
INTRODUCTION
Data Management in the Cloud

1

Outline
• Motivation

– what is cloud computing?
– what is cloud data management?

• Challenges, opportunities and limitations
– what makes data management in the cloud difficult?

• New solutions
– key/value, document, column family, graph, array, and object databases
– scalable SQL databases

• Application
– graph data and algorithms
– usage scenarios

2

Cloud Computing
• Different definitions for “Cloud Computing” exist

– http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

• Common ground of many definitions
– processing power, storage and software are commodities that are

readily available from large infrastructure
– service-based view: “everything as a service (*aaS)”, where only

“Software as a Service (SaaS)” has a precise and agreed-upon definition
– utility computing: pay-as-you-go model

3

http://tech.slashdot.org/article.pl?sid=08/07/17/2117221

Service-Based View on Computing

4

Source: Wikipedia (http://www.wikipedia.org)

http://www.wikipedia.org/

Terminology
• Term cloud computing usually refers to both

– SaaS: applications delivered over the Internet as services
– The Cloud: data center hardware and systems software

• Public clouds
– available in a pay-as-you-go manner to the public
– service being sold is utility computing
– Amazon Web Service, Microsoft Azure, Google AppEngine

• Private clouds
– internal data centers of businesses or organizations
– normally not included under cloud computing

5 Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD Lab, UC Berkeley

Utility Computing
• Illusion of infinite computing resources

– available on demand
– no need for users to plan ahead for provisioning

• No up-front cost or commitment by users
– companies can start small
– increase resources only when there is an increase in need

• Pay for use on short-term basis as needed
– processors by the hour and storage by the day
– release them as needed, reward conservation

6 Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD Lab, UC Berkeley

Virtualization
• Virtual resources abstract from physical resources

– hardware platform, software, memory, storage, network
– fine-granular, lightweight, flexible and dynamic

• Relevance to cloud computing
– centralize and ease administrative tasks
– improve scalability and work loads
– increase stability and fault-tolerance
– provide standardized, homogenous computing platform through

hardware virtualization, i.e. virtual machines

7

Spectrum of Virtualization
• Computation virtualization

– Instruction set VM (Amazon EC2, 3Tera)
– Byte-code VM (Microsoft Azure)
– Framework VM (Google AppEngine, Force.com)

• Storage virtualization
• Network virtualization

EC2 Azure AppEngine Force.com

Lower-level,
Less management

Higher-level,
More management

Slide Credit: RAD Lab, UC Berkeley 8

Unused resources

Economics of Cloud Users
• Pay by use instead of provisioning for peak

Static data center Data center in the cloud

Demand

Capacity

Time

Re
so

ur
ce

s

Demand

Capacity

Time
Re

so
ur

ce
s

Slide Credit: RAD Lab, UC Berkeley 9

Unused resources

Economics of Cloud Users
• Risk of over-provisioning: underutilization

Static data center

Demand

Capacity

Time

Re
so

ur
ce

s

Slide Credit: RAD Lab, UC Berkeley 10

Economics of Cloud Users
• Heavy penalty for under-provisioning

Lost revenue Lost users

Re
so

ur
ce

s

Demand

Capacity

Time (days)
1 2 3

Re
so

ur
ce

s

Demand

Capacity

Time (days)
1 2 3

Re
so

ur
ce

s
Demand

Capacity

Time (days)
1 2 3

Slide Credit: RAD Lab, UC Berkeley 11

Economics of Cloud Providers

• Cloud computing is 5-7x cheaper than traditional in-house
computing

• Added benefits
– utilize off-peak capacity (Amazon)
– sell .NET tools (Microsoft)
– reuse existing infrastructure (Google)

Resource Cost in Medium
Data Center

Cost in Very Large
Data Center Ratio

Network $95/Mbps/month $13/Mbps/month 7.1x

Storage $2.20/GB/month $0.40/GB/month 5.7x

Administration ≈140 servers/admin >1000 servers/admin 7.1x

Slide Credit: RAD Lab, UC Berkeley

Source: James Hamilton (http://perspectives.mvdirona.com)

12

http://perspectives.mvdirona.com/

Data Management in the Cloud
• Data management applications are potential candidates for

deployment in the cloud
– industry: enterprise database system have significant up-front cost that

includes both hardware and software costs
– academia: manage, process and share mass-produced data in the cloud

• Many “Cloud Killer Apps” are in fact data-intensive
– Batch Processing as with map/reduce
– Online Transaction Processing (OLTP) as in automated business

applications
– Offline Analytical Processing (OLAP) as in data mining or machine

learning

13

Scientific Data Management Applications
• Old model

– “Query the world”
– data acquisition coupled to a specific hypothesis

• New model
– “Download the world”
– data acquired en masse, in support of many hypotheses

• E-science examples
– astronomy: high-resolution, high-frequency sky surveys, …
– oceanography: high-resolution models, cheap sensors, satellites, …
– biology: lab automation, high-throughput sequencing, ...

Slide Credit: Bill Howe, U Washington 14

Scaling Databases
• Flavors of database scalability

– lots of (small) transactions
– lots of copies of the data
– lots of processor running on a single query (compute intensive tasks)
– extremely large data set for one query (data intensive tasks)

• Data replication
– move data to where it is needed
– managed replication for availability and reliability

15

Revisit Cloud Characteristics
• Compute power is elastic, but only if workload is parallelizable

– transactional database management systems do not typically use a
shared-nothing architecture

– shared-nothing is a good match for analytical data management

• Scalability
– in the past: out-of-core, works even if data does not fit in main memory
– in the present: exploits thousands of (cheap) nodes in parallel

16 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009.

Parallel Database Architectures

17

interconnect

…

…

interconnect

interconnect

…

Shared nothing Shared disc Shared memory

processor memory disk

Source: D. DeWitt and J. Gray: “Parallel Database Systems: The Future of
High Performance Database Processing”, CACM 36(6), pp. 85-98, 1992.

Revisit Cloud Characteristics
• Data is stored at an untrusted host

– there are risks with respect to privacy and security in storing
transactional data on an untrusted host

– particularly sensitive data can be left out of analysis or anonymized
– sharing and enabling access is often precisely the goal of using the

cloud for scientific data sets

18 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009.

Revisit Cloud Characteristics
• Data is replicated, often across large geographic distances

– it is hard to maintain ACID guarantees in the presence of large-scale
replication

– full ACID guarantees are typically not required in analytical applications

• Virtualizing large data collections is challenging
– data loading takes more time than starting a VM
– storage cost vs. bandwidth cost
– online vs. offline replication

19 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009.

Challenges
• Trade-off between functionality and operational cost

– restricted interface, minimalist query language, limited consistency
guarantees

– pushes more programming burden on developers
– enables predictable services and service level agreements

• Manageability
– limited human intervention, high-variance workloads, and a variety of

shared infrastructures
– need for self-managing and adaptive database techniques

20 Based on: “The Claremont Report on Database Research”, 2008

Challenges
• Scalability

– today’s SQL databases cannot scale to the thousands of nodes deployed
in the cloud context

– hard to support multiple, distributed updaters to the same data set
– hard to replicate huge data sets for availability, due to capacity (storage,

network bandwidth, …)
– storage: different transactional implementation techniques, different

storage semantics, or both
– query processing and optimization: limitations on either the plan space

or the search will be required
– programmability: express programs in the cloud

21 Based on: “The Claremont Report on Database Research”, 2008

Challenges
• Data privacy and security

– protect from other users and cloud providers
– specifically target usage scenarios in the cloud with practical incentives

for providers and customers

• New applications: “mash up” interesting data sets
– expect services pre-loaded with large data sets, stock prices, web

crawls, scientific data
– data sets from private or public domain
– might give rise to federated cloud architectures

22 Based on: “The Claremont Report on Database Research”, 2008

SCALABLE DATA STORES
Data Management in the Cloud

1

Overview
• New systems have emerged to address requirements of data

management in the cloud
– so-called “NoSQL” data stores
– scalable SQL databases

• Horizontal Scaling
– shared nothing
– replicating and partitioning data over thousands of servers
– distribute “simple operation” workload over thousands of servers

• Simple Operations
– key lookups
– read and writes of one or a small number of records
– no complex queries or joins

2

Sharding, Horizontal, Vertical
• There should be a slide to better explain these concepts in

order to motivate some of the “NoSQL” data models.

3

Defining “NoSQL”
• No agreed upon definition

– “not only SQL”
– “not relational”
– …

• Six key features
1. ability to horizontally scale simple operation throughput over many

servers
2. ability to replicate and distribute (partition) data over many servers
3. simple call level interface or protocol (in contrast to a SQL binding)
4. weaker concurrency model than ACID transactions of most relational

(SQL) database systems
5. efficient use of distributed indexes and RAM for data storage
6. ability to dynamically add new attributes to data records

4 Based on: “Scalable SQL and NoSQL Data Stores” by R. Cattell, 2010

Data Models
• Terminology

– tuple: row in a relational table, where attribute names and types are
defined by a schema, and values must be scalar

– document: supports both scalar values and nested documents, and the
attributes are dynamically defined for each document

– column family: groups key/value pairs (columns) into families to
partition and replicate them; one column family is similar to a
document as new (nested, list-valued) attributes can be added

– object: analogous to objects in programming languages, but without
procedural methods

• Relational
– data is stored in relations (tables) of tuples (rows) of scalar values
– queries expressed over arbitrary (combinations of) attributes
– indexes defined over arbitrary (combinations of) attributes

5 Based on: “Scalable SQL and NoSQL Data Stores” by R. Cattell, 2010

Key/Value Data Model
• Interface

– put(key, value)
– get(key): value

• Data storage
– values (data) are stored based on programmer-defined keys
– system is agnostic as to the structure (semantics) of the value

• Queries are expressed in terms of keys
• Indexes are defined over keys

– some systems support secondary indexes over (part of) the value

6

k1 v1

k2 v2

k3 v3

…

kn vn

Document Data Model
• Interface

– set(key, document)
– get(key): document
– set(key, name, value)
– get(key, name): value

• Data storage
– documents (data) is stored based on programmer-defined keys
– system is aware of the (arbitrary) document structure
– support for lists, pointers and nested documents

• Queries expressed in terms of key (or attribute, if index exists)
• Support for key-based indexes and secondary indexes

7

k1 “name”:“fred”

k2 “name”:“mary”;“age”:“25”

k3

…

kn “name”:“john”;“address”:“k3”

“name”:“oak st”

Private Public

Column Family Data Model
• Interface

– define(family)
– insert(family, key, columns)
– get(family, key): columns

• Data storage
– <name, value, timestamp> triples (so-called columns) are stored based

on a column family and key; a column family is similar to a document
– system is aware of (arbitrary) structure of column family
– system uses column family information to replicate and distribute data

• Queries are expressed based on key and column family
• Secondary indexes per column family are typically supported

8

k1 “name”:“fred”

k2 “name”:“mary”

k3

…

kn “name”:“john”

“name”:“oak st”

“title”:“Mr”

“age”:“25”

Graph Data Model
• Interface

– create: id
– get(id)
– connect(id1, id2): id
– addAttribute(id, name, value)
– getAttribute(id, name): value

• Data storage
– data is stored in terms of nodes and (typed) edges
– both nodes and edges can have (arbitrary) attributes

• Queries are expressed based on system ids (if no indexes exist)
• Secondary indexes for nodes and edges are supported

– retrieve nodes by attributes and edges by type, start and/or end node,
and/or attributes

9

n1 n2

n3

“name”:“fred”

“name”:“mary”;“age”:“25”

“name”:“oak st”

LIKES

LIKES

“weight”:“-1”

Array Data Model
• Nested multi-dimensional

arrays
– cells can be tuples or other

arrays
– can have non-integer

dimensions
• Additional “History” dimension

on updatable arrays
• Ragged arrays allow each row

or column to have a different
length

• Supports multiple flavors of
“null”
– array cells can be “EMPTY”
– user-definable treatment of

special values

10

 SciDB DDL

CREATE ARRAY Test_Array
 < A: integer NULLS,
 B: double,
 C: USER_DEFINED_TYPE >
 [I=0:99999,1000, 10, J=0:99999,1000, 10]
 PARTITION OVER (Node1, Node2, Node3)
 USING block_cyclic();

Attribute names A, B, C

Index names I, J

Chunk size 1000

Overlap 10

11

Object Data Model
• Interface

– set(object)
– get(query): object

• Data storage
– typed programming language objects (plus referenced objects) stored
– attribute can be collection-valued
– database is aware of the type (schema) of objects

• Objects are retrieved using queries or by traversal from “roots”
• Specialized indexes can be expressed based on schema

12

“mary”

25

Person

“fred”

27

Person LIKES

LIKES

“oak st”

Address

LIVES_AT

SCALABLE CONSISTENCY AND
TRANSACTION MODELS

Data Management in the Cloud

1

Brewer’s Conjecture
• Three properties that are desirable and expected from real-

world shared-data systems
– C: data consistency
– A: availability
– P: tolerance of network partition

• At PODC 2000 (Portland, OR), Eric Brewer made the conjecture
that only two of these properties can be satisfied by a system
at any given time

• Conjecture was formalized and confirmed by MIT researchers
Seth Gilbert and Nancy Lynch in 2002

• Now known as the CAP Theorem

2

Data Consistency
• Database systems typically implement ACID transactions

– Atomicity: “all or nothing”
– Consistency: transactions never observe or result in inconsistent data
– Isolation: transactions are not aware of concurrent transactions
– Durability: once committed, the state of a transaction is permanent

• Useful in automated business applications
– banking: at the end of a transaction the sum of money in both accounts

is the same as before the transaction
– online auctions: the last bidder wins the auction

• There are applications that can deal with looser consistency
guarantees and periods of inconsistency

3

Availability
• Services are expected to be highly available

– every request should receive a response
– it can create real-world problems when a service goes down

• Realistic goal
– service should be as available as the network it run on
– if any service on the network is available, the service should be

available

4

Partition-Tolerance
• A service should continue to perform as expected

– if some nodes crash
– if some communication links fail

• One desirable fault tolerance property is resilience to a
network partitioning into multiple components

• In cloud computing, node and communication failures are not
the exception but everyday events

5

Problems with CAP
• Asymmetry of CAP properties

– C is a property of the system in general
– A is a property of the system only when there is a partition

• There are not three different choices
– in practice, CA and CP are indistinguishable, since A is only sacrificed

when there is a partition

• Used as an excuse to not bother with consistency
– “Availability is really important to me, so CAP says I have to get rid of

consistency”

Source: Daniel Abadi, Yale University 6

Another Problem to Fix
• Apart from availability in the face of partitions, there are other

costs to consistency
• Overhead of synchronization schemes
• Latency

– if workload can be partitioned geographically, latency is not so bad
– otherwise, there is no way to get around at least one round-trip

message

Source: Daniel Abadi, Yale University 7

A Cut at Fixing Both Problems
• PACELC

– In the case of a partition (P), does the system choose availability (A) or
consistency (C)?

