-of or part-of relationships,
attachment of property to a class, domain and range defini-
tions for properties, and so on. Ontologies usually have a lot
more constraints specified than database schemas do, and the
methods for finding mappings automatically tend to exploit
this larger number of constraints

We will start by reviewing several ontology-mapping tools
and then summarize the different ontology features that they
use. We would like to emphasize again that this paper presents
only a sampling of such tools to give examples of different
approaches. Please see a paper by Kalfoglou and Schorlem-
mer [15] for a comprehensive review.

Hovy [13] describes a set of heuristics that researchers at
ISI/USC used for semi-automatic alignment of domain on-
tologies to a large central ontology. Their techniques are
based mainly on linguistic analysis of concept names and
natural-language definitions of concepts. (There is a limited
use of taxonomic relationships as well). First, the matcher
uses natural-language–processingtechniques to split composite-
word names (a common occurrence in concept names). It
then compares substrings of different lengths to find concept

names that are similar to each other. The second consider-
ation are the words used in natural-language definitions of
concepts. The matcher compares the number and the ratio
of shared words in the definitions to find definitions that are
similar. An experimentally determined formula for combin-
ing these measures of similarity yields potential matchers
that the user needs to examine and approve.

The PROMPT system [20] was originally developed to sup-
port ontology merging, guiding users through the process
and suggesting which classes and properties can be merged.
It records the mappings identified both by the system and
by the user during merging to create a declarative mapping
specification between source ontologies. To make sugges-
tions, PROMPT uses a mixture of lexical and structural fea-
tures, as well as input from the user during an interactive
merging session to find the mappings. For instance, if a
user said that two classes in two source ontologies are the
same (should be merged), then PROMPT analyzed the prop-
erties of these classes, their subclasses and superclasses to
look for similarities of their definitions and suggest addi-
tional correspondences. Another algorithm in the toolset–
ANCHORPROMPT [20]—treats an ontology as a graph with
classes as nodes and slots as links. The algorithm analyzes
the paths in the subgraph limited by the anchors and deter-
mines which classes frequently appear in similar positions
on similar paths. These classes are likely to represent se-
mantically similar concepts.

Recently, the W3C has approved a standard for represent-
ing ontologies on the Semantic Web—the OWL language.2

Acceptance of a standard encouraged researchers to propose
algorithms that rely more heavily on features of the ontology
language to compare ontologies. For example, a similar-
ity metric between concepts in OWL ontologies developed
by Euzenat and Volchev [7] is a weighted combination of
similarities of various features in OWL concept definitions:
their labels, domains and ranges of properties, restrictions
on properties (such as cardinality restrictions), types of con-
cepts, subclasses and superclasses, and so on.

FCA-Merge [23] is a method for comparing ontologies
that have a set of shared instances or a shared set of docu-
ments annotated with concepts from source ontologies. Based
on this information, FCA-Merge uses techniques from For-
mal Concept Analysis [9] to produce a lattice of concepts
which relates concepts from the source ontologies. The al-
gorithm suggests equivalence and subclass–superclass rela-
tions. An ontology engineer can then analyze the result and
use it as a guidance for creating a merged ontology.

The IF-Map [14] system identifies mappings automatically
based on the theory of information flow [1]. Given two on-
tologies, IF-Map generates a logic infomorphism—a map-
ping between ontologies that is based on the above confor-
mance. The system then uses the channel theory to infer
the mappings between different local ontologies using these
logic infomorphisms.

�http://www.w3.org/TR/owl-features/
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GLUE [5] is an example of a system that employs machine-
learning techniques to find mappings. GLUE uses multiple
learners exploiting information in concept instances and tax-
onomic structure of ontologies. GLUE uses a probabilistic
model to combine results of different learners. The learn-
ers that GLUE uses currently relies on ontologies having in-
stances and they work much better if many slot values have
text in them rather than references to other instances.

