
INTRODUCTION 
Data Management in the Cloud 
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Outline 
• Motivation 

– what is cloud computing? 
– what is cloud data management? 

• Challenges, opportunities and limitations 
– what makes data management in the cloud difficult? 

• New solutions 
– key/value, document, column family, graph, array, and object databases 
– scalable SQL databases 

• Application 
– graph data and algorithms 
– usage scenarios 
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Cloud Computing 
• Different definitions for “Cloud Computing” exist 

– http://tech.slashdot.org/article.pl?sid=08/07/17/2117221 

• Common ground of many definitions 
– processing power, storage and software are commodities that are 

readily available from large infrastructure 
– service-based view: “everything as a service (*aaS)”, where only 

“Software as a Service (SaaS)” has a precise and agreed-upon definition 
– utility computing: pay-as-you-go model 
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Service-Based View on Computing 
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Source: Wikipedia (http://www.wikipedia.org) 
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Terminology 
• Term cloud computing usually refers to both 

– SaaS: applications delivered over the Internet as services 
– The Cloud: data center hardware and systems software 

• Public clouds 
– available in a pay-as-you-go manner to the public 
– service being sold is utility computing 
– Amazon Web Service, Microsoft Azure, Google AppEngine 

• Private clouds 
– internal data centers of businesses or organizations 
– normally not included under cloud computing 

5 Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD Lab, UC Berkeley 



Utility Computing 
• Illusion of infinite computing resources  

– available on demand 
– no need for users to plan ahead for provisioning 

• No up-front cost or commitment by users 
– companies can start small 
– increase resources only when there is an increase in need 

• Pay for use on short-term basis as needed 
– processors by the hour and storage by the day 
– release them as needed, reward conservation 

6 Based on: “Above the Clouds: A Berkeley View of Cloud Computing”, RAD Lab, UC Berkeley 



Virtualization 
• Virtual resources abstract from physical resources 

– hardware platform, software, memory, storage, network 
– fine-granular, lightweight, flexible and dynamic 

• Relevance to cloud computing 
– centralize and ease administrative tasks 
– improve scalability and work loads 
– increase stability and fault-tolerance 
– provide standardized, homogenous computing platform through 

hardware virtualization, i.e. virtual machines 
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Spectrum of Virtualization 
• Computation virtualization 

– Instruction set VM (Amazon EC2, 3Tera) 
– Byte-code VM (Microsoft Azure) 
– Framework VM (Google AppEngine, Force.com) 

• Storage virtualization 
• Network virtualization 

EC2 Azure AppEngine Force.com 

Lower-level, 
Less management 

Higher-level, 
More management 

Slide Credit: RAD Lab, UC Berkeley 8 



Unused resources 

Economics of Cloud Users 
• Pay by use instead of provisioning for peak 
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Unused resources 

Economics of Cloud Users 
• Risk of over-provisioning: underutilization 
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Economics of Cloud Users 
• Heavy penalty for under-provisioning 

Lost revenue Lost users 

Re
so

ur
ce

s 

Demand 

Capacity 

Time (days) 
1 2 3 

Re
so

ur
ce

s 

Demand 

Capacity 

Time (days) 
1 2 3 

Re
so

ur
ce

s 
Demand 

Capacity 

Time (days) 
1 2 3 

Slide Credit: RAD Lab, UC Berkeley 11 



Economics of Cloud Providers 
 
 
 
 
 

• Cloud computing is 5-7x cheaper than traditional in-house 
computing 

• Added benefits 
– utilize off-peak capacity (Amazon) 
– sell .NET tools (Microsoft) 
– reuse existing infrastructure (Google) 

Resource Cost in Medium 
Data Center 

Cost in Very Large 
Data Center Ratio 

Network $95/Mbps/month $13/Mbps/month 7.1x 

Storage $2.20/GB/month $0.40/GB/month 5.7x 

Administration ≈140 servers/admin >1000 servers/admin 7.1x 

Slide Credit: RAD Lab, UC Berkeley 

Source: James Hamilton (http://perspectives.mvdirona.com) 
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Data Management in the Cloud 
• Data management applications are potential candidates for 

deployment in the cloud 
– industry: enterprise database system have significant up-front cost that 

includes both hardware and software costs 
– academia: manage, process and share mass-produced data in the cloud 

• Many “Cloud Killer Apps” are in fact data-intensive 
– Batch Processing as with map/reduce 
– Online Transaction Processing (OLTP) as in automated business 

applications 
– Offline Analytical Processing (OLAP) as in data mining or machine 

learning 
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Scientific Data Management Applications 
• Old model  

– “Query the world” 
– data acquisition coupled to a specific hypothesis 

• New model 
– “Download the world” 
– data acquired en masse, in support of many hypotheses 

• E-science examples 
– astronomy: high-resolution, high-frequency sky surveys, … 
– oceanography: high-resolution models, cheap sensors, satellites, … 
– biology: lab automation, high-throughput sequencing, ... 

Slide Credit: Bill Howe, U Washington 14 



Scaling Databases 
• Flavors of database scalability 

– lots of (small) transactions 
– lots of copies of the data 
– lots of processor running on a single query (compute intensive tasks) 
– extremely large data set for one query (data intensive tasks) 

• Data replication 
– move data to where it is needed 
– managed replication for availability and reliability 
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Revisit Cloud Characteristics 
• Compute power is elastic, but only if workload is parallelizable 

– transactional database management systems do not typically use a 
shared-nothing architecture 

– shared-nothing is a good match for analytical data management 

• Scalability 
– in the past: out-of-core, works even if data does not fit in main memory 
– in the present: exploits thousands of (cheap) nodes in parallel 

16 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009. 



Parallel Database Architectures 
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Revisit Cloud Characteristics 
• Data is stored at an untrusted host 

– there are risks with respect to privacy and security in storing 
transactional data on an untrusted host 

– particularly sensitive data can be left out of analysis or anonymized 
– sharing and enabling access is often precisely the goal of using the 

cloud for scientific data sets 

18 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009. 



Revisit Cloud Characteristics 
• Data is replicated, often across large geographic distances 

– it is hard to maintain ACID guarantees in the presence of large-scale 
replication 

– full ACID guarantees are typically not required in analytical applications 

• Virtualizing large data collections is challenging  
– data loading takes more time than starting a VM 
– storage cost vs. bandwidth cost 
– online vs. offline replication 

19 Based on: “Data Management in the Cloud: Limitations and Opportunities”, IEEE, 2009. 



Challenges 
• Trade-off between functionality and operational cost 

– restricted interface, minimalist query language, limited consistency 
guarantees 

– pushes more programming burden on developers 
– enables predictable services and service level agreements 

• Manageability 
– limited human intervention, high-variance workloads, and a variety of 

shared infrastructures 
– need for self-managing and adaptive database techniques 

20 Based on: “The Claremont Report on Database Research”, 2008 



Challenges 
• Scalability 

– today’s SQL databases cannot scale to the thousands of nodes deployed 
in the cloud context 

– hard to support multiple, distributed updaters to the same data set 
– hard to replicate huge data sets for availability, due to capacity (storage, 

network bandwidth, …) 
– storage: different transactional implementation techniques, different 

storage semantics, or both 
– query processing and optimization: limitations on either the plan space 

or the search will be required 
– programmability: express programs in the cloud 

21 Based on: “The Claremont Report on Database Research”, 2008 



Challenges 
• Data privacy and security 

– protect from other users and cloud providers 
– specifically target usage scenarios in the cloud with practical incentives 

for providers and customers 

• New applications: “mash up” interesting data sets 
– expect services pre-loaded with large data sets, stock prices, web 

crawls, scientific data 
– data sets from private or public domain 
– might give rise to federated cloud architectures 

22 Based on: “The Claremont Report on Database Research”, 2008 



SCALABLE DATA STORES 
Data Management in the Cloud 
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Overview 
• New systems have emerged to address requirements of data 

management in the cloud 
– so-called “NoSQL” data stores 
– scalable SQL databases 