– Else (E), does the system choose latency (L) or consistency (C)?

• PA/EL
– Dynamo, SimpleDB, Cassandra, Riptano, CouchDB, Cloudant

• PC/EC
– ACID compliant database systems

• PA/EC
– GenieDB

• PC/EL
– Existence is debatable

Source: Daniel Abadi, Yale University 8

A Case for P*/EC
• Increased push for horizontally scalable transactional database

systems
– cloud computing
– distributed applications
– desire to deploy applications on cheap, commodity hardware

• Vast majority of currently available horizontally scalable
systems are P*/EL
– developed by engineers at Google, Facebook, Yahoo, Amazon, etc.
– these engineers can handle reduced consistency, but it’s really hard,

and there needs to be an option for the rest of us

• Also
– distributed concurrency control and commit protocols are expensive
– once consistency is gone, atomicity usually goes next → NoSQL

Source: Daniel Abadi, Yale University 9

Key Problems to Overcome
• High availability is critical, replication must be a first class

citizen
• Today’s systems generally act, then replicate

– complicates semantics of sending read queries to replicas
– need confirmation from replica before commit (increased latency) if

you want durability and high availability
– In progress transactions must be aborted upon a master failure

• Want system that replicates then acts
• Distributed concurrency control and commit are expensive,

want to get rid of them both

Source: Daniel Abadi, Yale University 10

Key Idea
• Instead of weakening ACID, strengthen it
• Challenges

– guaranteeing equivalence to some serial order makes active replication
difficult

– running the same set of transactions on two different replicas might
cause replicas to diverge

• Disallow any nondeterministic behavior
• Disallow aborts caused by DBMS

– disallow deadlock
– distributed commit much easier if there are no aborts

Source: Daniel Abadi, Yale University 11

Consequences of Determinism
• Replicas produce the same output, given the same input

– facilitates active replication
• Only initial input needs to be logged, state at failure can be

reconstructed from this input log (or from a replica)
• Active distributed transactions not aborted upon node failure

– greatly reduces (or eliminates) cost of distributed commit
– don’t have to worry about nodes failing during commit protocol
– don’t have to worry about effects of transaction making it to disk

before promising to commit transaction
– just need one message from any node that potentially can

deterministically abort the transaction
– this message can be sent in the middle of the transaction, as soon as it

knows it will commit

Source: Daniel Abadi, Yale University 12

Strong vs. Weak Consistency
• Strong consistency

– after an update is committed, each subsequent access will return the
updated value

• Weak consistency
– the systems does not guarantee that subsequent accesses will return

the updated value
– a number of conditions might need to be met before the updated value

is returned
– inconsistency window: period between update and the point in time

when every access is guaranteed to return the updated value

13 Based on: “Eventual Consistency” by W. Vogels, 2008

Eventual Consistency
• Specific form of weak consistency
• “If no new updates are made, eventually all accesses will

return the last updated values”
• In the absence of failures, the maximum size of the

inconsistency window can be determined based on
– communication delays
– system load
– number of replicas
– …

• Not a new esoteric idea!
– Domain Name System (DNS) uses eventual consistency for updates
– RDBMS use eventual consistency for asynchronous replication or

backup (e.g. log shipping)

14 Based on: “Eventual Consistency” by W. Vogels, 2008

Models of Eventual Consistency
• Causal Consistency

– if A communicated to B that it has updated a value, a subsequent
access by B will return the updated value, and a write is guaranteed to
supersede the earlier write

– access by C that has no causal relationship to A is subject to normal
eventual consistency rules

• Read-your-writes Consistency
– special case of the causal consistency model
– after updating a value, a process will always read the updated value and

never see an older value
• Session Consistency

– practical case of read-your-writes consistency
– data is accessed in a session where read-your-writes is guaranteed
– guarantees do not span over sessions

15 Based on: “Eventual Consistency” by W. Vogels, 2008

Models of Eventual Consistency
• Monotonic Read Consistency

– if a process has seen a particular value, any subsequent access will
never return any previous value

• Monotonic Write Consistency
– system guarantees to serialize the writes of one process
– systems that do not guarantee this level of consistency are hard to

program

• Properties can be combined
– e.g. monotonic reads plus session-level consistency
– e.g. monotonic reads plus read-your-own-writes
– quite a few different scenarios are possible
– it depends on an application whether it can deal with the consequences

16 Based on: “Eventual Consistency” by W. Vogels, 2008

Configurations
• Definitions

– N: number of nodes that store a replica
– W: number of replicas that need to acknowledge a write operation
– R: number of replicas that are accessed for a read operation

• W+R > N
– e.g. synchronous replication (N=2, W=2, and R=1)
– write set and read set always overlap
– strong consistency can be guaranteed through quorum protocols
– risk of reduced availability: in basic quorum protocols, operations fail if

fewer than the required number of nodes respond, due to node failure

• W+R = N
– e.g. asynchronous replication (N=2, W=1, and R=1)
– strong consistency cannot be guaranteed

17 Based on: “Eventual Consistency” by W. Vogels, 2008

Configurations
• R=1, W=N

– optimized for read access: single read will return a value
– write operation involves all nodes and risks not to succeed

• R=N, W=1
– optimized for write access: write operation involves only one node and

relies on lazy (epidemic) technique to update other replicas
– read operation involves all nodes and returns “latest” value
– durability is not guaranteed in presence of failures

• W < (N+1)/2
– risk of conflicting writes

• W+R <= N
– weak/eventual consistency

18 Based on: “Eventual Consistency” by W. Vogels, 2008

BASE
• Basically Available, Soft state, Eventually Consistent
• As consistency is achieved eventually, conflicts have to be

resolved at some point
– read repair
– write repair
– asynchronous repair

• Conflict resolution is typically based on a global (partial)
ordering of operations that (deterministically) guarantees that
all replicas resolve conflicts in the same way
– client-specified timestamps
– vector clocks

19

Vector Clocks
• Generate a partial ordering of events in a distributed system

and detecting causality violations
• A vector clock of a system of n processes is an vector of n

logical clocks (one clock per process)
– messages contain the state of the sending process's logical clock
– local “smallest possible values” copy of the global vector clock is kept in

each process

• Vector clocks algorithm was independently developed by Colin
Fidge and Friedemann Mattern in 1988

20

Update Rules for Vector Clocks
• All clocks are initialized to zero
• A process increments its own logical clock in the vector by one

– each time it experiences an internal event
– each time a process prepares to send a message
– each time a process receives a message

• Each time a process sends a message, it transmits the entire
vector clock along with the message being sent

• Each time a process receives a message, it updates each
element in its vector by taking the pair-wise maximum of the
value in its own vector clock and the value in the vector in the
received message

21

Vector Clock Example

22

A

B

C

Cause

EffectIndependent

IndependentA:0

C:0

B:0

A:2
B:2
C:1

B:3
C:3

A:4
B:5
C:5

Time

B:1
C:1

B:2
C:1

B:3
C:1

A:1
B:2
C:1

C:1
B:3
C:2

A:2
B:4
C:1

A:2
B:5
C:1

A:3
B:3
C:3

A:2
B:5
C:5

A:2
B:5
C:4

Source: Wikipedia (http://www.wikipedia.org)

http://www.wikipedia.org/

References
• S. Gilbert and N. Lynch: Brewer’s Conjecture and the

Feasibility of Consistent, Available and Partition-Tolerant Web
Services. SIGACT News 33(2), pp. 51-59, 2002.

• W. Vogels: Eventually Consistent. ACM Queue 6(6), pp. 14-19,
2008.

23

CLOUD-SCALE FILE SYSTEMS
Data Management in the Cloud

1

Google File System (GFS)
• Designing a file system for the Cloud

– design assumptions
– design choices

• Architecture
– GFS Master
– GFS Chunkservers
– GFS Clients

• System operations and interactions
• Replication

– fault tolerance
– high availability

2

Design Assumptions
• System is built from many inexpensive commodity components

– component failures happen on a routine basis
– monitor itself to detect, tolerate, and recover from failures

• System stores a modest number of large files
– a few million files, typically 100 MB or larger
– multi-GB files are common and need to be managed efficiently
– small files are to be supported but not optimized for

• System workload
– large streaming reads: successive reads from one client read

contiguous region, commonly 1 MB or more
– small random reads: typically a few KB at some arbitrary offset
– large sequential writes: append data to files; operation sizes similar to

streaming reads; small arbitrary writes supported, but not efficiently

3

Design Assumption
• Support concurrent appends to the same file

– efficient implementation
– well-defined semantics
– use case: producer-consumer queues or many-way merging, with

hundreds of processes concurrently appending to a file
– atomicity with minimal synchronization overhead is essential
– file might be read later or simultaneously

• High sustained bandwidth is more important than low latency

4

Design Decisions: Interface
• GFS does not implement a standard API such as POSIX
• Supports standard file operations

– create/delete
– open/close
– read/write

• Supports additional operations
– snapshot: creates a copy of a file or a directory tree at low cost, using

copy on write
– record append: allows multiple clients to append data to the same file

concurrently, while guaranteeing the atomicity of each individual
client’s append

5

Design Decisions: Architecture
• GFS cluster

– single master and multiple chunkservers
– accessed by multiple clients
– components are typically commodity Linux machines
– GFS server processes run in user mode

• Chunks
– files are divided into fixed-size chunks
– identified by globally unique chunk handle (64 bit), assigned by master
– chunks are replicated for reliability, typically the replication factor is 3

6

Design Decisions: Architecture
• Multiple chunkservers

– store chunks on local disk as Linux files
– accept and handle data requests
– no special caching, relies on Linux’s buffer cache

• Single master simplifies overall design
– enables more sophisticated chunk placement and replication, but

single point of failure
– maintains file system metadata: namespace, access control

information, file-to-chunk mapping, current chunk location
– performs management activities: chunk leases, garbage collection,

orphaned chunks, chunk migration
– heart beats: periodic messages sent to chunkservers to give

instructions or to collect state
– does not accept or handle data requests

7

Architecture

8 Figure Credit: “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003

Data messages
Control messages

Design Decisions: Chunk Size
• One of the key parameters

– set to a large value, i.e. 64 MB
– to avoid fragmentation, chunkservers use lazy space allocation, i.e. files

are only extended as needed

• Advantages
– reduce interaction between client and master
– reduce network overhead by using persistent TCP connection to do

many operations on one chunk
– reduce size of metadata stored on master

• Disadvantages
– small files consist of very few chunks
– risk of hot spots → increase replication factor for small files

9

Design Decision: Metadata
• All metadata is kept in the master’s main memory

– file and chunk namespaces: lookup table with prefix compression
– file-to-chunk mapping
– locations of chunk replicas: not stored, but queried from chunkservers

• Operation log
– stored on master’s local disc and replicated on remote machines
– used to recover master in the event of a crash

• Discussion
– size of master’s main memory limits number of possible files
– master maintains less than 64 bytes per chunk

10

Design Decisions: Consistency Model
• Relaxed consistency model

– tailored to Google’s highly distributed applications
– simple and efficient to implement

• File namespace mutations are atomic
– handled exclusively by the master
– namespace locking guarantees atomicity and correctness
– master’s operation log defines global total order of operations

• State of file region after data mutation
– consistent: all clients always see the same data, regardless of the

replica they read from
– defined: consistent, plus all clients see the entire data mutation
– undefined but consistent: result of concurrent successful mutations; all

clients see the same data, but it may not reflect any one mutation
– inconsistent: result of a failed mutation

11

Design Decisions: Consistency Model
• Write data mutation

– data is written at an application-specific file offset

• Record append data mutation
– data (“the record”) is appended atomically at least once even in the

presence of concurrent mutations
– GFS chooses the offset and returns it to the client
– GFS may insert padding or record duplicates in between

12

Write Record Append

Serial success defined
defined interspersed
with inconsistent Concurrent successes consistent but

undefined

Failure inconsistent

Design Decisions: Concurrency Model
• Implications for applications

– rely on appends rather than overwrites
– checkpointing
– application-level checksums
– writing self-validating, self-identifying records

• Typical use cases (or “hacking around relaxed consistency”)
– writer generates file from beginning to end and then atomically

renames it to a permanent name under which it is accessed
– writer inserts periodical checkpoints, readers only read up to

checkpoint
– many writers concurrently append to file to merge results, reader skip

occasional padding and repetition using checksums

13

Operations: Writing Files
• client ↔ master (1, 2)

– chunkserver with chunk lease
– chunkservers with replicas

• client → chunkservers
– push data to chunkservers (3)
– write request to primary (4)

• primary → secondary
– forward write request (5)

• secondary → primary
– operation status (6)

• primary → client
– operation status

14 Figure Credit: “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003

Operations: Atomic Record Appends
• Follows previous control flow with only little extra logic

– client pushes data to all replicas of the last chunk of the file (3’)
– client sends its request to the primary replica (4)

• Additionally, primary checks if appending the record to the
chunk exceeds the maximum chunk size (64 MB)
– yes: primary and secondary pad the chunk to the maximum size;

primary instructs client to retry operation on the next chunk
– no: primary appends data to its replica and instructs secondaries to

write data at the exact same offset

• To keep worst-case fragmentation low, record appends are
restricted to at most one fourth of the maximum chunk size

15

Operations: Snapshots
• Copies a file or directory (almost) instantaneously and with

minimal interruption to ongoing mutations
– quickly create branch copies of huge data sets
– checkpointing the current state before experimenting