Researchers have also addressed the issue of finding com-
plex mappings, such as determining that a concepts in one
ontology is a specialization of a concept in another ontology.
For example, Giunchiglia and Shvaiko [10] start by ground-
ing their source ontologies in WordNet terms but then run
a SAT prover on the mappings to determine other types of
mappings (such as generalization, specialization or disjoint-
ness): the authors reformulate the matching problem as that
of propositional satisfiability.

To summarize, the tools for automatic and semi-automatic
ontology alignment use the following features in ontology
definitions (to various extent):

� concept names and natural-language descriptions

� class hierarchy (subclass–superclass relationships)

� property definitions (domains, ranges, restrictions)

� instances of classes

� class descriptions (as in DL-based tools).

3. REPRESENTATIONS OF MAPPINGS
While developing tools for automatic and semi-automatic

ontology matching is a large thrust of semantic-integration
research in the ontology community, it is definitely not the
only one. The higher expressive power of ontology lan-
guages provides the opportunity for representing mappings
themselves in more expressive terms. Mappings between el-
ements in schemas are usually expressed either as queries
and views or as pairs of related terms. We generally find
a larger spectrum of the ways mapping between ontologies
are expressed. We will discuss several representations of
mappings here: representing mappings as instances in an on-
tology of mappings; defining bridging axioms in first-order
logic to represent transformations; and using views to de-
scribe mappings from a global ontology to local ontologies.

In the OntoMerge system [6] developed for semantic inte-
gration on the Semantic Web, authors use a general-purpose
inference engine to enable translation between mapped on-
tologies. In OntoMerge the correspondence between two
ontologies is expressed as a set of bridging axioms relating
classes and properties of the two source ontologies. The vo-
cabulary of the two ontologies are in different XML names-
paces, so the bridging axioms are essentially translation rules
referring to concepts from source ontologies and specifying
how to express for example a class in one ontology by col-
lecting information from classes in another. The two source
ontologies, together with the bridging axioms are then treated

as a single theory by a theorem prover optimized for ontology-
translation task. The theorem prover runs either in forward-
chaining or backward-chaining mode depending on the task
at hand.

Several researchers use ontologies themselves to represent
mappings declaratively, as instances in an ontology. The
mapping ontology by Crubézy and colleagues [4] or the Se-
mantic Bridge Ontology of the MAFRA framework [18], for
instance, define the structure of specific mappings and the
transformation functions to transfer instances from one on-
tology to another. This ontology can then be used by tools
to perform the transformations. Such an ontology usually
provides different ways of linking concepts from the source
ontology to the target ontology, transformation rules to spec-
ify how values should be changed, and conditions and effects
of such rules. Then a mapping between two ontologies con-
stitutes a set of instances of classes in the mapping ontology
and can be used by applications to translate data from the
source ontology to the target. The mapping ontology men-
tioned above [4], for example, provides declarative means
for defining many-to-one or many-to-many aggregation re-
lationships between concepts in the source and target on-
tologies, as well as one-to-many concept-decomposition re-
lations. It allows specification of recursive mappings, com-
plex mappings between that collect information from several
related concepts, and other mechanisms.

Finally, researchers also used views to define mappings
between ontologies, similar to defining mappings in infor-
mation integration, both in global-as-view (GAV) and local-
as-view (LAV) setting. The OIS framework [2] is a good
example of such approach. In OIS, a global ontology is used
to provide access to local ontologies. Both global and local
ontologies are defined using Description Logics. The map-
pings are defined as views over either the global or the local
ontologies. In other words, a predicate from one ontology
is defined as a query (and DL expression) over predicates in
another ontology.

4. WEHAVETHEMAPPINGS.NOWWHAT?
Naturally, defining the mappings between ontologies, ei-

ther automatically, semi-automatically, or interactively, is
not a goal in itself. The resulting mappings are used for vari-
ous integration tasks: data transformation, query answering,
or web-service composition, to name a few.