• Horizontal Scaling 
– shared nothing 
– replicating and partitioning data over thousands of servers 
– distribute “simple operation” workload over thousands of servers 

• Simple Operations 
– key lookups 
– read and writes of one or a small number of records 
– no complex queries or joins 
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Sharding, Horizontal, Vertical 
• There should be a slide to better explain these concepts in 

order to motivate some of the “NoSQL” data models. 
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Defining “NoSQL” 
• No agreed upon definition 

– “not only SQL” 
– “not relational” 
– … 

• Six key features 
1. ability to horizontally scale simple operation throughput over many 

servers 
2. ability to replicate and distribute (partition) data over many servers 
3. simple call level interface or protocol (in contrast to a SQL binding) 
4. weaker concurrency model than ACID transactions of most relational 

(SQL) database systems 
5. efficient use of distributed indexes and RAM for data storage 
6. ability to dynamically add new attributes to data records 

4 Based on: “Scalable SQL and NoSQL Data Stores” by R. Cattell, 2010 



Data Models 
• Terminology 

– tuple: row in a relational table, where attribute names and types are 
defined by a schema, and values must be scalar 

– document: supports both scalar values and nested documents, and the 
attributes are dynamically defined for each document 

– column family: groups key/value pairs (columns) into families to 
partition and replicate them; one column family is similar to a 
document as new (nested, list-valued) attributes can be added 

– object: analogous to objects in programming languages, but without 
procedural methods 

• Relational 
– data is stored in relations (tables) of tuples (rows) of scalar values 
– queries expressed over arbitrary (combinations of) attributes 
– indexes defined over arbitrary (combinations of) attributes 

 
5 Based on: “Scalable SQL and NoSQL Data Stores” by R. Cattell, 2010 



Key/Value Data Model 
• Interface 

– put(key, value) 
– get(key): value 

• Data storage 
– values (data) are stored based on programmer-defined keys 
– system is agnostic as to the structure (semantics) of the value 

• Queries are expressed in terms of keys 
• Indexes are defined over keys 

– some systems support secondary indexes over (part of) the value 
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Document Data Model 
• Interface 

– set(key, document) 
– get(key): document 
– set(key, name, value) 
– get(key, name): value 

• Data storage 
– documents (data) is stored based on programmer-defined keys 
– system is aware of the (arbitrary) document structure 
– support for lists, pointers and nested documents 

• Queries expressed in terms of key (or attribute, if index exists) 
• Support for key-based indexes and secondary indexes 
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k1 “name”:“fred” 

k2 “name”:“mary”;“age”:“25” 

k3 
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Private Public 

Column Family Data Model 
• Interface 

– define(family) 
– insert(family, key, columns) 
– get(family, key): columns 

• Data storage 
– <name, value, timestamp> triples (so-called columns) are stored based 

on a column family and key; a column family is similar to a document 
– system is aware of (arbitrary) structure of column family 
– system uses column family information to replicate and distribute data 

• Queries are expressed based on key and column family 
• Secondary indexes per column family are typically supported 
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Graph Data Model 
• Interface 

– create: id 
– get(id) 
– connect(id1, id2): id 
– addAttribute(id, name, value) 
– getAttribute(id, name): value 

• Data storage 
– data is stored in terms of nodes and (typed) edges 
– both nodes and edges can have (arbitrary) attributes 

• Queries are expressed based on system ids (if no indexes exist) 
• Secondary indexes for nodes and edges are supported 

– retrieve nodes by attributes and edges by type, start and/or end node, 
and/or attributes 
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Array Data Model  
• Nested multi-dimensional 

arrays 
– cells can be tuples or other 

arrays 
– can have non-integer 

dimensions 
• Additional “History” dimension 

on updatable arrays 
• Ragged arrays allow each row 

or column to have a different 
length 

• Supports multiple flavors of 
“null” 
– array cells can be “EMPTY” 
– user-definable treatment of 

special values 
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   SciDB DDL 

CREATE ARRAY Test_Array  
     < A: integer NULLS, 
       B: double,  
       C: USER_DEFINED_TYPE >  
      [I=0:99999,1000, 10, J=0:99999,1000, 10 ]  
      PARTITION OVER ( Node1, Node2, Node3 )  
      USING block_cyclic(); 
 
 
Attribute names A, B, C 

Index names I, J 

Chunk size 1000 

Overlap 10 
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Object Data Model 
• Interface 

– set(object) 
– get(query): object 

• Data storage 
– typed programming language objects (plus referenced objects) stored 
– attribute can be collection-valued 
– database is aware of the type (schema) of objects 

• Objects are retrieved using queries or by traversal from “roots” 
• Specialized indexes can be expressed based on schema 
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SCALABLE CONSISTENCY AND 
TRANSACTION MODELS 

Data Management in the Cloud 
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Brewer’s Conjecture 
• Three properties that are desirable and expected from real-

world shared-data systems 
– C: data consistency 
– A: availability 
– P: tolerance of network partition 

• At PODC 2000 (Portland, OR), Eric Brewer made the conjecture 
that only two of these properties can be satisfied by a system 
at any given time 

• Conjecture was formalized and confirmed by MIT researchers 
Seth Gilbert and Nancy Lynch in 2002 

• Now known as the CAP Theorem 
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Data Consistency 
• Database systems typically implement ACID transactions 

– Atomicity: “all or nothing” 
– Consistency: transactions never observe or result in inconsistent data 
– Isolation: transactions are not aware of concurrent transactions 
– Durability: once committed, the state of a transaction is permanent 

• Useful in automated business applications 
– banking: at the end of a transaction the sum of money in both accounts 

is the same as before the transaction 
– online auctions: the last bidder wins the auction 

• There are applications that can deal with looser consistency 
guarantees and periods of inconsistency 
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Availability 
• Services are expected to be highly available 

– every request should receive a response 
– it can create real-world problems when a service goes down 

• Realistic goal 
– service should be as available as the network it run on 
– if any service on the network is available, the service should be 

available 
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Partition-Tolerance 
• A service should continue to perform as expected 

– if some nodes crash 
– if some communication links fail 

• One desirable fault tolerance property is resilience to a 
network partitioning into multiple components 

• In cloud computing, node and communication failures are not 
the exception but everyday events 
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Problems with CAP 
• Asymmetry of CAP properties 

– C is a property of the system in general 
– A is a property of the system only when there is a partition 

• There are not three different choices 
– in practice, CA and CP are indistinguishable, since A is only sacrificed 

when there is a partition 

• Used as an excuse to not bother with consistency 
– “Availability is really important to me, so CAP says I have to get rid of 

consistency”  

Source: Daniel Abadi, Yale University 6 



Another Problem to Fix 
• Apart from availability in the face of partitions, there are other 

costs to consistency 
• Overhead of synchronization schemes  
• Latency 

– if workload can be partitioned geographically, latency is not so bad 
– otherwise, there is no way to get around at least one round-trip 

message 

Source: Daniel Abadi, Yale University 7 



A Cut at Fixing Both Problems 
• PACELC 

– In the case of a partition (P), does the system choose availability (A) or 
consistency (C)? 

– Else (E), does the system choose latency (L) or consistency (C)? 