• Lazy copy-on-write approach
– upon snapshot request, master first revokes any outstanding leases on

the chunks of the files it is about to snapshot
– after leases are revoked or have expired, operation is logged to disk
– in-memory state is updated by duplicating metadata of source file or

directory tree
– reference counts of all chunks in the snapshot are incremented by one
– upon subsequent write request, server detects reference count > 1 and

allocates a new chunk by replicating the existing chunk

16

Namespace Management and Locking
• Differences to traditional file systems

– no per-directory structures that list files in a directory
– no support for file or directory aliases, e.g. soft and hard links in Unix

• Namespace implemented as a “flat” lookup table
– full path name → metadata
– prefix compression for efficient in-memory representation
– each “node in the namespace tree” (absolute file or directory path) is

associated with a read/write lock
• Each master operation needs to acquire locks before it can run

– read locks on all “parent nodes”
– read or write lock on “node” itself
– file creation does not require a write lock on “parent directory” as

there is no such structure
– note metadata records have locks, whereas data chunks have leases

17

Replica Placement
• Goals of placement policy

– distribute data for scalability, reliability and availability
– maximize network bandwidth utilization

• Background: GFS clusters are highly distributed
– 100s of chunkservers across many racks
– accessed from 100s of clients from the same or different racks
– traffic between machines on different racks may cross many switches
– in/out bandwidth of rack typically lower than within rack

• Possible solution: spread chunks across machines and racks
• Selecting a chunkserver

– place chunks on servers with below-average disk space utilization
– place chunks on servers with low number of recent writes
– spread chunks across racks (see above)

18

Re-replication and Rebalancing
• Master triggers re-replication when replication factor drops

below a user-specified goal
– chunkservers becomes unavailable
– replica is reported corrupted
– a faulty disk is disabled
– replication goal is increased

• Re-replication prioritizes chunks with a low replication factor,
chunks of live files, and actively used chunks

• Master rebalances replicas periodically
– better disk space utilization
– load balancing
– gradually “fill up” new chunkservers

19

Garbage Collection
• GFS does not immediately reclaim physical storage after a file

is deleted
• Lazy garbage collection mechanism

– master logs deletion immediately by renaming file to a “hidden name”
– master removes any such hidden files during regular file system scan

• Orphaned chunks
– chunks that are not reachable through any file
– master identifies them in regular scan and deletes metadata
– uses heart beats to inform chunkservers about deletion

• Stale replicas
– detected based on chunk version number
– chunk version number is increased whenever master grants a lease
– removed during regular garbage collection

20

Fault Tolerance
• High availability

– fast recovery: master and chunkserver designed to recover in seconds;
no distinction between normal and abnormal termination

– chunk replication: different parts of the namespace can have different
replication factors

– master replication: operation log replicated for reliability; mutation is
considered committed only once all replicas have written the update;
“shadow masters” for read-only access

• Data integrity
– chunkservers use checksums to detect data corruption
– idle chunkservers scan and verify inactive chunks and report to master
– each 64 KB block of a chunk has a corresponding 32 bit checksum
– if a block does not match its check sum, client is instructed to read from

different replica
– checksums optimized for write appends, not overwrites

21

Hadoop Distributed File System (HDFS)
• Open-source clone of GFS

– similar assumptions
– very similar design and architecture

• Differences
– no support for random writes, append only
– emphasizes platform independence (implemented in Java)
– possibly, HDFS does not use a lookup table to manage namespace
– terminology (see next bullet)

• “Grüezi, redet si Schwyzerdütsch?”
– namenode → master
– datanode → chunkserver
– block → chunk
– edit log → operation log

22

HDFS Architecture

23 Figure Credit: “HDFS Architecture Guide” by D. Borthakur, 2008

Example Cluster Sizes
• GFS (2003)

– 227 chunkservers
– 180 TB available space, 155 TB used space
– 737k files, 232k dead files, 1550k chunks
– 60 MB metadata on master, 21 GB metadata on chunkservers

• HDFS (2010)
– 3500 nodes
– 60 million files, 63 million blocks, 2 million new files per day
– 54k block replicas per datanode

– all 25k nodes in HDFS clusters at Yahoo! provide 25 PB of storage

24

References
• S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google File

System. Proc. Symp. on Operating Systems Principles (SOSP),
pp. 29-43, 2003.

• D. Borthakur: HDFS Architecture Guide. 2008.
• K. Shvachko, H. Kuang, S. Radia, and R. Chansler: The Hadoop

Distributed File System. IEEE Symp. on Mass Storage Systems
and Technologies, pp.1-10, 2010.

25

MAP/REDUCE
Data Management in the Cloud

1

Map/Reduce
• Programming model
• Examples
• Execution model
• Criticism
• Iterative map/reduce

2

Motivation
• Background and Requirements

– computations are conceptually straightforward
– input data is (very) large
– distribution over hundreds or thousands of nodes

• Programming model for processing of large data sets
– abstraction to express simple computations
– hide details of parallelization, data distribution, fault-tolerance, and

load-balancing

3

Programming Model
• Inspired by primitives from functional programming languages

such as Lisp, Scheme, and Haskell
• Input and output are sets of key/value pairs
• Programmer specifies two functions

– map (k1,v1) → list(k2,v2)
– reduce (k2,list(v2)) → list(v2)

• Key and value domains
– input keys and values are drawn from a different domain than

intermediate and output keys and values
– intermediate keys and values are drawn from the same domain as

output keys and values

4

Map Function
• User-defined function

– processes input key/value pair
– produces a set of intermediate key/value pairs

• Map function I/O
– input: read from GFS file (chunk)
– output: written to intermediate file on local disk

• Map/reduce library
– executes map function
– groups together all intermediate values with the same key
– “passes” these values to reduce functions

• Effect of map function
– processes and partitions input data
– builds distributed map (transparent to user)
– similar to “group by” operation in SQL

5

Reduce Function
• User-defined function

– accepts one intermediate key and a set of values for that key
– merges these values together to form a (possibly) smaller set
– typically, zero or one output value is generated per invocation

• Reduce function I/O
– input: read from intermediate files using remote reads on local files of

corresponding mapper nodes
– output: each reducer writes its output as a file back to GFS

• Effect of reduce function
– similar to aggregation operation in SQL

6

Map/Reduce Interaction

• Map functions create a user-defined “index” from source data
• Reduce functions compute grouped aggregates based on index
• Flexible framework

– users can cast raw original data in any model that they need
– wide range of tasks can be expressed in this simple framework

7

Map 1

Map 2

Map 3

Reduce 1

Reduce 2

Reduce 3

Reduce 4

MapReduce Example
map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in input_value:
 EmitIntermediate(w, “1”);

reduce(String key, Iterator values):
 // key: word
 // values:
 int result = 0;
 for each v in values:
 result += ParseInt(v);
 Emit(AsString(result));

8

More Examples
• Distributed “grep”

– goal: find positions of a pattern in a set of files
– map: (File, String) → list(Integer, String), emits a <line#, line> pair for

every line that matches the pattern
– reduce: identity function that simply outputs intermediate values

• Count of URL access frequency
– goal: analyze Web logs and count page requests
– map: (URL, String) → list(URL, Integer), emits <URL, 1> for every

occurrence of a URL
– reduce: (URL, list(Integer)) → list(Integer), sums the occurrences of

each URL

• Workload of first example is in map function, whereas it is on
the reduce in the second example

9

More Examples
• Reverse Web-link graph

– goal: find which source pages link to a target page
– map: (URL, CLOB) → list(URL, URL), parses the page content and emits

one <target, source> pair for every target URL found in the source page
– reduce: (URL, list(URL)) → list(URL), concatenates all lists for one

source URL

• Term-vector per host
– goal: for each host, construct its term vector as a list of <word,

frequency> pairs
– map: (URL, CLOB) → list(String, List), parses the page content (CLOB)

and emits a <hostname, term vector> pair for each document
– reduce: (String, list(List<String, Integer>)) → list(List<String, Integer>),

combines all per-document term vectors and emits final <hostname,
term vector> pairs

10

More Examples
• Inverted index

– goal: create an index structure that maps search terms (words) to
document identifiers (URLs)

– map: (URL, CLOB) → list(String, URL), parses document content and
emits a sequence of <word, document id> pairs

– reduce: (String, list(URL)) → list(URL), accepts all pairs for a given word,
and sorts and combines the corresponding document ids

• Distributed sort
– goal: sort “records” according to a user-defined key
– map: (? , Object) → list(Key, Record), extracts the key from each

“record” and emits <key, record> pairs
– reduce: emits all pairs unchanged
– Map/reduce guarantees that pairs in each partition are processed

ordered by key, but still requires clever partitioning function to work!

11

Relational Join Example

• Map function M: “hash on key attribute”
– (? , tuple) → list(key, tuple)

• Reduce function R: “join on each k value”
– (key, list(tuple)) → list(tuple)

12

M M M M M M M

Relation R1 Relation R2

R R R R

? ?
? ? ?

?
?

Implementation
• Based on the “Google computing environment”

– same assumptions and properties as GFS
– builds on top of GFS

• Architecture
– one master, many workers
– users submit jobs consisting of a set of tasks to a scheduling system
– tasks are mapped to available workers within the cluster by master

• Execution overview
– map invocations are distributed across multiple machines by

automatically partitioning the input data into a set of M splits
– input splits can be processed in parallel
– reduce invocations are distributed by partitioning the intermediate key

space into R pieces using a partitioning function, e.g. “hash(key) mod R”

13

Execution Overview

14 Figure Credit: “MapReduce: Simplified Data Processing on Large Clusters” by J. Dean and S. Ghemawat, 2004

Execution Overview
1. Map/reduce library splits input files into M pieces and then starts

copies of the program on a cluster of machines
2. One copy is the master, the rest are workers; master assigns M map

and R reduce tasks to idle workers
3. Map worker reads its input split, parses out key/value pairs and

passes them to user-defined map function
4. Buffered pairs are written to local disk, partitioned into R regions;

location of pairs passed back to master
5. Reduce worker is notified by master with pair locations; uses RPC to

read intermediate data from local disk of map workers and sorts it
by intermediate key to group tuples by key

6. Reduce worker iterates over sorted data and for each unique key, it
invokes user-defined reduce function; result appended to reduce
partition

7. Master wakes up user program after all map and reduce tasks have
been completed

15

Master Data Structures
• Information about all map and reduce task

– worker state: idle, in-progress, or completed
– identity of the worker machine (for non-idle tasks)

• Intermediate file regions
– propagates intermediate file locations from map to reduce tasks
– stores locations and sizes of the R intermediate file regions produced by

each map task
– updates to this location and size information are received as map tasks

are completed
– information pushed incrementally to workers that have in-progress

reduce tasks

16

Fault Tolerance
• Worker failure

– master pings workers periodically; assumes failure if no response
– completed/in-progress map and in-progress reduce tasks on failed

worker are rescheduled on a different worker node
– dependency between map and reduce tasks
– importance of chunk replicas

• Master failure
– checkpoints of master data structure
– “given that there is only a single master, failure is unlikely”

• Failure semantics
– if user-defined functions are deterministic, execution with faults

produces the same result as execution without faults
– rely on atomic commits of map and reduce tasks

17

More Implementation Aspects
• Locality

– network bandwidth is scarce resource
– move computation close to data
– master takes GFS metadata into consideration (location of replicas)

• Task granularity
– master makes O(M + R) scheduling decisions
– master stores O(M * R) states in memory
– M is typically larger than R

• Backup Tasks
– “stragglers” are a common cause for suboptimal performance
– as a map/reduce computation comes close to completion, master

assigns the same task to multiple workers

18

Refinements
• Partitioning function

– default function can be replaced by user
– supports “application-specific” partitioning

• Ordering guarantees
– within a give partition, intermediate key/value pairs are processed in

increasing key order

• Combiner function
– addresses significant key repetitions generated by some map functions
– partial merging of data by map worker, before it is sent over network
– typically the same code is used as by the reduce function

• Input and output types
– support to read input and produce output in several formats
– user can define their own “readers” and “writers”

19

Refinements
• Skipping bad records

– map/reduce framework detects on which record task failed
– when task is restarted this record is skipped

• Local execution
– addresses challenges debugging, profiling and small-scale testing
– alternative implementation that executes task sequentially on local

machine

• Counters
– counter facility to count occurrences of various events
– counter values from worker machines propagated to master
– master aggregates counters from successful tasks

20

Performance Experiments

21 Figure Credit: “MapReduce: Simplified Data Processing on Large Clusters” by J. Dean and S. Ghemawat, 2004

Map/Reduce Criticism
• “Why not use a parallel DBMS instead?”