Given that ontologies are often used for reasoning, it is
only natural that many of these integration tasks involve rea-
soning over the source ontologies and the mappings. For
example, the OntoMerge system mentioned earlier [6] uses
reasoning to perform several tasks related to ontology trans-
lation. The first task is translating instances that conform to
one ontology (the source) to instances conforming to another
ontology (the target), given the mapping between the source
and target. To perform this task, OntoMerge first creates a
merged ontology that includes the source, the target, and the
mapping and performs inference on this merged ontology.
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Afterwards, OntoMerge performs a projection step, where
it retains only the new conclusions reached that exclusively
reference the target vocabulary.

The second task that OntoMerge deals with—generating
ontology extensions—is more specific to the area of ontolo-
gies. Consider for example, two ontologies describing Web
services: OWL-S3 and WSDL4. Suppose we have defined
a mapping between these two ontologies. Suppose also that
we have an ontology describing ticket-purchasingweb servi-
ces—a domain-specific extension of the OWL-S ontology.
This ticket-purchasing ontology creates subclasses of some
of the classes in OWL-S, fills in some of the property val-
ues, and so on. In other words, it extends the OWL-S on-
tology. If we have a mapping between OWL-S and WSDL,
OntoMerge can automatically generate a WSDL description
of ticket-purchasing—an extension of the WSDL ontology.
Note that this case is different from data translation since
we are dealing with subontologies rather than instances con-
forming to ontologies. In both of these tasks, OntoMerge
uses forward-chaining reasoner to perform the translation.

Several tools process representation of mappings as in-
stances of the mapping ontology by Crubézy and colleagues
discussed in the previous section [4] to perform various inte-
gration tasks. First, a mapping interpreter uses the instances
in the mapping ontology to translate data from the source
ontology to the target ontology. Second, the PROMPT tool
for ontology merging [20], also mentioned earlier in the pa-
per, can take the mapping ontology as its input and merge
the ontologies based on the mapping. These tools are ex-
tensions to the Protégé ontology-development environment 5

thus providing an integrated framework for ontology devel-
opment, knowledge acquisition, and semantic integration.

In the OIS framework [2], ontologies are expressed in De-
scription Logics and therefore it is natural that DL reason-
ers are used to answer queries in the data-integration frame-
work. The authors address the general task of answering
queries posed in terms of the global ontology using the data
in the local ontologies. However, while even in expressive
Description Logics, computing certain answers to queries is
decidable, it may often be intractable. In recent research, the
authors have explored less expressive subsets of Description
Logics [3], making this type of query answering tractable.

5. CONCLUDING REMARKS
As this brief survey shows, many issues that ontology re-

searchers in semantic integration grapple with are very simi-
lar to the issues that database and information-integration re-
searchers have been addressing. Some of the approaches are
also similar although the ontology community relies more
heavily on the higher expressive power of ontology languages
and on reasoning techniques. With ontologies, using a com-
mon upper ontology or reference ontology to alleviate the
�http://www.daml.org/services/owl-s/1.0/
�http://www.w3.org/TR/wsdl
�http://protege.stanford.edu

integration problem is also a common approach.
The two communities can certainly share and reuse the

techniques that they have developed in their respective do-
mains. In fact, there has been a certain convergence trend
where schema-matching approaches for example employ more
expressive components of schema definitions in their tech-
niques. On the other hand, ontology researchers are pay-
ing more attention to the experience of the database commu-
nity. We believe that such cross-fertilization will improve
semantic-integration solutions in both fields.

Finally, the emerging Semantic Web can prove to be an
excellent testbed for scalability of various approaches and a
common ground for experimenting with hybrid approaches.
Most researchers agree that semantic integration is one of the
most serious challenges for the Semantic Web today. On the
one hand, the premise of the Semantic Web is that the use
of machine-interpretable ontologies defined in formal lan-
guages amenable to reasoning will provide the next genera-
tion of services. On the other hand, the scale of the Semantic
Web will certainly require well-tested approaches from the
database community.
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