• PA/EL 
– Dynamo, SimpleDB, Cassandra, Riptano, CouchDB, Cloudant 

• PC/EC 
– ACID compliant database systems 

• PA/EC 
– GenieDB 

• PC/EL 
– Existence is debatable 

Source: Daniel Abadi, Yale University 8 



A Case for P*/EC 
• Increased push for horizontally scalable transactional database 

systems 
– cloud computing 
– distributed applications 
– desire to deploy applications on cheap, commodity hardware 

• Vast majority of currently available horizontally scalable 
systems are P*/EL 
– developed by engineers at Google, Facebook, Yahoo, Amazon, etc. 
– these engineers can handle reduced consistency, but it’s really hard, 

and there needs to be an option for the rest of us 

• Also 
– distributed concurrency control and commit protocols are expensive 
– once consistency is gone, atomicity usually goes next → NoSQL 

 
Source: Daniel Abadi, Yale University 9 



Key Problems to Overcome 
• High availability is critical, replication must be a first class 

citizen 
• Today’s systems generally act, then replicate 

– complicates semantics of sending read queries to replicas 
– need confirmation from replica before commit (increased latency) if 

you want durability and high availability 
– In progress transactions must be aborted upon a master failure 

• Want system that replicates then acts 
• Distributed concurrency control and commit are expensive, 

want to get rid of them both 

Source: Daniel Abadi, Yale University 10 



Key Idea 
• Instead of weakening ACID, strengthen it 
• Challenges 

– guaranteeing equivalence to some serial order makes active replication 
difficult 

– running the same set of transactions on two different replicas might 
cause replicas to diverge 

• Disallow any nondeterministic behavior 
• Disallow aborts caused by DBMS 

– disallow deadlock 
– distributed commit much easier if there are no aborts 

Source: Daniel Abadi, Yale University 11 



Consequences of Determinism 
• Replicas produce the same output, given the same input 

– facilitates active replication 
• Only initial input needs to be logged, state at failure can be 

reconstructed from this input log (or from a replica) 
• Active distributed transactions not aborted upon node failure 

– greatly reduces (or eliminates) cost of distributed commit 
– don’t have to worry about nodes failing during commit protocol 
– don’t have to worry about effects of transaction making it to disk 

before promising to commit transaction 
– just need one message from any node that potentially can 

deterministically abort the transaction 
– this message can be sent in the middle of the transaction, as soon as it 

knows it will commit 

Source: Daniel Abadi, Yale University 12 



Strong vs. Weak Consistency 
• Strong consistency 

– after an update is committed, each subsequent access will return the 
updated value 

• Weak consistency 
– the systems does not guarantee that subsequent accesses will return 

the updated value 
– a number of conditions might need to be met before the updated value 

is returned 
– inconsistency window: period between update and the point in time 

when every access is guaranteed to return the updated value 
 

13 Based on: “Eventual Consistency” by W. Vogels, 2008 



Eventual Consistency 
• Specific form of weak consistency 
• “If no new updates are made, eventually all accesses will 

return the last updated values” 
• In the absence of failures, the maximum size of the 

inconsistency window can be determined based on 
– communication delays 
– system load 
– number of replicas 
– … 

• Not a new esoteric idea! 
– Domain Name System (DNS) uses eventual consistency for updates 
– RDBMS use eventual consistency for asynchronous replication or 

backup (e.g. log shipping) 

14 Based on: “Eventual Consistency” by W. Vogels, 2008 



Models of Eventual Consistency 
• Causal Consistency 

– if A communicated to B that it has updated a value, a subsequent 
access by B will return the updated value, and a write is guaranteed to 
supersede the earlier write 

– access by C that has no causal relationship to A is subject to normal 
eventual consistency rules 

• Read-your-writes Consistency 
– special case of the causal consistency model 
– after updating a value, a process will always read the updated value and 

never see an older value 
• Session Consistency 

– practical case of read-your-writes consistency 
– data is accessed in a session where read-your-writes is guaranteed 
– guarantees do not span over sessions 

15 Based on: “Eventual Consistency” by W. Vogels, 2008 



Models of Eventual Consistency 
• Monotonic Read Consistency 

– if a process has seen a particular value, any subsequent access will 
never return any previous value 

• Monotonic Write Consistency 
– system guarantees to serialize the writes of one process 
– systems that do not guarantee this level of consistency are hard to 

program 
 

• Properties can be combined 
– e.g. monotonic reads plus session-level consistency 
– e.g. monotonic reads plus read-your-own-writes 
– quite a few different scenarios are possible 
– it depends on an application whether it can deal with the consequences 

16 Based on: “Eventual Consistency” by W. Vogels, 2008 



Configurations 
• Definitions 

– N: number of nodes that store a replica 
– W: number of replicas that need to acknowledge a write operation 
– R: number of replicas that are accessed for a read operation 

• W+R > N 
– e.g. synchronous replication (N=2, W=2, and R=1) 
– write set and read set always overlap 
– strong consistency can be guaranteed through quorum protocols 
– risk of reduced availability: in basic quorum protocols, operations fail if 

fewer than the required number of nodes respond, due to node failure 

• W+R = N 
– e.g. asynchronous replication (N=2, W=1, and R=1) 
– strong consistency cannot be guaranteed 

17 Based on: “Eventual Consistency” by W. Vogels, 2008 



Configurations 
• R=1, W=N 

– optimized for read access: single read will return a value 
– write operation involves all nodes and risks not to succeed 

• R=N, W=1 
– optimized for write access: write operation involves only one node and 

relies on lazy (epidemic) technique to update other replicas 
– read operation involves all nodes and returns “latest” value 
– durability is not guaranteed in presence of failures 

• W < (N+1)/2 
– risk of conflicting writes 

• W+R <= N 
– weak/eventual consistency 

18 Based on: “Eventual Consistency” by W. Vogels, 2008 



BASE 
• Basically Available, Soft state, Eventually Consistent 
• As consistency is achieved eventually, conflicts have to be 

resolved at some point 
– read repair 
– write repair 
– asynchronous repair 

• Conflict resolution is typically based on a global (partial) 
ordering of operations that (deterministically) guarantees that 
all replicas resolve conflicts in the same way 
– client-specified timestamps 
– vector clocks 

19 



Vector Clocks 
• Generate a partial ordering of events in a distributed system 

and detecting causality violations 
• A vector clock of a system of n processes is an vector of n 

logical clocks (one clock per process) 
– messages contain the state of the sending process's logical clock 
– local “smallest possible values” copy of the global vector clock is kept in 

each process 

• Vector clocks algorithm was independently developed by Colin 
Fidge and Friedemann Mattern in 1988 

20 



Update Rules for Vector Clocks 
• All clocks are initialized to zero 
• A process increments its own logical clock in the vector by one 

– each time it experiences an internal event 
– each time a process prepares to send a message 
– each time a process receives a message 

• Each time a process sends a message, it transmits the entire 
vector clock along with the message being sent 

• Each time a process receives a message, it updates each 
element in its vector by taking the pair-wise maximum of the 
value in its own vector clock and the value in the vector in the 
received message 

 

21 



Vector Clock Example 
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CLOUD-SCALE FILE SYSTEMS 
Data Management in the Cloud 
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Google File System (GFS) 
• Designing a file system for the Cloud 

– design assumptions 
– design choices 

• Architecture 
– GFS Master 
– GFS Chunkservers 
– GFS Clients 

• System operations and interactions 
• Replication 

– fault tolerance 
– high availability 

2 



Design Assumptions 
• System is built from many inexpensive commodity components 

– component failures happen on a routine basis 
– monitor itself to detect, tolerate, and recover from failures 

• System stores a modest number of large files 
– a few million files, typically 100 MB or larger 
– multi-GB files are common and need to be managed efficiently 
– small files are to be supported but not optimized for 

• System workload 
– large streaming reads: successive reads from one client read 

contiguous region, commonly 1 MB or more 
– small random reads: typically a few KB at some arbitrary offset 
– large sequential writes: append data to files; operation sizes similar to 

streaming reads; small arbitrary writes supported, but not efficiently 
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Design Assumption 
• Support concurrent appends to the same file 

– efficient implementation 
– well-defined semantics 
– use case: producer-consumer queues or many-way merging, with 

hundreds of processes concurrently appending to a file 
– atomicity with minimal synchronization overhead is essential 
– file might be read later or simultaneously 

• High sustained bandwidth is more important than low latency 
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Design Decisions: Interface 
• GFS does not implement a standard API such as POSIX 
• Supports standard file operations 

– create/delete 
– open/close 
– read/write 

• Supports additional operations 
– snapshot: creates a copy of a file or a directory tree at low cost, using 

copy on write 
– record append: allows multiple clients to append data to the same file 

concurrently, while guaranteeing the atomicity of each individual 
client’s append 
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Design Decisions: Architecture 
• GFS cluster 

– single master and multiple chunkservers 
– accessed by multiple clients 
– components are typically commodity Linux machines 
– GFS server processes run in user mode 