– map/reduce is a “giant step backwards”
– no schema, no indexes, no high-level language
– not novel at all
– does not provide features of traditional DBMS
– incompatible with DBMS tools

• Performance comparison of approaches to large-scale data
analysis
– Pavlo et al. “A Comparison of Approaches to Large-Scale Data Analysis”,

Proc. Intl. Conf. on Management of Data (SIGMOD), 2009
– parallel DBMS (Vertica and DBMS-X) vs. map/reduce (Hadoop)
– original map/reduce task: “grep” from Google paper
– typical database tasks: selection, aggregation, join, UDF
– 100-node cluster

22

Grep Task: Load Times

535 MB/node 1 TB/cluster

23

Administrative command
to “reorganize” data on

each node

Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004

Grep Task: Execution Times

535 MB/node 1 TB/cluster

24

Time required to
combine all reduce

partitions into one result

Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004

Analytical Tasks
CREATE TABLE Documents (CREATE TABLE UserVisits (
 url VARCHAR(100) sourceIP VARCHAR(16),
 PRIMARY KEY, destURL VARCHAR(100),
 contents TEXT); visitDate DATE,
 adRevenue FLOAT,
CREATE TABLE Rankings (userAgent VARCHAR(64),
 pageURL VARCHAR(100) countryCode VARCHAR(3),
 PRIMARY KEY, languageCode VARCHAR(3),
 pageRank INT, searchWord VARCHAR(32),
 avgDuration INT); duration INT);

• Data set
– 600K unique HTML documents
– 155M user visit records (20 GB/node)
– 18M ranking records (1 GB/node)

25

Selection Task
• SQL Query

SELECT pageURL, pageRank
FROM Rankings
WHERE pageRank > X

• Relational DBMS use index
on pageRank column

• Relative performance
degrades as number of
nodes increases

• Hadoop start-up cost
increase with cluster size

26 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004

Aggregation Task
• Calculate the total ad revenue for each source IP using the user

visits table
• Variant 1: 2.5M groups

SELECT sourceIP, SUM(adRevenue)
FROM UserVisits
GROUP BY sourceIP

• Variant 2: 2,000 groups
SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue)
FROM UserVisits
GROUP BY SUBSTR(sourceIP, 1, 7)

27

Aggregation Task

2.5M Groups 2,000 Groups

28 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004

Join Task

SQL Query
SELECT INTO Temp
 UV.sourceIP,
 AVG(R.pageRank) AS avgPageRank,
 SUM(UV.adRevenue) AS totalRevenue
FROM
 Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL
 AND UV.visitDate BETWEEN
 DATE(‘2000-01-15’) AND
 DATE(‘2000-01-22’)
GROUP BY UV.sourceIP

SELECT sourceIP,
 avgPageRank,
 totalRevenue
FROM Temp
ORDER BY totalRevenue DESC LIMIT 1

Map/reduce program

• Uses three phases
– Phase 1: filters records outside

date range and joins with
rankings file

– Phase 2: computes total ad
revenue and average page rank
based on source IP

– Phase 3: produces the record
with the largest total ad
revenue

• Phases run in strict
sequential order

29

Join Task

30 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004

UDF Aggregation Task
• Compute in-link count for each document in the data set
• SQL Query

SELECT INTO Temp UDF(contents) FROM Documents
SELECT url, SUM(value) FROM Temp GROUP BY url

• Map/reduce program
– documents are split into lines
– input key/value pairs: <line number, line contents>
– map: uses regex to find URLs and emits <URL, 1> for each URL
– reduce: counts the number of values for a given key

• Issues
– DBMS-X: not possible to run UDF over contents stored as BLOB in

database; instead UDF has to access local file system
– Vertica: does not currently support UDF, uses a special pre-processor

31

UDF Aggregation Task

32

Time required
to combine all

reduce
partitions into

one result

Time required by
pre-processor

Time required
by UDF

Map/Reduce vs. Parallel DBMS
• No schema, no index, no high-level language

– faster loading vs. faster execution
– easier prototyping vs. easier maintenance

• Fault tolerance
– restart of single worker vs. restart of transaction

• Installation and tool support
– easy to setup map/reduce vs. challenging to configure parallel DBMS
– no tools for tuning vs. tools for automatic performance tuning

• Performance per node
– results seem to indicate that parallel DBMS achieve the same

performance as map/reduce in smaller clusters

33

Iterative Map/Reduce
• Task granularity

– one map stage followed by one reduce stage
– map stage reads from replicated storage
– reduce stage writes to replicated storage

• Complex queries typically require several map/reduce phase
– no fault tolerance between map/reduce phases
– “data shuffling” between map/reduce phases

34

PageRank Example

35 Slide Credit: B. Howe, U Washington

URL Rank

www.a.com 1.0

www.b.com 1.0

www.c.com 1.0

www.d.com 1.0

www.e.com 1.0

URL Rank

www.a.com 2.13

www.b.com 3.89

www.c.com 2.60

www.d.com 2.60

www.e.com 2.13

Initial Rank Table R0

Rank Table R3

SourceURL DestURL

www.a.com www.b.com

www.a.com www.c.com

www.c.com www.a.com

www.e.com www.d.com

www.d.com www.b.com

www.c.com www.e.com

www.e.com www.c.com

www.a.com www.d.com

Linkage Table L

Ri+1

π(DestURL, γDestURLSUM(Rank))

Ri.Rank = Ri.Rank/γURLCOUNT(DestURL)

⨝ Ri.Url = L.SourceURL

Ri+1 L

http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.b.com/
http://www.c.com/
http://www.c.com/
http://www.a.com/
http://www.d.com/
http://www.d.com/
http://www.e.com/
http://www.b.com/
http://www.c.com/
http://www.e.com/
http://www.e.com/
http://www.c.com/
http://www.a.com/
http://www.d.com/

Map/Reduce Implementation

36 Slide Credit: B. Howe, U Washington

Ri

L-split0

L-split1

M

M

M

R

R

M R

M R

M R

M R

Join and Compute Rank Aggregate Fix-Point Evaluation

i=i+1

not done

done

Client

What’s the Problem?

• L is loaded and shuffled in each iteration
• L never changes
• Fix-point evaluated as a separate map/reduce task in each

iteration

37 Slide Credit: B. Howe, U Washington

Ri

L-split0

L-split1

M

M

M

R

R

Inter-Iteration Locality

• Goal of HaLoop scheduler
– place map and reduce tasks that occur in different iterations but access

the same data on the same physical machines
– thereby increase data re-use between iterations and reduce shuffeling

• Restriction
– HaLoop requires that the number of reduce tasks is invariant over

iterations

38 Figure Credit: “HaLoop: Efficient Iterative Data Processing on Large Clusters” by Y. Bu et al., 2010

Scheduling Algorithm
Input: Node node
// The current iteration’s schedule; initially empty
Global variable: Map<Node, List<Partition>> current
// The previous iteration’s schedule
Global variable: Map<Node, List<Partition>> previous
 1: if iteration == 0 then
 2: Partition part = hadoopSchedule(node);
 3: current.get(node).add(part);
 4: else
 5: if node.hasFullLoad() then
 6: Node substitution = findNearestIdleNode(node);
 7: previous.get(substitution).addAll(previous.remove(node));
 8: return;
 9: end if
10: if previous.get(node).size() > 0 then
11: Partition part = previous.get(node).get(0);
12: schedule(part, node);
13: current.get(node).add(part);
14: previous.remove(part);
15: end if
16: end if

39 Slide Credit: B. Howe, U Washington

Same as Hadoop

Find a susbtitution

Iteration-local schedule

Caching and Indexing
• HaLoop caches loop-invariant data partitions on a physical

node’s local disk to reduce I/O cost
• Reducer input cache

– enabled if intermediate table is loop-invariant
– recursive join, PageRank, HITS, social network analysis

• Reducer output cache
– used to reduce costs of evaluating fix-point termination costs

• Mapper input cache
– aims to avoid non-local data reads in non-initial iterations
– K-means clustering, neural network analysis

• Cache reloading
– host node fails
– host node has full load and a map or reduce task must be scheduled on

a different substitution node

40

HaLoop Architecture

41 Figure Credit: “HaLoop: Efficient Iterative Data Processing on Large Clusters” by Y. Bu et al., 2010

Experiments
• Amazon EC2

– 20, 50, 90 default small instances

• Datasets
– billions of triples (120 GB)
– Freebase (12 GB)
– Livejournal social network (18 GB)

• Queries
– transitive closure
– PageRank
– k-means

42 Slide Credit: B. Howe, U Washington

Application Run Time
Transitive Closure
(Triples Dataset, 90 nodes)

PageRank
(Freebase Dataset, 90 nodes)

43 Slide Credit: B. Howe, U Washington

Join Time
Transitive Closure
(Triples Dataset, 90 nodes)

PageRank
(Freebase Dataset, 90 nodes)

44 Slide Credit: B. Howe, U Washington

Run Time Distribution
Transitive Closure
(Triples Dataset, 90 nodes)

PageRank
(Freebase Dataset, 90 nodes)

45 Slide Credit: B. Howe, U Washington

Fix-Point Evaluation
RageRank
(Livejournal Dataset, 50 nodes)

PageRank
(Freebase Dataset, 90 nodes)

46 Slide Credit: B. Howe, U Washington

References
• J. Dean and S. Ghemawat: MapReduce: Simplified Data

Processing on Large Clusters. Proc. Symp. on Opearting
Systems Design & Implementation (OSDI), pp. 137-149, 2004.

• A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S.
Madden, and M. Stonebraker: A Comparison of Approaches to
Large-Scale Data Analysis. Proc. Intl. Conf. on Management of
Data (SIGMOD), pp. 165-178, 2009.

• Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst: HaLoop:
Efficient Iterative Data Processing on Large Clusters. Proc. Intl.
Conf. on Very Large Data Bases (VLDB), pp. 285-296, 2010.

47

NEO4J: GRAPH DATA MODEL
Data Management in the Cloud

1

Nodes and Relationships
• Nodes

– have a system-assigned id
– can have key/value properties
– there is a reference node (“starting point” into the node space)

• Relationships
– have a system-assigned id
– are directed
– have a type
– can have key/value properties

• Key/value properties
– values always stored as strings
– support for basic types and arrays of basic types

2

Operations
• Nodes are managed using the GraphDatabaseService

interface
– createNode() creates and returns a new node
– getNodeById(id) returns the node with the given id
– getReferenceNode() returns the reference node
– getAllNodes() returns an iterator over all nodes

• Relationships are managed using the Node interface
– createRelationshipTo(target,type) creates and returns a

relationship
– getRelationships(direction,types) returns an iterator

over a node’s relationships
– hasRelationship(type,direction) queries the existence of

a certain relationship

3

Operations
• Relationships are also managed using the
GraphDatabaseService interface
– getRelationshipById(id) retrieves a relationship by id
– but there is no getAllRelationships() method…

• Node and relationship properties are managed using the
PropertyContainer interface
– setProperty(key,value) sets (or creates) a property
– getProperty(key) returns a property value (or throws exception)
– hasProperty(key) checks if a key/value property exists
– removeProperty(key) deletes a key/value property
– getPropertyKeys() returns all the keys of a node’s properties

• Nodes and relationships are deleted using the corresponding
method in the Node and Relationship interfaces

4

Example
GraphDatabaseService db = ...
Transaction tx = db.beginTx();
try {
 Node mike = db.createNode();
 mike.setProperty(“name”, “Michael”);
 Node pdx = db.createNode();
 Relationship edge = mike.createRelationshipTo(pdx, LIVES_IN);
 edge.setProperty(“years”, new int[] { 2010, 2011, 2012 });
 for (edge: pdx.getRelationship(LIVES_IN, INCOMING)) {
 Node node = edge.getOtherNode(pdx);
 }
 tx.success();
} catch (Exception e) {
 tx.fail();
} finally {
 tx.finish();
}

 5

Transactions
• Unlike other “NoSQL” systems, Neo4j supports transactions

and ACID properties
• All modifications to data must be wrapped in transactions

– default isolation level is READ_COMMITTED
– data retrieved by traversals is not protected from modification by other

transactions
– non-repeatable reads may recur as only write locks are held until the

end of the transaction
– it is possible to achieve higher isolation levels by manually acquiring

locks on nodes and relationships
– locks are acquired at the node and relationship level
– deadlock detection is built into the core transaction management and

causes Neo4j to throw an exception

6

Indexes
• Neo4j does not support any value-based retrieval of nodes and

relationships without indexes
• Interface IndexManager supports the creation of node and

relationship indexes
– forNodes(name,configuration) returns (or creates) a node

index
– forRelationships(name,configuration) returns (or

creates) a relationship index

• Behind the scenes, Neo4j indexes is based on Apache Lucene
as an indexing service

• Values are indexed as strings by default, but a so-called value
context can be used to support numeric indexing

• Neo4j also supports auto indexers for nodes and relationships

7

Node Indexes
• Index maintenance

– add(node,key,value) indexes the given node based on the given
key/value property

– remove(node) removes all index entries for the given node
– remove(node,key) removes all index entries for the given node

with the given key
– remove(node,key,value) removes a key/value property from

the index for the given node

• Index lookups
– get(key,value) supports equality index lookups
– query(key,query) does a query-based index lookup for one key
– query(query) does a query-based index lookup for arbitrary keys

8

Example
Index<Node> people = db.index().forNodes(“people_idx”);

// do an exact lookup
Node mike = people.get(“name”, “Michael”).getSingle();

// do a query-based lookup for one key
for (Node node: people.query(“name”, “M* OR m*”)) {
 System.out.println(node.getProperty(“name”);
}

// do a general query-based lookup
for (Node node: people.query(“name:M* AND title:Mr”) {
 System.out.println(node.getId());
}

9

Relationship Indexes
• Index maintenance is analogous to node indexes
• Additional index lookup functionality

– get(key,value,source,target) does an exact lookup for the
given key/value property, taking the given source and target node into
account

– query(key,query,source,target) does a query-based lookup
for the given key, taking the given source and target node into account

– query(query,source,target) does a general query-based
lookup, taking the given source and target node into account

10

Example
Index<Node> homes = db.index().forRelationships(“homes_idx”);

// do an exact lookup
Relationship r = homes.get(“span”, “2”, mike, pdx).getSingle();

// do a query-based lookup for one key
for (Relationship r: homes.query(“span”, “*”, mike, null)) {
 System.out.println(r.getOtherNode(mike));
}

// do a general query-based lookup
for (Relationship r:
 homes.query(“type:LIVES_IN AND span:3”, mike, null) {
 System.out.println(r.getOtherNode(mike));
}

11

Traversal Framework
• Neo4j provides a traversal interface to specify navigation

through a graph
– based on callbacks
– executed lazily on demand

• Main concepts
– expanders define what to traverse, typically in terms of relationships

direction and type
– the order guides the exploration, i.e. depth-first or breadth-first
– uniqueness indicates whether nodes, relationships, or paths are visited

only once or multiple times
– an evaluator decides what to return and whether to stop or continue

traversal beyond the current position
– a starting node where the traversal will begin

12

Example: Finding Bridges
List<Relationship> result = ...
Set<Node> roots = ...