• Chunks 
– files are divided into fixed-size chunks 
– identified by globally unique chunk handle (64 bit), assigned by master 
– chunks are replicated for reliability, typically the replication factor is 3 
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Design Decisions: Architecture 
• Multiple chunkservers 

– store chunks on local disk as Linux files 
– accept and handle data requests 
– no special caching, relies on Linux’s buffer cache 

• Single master simplifies overall design 
– enables more sophisticated chunk placement and replication, but 

single point of failure 
– maintains file system metadata: namespace, access control 

information, file-to-chunk mapping, current chunk location 
– performs management activities: chunk leases, garbage collection, 

orphaned chunks, chunk migration 
– heart beats: periodic messages sent to chunkservers to give 

instructions or to collect state 
– does not accept or handle data requests 

7 



Architecture 

8 Figure Credit: “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003 

Data messages 
Control messages 



Design Decisions: Chunk Size 
• One of the key parameters 

– set to a large value, i.e. 64 MB 
– to avoid fragmentation, chunkservers use lazy space allocation, i.e. files 

are only extended as needed 

• Advantages 
– reduce interaction between client and master 
– reduce network overhead by using persistent TCP connection to do 

many operations on one chunk 
– reduce size of metadata stored on master 

• Disadvantages 
– small files consist of very few chunks 
– risk of hot spots → increase replication factor for small files 
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Design Decision: Metadata 
• All metadata is kept in the master’s main memory 

– file and chunk namespaces: lookup table with prefix compression 
– file-to-chunk mapping 
– locations of chunk replicas: not stored, but queried from chunkservers 

• Operation log 
– stored on master’s local disc and replicated on remote machines 
– used to recover master in the event of a crash 

• Discussion 
– size of master’s main memory limits number of possible files 
– master maintains less than 64 bytes per chunk 
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Design Decisions: Consistency Model 
• Relaxed consistency model 

– tailored to Google’s highly distributed applications 
– simple and efficient to implement 

• File namespace mutations are atomic 
– handled exclusively by the master 
– namespace locking guarantees atomicity and correctness 
– master’s operation log defines global total order of operations 

• State of file region after data mutation 
– consistent: all clients always see the same data, regardless of the 

replica they read from 
– defined: consistent, plus all clients see the entire data mutation 
– undefined but consistent: result of concurrent successful mutations; all 

clients see the same data, but it may not reflect any one mutation 
– inconsistent: result of a failed mutation 
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Design Decisions: Consistency Model 
• Write data mutation 

– data is written at an application-specific file offset 

• Record append data mutation  
– data (“the record”) is appended atomically at least once even in the 

presence of concurrent mutations 
– GFS chooses the offset and returns it to the client 
– GFS may insert padding or record duplicates in between 
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Design Decisions: Concurrency Model 
• Implications for applications 

– rely on appends rather than overwrites 
– checkpointing 
– application-level checksums 
– writing self-validating, self-identifying records 

• Typical use cases (or “hacking around relaxed consistency”) 
– writer generates file from beginning to end and then atomically 

renames it to a permanent name under which it is accessed 
– writer inserts periodical checkpoints, readers only read up to 

checkpoint 
– many writers concurrently append to file to merge results, reader skip 

occasional padding and repetition using checksums 

13 



Operations: Writing Files 
• client ↔ master (1, 2) 

– chunkserver with chunk lease 
– chunkservers with replicas 

• client → chunkservers 
– push data to chunkservers (3) 
– write request to primary (4) 

• primary → secondary 
– forward write request (5) 

• secondary → primary 
– operation status (6) 

• primary → client 
– operation status 

14 Figure Credit: “The Google File System” by S. Ghemawat, H. Gobioff, and S.-T. Leung, 2003 



Operations: Atomic Record Appends 
• Follows previous control flow with only little extra logic 

– client pushes data to all replicas of the last chunk of the file (3’) 
– client sends its request to the primary replica (4) 

• Additionally, primary checks if appending the record to the 
chunk exceeds the maximum chunk size (64 MB) 
– yes: primary and secondary pad the chunk to the maximum size; 

primary instructs client to retry operation on the next chunk 
– no: primary appends data to its replica and instructs secondaries to 

write data at the exact same offset 

• To keep worst-case fragmentation low, record appends are 
restricted to at most one fourth of the maximum chunk size 
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Operations: Snapshots 
• Copies a file or directory (almost) instantaneously and with 

minimal interruption to ongoing mutations 
– quickly create branch copies of huge data sets 
– checkpointing the current state before experimenting 

• Lazy copy-on-write approach 
– upon snapshot request, master first revokes any outstanding leases on 

the chunks of the files it is about to snapshot 
– after leases are revoked or have expired, operation is logged to disk 
– in-memory state is updated by duplicating metadata of source file or 

directory tree 
– reference counts of all chunks in the snapshot are incremented by one 
– upon subsequent write request, server detects reference count > 1 and 

allocates a new chunk by replicating the existing chunk 
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Namespace Management and Locking 
• Differences to traditional file systems 

– no per-directory structures that list files in a directory 
– no support for file or directory aliases, e.g. soft and hard links in Unix 

• Namespace implemented as a “flat” lookup table 
– full path name → metadata 
– prefix compression for efficient in-memory representation 
– each “node in the namespace tree” (absolute file or directory path) is 

associated with a read/write lock 
• Each master operation needs to acquire locks before it can run 

– read locks on all “parent nodes” 
– read or write lock on “node” itself 
– file creation does not require a write lock on “parent directory” as 

there is no such structure 
– note metadata records have locks, whereas data chunks have leases 
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Replica Placement 
• Goals of placement policy 

– distribute data for scalability, reliability and availability 
– maximize network bandwidth utilization 

• Background: GFS clusters are highly distributed 
– 100s of chunkservers across many racks 
– accessed from 100s of clients from the same or different racks 
– traffic between machines on different racks may cross many switches 
– in/out bandwidth of rack typically lower than within rack 

• Possible solution: spread chunks across machines and racks 
• Selecting a chunkserver 

– place chunks on servers with below-average disk space utilization 
– place chunks on servers with low number of recent writes 
– spread chunks across racks (see above) 
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Re-replication and Rebalancing 
• Master triggers re-replication when replication factor drops 

below a user-specified goal 
– chunkservers becomes unavailable 
– replica is reported corrupted 
– a faulty disk is disabled 
– replication goal is increased 

• Re-replication prioritizes chunks with a low replication factor, 
chunks of live files, and actively used chunks 

• Master rebalances replicas periodically 
– better disk space utilization 
– load balancing 
– gradually “fill up” new chunkservers 
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Garbage Collection 
• GFS does not immediately reclaim physical storage after a file 

is deleted 
• Lazy garbage collection mechanism 

– master logs deletion immediately by renaming file to a “hidden name” 
– master removes any such hidden files during regular file system scan 

• Orphaned chunks 
– chunks that are not reachable through any file 
– master identifies them in regular scan and deletes metadata 
– uses heart beats to inform chunkservers about deletion 

• Stale replicas 
– detected based on chunk version number 
– chunk version number is increased whenever master grants a lease 
– removed during regular garbage collection 
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Fault Tolerance 
• High availability 

– fast recovery: master and chunkserver designed to recover in seconds; 
no distinction between normal and abnormal termination 

– chunk replication: different parts of the namespace can have different 
replication factors 

– master replication: operation log replicated for reliability; mutation is 
considered committed only once all replicas have written the update; 
“shadow masters” for read-only access 

• Data integrity 
– chunkservers use checksums to detect data corruption 
– idle chunkservers scan and verify inactive chunks and report to master 
– each 64 KB block of a chunk has a corresponding 32 bit checksum 
– if a block does not match its check sum, client is instructed to read from 

different replica 
– checksums optimized for write appends, not overwrites 
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Hadoop Distributed File System (HDFS) 
• Open-source clone of GFS 

– similar assumptions 
– very similar design and architecture 

• Differences 
– no support for random writes, append only 
– emphasizes platform independence (implemented in Java) 
– possibly, HDFS does not use a lookup table to manage namespace 
– terminology (see next bullet) 

• “Grüezi, redet si Schwyzerdütsch?” 
– namenode → master 
– datanode → chunkserver 
– block → chunk 
– edit log → operation log 

22 



HDFS Architecture 

23 Figure Credit: “HDFS Architecture Guide” by D. Borthakur, 2008 



Example Cluster Sizes 
• GFS (2003) 

– 227 chunkservers 
– 180 TB available space, 155 TB used space 
– 737k files, 232k dead files, 1550k chunks 
– 60 MB metadata on master, 21 GB metadata on chunkservers 

• HDFS (2010) 
– 3500 nodes 
– 60 million files, 63 million blocks, 2 million new files per day 
– 54k block replicas per datanode 

 
– all 25k nodes in HDFS clusters at Yahoo! provide 25 PB of storage 

24 



References 
• S. Ghemawat, H. Gobioff, and S.-T. Leung: The Google File 

System. Proc. Symp. on Operating Systems Principles (SOSP), 
pp. 29-43, 2003. 

• D. Borthakur: HDFS Architecture Guide. 2008. 
• K. Shvachko, H. Kuang, S. Radia, and R. Chansler: The Hadoop 

Distributed File System. IEEE Symp. on Mass Storage Systems 
and Technologies, pp.1-10, 2010. 

25 



MAP/REDUCE 
Data Management in the Cloud 

1 



Map/Reduce 
• Programming model 
• Examples 
• Execution model 
• Criticism 
• Iterative map/reduce 
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Motivation 
• Background and Requirements 

– computations are conceptually straightforward 
– input data is (very) large 
– distribution over hundreds or thousands of nodes 

• Programming model for processing of large data sets 
– abstraction to express simple computations 
– hide details of parallelization, data distribution, fault-tolerance, and 

load-balancing 
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Programming Model 
• Inspired by primitives from functional programming languages 

such as Lisp, Scheme, and Haskell 
• Input and output are sets of key/value pairs 
• Programmer specifies two functions 

– map (k1,v1) → list(k2,v2) 
– reduce (k2,list(v2)) → list(v2) 

• Key and value domains 
– input keys and values are drawn from a different domain than 

intermediate and output keys and values 
– intermediate keys and values are drawn from the same domain as 

output keys and values 
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Map Function 
• User-defined function 

– processes input key/value pair 
– produces a set of intermediate key/value pairs 

• Map function I/O 
– input: read from GFS file (chunk) 
– output: written to intermediate file on local disk 

• Map/reduce library 
– executes map function 
– groups together all intermediate values with the same key 
– “passes” these values to reduce functions 

• Effect of map function 
– processes and partitions input data 
– builds distributed map (transparent to user) 
– similar to “group by” operation in SQL 
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Reduce Function 
• User-defined function 

– accepts one intermediate key and a set of values for that key 
– merges these values together to form a (possibly) smaller set 
– typically, zero or one output value is generated per invocation 

• Reduce function I/O 
– input: read from intermediate files using remote reads on local files of 

corresponding mapper nodes 
– output: each reducer writes its output as a file back to GFS 

• Effect of reduce function 
– similar to aggregation operation in SQL 

6 



Map/Reduce Interaction 

• Map functions create a user-defined “index” from source data 
• Reduce functions compute grouped aggregates based on index 
• Flexible framework 

– users can cast raw original data in any model that they need 
– wide range of tasks can be expressed in this simple framework 
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MapReduce Example 
map(String key, String value): 
   // key:   document name 
   // value: document contents 
   for each word w in input_value: 
      EmitIntermediate(w, “1”); 
 
reduce(String key, Iterator values): 
   // key:    word 
   // values:  
   int result = 0; 
   for each v in values: 
      result += ParseInt(v); 
   Emit(AsString(result)); 
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More Examples 
• Distributed “grep” 

– goal: find positions of a pattern in a set of files 
– map: (File, String) → list(Integer, String), emits a <line#, line> pair for 

every line that matches the pattern 
– reduce: identity function that simply outputs intermediate values 

• Count of URL access frequency 
– goal: analyze Web logs and count page requests 
– map: (URL, String) → list(URL, Integer), emits <URL, 1> for every 

occurrence of a URL 
– reduce: (URL, list(Integer)) → list(Integer), sums the occurrences of 

each URL 

• Workload of first example is in map function, whereas it is on 
the reduce in the second example 
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More Examples 
• Reverse Web-link graph 

– goal: find which source pages link to a target page 
– map: (URL, CLOB) → list(URL, URL), parses the page content and emits 

one <target, source> pair for every target URL found in the source page 
– reduce: (URL, list(URL)) → list(URL), concatenates all lists for one 

source URL 

• Term-vector per host 
– goal: for each host, construct its term vector as a list of <word, 

frequency> pairs 
– map: (URL, CLOB) → list(String, List), parses the page content (CLOB) 

and emits a <hostname, term vector> pair for each document 
– reduce: (String, list(List<String, Integer>)) → list(List<String, Integer>), 

combines all per-document term vectors and emits final <hostname, 
term vector> pairs 
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More Examples 
• Inverted index 

– goal: create an index structure that maps search terms (words) to 
document identifiers (URLs) 

– map: (URL, CLOB) → list(String, URL), parses document content and 
emits a sequence of <word, document id> pairs 

– reduce: (String, list(URL)) → list(URL), accepts all pairs for a given word, 
and sorts and combines the corresponding document ids 

• Distributed sort 
– goal: sort “records” according to a user-defined key 
– map: ( ? , Object) → list(Key, Record), extracts the key from each 

“record” and emits <key, record> pairs 
– reduce: emits all pairs unchanged 
– Map/reduce guarantees that pairs in each partition are processed 

ordered by key, but still requires clever partitioning function to work! 
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Relational Join Example 

• Map function M: “hash on key attribute” 
– ( ? , tuple) → list(key, tuple) 

• Reduce function R: “join on each k value” 
– (key, list(tuple)) → list(tuple) 
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Implementation 
• Based on the “Google computing environment” 

– same assumptions and properties as GFS 
– builds on top of GFS 

• Architecture 
– one master, many workers 
– users submit jobs consisting of a set of tasks to a scheduling system 
– tasks are mapped to available workers within the cluster by master 

• Execution overview 
– map invocations are distributed across multiple machines by 

automatically partitioning the input data into a set of M splits 
– input splits can be processed in parallel 
– reduce invocations are distributed by partitioning the intermediate key 

space into R pieces using a partitioning function, e.g. “hash(key) mod R” 
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Execution Overview 

14 Figure Credit: “MapReduce: Simplified Data Processing on Large Clusters” by J. Dean and S. Ghemawat, 2004 



Execution Overview 
1. Map/reduce library splits input files into M pieces and then starts 

copies of the program on a cluster of machines 
2. One copy is the master, the rest are workers; master assigns M map 

and R reduce tasks to idle workers 
3. Map worker reads its input split, parses out key/value pairs and 

passes them to user-defined map function 
4. Buffered pairs are written to local disk, partitioned into R regions; 

location of pairs passed back to master 
5. Reduce worker is notified by master with pair locations; uses RPC to 

read intermediate data from local disk of map workers and sorts it 
by intermediate key to group tuples by key 

6. Reduce worker iterates over sorted data and for each unique key, it 
invokes user-defined reduce function; result appended to reduce 
partition 

7. Master wakes up user program after all map and reduce tasks have 
been completed 
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Master Data Structures 
• Information about all map and reduce task 

– worker state: idle, in-progress, or completed 
– identity of the worker machine (for non-idle tasks) 

• Intermediate file regions 
– propagates intermediate file locations from map to reduce tasks 
– stores locations and sizes of the R intermediate file regions produced by 

each map task 
– updates to this location and size information are received as map tasks 

are completed 
– information pushed incrementally to workers that have in-progress 

reduce tasks 
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Fault Tolerance 
• Worker failure 

– master pings workers periodically; assumes failure if no response 
– completed/in-progress map and in-progress reduce tasks on failed 

worker are rescheduled on a different worker node 
– dependency between map and reduce tasks 
– importance of chunk replicas 