IndexManager manager = this.database.index();
Index<Node> dfsNodes = manager.forNodes("dfsNodes");
RelationshipIndex treeEdges = manager.forRelationships("treeEdges");

TraversalDescription traversal = new TraversalDescriptionImpl();
traversal = traversal.order(Traversal.postorderDepthFirst());
traversal = traversal.relationships(EDGE, OUTGOING);

int treeId = 0;
while (!roots.isEmpty()) {
 Node root = roots.iterator().next();
 Traverser traverser = traversal.traverse(root);
 int pos = 0;
 for (Node node : traverser.nodes()) {
 dfsNodes.add(node, P_DFSPOS, treeId + ":" + pos);
 roots.remove(node);
 pos++;
 }
 for (Relationship relationship : traverser.relationships()) {
 treeEdges.add(relationship, P_ID, relationship.getId());
 }
 result.addAll(this.tarjan(dfsNodes, treeEdges, treeId));
 treeId++;
}

13

Graph Algorithms
• Some common graph algorithms are directly supported

– all shortest paths between two nodes up to a maximum length
– all paths between two nodes up to a maximum depth
– all simple paths between two nodes up to a maximum length
– “cheapest” path based on Dijkstra or A*

• Class GraphAlgoFactory provides methods to create
PathFinders that implement these algorithms

14

Example: Shortest Path
// unweighted case
PathFinder<Path> pathFinder = GraphAlgoFactory.shortestPath(
 Traversal.expanderForTypes(EDGE, OUTGOING),
 Integer.MAX_VALUE);
Path path = pathFinder.findSinglePath(source, target);
for (Node node: path.nodes()) {
 System.out.println(node);
}

// weighted case
PathFinder<WeightedPath> pathFinder = GraphAlgoFactory.dijkstra(
 Traversal.expanderForTypes(EDGE, OUTGOING), P_WEIGHT);
Path path = pathFinder.findSinglePath(source, target);
for (Relationship relationship: path.relationships()) {
 System.out.println(relationship);
}

15

Queries
• Support for the Cypher graph query language has recently

been added to Neo4j
• Unlike the imperative graph scripting language Gremlin,

Cypher is a declarative language
• Cypher is comprised of four main concepts

– START: starting points in the graph, obtained by element IDs or via
index lookups

– MATCH: graph pattern to match, bound to the starting points
– WHERE: filtering criteria
– RETURN: what to return

• Implemented using the Scala programming language

16

Example: Average Path Length and Diameter
// start n=(nodes_idx, “id:*”)
// match (n)-[tc:TC_EDGE]->(x)
// return max(tc.weight), sum(tc.weight), count(tc.weight)

ExecutionEngine engine = new ExecutionEngine(db);
CypherParser parser = new CypherParser();
Query query = parser.parse("start n=(" + IDX_NODES + ",\"" + P_ID
 + ":*\") match (n)-[tc:" + TC_EDGE.name()
 + "]->(x) return max(tc." + P_WEIGHT + "), sum(tc." + P_WEIGHT
 + "), count(tc." + P_WEIGHT + ")");
ExecutionResult result = engine.execute(query);
Float max = (Float) this.getResultValue(result,
 "max(tc." + P_WEIGHT + ")");
Float sum = (Float) this.getResultValue(result,
 "sum(tc." + P_WEIGHT + ")");
Integer count = (Integer) this.getResultValue(result,
 "count(tc." + P_WEIGHT + ")");
Double[] value = new Double[] { max.doubleValue(),
 sum.doubleValue() / count.intValue() };

17

Deployments
• Several deployment scenarios are supported
• Embedded database

– wraps around a local directory
– implements the GraphDatabaseService interface
– runs in the same process as application, i.e. no client/server overhead

• Client/server mode
– server runs as a standalone process
– provides Web-based administration
– communicates with clients through REST API

• High availability setup
– one master and multiple slaves, coordinated by ZooKeeper
– supports fault tolerance and horizontal scaling
– implements the GraphDatabaseService interface

18

REST API
• Functionality of REST API is analogous to the functionality of

the Java API
– http://localhost:7474/db/data/node (nodes)
– http://localhost:7474/db/data/relationship (relationships)
– http://localhost:7474/db/data/types (relationship types)
– http://localhost:7474/db/data/node/927/properties (node properties)
– http://localhost:7474/db/data/relationship/339/properties
– http://localhost:7474/db/data/index (indexes)
– http://localhost:7474/db/data/node/54/traverse (traversals)
– http://localhost:7474/db/data/node/7311/path (algorithms)

• JSON documents are used to transfer graph data between
client and server

• Give it a rest...

19

http://localhost:7474/db/data/node
http://localhost:7474/db/data/relationship
http://localhost:7474/db/data/types
http://localhost:7474/db/data/node/927/properties
http://localhost:7474/db/data/relationship/339/properties
http://localhost:7474/db/data/index
http://localhost:7474/db/data/node/54/traverse
http://localhost:7474/db/data/node/7311/path

High Availability Setup

20

High Availability Setup
• High availability

– reads are highly available
– updates to master are replicated asynchronously to slaves
– updates to slaves are replicated synchronously to master
– transactions are atomic, consistent and durable on the master, but

eventually consistent on slaves
• Fault tolerance

– depending on ZooKeeper setup, Neo4j can continue to operate from
any number of machines down to a single machine

– machines will be reconnected automatically to the cluster whenever
the issue that caused the outage (network, maintenance) is resolved

– if the master fails a new master will be elected automatically
– if the master goes down any running write transaction will be rolled

back and during master election no write can take place

21

Data Storage and Memory Management
• A Neo4j graph database consists of several files

– neostore.nodestore.db (9 bytes per node)
– neostore.relationshipstore.db (33 bytes per relationship)
– neostore.propertystore.db
– neostore.propertystore.db.strings
– neostore.propertystore.db.arrays

• Data in memory is managed in two ways
– memory mapped database files (see above)
– object caches that contain Java representations of node and edges

• Performance tuning
– Java heap size and garbage collector can be configured
– sizes of memory mapped files can be configured
– type of cache can be configured, i.e. none, soft, weak, or strong

22

Tuning

23

Tuning
• Optimizing for traversals

– memory map as much as possible of the node and relationship
database file

– set object cache type to soft
– garbage collection issue may occur under high load if frequently

accessed paths do not fit into memory

• Optimizing for high throughput property access
– memory map as much as possible of the property database files
– set object cache type to weak

• Optimizing for graphs that fit into memory
– fully memory map all database files
– set object cache type to strong

24

Example (Assuming Java Heap Space 3GB)
// betweenness centrality
neostore.nodestore.db.mapped_memory=1M
neostore.relationshipstore.db.mapped_memory=1234M
neostore.propertystore.db.mapped_memory=814M
neostore.propertystore.db.strings.mapped_memory=1M
neostore.propertystore.db.arrays.mapped_memory=0M
cache_type=weak

// bridges
neostore.nodestore.db.mapped_memory=1M
neostore.relationshipstore.db.mapped_memory=750M
neostore.propertystore.db.mapped_memory=500M
neostore.propertystore.db.strings.mapped_memory=1M
neostore.propertystore.db.arrays.mapped_memory=0M
cache_type=soft

25

Tuning Guidelines
Primitives RAM Size Heap Size RAM for OS Memory Mapped

10M 2GB 512MB the rest 100-512MB

100M 8GB+ 1-4GB 1-2GB the rest

1B+ 16-32GB+ 4GB+ 1-2GB the rest

• Or… Buy a solid state drive!
– “with a solid state drive the heap settings can be configured lower since

disk access isn’t as expensive, thus making caching less important and
memory mapping more important”

26

Array Databases

David Maier

A Different Point in Data Space

• Many of the big-data approaches we’ve
considered have been for web-data …
… or web analytics

• Often huge numbers of modest-sized
items

• Array data management directed at
huge individual items
Single item may need 100s of nodes

 5/8/2012 David Maier, Portland State University 2

Lots of Science Data is Arrays

Remote imaging (up and down)
Tomographic reconstructions
Computational simulation outputs
In-situ sensing
Next-Generation Sequencing

Also business apps: finance, pharma

5/8/2012 David Maier, Portland State University 3

Implicit Information in the
Structure

Logical organization of an array can
indicate order, adjacency, correlation
However, meaning is different for
different arrays

5/8/2012 David Maier, Portland State University 4

Example: Image Data

Might have two dimensions
corresponding to latitude and longitude
 Neighboring entries adjoin in space
 Lose information if you

rearrange rows or
columns

 Operations – smoothing,
edge detection, object
extraction

5/8/2012 David Maier, Portland State University 5
NOAA CoastWatch

Example: Bi-gram Frequencies

Entries are bi-gram frequencies
 A(i, j) = number of times word i precedes

word j in some corpus of text
 Adjacency doesn’t mean

much: OK to permute
rows and columns
(in the same way)

 Operations: row or column
correlations; matrix
multiplication

5/8/2012 David Maier, Portland State University 6

Example: Sequencing Data
Have 2-D array, indexed by sample ID
and DNA base position
 Array element is a read call (A C G T N)

and a confidence
 Sample order could be shuffled, but not

order of reads
 Operations: aggregate (across base

position or whole array); “array induction”
– count values for x in every b1b2xb3b4,
indexed by (b1, b2, b3, b4)

 5/8/2012 David Maier, Portland State University 7

Support for Array Storage

netCDF, HDF, other interchange
formats
Rasdaman – rasters over DBMS
SQL 1-D arrays
RAM Layer on MonetDB
SciDB – relatively new effort

5/8/2012 David Maier, Portland State University 8

Variations in Array Models

Scalar or complex elements
 Records
 Nested arrays

“Ragged” boundaries
Special values
Non-integer dimensions
Updates vs. versions

5/8/2012 David Maier, Portland State University 9

SciDB Data Model

Nested multi-dimensional arrays
 Cells can be tuples or other arrays
 Can have non-integer dimensions

Additional “History” dimension on
updatable arrays

Ragged arrays allow each row or
column to have a different length

Support for multiple flavors of “null”

 Array cells can be ‘EMPTY’
 User-definable treatment of special

values

 SciDB DDL

CREATE ARRAY Test_Array
 < A: integer NULLS,
 B: double,
 C: USER_DEFINED_TYPE >
 [I=0:99999,1000,10, J=0:99999,1000,10]
 PARTITION OVER (Node1, Node2, Node3)
 USING block_cyclic();

chunk
size

1000

overlap

 10

attribute
names

 A, B, C

dimension
names

 I, J

Operations on Arrays

Need to preserve array structure
Purely structural ops
Content-based ops
Linear algebra (if array represents a
matrix)

5/8/2012 David Maier, Portland State University 12

Subsample

Restrict an array by index ranges

5/8/2012 David Maier, Portland State University 13

2

4

2
x

y

A

Subsample (A, y=2) 1

3

1

1

2
4 3 2 y

Concatenate

Append arrays along specified dimension

5/8/2012 David Maier, Portland State University 14

A

Concatenate (A, B, Z)
2

4

2

Y
1

3

1

1

2

X

1
Z

2

4

2

Y
1

3

1

1

2

X

1 Z

6

8

2

Y
5

7

1

1

2

X

1 Z

B

6

8

5

7
2

Filter

Apply predicate to array elements
Keeps array shape: Inserts empty elements

5/8/2012 David Maier, Portland State University 15

2

4

2
X

Y

A

EmptyFilter(A, (a).even(a)) 1

3

1

1

2

2

4

2
X

Y
∅

∅

1

1

2

Aggregate

Reduce across one or more dimensions

5/8/2012 David Maier, Portland State University 16

3 2

7 4

2

1

2

X

Y

A
Aggregate(A, [Y],
 Res = Sum(Val)) 1

3

1

1

2
Y

Languages for Arrays

Many proposals, old and new
 APL: Falkoff, Iverson
 AML: Marathe, Salem
 NewS, R, Matlab
 rasql: Baumann
 SciQL: Kersten, Zhang, Ivanova, Nes

5/8/2012 David Maier, Portland State University 17

Array Comprehensions

Like MArray in rasql, Build in SciDB docs
 Supply a spatial domain S

e.g. [I=0:999, J=0:4999]

 Have an expression g:S ET
(element type)

BUILD(S,(i,j)
 <r=A[i,j+100].va,
s=B[j].ba*5.0>
)

5/8/2012 David Maier, Portland State University 18

SciDB: Array Query Language (AQL)

SELECT Geo-Mean (T.B)
FROM Test_Array T
WHERE
 T.I BETWEEN :C1 AND :C2
AND T.J BETWEEN :C3 AND :C4
AND T.A = 10
GROUP BY T.I;

User-defined aggregate on an
attribute B in array T

Subsample

Filter
Group-by

SciDB: Array Functional
Language (AFL)

Lexical syntax for the algebra
A<va:int>[I=0:999,J=0:4999]
B<vb:int>[J=0:4999,K=0:2499]

aggregate(
 apply(
 sjoin(A,B,J=J),
 res=A.va*B.vb
),

 [I,K],vr=sum(res)
)

5/8/2012 David Maier, Portland State University 20

Physical Representation

Array of records record of arrays
Array<va=int, fa=float>[I=0:99, J=0:499]
<va=Array<int>[I=0:99, J=0:499],
 fa=Array<float>[I=0:99, J=0:499]>

Nested array merge dimensions
Array<va=int, fa=Array<r=float>[K=0:9]>
[I=0:99, J=0:499]
<va=Array<int>[I=0:99, J=0:499],
 fa=Array<Array<r=float>[K=0:9]>[I=0:99, J=0:499]>

<va=Array<int>[I=0:99, J=0:499],
 fa=Array<float>[K=0:9, I=0:99, J=0:499]>

5/8/2012 David Maier, Portland State University 21

Physical Representation 2

Non-integer indices mapping array
Array A<a1: int32, a2: double>
 [I(string)=100, J(double)=1000]
Array BasicA<a1: int32, a2: double>
 [BI=0:99, BJ=0:999]

IMap<I=string>[BI=0:99]

JMap<J=double>[BJ=0:999]

A = Sjoin(BasicA, IMap, JMap,
 A.BI=IMap.BI, A.BJ=JMap.BJ)

 5/8/2012 David Maier, Portland State University 22

Partitioning
Rasdaman tiling of rasters
 Many options, needn’t be

uniform
 Can isolate regions of

interest

SciDB chunking
 Regular divisions along

dimensions
 Distribution pattern, e.g.,

block cyclic

5/8/2012 David Maier, Portland State University 23

Issue: Neighborhood Ops

Doing a 5 x 5
stenciled average over
a chunk requires up to
8 adjoining chunks
Can specify an overlap
(e.g., 2 elements)