• Master failure 
– checkpoints of master data structure 
– “given that there is only a single master, failure is unlikely” 

• Failure semantics 
– if user-defined functions are deterministic, execution with faults 

produces the same result as execution without faults 
– rely on atomic commits of map and reduce tasks 
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More Implementation Aspects 
• Locality 

– network bandwidth is scarce resource 
– move computation close to data 
– master takes GFS metadata into consideration (location of replicas) 

• Task granularity 
– master makes O(M + R) scheduling decisions 
– master stores O(M * R) states in memory 
– M is typically larger than R 

• Backup Tasks 
– “stragglers” are a common cause for suboptimal performance 
– as a map/reduce computation comes close to completion, master 

assigns the same task to multiple workers 
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Refinements 
• Partitioning function 

– default function can be replaced by user 
– supports “application-specific” partitioning 

• Ordering guarantees 
– within a give partition, intermediate key/value pairs are processed in 

increasing key order 

• Combiner function 
– addresses significant key repetitions generated by some map functions 
– partial merging of data by map worker, before it is sent over network 
– typically the same code is used as by the reduce function 

• Input and output types 
– support to read input and produce output in several formats 
– user can define their own “readers” and “writers” 
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Refinements 
• Skipping bad records 

– map/reduce framework detects on which record task failed 
– when task is restarted this record is skipped 

• Local execution 
– addresses challenges debugging, profiling and small-scale testing 
– alternative implementation that executes task sequentially on local 

machine 

• Counters 
– counter facility to count occurrences of various events 
– counter values from worker machines propagated to master 
– master aggregates counters from successful tasks 
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Performance Experiments 

21 Figure Credit: “MapReduce: Simplified Data Processing on Large Clusters” by J. Dean and S. Ghemawat, 2004 



Map/Reduce Criticism 
• “Why not use a parallel DBMS instead?” 

– map/reduce is a “giant step backwards” 
– no schema, no indexes, no high-level language 
– not novel at all 
– does not provide features of traditional DBMS 
– incompatible with DBMS tools 

• Performance comparison of approaches to large-scale data 
analysis 
– Pavlo et al. “A Comparison of Approaches to Large-Scale Data Analysis”, 

Proc. Intl. Conf. on Management of Data (SIGMOD), 2009 
– parallel DBMS (Vertica and DBMS-X) vs. map/reduce (Hadoop) 
– original map/reduce task: “grep” from Google paper 
– typical database tasks: selection, aggregation, join, UDF 
– 100-node cluster 
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Grep Task: Load Times 

535 MB/node 1 TB/cluster 

23 

Administrative command 
to “reorganize” data on 

each node 

Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004 



Grep Task: Execution Times 

535 MB/node 1 TB/cluster 
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Time required to 
combine all reduce 

partitions into one result 

Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004 



Analytical Tasks 
CREATE TABLE Documents ( CREATE TABLE UserVisits ( 
   url VARCHAR(100)    sourceIP VARCHAR(16), 
       PRIMARY KEY,    destURL VARCHAR(100), 
   contents TEXT );    visitDate DATE, 
    adRevenue FLOAT, 
CREATE TABLE Rankings (    userAgent VARCHAR(64), 
   pageURL VARCHAR(100)    countryCode VARCHAR(3), 
           PRIMARY KEY,    languageCode VARCHAR(3), 
   pageRank INT,    searchWord VARCHAR(32), 
   avgDuration INT );    duration INT ); 

• Data set 
– 600K unique HTML documents 
– 155M user visit records (20 GB/node) 
– 18M ranking records (1 GB/node) 

25 



Selection Task 
• SQL Query 

SELECT pageURL, pageRank 
FROM Rankings 
WHERE pageRank > X 

• Relational DBMS use index 
on pageRank column 

• Relative performance 
degrades as number of 
nodes increases 

• Hadoop start-up cost 
increase with cluster size 

26 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004 



Aggregation Task 
• Calculate the total ad revenue for each source IP using the user 

visits table 
• Variant 1: 2.5M groups 

SELECT sourceIP, SUM(adRevenue) 
FROM UserVisits 
GROUP BY sourceIP 

• Variant 2: 2,000 groups 
SELECT SUBSTR(sourceIP, 1, 7), SUM(adRevenue) 
FROM UserVisits 
GROUP BY SUBSTR(sourceIP, 1, 7) 
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Aggregation Task 

2.5M Groups 2,000 Groups 

28 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004 



Join Task 

SQL Query 
SELECT INTO Temp  
   UV.sourceIP, 
   AVG(R.pageRank) AS avgPageRank, 
   SUM(UV.adRevenue) AS totalRevenue 
FROM 
   Rankings AS R, UserVisits AS UV 
WHERE R.pageURL = UV.destURL 
  AND UV.visitDate BETWEEN 
         DATE(‘2000-01-15’) AND 
         DATE(‘2000-01-22’) 
GROUP BY UV.sourceIP 
 
SELECT sourceIP,  
       avgPageRank,  
       totalRevenue 
FROM Temp 
ORDER BY totalRevenue DESC LIMIT 1 

Map/reduce program 

• Uses three phases 
– Phase 1: filters records outside 

date range and joins with 
rankings file 

– Phase 2: computes total ad 
revenue and average page rank 
based on source IP 

– Phase 3: produces the record 
with the largest total ad 
revenue 

• Phases run in strict 
sequential order 
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Join Task 

30 Figure Credit: “A Comparison of Approaches to Large-Scale Data Analysis” by A. Pavlo et al., 2004 



UDF Aggregation Task 
• Compute in-link count for each document in the data set 
• SQL Query 

SELECT INTO Temp UDF(contents) FROM Documents 
SELECT url, SUM(value) FROM Temp GROUP BY url 

• Map/reduce program 
– documents are split into lines 
– input key/value pairs: <line number, line contents> 
– map: uses regex to find URLs and emits <URL, 1> for each URL 
– reduce: counts the number of values for a given key 

• Issues 
– DBMS-X: not possible to run UDF over contents stored as BLOB in 

database; instead UDF has to access local file system 
– Vertica: does not currently support UDF, uses a special pre-processor 
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UDF Aggregation Task 
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Map/Reduce vs. Parallel DBMS 
• No schema, no index, no high-level language 

– faster loading vs. faster execution 
– easier prototyping vs. easier maintenance 

• Fault tolerance 
– restart of single worker vs. restart of transaction 

• Installation and tool support 
– easy to setup map/reduce vs. challenging to configure parallel DBMS 
– no tools for tuning vs. tools for automatic performance tuning 

• Performance per node 
– results seem to indicate that parallel DBMS achieve the same 

performance as map/reduce in smaller clusters 
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Iterative Map/Reduce 
• Task granularity 

– one map stage followed by one reduce stage 
– map stage reads from replicated storage 
– reduce stage writes to replicated storage 

• Complex queries typically require several map/reduce phase 
– no fault tolerance between map/reduce phases 
– “data shuffling” between map/reduce phases 
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PageRank Example 

35 Slide Credit: B. Howe, U Washington 

URL Rank 

www.a.com 1.0 

www.b.com 1.0 

www.c.com 1.0 

www.d.com 1.0 

www.e.com 1.0 

URL Rank 

www.a.com 2.13 

www.b.com 3.89 

www.c.com 2.60 

www.d.com 2.60 

www.e.com 2.13 

Initial Rank Table R0 

Rank Table R3 

SourceURL DestURL 

www.a.com www.b.com 

www.a.com www.c.com 

www.c.com www.a.com 

www.e.com www.d.com 

www.d.com www.b.com 

www.c.com www.e.com 

www.e.com www.c.com 

www.a.com www.d.com 

Linkage Table L 

Ri+1 

π(DestURL, γDestURLSUM(Rank)) 

Ri.Rank = Ri.Rank/γURLCOUNT(DestURL) 