5/8/2012 David Maier, Portland State University 24

Issue: Logical vs. Physical Size

Dividing an array evenly in logical space
can give unequal physical chunks after
compression
Equal physical chunks are easier for
I/O, but makes it hard to align 2 arrays
SciDB: Equal-sized logical chunks, but
combine multiple physical chunks into
an I/O segment

5/8/2012 David Maier, Portland State University 25

Versions

Conceptually, updates in SciDB are
additions along a History dimension
Implemented as reverse deltas at a
chunk granularity

5/8/2012 David Maier, Portland State University 26

Application Programming
Interface (API)

Can do embedded queries in general-
purpose programming languages, e.g.,
C++, Python
Would like a more transparent interface
from analysis environments such as R
 Dynamically accumulate expressions (à la

Ohkawa, RIOT)
 Evaluate intelligently on demand, e.g.,

minimize data movement
5/8/2012 David Maier, Portland State University 27

Current R Support for Large Data Not
Very Transparent
Native R
result <- sum(array);

Chunked access to netCDF
chunk.size <- 1000;
num.chunks <- ceiling(total.size/chunk.size);
for(i in num.chunks) {
 array.part <- get.var.ncdf(file.path,chunk.size);
 result <- result + sum(array.part);
 remove(array.part); gc(); }

Call out to RDBMS
result <- sqlQuery(DBconn, "select sum(value)
 from array_table");

Specialized Libraries
5/8/2012 David Maier, Portland State University 28

Accumulate Expressions

Want to have as large of scope as
possible before evaluating

A <- B + C;

…

D <- A[1:10];

…

print(A);

Accumulate to
print((B + C)[1:10]);

5/8/2012 David Maier, Portland State University 29

Minimize Data Transfer

Reductive Transforms: less data to
move (bold = op or arg in SciDB)
print((B + C)[1:10]);

print((B + τ(C))[1:10]);

print((B[1:10] + τ(C[1:10]));

Consolidating Transforms: fewer
transfers
print((B + C) + D);
print((B + τ(C)) + τ(D));
print(B+ τ(C + D));

 5/8/2012 David Maier, Portland State University 30

Additional Aspects

Needs to be cost based
print((B%*%C)%*%D);
print(B%*%(C%*%D));
B[20,500], C[500,1], D[1,300]

Other considerations
Availability of operators in each engine
Data representation and distribution
Estimate execution time

5/8/2012 David Maier, Portland State University 31

5/8/2012 David Maier, Portland State University 32

Thanks to
SciDB
Marilyn Matz, Suchi Raman, Paul Brown, Paradigm4
www.scidb.org

R-SciDB Interface
Patrick Leyshock, PSU

Novartis
Proof of concept for SciDB in pharmaceuticals
http://www-

conf.slac.stanford.edu/xldb2011/talks/xldb2011_wed_1100_
Novartis.pdf

NewSQL: Flying on ACID

David Maier

Thanks to H-Store folks, Mike
Stonebraker, Fred Holahan

NewSQL

• Keep SQL (some of it) and ACID
• But be speedy and scalable

5/8/2012 David Maier, Portland State University 2

Database Landscape
From: the 451 group

5/8/2012 David Maier, Portland State University 3

OLTP Focus

• On-Line Transaction Processing
• Lots of small reads and updates
• Many transactions no longer have a

human intermediary
For example, buying sports or show tickets

• 100K+ xact/sec, maybe millions
• Horses for courses

5/8/2012 David Maier, Portland State University 4

Premises

• If you want a fast multi-node DBMS,
you need a fast single-node DBMS.

• If you want a single-node DBMS to go
100x as fast, you need to execute
1/100 of the instructions.
 You won’t get there on clever disk I/O:

Most of the data is living in memory

5/8/2012 David Maier, Portland State University 5

Where Does the Time Go?

5/8/2012 David Maier, Portland State University 6

Recovery
24%

Useful
Work, 4%

Buffer Pool
24%

Locking
24%

Latching
24%

• TPC-C CPU
cycles

• On Shore DBMS
• Instruction

counts have
similar pattern

A Bit More Detail

5/8/2012 David Maier, Portland State University 7

Source: S. Harizopoulos, D. J.
Abadi, S. Madden, M.
Stonebraker, “OLTP Under
the Looking Glass”,
SIGMOD 2008.

What are These Different
Parts?

Buffer manager: Manages the slots that
holds disk pages
 Locate pages by a hash table
 Employs an eviction strategy (clock scan –

approximates LRU)
 Coordinates with recovery system

5/8/2012 David Maier, Portland State University 8

Different Parts 2

Locks: Logical-level shared and exclusive
claims to data items and index nodes
 Locks are typically held until the end of a

transaction
 Lock manager must also manage deadlocks

5/8/2012 David Maier, Portland State University 9

Different Parts 3

Latches: Low-level locks on shared
structures
 Free-space list
 Buffer-pool directory (hash table)
 Buffer “clock”
Also, “pinning” pages in the buffer pool

5/8/2012 David Maier, Portland State University 10

Different Parts 4

Logging: Undo and redo information in
case of transaction, application or
system failure
 Must be written to disk before

corresponding page can be removed from
buffer pool

5/8/2012 David Maier, Portland State University 11

Strategies to Reduce Cost

• All data lives in main memory
• Multi-copy for high-assurance

Still need undo info (in memory) for rollback
and disk-based information for recovery

• No user interaction in transactions
• Avoid run-time interpretation and

planning
Register all transactions in advance

5/8/2012 David Maier, Portland State University 12

Strategies, cont.

• Serialize transactions
Possible, since there aren’t waits for disk I/O

or user input

• Parallelize
• Between transactions
• Between parts of a single transaction
• Between primary and secondary copies

5/8/2012 David Maier, Portland State University 13

H-Store & VoltDB

• H-Store is the academic project
Brown/Yale/MIT
http://hstore.cs.brown.edu/

• VoltDB is the company
Velocity OnLine Transactions
http://community.voltdb.com/documentation

Community and Enterprise editions

5/8/2012 David Maier, Portland State University 14

http://hstore.cs.brown.edu/
http://community.voltdb.com/documentation

VoltDB Techniques

Data in main memory
 32-way cluster can have a terabyte of MM
 Don’t need a buffer manager
 No waiting for disk
 All in-use data generally resides in MM for

OLTP systems anyway

5/8/2012 David Maier, Portland State University 15

VoltDB Techniques 2

Interact only via stored procedures
 No roundtrips to client during multi-query

transactions
 No user waiting
 Can compile & optimize in advance
 (Might pre-analyze conflicts)

Need to structure applications carefully

5/8/2012 David Maier, Portland State University 16

Discussion Problem

Want to support on-line course reg.
1. Search for courses: number, time
2. User gets list of matching courses
3. User chooses a course
4. Show enrollment status of course
5. If not full, allow user to register

Validate prerequisites

5/8/2012 David Maier, Portland State University 17

Tables

Offering(CRN, Course#, Days, Limit)

Registered(CRN, SID)

Student(SID, First, Last, Status)

Prereq(Course#, PCourse#, MinMark)

Transcript(SID, Course#, Grade)

Don’t over-enroll course
No user input in transaction
Don’t turn student away if you’ve shown space in

the course
 5/8/2012 David Maier, Portland State University 18

VoltDB Techniques 3

Serial execution of transactions
 Avoids locking and latching
 Avoids thread or process switches
 Avoids some logging

Still need undo buffer for rollback

5/8/2012 David Maier, Portland State University 19

VoltDB Techniques 4

Multiple copies for high availability
 Can specify k-factor for redundancy: can

tolerate up to k node failures
 For complete durability:
 Snapshot of DB state to disk
 Log commands to disk

5/8/2012 David Maier, Portland State University 20

VoltDB Techniques 5

Shared-nothing parallelism: tables can be
partitioned (or replicated) and spread
across multiple sites.
 Each site has its own execution engine and

data structures
 No latching of shared structures
 Does incur some latency on multi-partition

transactions

5/8/2012 David Maier, Portland State University 21

Can have partitions of several
tables at each site

5/8/2012 David Maier, Portland State University 22

ITEM ITEMj ITEM ITEM ITEM

P2

P4

DISTRICT

CUSTOMER

ORDER_ITEM

STOCK

ORDERS

Replicated

WAREHOUSE

P1

P1

P1

P1

P1

P1

P2

P2

P2

P2

P2

P2

P3

P3

P3

P3

P3

P3

P4

P4

P4

P4

P4

P4

P5

P5

P5

P5

P5

P5

P5

P3

P1

ITEM ITEM

ITEM ITEM

ITEM

Partitions

ITEM

Schema Tree

Core1 Core2

HT2

HT1

Core1 Core2

HT2

HT1

Data Placement
 Assign partitions to sites on nodes.

October 26, 2009

P1
ITEM

P2

ITEM

P5
ITEM

Partitions Cluster Nodes

P4
ITEM

P3
ITEM

Node 1 Node n

Results

• 45X conventional RDBMS
• 7X Cassandra on key-value workload
• Has been scaled to 3.3M (simple)

transactions per second

5/8/2012 David Maier, Portland State University 24

What VoltDB Isn’t Doing

• Reducing latency: aim is increased
throughput
Might take a while to get results back

• All of SQL (e.g., no NOT in WHERE)
• Big aggregates
• Dynamic DDL
• Ad hoc queries (possible, not fast)

5/8/2012 David Maier, Portland State University 25

System Structure

Hosts (nodes) each with several sites
(< #cores)

Each site has data (partitions), indexes,
views, stored procedures

Client can connect to any host
Encouraged for load balancing and

availability
Also, request queue per host

5/8/2012 David Maier, Portland State University 26

In Operation
1. Client invokes stored procedures with

parameters
2. Sent to some host
3. Rerouted to site with correct partition
4. SPs execute serially (need coordinator if

more than one partition)
5. Partition forwards queries to redundant

copies and waits
6. [Rollback if aborted]
7. Results come back in VoltTable (array)

5/8/2012 David Maier, Portland State University 27

Setting up a Database
• Schema definition

• Tables (strings are stored out of line)
• Indexes, views

• Select partitioning column (or replicate)
• Can be different for different tables
• Needn’t be a key
• But may want same column to keep

transactions in one partition:
Use CRN for Offering and Registered

5/8/2012 David Maier, Portland State University 28

Setting up a Database 2
• Stored procedures

• In Java and a subset of SQL (some limits)
• SQL can contain ‘?’ for parameters
• Must be deterministic (don’t read system

clock or do network I/O)
• Can submit groups of SQL statements
• Can declare that procedure runs in a single

partition (fastest)
Multi-partition, multi-round can have waits and

network delays

5/8/2012 David Maier, Portland State University 29

 Stored Procedure Example

package fadvisor.procedures;
import org.voltdb.*;

@ProcInfo(
 singlePartition = true,
 partitionInfo = "Reservation.FlightID: 0”
)

public class HowManySeats extends VoltProcedure {

 public final SQLStmt GetSeatCount = new SQLStmt(
 "SELECT NumOfSeats, COUNT(ReserveID) " +
 "FROM Flight AS F, Reservation AS R " +
 "WHERE F.FlightID=R.FlightID AND R.FlightID=?;");

Presenter
Presentation Notes
AQL deals with ARRAYS, not TABLES.In this case, the Test_Array is 100K x 100K in size, and is divided into 10,000 "chunks" - each of which is 1Kx1K in size. In AQL, attributes are NOT NULL by defaultthe SciDB NULL handling is very different to SQL. (no 3VL) We will support user defined attribute types The "index" elements define both the logical properties of the array (it's size) and the way the array is organized "physically"We will support a variety of physical distribution schemes over the compute nodes that make up a SciDB instance (next release)

 Stored Procedure Example cont.
public long run(int flightid)
 throws VoltAbortException {

 long numofseats;
 long seatsinuse;
 VoltTable[] queryresults;

 voltQueueSQL(GetSeatCount, flightid);
 queryresults = voltExecuteSQL();

 VoltTable result = queryresults[0];
 if (result.getRowCount() < 1) { return -1; }
 numofseats = result.fetchRow(0).getLong(0);
 seatsinuse = result.fetchRow(0).getLong(1);

 numofseats = numofseats - seatsinuse;
 return numofseats; // Return available seats
 }
}

Setting Up a Database 3

• Compile stored procedures and client
apps

• Set up a Project Definition File
• Schema
• Stored Procedures
• Partitioning
• Groups & permissions

5/8/2012 David Maier, Portland State University 32

 Project Definition File
<?xml version="1.0" ?>
<project>
 <database name="database”>
 <schemas>
 <schema path="flight.ddl" />
 </schemas>
 <procedures>
 <procedure class="procedures.LookupFlight"/>
 <procedure class="procedures.HowManySeats"/>
 <procedure class="procedures.MakeReservation"/>
 <procedure class="procedures.CancelReservation"/>
 <procedure class="procedures.RemoveFlight"/>
 </procedures>
 <partitions>
 <partition table="Reservation" column="FlightID"/>
 <partition table="Customer" column="CustomerID"/>
 </partitions>
 </database>
</project>

Starting a Database

• Need a configuration file
<?xml version="1.0"?>
<deployment>
 <cluster hostcount=”16”
 sitesperhost=”6”
 kfactor=”2”
 />
</deployment>

• Ask a “lead node” to start VoltDB
Lead becomes a peer after start up

• Start client apps
5/8/2012 David Maier, Portland State University 34

From the Client Side

• Connect to DB
• Call stored procedures
VoltTable[] results;
try { results = client.callProcedure("LookupFlight",
 origin,
 dest,

 departtime).getResults();

} catch (Exception e) {
 e.printStackTrace();
 System.exit(-1);
}

• Can also be asynch. with callback

 5/8/2012 David Maier, Portland State University 35

What Can You Change?

• Can add or modify stored procedures
while DB is running
Need to coordinate change with client apps

• Add columns, tables
Need to snapshot DB, stop, restart, restore

• Add nodes, change partitions
Same drill

5/8/2012 David Maier, Portland State University 36

High Availability

• If a site is unavailable, use a redundant
copy

• A node can rejoin a cluster, rebuild the
partitions it has
Partition being copied is locked for duration

• Can specify on a cluster split, only the
larger group keeps running

5/8/2012 David Maier, Portland State University 37

Snapshots

Can make a consistent copy of snapshot
to disk
• Manual or on a schedule
• Each node stores a file locally
• Transaction consistent: will maintain

multiple versions of data temporarily
• Can restore with changes

• New column
• Different partitioning

5/8/2012 David Maier, Portland State University 38

Command Logging

Can log commands to disk, then play
back from last snapshot
• Don’t need to log SELECTs
• Can be synchronous, will delay client

responses
• Snapshot + synchronous command logging

shouldn’t lose anything

5/8/2012 David Maier, Portland State University 39

Views

• Views are materialized
• Must have group-by and return all

grouping columns
• Aggregates are COUNT and SUM (??)

5/8/2012 David Maier, Portland State University 40

Export
VoltDB can be the front end to a

warehouse or map-reduce engine
Export-only tables

 Can only insert into them (but will undo)
 Contents are spooled to a Connector
 Export client polls the Connector
 Export data overflows to disk

Have an export client that uses Sqoop to
populate HDFS

5/8/2012 David Maier, Portland State University 41

Languages
• C#
• C++
• Erlang
• Java
• JDBC
• JSON (HTTP from PHP, Python, Perl, C#)
• PHP
• Python
• Ruby

5/8/2012 David Maier, Portland State University 42

Minimal Configuration

• OS: 64-bit Linux
• Dual-core, 64-bit proc. (4-8 cores

better)
• 4 Gbytes memory minimum
• Sun Java SDK 6
• Network Time Protocol (NTP)

5/8/2012 David Maier, Portland State University 43

Ongoing Work

VoltDB uses 2-phase commit on multi-
partition procedures

Considering speculative execution of
transactions at sites waiting for
commit/abort

Would require multi-transaction rollback

5/8/2012 David Maier, Portland State University 44

PIG LATIN AND HIVE
Data Management in the Cloud

1

The Google Stack

2

Bigtable

Map/Reduce

GFS

Sawzall

The Hadoop Stack

3

Hadoop

HDFS

Pig/Pig Latin

SQUEEQL!

Hive

ZZZZZQL!

Motivation for Pig Latin
• Disadvantages of parallel database products

– prohibitively expensive at Web scale
– programmers like to write scripts to analyze data
– SQL is “unnatural” and overly restrictive in this context

• Limitations of Map/Reduce
– one-input two-stage data flow is extremely rigid
– custom code has to be written for common operations such as

projection and filtering
– opaque nature of map and reduce function impedes ability of system to

perform optimization

• Pig Latin combines “best of both worlds”
– high-level declarative querying in SQL
– low-level procedural programming of Map/Reduce

4

A First Example
• Find pages in sufficiently large categories with a high page rank
• SQL

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 106

• Pig Latin
good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups =
 FILTER groups BY COUNT(good_urls) > 106;
output =
 FOREACH big_groups
 GENERATE category, AVG(good_urls.pagerank);

5

Pig Latin Programs
• Embody “best of both worlds” approach
• Sequence of steps

– similar to imperative language
– each step carries out a single data transformation
– appealing to many developers

• High-level transformations
– similar to SQL
– high-level operations render low-level manipulations unnecessary
– potential for optimization

• Similar to specifying a query execution plan
– “automatic query optimization has its limits, especially with

uncatalogued data, prevalent user-defined functions, and parallel
execution”

6

Pig Latin Features
• “Unconventional features that are important for [..] casual ad-

hoc data analysis by programmers”
– flexible, fully nested data model
– extensive support for user-defined functions
– ability to operate over plain input files without any schema
– debugging environment to deal with enormous data sets

• Pig Latin programs are executed using Pig
– compiled into (ensembles of) map-reduce jobs
– executed using Hadoop

• Pig is an open-source project in the Apache incubator

7

Dataflow Language
• “While the SQL approach is good for non-programmers and/or

small data sets, experienced programmers who must
manipulate large data sets [..] prefer the Pig Latin approach.”
– “I much prefer writing in Pig [Latin] versus SQL. The step-by-step

method of creating a program in Pig [Latin] is much cleaner and simpler
to use than the single block method of SQL. It is easier to keep track of
what your variables are, and where you are in the process of analyzing
your data.” – Jasmine Novak, Engineer, Yahoo!

8

Optimizations
• Pig Latin programs supply explicit sequence of operations, but

are not necessarily executed in that order
• High-level relational-algebra-style operations enable

traditional database optimization
• Example

spam_urls = FILTER urls BY isSpam(url);
culprit_urls = FILTER spam_urls BY pagerank > 0.8;
– if isSpam is an expensive function and the FILTER condition is

selective, it is more efficient to execute the second statement first

9

Optional Schemas
• Traditional database systems require importing data into

system-managed tables
– transactional consistency guarantees
– efficient point lookups (physical tuple identifiers)
– curate data on behalf of the user: schema enables other users to make

sense of the data

• Pig only supports read-only data analysis of data sets that are
often temporary
– stored schemas are strictly optional
– no need for time-consuming data import
– user-provided function converts input into tuples (and vice-versa)

10

Nested Data Model
• Motivation

– programmers often think in nested data models
term = Map<documentId, Set<positions>>

– in a traditional database, data must be normalized into flat table
term(termId, termString, …)
term_position(termId, documentId, position)

• Pig Latin has a flexible, fully nested data model
– closer to how programmers think
– data is often already stored in nested fashion in source files on disk
– expressing processing tasks as sequences of steps where each step

performs a single transformation requires a nested data model, e.g.
GROUP returns a non-atomic result

– user-defined functions are more easily written

11

User-Defined Functions
• Pig Latin has extensive support for user-defined functions

(UDF) for custom processing
– analysis of search logs
– crawl data
– click streams
– …

• Input and output of UDF follow flexible, nested data model
– non-atomic input and output
– only one type of UDF that can be used in all construct

• UDFs are implemented in Java

12

Parallelism
• Pig Latin is geared towards Web-scale data

– requires parallelism
– does not make sense to consider non-parallel evaluation

• Pig Latin includes a small set of carefully chosen primitives that
can easily be parallelized
– “language primitives that do not lend themselves to efficient parallel

evaluation have been deliberately excluded”
– no non-equi-joins
– no correlated sub-queries

• Backdoor
– UDFs can be written to carry out tasks that require this functionality
– this approach makes user aware of how efficient their programs will be

and whether they will be parallelized

13

Data Model
• Atom: contains a simple atomic value

– string, number, …

• Tuple: sequence of fields
– each field can be any of the data types

• Bag: collection of tuple with possible duplicates
– schema of constituent tuples is flexible

• Map: collection of data items, where each data item has a key
– data items can be looked up by key
– schema of constituent tuples is flexible
– useful to model data sets where schemas change over time, i.e.

attribute names are modeled as keys and attribute values as values

14

Data Model

15 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

Data Loading
• First step in a Pig Latin program

– what are the data files?
– how are file contents deserialized, i.e. converted into Pig’s data model
– data files are assumed to contain a bag of tuples

• Example
queries = LOAD ‘query_log.txt’
 USING myLoad()
 AS (userId, queryString, timestamp);
– query_log.txt is the input file
– file contents are converted into tuples using the custom myLoad

deserializer
– the tuples have three attributes named userId, queryString,
timestamp

16

Per-Tuple Processing
• Command FOREACH applies some processing to every tuple of

the data sets
• Example

expanded_queries = FOREACH queries GENERATE
 userId, expandQuery(queryString);
– every tuple in the queries bag is processed independently
– attribute userId is projected
– UDF expandQuery is applied to the queryString attribute

• Since there can be no dependence between the processing of
different tuples, FOREACH can be easily parallelized

17

Per-Tuple Processing

• GENERATE clause is followed by a list of expressions as
supported by Pig Latin’s data model

• For example, FLATTEN can be used to unnest data
expanded_queries = FOREACH queries GENERATE
userId, FLATTEN(expandQuery(queryString));

18 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

Selection
• Tuples are selected using the FILTER command
• Example

real_queries = FILTER queries BY userId neq ‘bot’;

• Filtering conditions involve a combination of expressions
– equality: == (numeric), eq (strings)
– inequality: != (numeric), neq (strings)
– logical connectors: AND, OR, and NOT
– user-defined functions

• Example
real_queries =
 FILTER queries BY NOT isBot(userId);

19

Grouping
• Command COGROUP groups tuples from one or more data sets
• Example

grouped_data = COGROUP results BY queryString,
 revenue BY queryString;
– assume (queryString, url, rank) for results
– assume (queryString, adSlot, amount) for revenue
– gouped_data will be (queryString, results, revenue)

• Difference to JOIN
– JOIN is equivalent to COGROUP followed by taking the cross-product

of the tuples in the nested bags
– COGROUP gives access to “intermediate result” (example on next slide)

• Nested data model enables COGROUP as independent
operation

20

Grouping versus Joining

• Example
url_revenues = FOREACH grouped_data GENERATE
FLATTEN(distributeRevenue(results, revenue));
– distributeRevenue attributes revenue from top slot entirely to

first result, while revenue from side slot is attributed to all results
– Since this processing task is difficult to express in SQL, COGROUP is a

key difference between Pig Latin and SQL

21 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

Syntactic Sugar
• Special case of COGROUP is when only one data set is involved

– can use more intuitive keyword GROUP
– similar to typical group-by/aggregate queries

• Example
grouped_revenue = GROUP revenue BY queryString;
query_revenues = FOREACH grouped_revenue GENERATE
 queryString,
 SUM(revenue.amount) AS totalRevenue;
– revenue.amount refers to a projection of the nested bag in the

tuples of grouped_revenue

22

More Syntactic Sugar
• Pig Latin provides a JOIN key word for equi-joins
• Example

join_result = JOIN results BY queryString,
 revenue BY queryString;

 is equivalent to
temp_var = COGROUP results BY queryString,
 revenue BY queryString;
join_result = FOREACH temp_var GENERATE
 FLATTEN(results), FLATTEN(revenue);

23

We Gotta Have Map/Reduce!
• Based on FOREACH, GROUP, and UDFs, map-reduce programs

can be expressed
• Example

map_result = FOREACH input
 GENERATE FLATTEN(map(*));
key_groups = GROUP map_result BY $0;
output = FOREACH key_groups GENERATE reduce(*);

24

More Pig Latin Commands
• Pig Latin commands that are similar to SQL counterparts

– UNION: returns the union of two or more bags
– CROSS: returns the cross-product of two or more bags
– ORDER: orders a bag by the specified fields
– DISTINCT: eliminates duplicate tuples in the bag (syntactic sugar for

grouping the bag by all fields and projecting out the groups)

• Nested operations
– process nested bags within tuples
– FILTER, ORDER, and DISTINCT can be nested within FOREACH

• Output
– command STORE materializes results to a file
– as in LOAD, default serializer can be replaced in the USING clause

25

Implementation
• Pig is the execution platform of Pig Latin

– different systems can be plugged in as data processing backend
– currently implemented using Hadoop

• Lazy execution
– processing is only triggered when STORE command is invoked
– enables in-memory pipelining and filter reordering across multiple Pig

Latin commands

• Logical query plan builder
– checks that input files and bags being referred to are valid
– builds a plan for every bag the user defines
– is independent of data processing backend

• Physical query plan compiler
– compiles a Pig Latin program into map-reduce jobs (see next slide)

26

Mapping Pig Latin to Map/Reduce

• Each (CO)GROUP command is converted into a separate map-
reduce job, i.e. a dedicated map and reduce function

• Commands between (CO)GROUP commands are appended to
the preceding reduce function

• For (CO)GROUP commands with more than one data set, the
map function adds an extra attribute to identify the data set

27 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

More Nuts and Bolts
• Two map-reduce jobs are required for the ORDER command

– first job samples input to determine quantiles of sort key
– map of second job range partitions input according to quantiles
– reduce of second job performs the sort

• Parallelism
– LOAD: parallelism due to data residing in HDFS
– FILTER and FOREACH: automatic parallelism due to Hadoop
– (CO)GROUP: output from multiple map instances is repartitioned in

parallel to multiple reduce instances

28

Hadoop as a Data Processing Backend
• Pros: Hadoop comes with free

– parallelism
– load-balancing
– fault-tolerance

• Cons: Map-reduce model introduces overheads
– data needs to be materialized and replicated between successive jobs
– additional attributes need to be inserted to identify multiple data sets

• Conclusion
– overhead is often acceptable, given the Pig Latin productivity gains
– Pig does not preclude use of an alternative data processing backend

29

Debugging Environment
• Using an iterative development and debugging cycle is not

efficient in the context of long-running data processing tasks
• Pig Pen

– interactive Pig Latin development
– sandbox data set visualizes result of each step

• Sandbox data set
– must meet objectives of realism, conciseness, and completeness
– generated by random sampling, synthesizing “missing” data, and

pruning redundant tuples

30

Debugging Environment

31 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008

Use Cases at Yahoo!
• Rollup aggregates

– frequency of search terms aggregated over days, week, or months, and
also geographical location

– number of searches per user and average number of searches per user
– Pig Point: data is too big and transient to justify curation in database

• Temporal analysis
– how do search query distributions change over time?
– Pig Point: good use case for the COGROUP command

• Session analysis
– how long is the average user session?
– how many links does a user click before leaving a page?
– how do click patterns vary over time?
– Pig Point: sessions are easily expressed in the nested data model

 32

Motivation for Hive
• Growth of the Facebook data warehouse

– 2007: 15TB of net data
– 2010: 700TB of net data

• Original Facebook data processing infrastructure
– built using a commercial RDBMS prior to 2008
– became inadequate as daily data processing jobs took longer than a day

• Hadoop was selected as a replacement
– pros: petabyte scale and use of commodity hardware
– cons: using it was not easy for end user not familiar with map-reduce
– “Hadoop lacked the expressiveness of [..] query languages like SQL and

users ended up spending hours (if not days) to write programs for even
simple analysis.”