⨝ Ri.Url = L.SourceURL 

Ri+1 L 

http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.c.com/
http://www.d.com/
http://www.e.com/
http://www.a.com/
http://www.b.com/
http://www.b.com/
http://www.c.com/
http://www.c.com/
http://www.a.com/
http://www.d.com/
http://www.d.com/
http://www.e.com/
http://www.b.com/
http://www.c.com/
http://www.e.com/
http://www.e.com/
http://www.c.com/
http://www.a.com/
http://www.d.com/


Map/Reduce Implementation 

36 Slide Credit: B. Howe, U Washington 
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What’s the Problem? 

• L is loaded and shuffled in each iteration 
• L never changes 
• Fix-point evaluated as a separate map/reduce task in each 

iteration 

37 Slide Credit: B. Howe, U Washington 
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Inter-Iteration Locality 

• Goal of HaLoop scheduler 
– place map and reduce tasks that occur in different iterations but access 

the same data on the same physical machines 
– thereby increase data re-use between iterations and reduce shuffeling 

• Restriction 
– HaLoop requires that the number of reduce tasks is invariant over 

iterations 

38 Figure Credit: “HaLoop: Efficient Iterative Data Processing on Large Clusters” by Y. Bu et al., 2010 



Scheduling Algorithm 
Input: Node node 
// The current iteration’s schedule; initially empty 
Global variable: Map<Node, List<Partition>> current 
// The previous iteration’s schedule 
Global variable: Map<Node, List<Partition>> previous 
 1: if iteration == 0 then 
 2:    Partition part = hadoopSchedule(node); 
 3:    current.get(node).add(part); 
 4: else 
 5:    if node.hasFullLoad() then 
 6:       Node substitution = findNearestIdleNode(node); 
 7:       previous.get(substitution).addAll(previous.remove(node)); 
 8:       return; 
 9:     end if 
10:     if previous.get(node).size() > 0 then 
11:        Partition part = previous.get(node).get(0); 
12:        schedule(part, node); 
13:        current.get(node).add(part); 
14:        previous.remove(part); 
15:     end if 
16: end if 

39 Slide Credit: B. Howe, U Washington 

Same as Hadoop 

Find a susbtitution 

Iteration-local schedule 



Caching and Indexing 
• HaLoop caches loop-invariant data partitions on a physical 

node’s local disk to reduce I/O cost 
• Reducer input cache 

– enabled if intermediate table is loop-invariant 
– recursive join, PageRank, HITS, social network analysis 

• Reducer output cache 
– used to reduce costs of evaluating fix-point termination costs 

• Mapper input cache 
– aims to avoid non-local data reads in non-initial iterations 
– K-means clustering, neural network analysis 

• Cache reloading 
– host node fails 
– host node has full load and a map or reduce task must be scheduled on 

a different substitution node 

40 



HaLoop Architecture 

41 Figure Credit: “HaLoop: Efficient Iterative Data Processing on Large Clusters” by Y. Bu et al., 2010 



Experiments 
• Amazon EC2 

– 20, 50, 90 default small instances 

• Datasets 
– billions of triples (120 GB) 
– Freebase (12 GB) 
– Livejournal social network (18 GB) 

• Queries 
– transitive closure 
– PageRank 
– k-means 

42 Slide Credit: B. Howe, U Washington 



Application Run Time 
Transitive Closure 
(Triples Dataset, 90 nodes) 

PageRank 
(Freebase Dataset, 90 nodes)  

43 Slide Credit: B. Howe, U Washington 



Join Time 
Transitive Closure 
(Triples Dataset, 90 nodes) 

PageRank 
(Freebase Dataset, 90 nodes)  

44 Slide Credit: B. Howe, U Washington 



Run Time Distribution 
Transitive Closure 
(Triples Dataset, 90 nodes) 

PageRank 
(Freebase Dataset, 90 nodes)  

45 Slide Credit: B. Howe, U Washington 



Fix-Point Evaluation 
RageRank 
(Livejournal Dataset, 50 nodes) 

PageRank 
(Freebase Dataset, 90 nodes)  

46 Slide Credit: B. Howe, U Washington 
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NEO4J: GRAPH DATA MODEL 
Data Management in the Cloud 

1 



Nodes and Relationships 
• Nodes 

– have a system-assigned id 
– can have key/value properties 
– there is a reference node (“starting point” into the node space) 

• Relationships 
– have a system-assigned id 
– are directed 
– have a type 
– can have key/value properties 

• Key/value properties 
– values always stored as strings 
– support for basic types and arrays of basic types 
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Operations 
• Nodes are managed using the GraphDatabaseService 

interface 
– createNode() creates and returns a new node 
– getNodeById(id) returns the node with the given id 
– getReferenceNode() returns the reference node 
– getAllNodes() returns an iterator over all nodes 

• Relationships are managed using the Node interface 
– createRelationshipTo(target,type) creates and returns a 

relationship 
– getRelationships(direction,types) returns an iterator 

over a node’s relationships 
– hasRelationship(type,direction) queries the existence of 

a certain relationship 
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Operations 
• Relationships are also managed using the 
GraphDatabaseService interface 
– getRelationshipById(id) retrieves a relationship by id 
– but there is no getAllRelationships() method… 

• Node and relationship properties are managed using the 
PropertyContainer interface 
– setProperty(key,value) sets (or creates) a property 
– getProperty(key) returns a property value (or throws exception) 
– hasProperty(key) checks if a key/value property exists 
– removeProperty(key) deletes a key/value property 
– getPropertyKeys() returns all the keys of a node’s properties 

• Nodes and relationships are deleted using the corresponding 
method in the Node and Relationship interfaces 
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Example 
GraphDatabaseService db = ... 
Transaction tx = db.beginTx(); 
try { 
   Node mike = db.createNode(); 
   mike.setProperty(“name”, “Michael”); 
   Node pdx = db.createNode(); 
   Relationship edge = mike.createRelationshipTo(pdx, LIVES_IN); 
   edge.setProperty(“years”, new int[] { 2010, 2011, 2012 }); 
   for (edge: pdx.getRelationship(LIVES_IN, INCOMING)) { 
      Node node = edge.getOtherNode(pdx); 
   } 
   tx.success(); 
} catch (Exception e) { 
   tx.fail(); 
} finally { 
   tx.finish(); 
} 
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Transactions 
• Unlike other “NoSQL” systems, Neo4j supports transactions 

and ACID properties 
• All modifications to data must be wrapped in transactions 

– default isolation level is READ_COMMITTED 
– data retrieved by traversals is not protected from modification by other 

transactions 
– non-repeatable reads may recur as only write locks are held until the 

end of the transaction  
– it is possible to achieve higher isolation levels by manually acquiring 

locks on nodes and relationships 
– locks are acquired at the node and relationship level 
– deadlock detection is built into the core transaction management and 

causes Neo4j to throw an exception 
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Indexes 
• Neo4j does not support any value-based retrieval of nodes and 

relationships without indexes 
• Interface IndexManager supports the creation of node and 

relationship indexes 
– forNodes(name,configuration) returns (or creates) a node 

index 
– forRelationships(name,configuration) returns (or 

creates) a relationship index 

• Behind the scenes, Neo4j indexes is based on Apache Lucene 
as an indexing service 

• Values are indexed as strings by default, but a so-called value 
context can be used to support numeric indexing 

• Neo4j also supports auto indexers for nodes and relationships 
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Node Indexes 
• Index maintenance 

– add(node,key,value) indexes the given node based on the given 
key/value property 

– remove(node) removes all index entries for the given node 
– remove(node,key) removes all index entries for the given node 

with the given key 
– remove(node,key,value) removes a key/value property from 

the index for the given node  

• Index lookups 
– get(key,value) supports equality index lookups 
– query(key,query) does a query-based index lookup for one key 
– query(query) does a query-based index lookup for arbitrary keys 
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Example 
Index<Node> people = db.index().forNodes(“people_idx”); 
 
// do an exact lookup 
Node mike = people.get(“name”, “Michael”).getSingle(); 
 
// do a query-based lookup for one key 
for (Node node: people.query(“name”, “M* OR m*”)) { 
   System.out.println(node.getProperty(“name”); 
} 
 