• Hive is intended to address this problem by bridging the gap

33

Data Model
• Unlike Pig Latin, schemas are not optional in Hive
• Hive structures data into well-understood database concepts

like tables, columns, rows, and partitions
• Primitive types

– Integers: bigint (8 bytes), int (4 bytes), smallint (2 bytes), tinyint (1 byte)
– Floating point: float (single precision), double (double precision)
– String

• Complex types
– Associative arrays: map<key-type, value-type>
– Lists: list<element-type>
– Structs: struct<field-name: field-type, …>

• Complex types are templated and can be composed to create
types of arbitrary complexity

34

Creating Tables
• Example

CREATE TABLE t1(
 st string,
 fl float,
 li list<map<string, struct<p1:int, p2:int>>
);

– Query expressions can access fields using the dot operator
– t1.li[0].key gives the struct associated with key of the first

element of the list li

• Tables are serialized and deserialized using serializers and
deserializers provided by Hive

35

Creating Tables
• Legacy data or data from other applications is supported

through custom serializers and deserializers
– SerDe framework
– ObjectInspector interface

• Example
ADD JAR /jars/myformat.jar
CREATE TABLE t2
ROW FORMAT SERDE ‘com.myformat.MySerDe’;

36

Query Language
• HiveQL is a subset of SQL plus some extensions

– from clause sub-queries
– various types of joins: inner, left outer, right outer and outer joins
– Cartesian products
– group by and aggregation
– union all
– create table as select
– useful functions on primitive and complex types

• Limitations
– only equality joins
– joins need to be written using ANSI join syntax
– not support for inserts in existing table or data partition
– all inserts overwrite existing data

37

Inserting Data
• Example

INSERT OVERWRITE TABLE t2
SELECT t3.c2, COUNT(1)
FROM t3
WHERE t3.c1 <= 20
GROUP BY t3.c2;
– OVERWRITE (instead of INTO) keyword to make semantics of insert

statement explicit

• Lack of INSERT INTO, UPDATE, and DELETE enable simple
mechanisms to deal with reader and writer concurrency

• At Facebook, these restrictions have not been a problem
– data is loaded into warehouse daily or hourly
– each batch is loaded into a new partition of the table that corresponds

to that day or hour

38

Inserting Data
• Hive also supports inserting data into HDFS, local directories,

or directly into partitions (more on that later)
• Inserting into HDFS

INSERT OVERWRITE DIRECTORY ‘/output_dir’
SELECT t3.c2, AVG(t3.c1)
FROM t3
WHERE t3.c1 > 20 AND t3.c1 <= 30
GROUP BY t3.c2;

• Inserting into local directory
INSERT OVERWRITE LOCAL DIRECTORY ‘/home/dir’
SELECT t3.c2, SUM(t3.c1)
FROM t3
WHERE t3.c1 > 30
GROUP BY t3.c2;

39

We Gotta Have Map/Reduce!
• HiveQL has extensions to express map-reduce programs
• Example

FROM (
 MAP doctext USING ‘python wc_mapper.py’
 AS (word, cnt)
 FROM docs CLUSTER BY word
) a
REDUCE word, cnt USING ‘python wc_reduce.py’;

• Distribution criteria between mappers and reducers can be
fine tuned using DISTRIBUTE BY and SORT BY

• interchangeable order of FROM, SELECT, MAP, and REDUCE
• MAP can be used without REDUCE clause

40

Data Storage
• Table metadata associates data in a table to HDFS directories

– tables: represented by a top-level directory in HDFS
– table partitions: stored as a sub-directory of the table directory
– buckets: stores the actual data and resides in the sub-directory that

corresponds to the bucket’s partition, or in the top-level directory if
there are no partitions

• Partitioned table are created using the PARTITIONED BY
clause in the CREATE TABLE statement
CREATE TABLE test_part(c1 string, c2 int)
PARTITIONED BY (ds string, hr int);

• New partitions can be created through an INSERT statement
or an ALTER statement that adds a partition to a table

41

Partition Example
INSERT OVERWRITE TABLE test_part
PARTITION(ds=‘2009-01-01’, hr=12)
SELECT * FROM t;
ALTER TABLE test_part
ADD PARTITION(ds=‘2009-02-02’, hr=11);

• Each of these statements creates a new directory
– /…/test_part/ds=2009-01-01/hr=12
– /…/test_part/ds=2009-02-02/hr=11

• Note that partitioning columns are not part of the table data
• HiveQL compiler uses this information to prune directories that

need to be scanned to evaluate a query
SELECT * FROM test_part WHERE ds=‘2009-01-01’;
SELECT * FROM test_part
WHERE ds=‘2009-02-02’ AND hr=11;

42

Hive Architecture
• Driver manages lifecycle of

HiveQL statement as it
moves through Hive

• HiveServer provides Thrift
and JDBC/ODBC interfaces

• Clients use command line
interface, Web UI, or
JDBC/ODBC driver

• Extensibility interfaces
include SerDe, user defined
functions (UDF), user
defined aggregate functions
(UDAF)

43 Figure Credit: “Hive – A Petabyte Scale Data Warehouse Using Hadoop” by A. Thusoo et al., 2010

Hive Architecture
• Metastore

– system catalog and metadata about tables, columns, partitions, etc.
– uses a traditional RDBMS “as this information needs to be served fast”
– backed up regularly
– needs to be able to scale with the number of submitted queries
– only plan compiler talks to Metastore

• Query Compiler
1. parsing HiveQL using Antlr to generate an abstract syntax tree
2. type checking and semantic analysis based on Metastore information
3. naïve rule-based optimization: column pruning, predicate pushdown,

partition pruning, mapping of “side joins”, and join reordering
4. generation of the physical plan by splitting it into multiple map-

reduce and HDFS tasks… magic!

44

Hive Usage at Facebook as of 2010
• Data stored

– 700TB of data in warehouse (2.1PB with three-way replication)
– 5TB of compressed data added daily (15TB after replication)
– typical compression ratio is 1:7 and more

• Data processed
– 75TB of data processed each day
– 7500 jobs submitted to cluster per day

• Data processing task
– more than 50% of the workload are ad-hoc queries
– remaining workload produces data for reporting dashboards
– range from simple summarization tasks to generate rollups and cubes

to more advanced machine learning algorithms

• Hive is used by novice and expert users

45

Hive and Pig Latin
Feature Hive Pig

Language SQL-like PigLatin

Schemas/Types Yes (explicit) Yes (implicit)

Partitions Yes No

Server Optional (Thrift) No

User Defined Functions (UDF) Yes (Java) Yes (Java)

Custom Serializer/Deserializer Yes Yes

DFS Direct Access Yes (implicit) Yes (explicit)

Join/Order/Sort Yes Yes

Shell Yes Yes

Streaming Yes Yes

Web Interface Yes No

JDBC/ODBC Yes (limited) No

46 Source: Lars George (http://www.larsgeorge.com)

http://www.larsgeorge.com/

References
• C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins: Pig

Latin: A Not-So-Foreign Language for Data Processing. Proc.
Intl. Conf. on Management of Data (SIGMOD), pp. 1099-1110,
2008.

• A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang, S.
Anthony, H. Liu, R. Murthy: Hive – A Petabyte Scale Data
Warehouse Using Hadoop. Proc. Intl. Conf. on Data
Engineering (ICDE), pp. 996-1005, 2010.

47

That’s All Folks!

48

“It was much nicer before people started
storing all their data in the Cloud.”

	01-introduction
	Introduction
	Outline
	Cloud Computing
	Service-Based View on Computing
	Terminology
	Utility Computing
	Virtualization
	Spectrum of Virtualization
	Economics of Cloud Users
	Economics of Cloud Users
	Economics of Cloud Users
	Economics of Cloud Providers
	Data Management in the Cloud
	Scientific Data Management Applications
	Scaling Databases
	Revisit Cloud Characteristics
	Parallel Database Architectures
	Revisit Cloud Characteristics
	Revisit Cloud Characteristics
	Challenges
	Challenges
	Challenges

	02-basics-1
	Scalable Data Stores
	Overview
	Sharding, Horizontal, Vertical
	Defining “NoSQL”
	Data Models
	Key/Value Data Model
	Document Data Model
	Column Family Data Model
	Graph Data Model
	Array Data Model
	 SciDB DDL
	Object Data Model

	03-basics-2
	Scalable Consistency and transaction Models
	Brewer’s Conjecture
	Data Consistency
	Availability
	Partition-Tolerance
	Problems with CAP
	Another Problem to Fix
	A Cut at Fixing Both Problems
	A Case for P*/EC
	Key Problems to Overcome
	Key Idea
	Consequences of Determinism
	Strong vs. Weak Consistency
	Eventual Consistency
	Models of Eventual Consistency
	Models of Eventual Consistency
	Configurations
	Configurations
	BASE
	Vector Clocks
	Update Rules for Vector Clocks
	Vector Clock Example
	References

	04-basics-3
	Cloud-Scale File Systems
	Google File System (GFS)
	Design Assumptions
	Design Assumption
	Design Decisions: Interface
	Design Decisions: Architecture
	Design Decisions: Architecture
	Architecture
	Design Decisions: Chunk Size
	Design Decision: Metadata
	Design Decisions: Consistency Model
	Design Decisions: Consistency Model
	Design Decisions: Concurrency Model
	Operations: Writing Files
	Operations: Atomic Record Appends
	Operations: Snapshots
	Namespace Management and Locking
	Replica Placement
	Re-replication and Rebalancing
	Garbage Collection
	Fault Tolerance
	Hadoop Distributed File System (HDFS)
	HDFS Architecture
	Example Cluster Sizes
	References

	05-basics-4
	Map/Reduce
	Map/Reduce
	Motivation
	Programming Model
	Map Function
	Reduce Function
	Map/Reduce Interaction
	MapReduce Example
	More Examples
	More Examples
	More Examples
	Relational Join Example
	Implementation
	Execution Overview
	Execution Overview
	Master Data Structures
	Fault Tolerance
	More Implementation Aspects
	Refinements
	Refinements
	Performance Experiments
	Map/Reduce Criticism
	Grep Task: Load Times
	Grep Task: Execution Times
	Analytical Tasks
	Selection Task
	Aggregation Task
	Aggregation Task
	Join Task
	Join Task
	UDF Aggregation Task
	UDF Aggregation Task
	Map/Reduce vs. Parallel DBMS
	Iterative Map/Reduce
	PageRank Example
	Map/Reduce Implementation
	What’s the Problem?
	Inter-Iteration Locality
	Scheduling Algorithm
	Caching and Indexing
	HaLoop Architecture
	Experiments
	Application Run Time
	Join Time
	Run Time Distribution
	Fix-Point Evaluation
	References

	06-datamodels-1
	Neo4j: Graph Data Model
	Nodes and Relationships
	Operations
	Operations
	Example
	Transactions
	Indexes
	Node Indexes
	Example
	Relationship Indexes
	Example
	Traversal Framework
	Example: Finding Bridges
	Graph Algorithms
	Example: Shortest Path
	Queries
	Example: Average Path Length and Diameter
	Deployments
	REST API
	High Availability Setup
	High Availability Setup
	Data Storage and Memory Management
	Tuning
	Tuning
	Example (Assuming Java Heap Space 3GB)
	Tuning Guidelines

	07-datamodels-2
	Array Databases
	A Different Point in Data Space
	Lots of Science Data is Arrays
	Implicit Information in the Structure
	Example: Image Data
	Example: Bi-gram Frequencies
	Example: Sequencing Data
	Support for Array Storage
	Variations in Array Models
	SciDB Data Model
	 SciDB DDL
	Operations on Arrays
	Subsample
	Concatenate
	Filter
	Aggregate
	Languages for Arrays
	Array Comprehensions
	SciDB: Array Query Language (AQL)
	SciDB: Array Functional Language (AFL)
	Physical Representation
	Physical Representation 2
	Partitioning
	Issue: Neighborhood Ops
	Issue: Logical vs. Physical Size
	Versions
	Application Programming Interface (API)
	Current R Support for Large Data Not Very Transparent
	Accumulate Expressions
	Minimize Data Transfer
	Additional Aspects
	Thanks to

	08-scalablesql
	NewSQL: Flying on ACID
	NewSQL
	Database Landscape
	OLTP Focus
	Premises
	Where Does the Time Go?
	A Bit More Detail
	What are These Different Parts?
	Different Parts 2
	Different Parts 3
	Different Parts 4
	Strategies to Reduce Cost
	Strategies, cont.
	H-Store & VoltDB
	VoltDB Techniques
	VoltDB Techniques 2
	Discussion Problem
	Tables
	VoltDB Techniques 3
	VoltDB Techniques 4
	VoltDB Techniques 5
	Can have partitions of several tables at each site
	Data Placement
	Results
	What VoltDB Isn’t Doing
	System Structure
	In Operation
	Setting up a Database
	Setting up a Database 2
	 Stored Procedure Example
	 Stored Procedure Example cont.
	Setting Up a Database 3
	 Project Definition File
	Starting a Database
	From the Client Side
	What Can You Change?
	High Availability
	Snapshots
	Command Logging
	Views
	Export
	Languages
	Minimal Configuration
	Ongoing Work

	09-dataprocessing
	Pig Latin and Hive
	The Google Stack
	The Hadoop Stack
	Motivation for Pig Latin
	A First Example
	Pig Latin Programs
	Pig Latin Features
	Dataflow Language
	Optimizations
	Optional Schemas
	Nested Data Model
	User-Defined Functions
	Parallelism
	Data Model
	Data Model
	Data Loading
	Per-Tuple Processing
	Per-Tuple Processing
	Selection
	Grouping
	Grouping versus Joining
	Syntactic Sugar
	More Syntactic Sugar
	We Gotta Have Map/Reduce!
	More Pig Latin Commands
	Implementation
	Mapping Pig Latin to Map/Reduce
	More Nuts and Bolts
	Hadoop as a Data Processing Backend
	Debugging Environment
	Debugging Environment
	Use Cases at Yahoo!
	Motivation for Hive
	Data Model
	Creating Tables
	Creating Tables
	Query Language
	Inserting Data
	Inserting Data
	We Gotta Have Map/Reduce!
	Data Storage
	Partition Example
	Hive Architecture
	Hive Architecture
	Hive Usage at Facebook as of 2010
	Hive and Pig Latin
	References
	That’s All Folks!