// do a general query-based lookup 
for (Node node: people.query(“name:M* AND title:Mr”) { 
   System.out.println(node.getId()); 
} 
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Relationship Indexes 
• Index maintenance is analogous to node indexes 
• Additional index lookup functionality 

– get(key,value,source,target) does an exact lookup for the 
given key/value property, taking the given source and target node into 
account 

– query(key,query,source,target) does a query-based lookup 
for the given key, taking the given source and target node into account 

– query(query,source,target) does a general query-based 
lookup, taking the given source and target node into account 
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Example 
Index<Node> homes = db.index().forRelationships(“homes_idx”); 
 
// do an exact lookup 
Relationship r = homes.get(“span”, “2”, mike, pdx).getSingle(); 
 
// do a query-based lookup for one key 
for (Relationship r: homes.query(“span”, “*”, mike, null)) { 
   System.out.println(r.getOtherNode(mike)); 
} 
 
// do a general query-based lookup 
for (Relationship r:  
         homes.query(“type:LIVES_IN AND span:3”, mike, null) { 
   System.out.println(r.getOtherNode(mike)); 
} 
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Traversal Framework 
• Neo4j provides a traversal interface to specify navigation 

through a graph 
– based on callbacks 
– executed lazily on demand 

• Main concepts 
– expanders define what to traverse, typically in terms of relationships 

direction and type 
– the order guides the exploration, i.e. depth-first or breadth-first 
– uniqueness indicates whether nodes, relationships, or paths are visited 

only once or multiple times 
– an evaluator decides what to return and whether to stop or continue 

traversal beyond the current position 
– a starting node where the traversal will begin 
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Example: Finding Bridges 
List<Relationship> result = ... 
Set<Node> roots = ... 
 
IndexManager manager = this.database.index(); 
Index<Node> dfsNodes = manager.forNodes("dfsNodes"); 
RelationshipIndex treeEdges = manager.forRelationships("treeEdges"); 
 
TraversalDescription traversal = new TraversalDescriptionImpl(); 
traversal = traversal.order(Traversal.postorderDepthFirst()); 
traversal = traversal.relationships(EDGE, OUTGOING); 
 
int treeId = 0; 
while (!roots.isEmpty()) { 
   Node root = roots.iterator().next(); 
   Traverser traverser = traversal.traverse(root); 
   int pos = 0; 
   for (Node node : traverser.nodes()) { 
      dfsNodes.add(node, P_DFSPOS, treeId + ":" + pos); 
      roots.remove(node); 
      pos++; 
   } 
   for (Relationship relationship : traverser.relationships()) { 
      treeEdges.add(relationship, P_ID, relationship.getId()); 
   } 
   result.addAll(this.tarjan(dfsNodes, treeEdges, treeId)); 
   treeId++; 
} 
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Graph Algorithms 
• Some common graph algorithms are directly supported 

– all shortest paths between two nodes up to a maximum length 
– all paths between two nodes up to a maximum depth 
– all simple paths between two nodes up to a maximum length 
– “cheapest” path based on Dijkstra or A* 

• Class GraphAlgoFactory provides methods to create 
PathFinders that implement these algorithms 
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Example: Shortest Path 
// unweighted case 
PathFinder<Path> pathFinder = GraphAlgoFactory.shortestPath( 
      Traversal.expanderForTypes(EDGE, OUTGOING), 
      Integer.MAX_VALUE); 
Path path = pathFinder.findSinglePath(source, target); 
for (Node node: path.nodes()) { 
   System.out.println(node); 
} 
 
// weighted case 
PathFinder<WeightedPath> pathFinder = GraphAlgoFactory.dijkstra( 
      Traversal.expanderForTypes(EDGE, OUTGOING), P_WEIGHT); 
Path path = pathFinder.findSinglePath(source, target); 
for (Relationship relationship: path.relationships()) { 
   System.out.println(relationship); 
} 
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Queries 
• Support for the Cypher graph query language has recently 

been added to Neo4j 
• Unlike the imperative graph scripting language Gremlin, 

Cypher is a declarative language 
• Cypher is comprised of four main concepts 

– START: starting points in the graph, obtained by element IDs or via 
index lookups 

– MATCH: graph pattern to match, bound to the starting points  
– WHERE: filtering criteria 
– RETURN: what to return 

• Implemented using the Scala programming language 
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Example: Average Path Length and Diameter 
// start n=(nodes_idx, “id:*”) 
// match (n)-[tc:TC_EDGE]->(x) 
// return max(tc.weight), sum(tc.weight), count(tc.weight) 
 
ExecutionEngine engine = new ExecutionEngine(db); 
CypherParser parser = new CypherParser(); 
Query query = parser.parse("start n=(" + IDX_NODES + ",\"" + P_ID 
      + ":*\") match (n)-[tc:" + TC_EDGE.name() 
      + "]->(x) return max(tc." + P_WEIGHT + "), sum(tc." + P_WEIGHT 
      + "), count(tc." + P_WEIGHT + ")"); 
ExecutionResult result = engine.execute(query); 
Float max = (Float) this.getResultValue(result,  
      "max(tc." + P_WEIGHT + ")"); 
Float sum = (Float) this.getResultValue(result,  
      "sum(tc." + P_WEIGHT + ")"); 
Integer count = (Integer) this.getResultValue(result, 
      "count(tc." + P_WEIGHT + ")"); 
Double[] value = new Double[] { max.doubleValue(), 
      sum.doubleValue() / count.intValue() }; 
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Deployments 
• Several deployment scenarios are supported 
• Embedded database 

– wraps around a local directory 
– implements the GraphDatabaseService interface 
– runs in the same process as application, i.e. no client/server overhead 

• Client/server mode 
– server runs as a standalone process 
– provides Web-based administration 
– communicates with clients through REST API 

• High availability setup 
– one master and multiple slaves, coordinated by ZooKeeper 
– supports fault tolerance and horizontal scaling 
– implements the GraphDatabaseService interface 
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REST API 
• Functionality of REST API is analogous to the functionality of 

the Java API 
– http://localhost:7474/db/data/node (nodes) 
– http://localhost:7474/db/data/relationship (relationships) 
– http://localhost:7474/db/data/types (relationship types) 
– http://localhost:7474/db/data/node/927/properties (node properties) 
– http://localhost:7474/db/data/relationship/339/properties 
– http://localhost:7474/db/data/index (indexes) 
– http://localhost:7474/db/data/node/54/traverse (traversals) 
– http://localhost:7474/db/data/node/7311/path (algorithms) 

• JSON documents are used to transfer graph data between 
client and server 

• Give it a rest... 

19 
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High Availability Setup 
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High Availability Setup 
• High availability 

– reads are highly available 
– updates to master are replicated asynchronously to slaves 
– updates to slaves are replicated synchronously to master 
– transactions are atomic, consistent and durable on the master, but 

eventually consistent on slaves 
• Fault tolerance 

– depending on ZooKeeper setup, Neo4j can continue to operate from 
any number of machines down to a single machine 

– machines will be reconnected automatically to the cluster whenever 
the issue that caused the outage (network, maintenance) is resolved 

– if the master fails a new master will be elected automatically 
– if the master goes down any running write transaction will be rolled 

back and during master election no write can take place 
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Data Storage and Memory Management 
• A Neo4j graph database consists of several files 

– neostore.nodestore.db (9 bytes per node) 
– neostore.relationshipstore.db (33 bytes per relationship) 
– neostore.propertystore.db 
– neostore.propertystore.db.strings 
– neostore.propertystore.db.arrays 

• Data in memory is managed in two ways 
– memory mapped database files (see above) 
– object caches that contain Java representations of node and edges 

• Performance tuning 
– Java heap size and garbage collector can be configured 
– sizes of memory mapped files can be configured 
– type of cache can be configured, i.e. none, soft, weak, or strong 
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Tuning 
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Tuning 
• Optimizing for traversals 

– memory map as much as possible of the node and relationship 
database file 

– set object cache type to soft 
– garbage collection issue may occur under high load if frequently 

accessed paths do not fit into memory 

• Optimizing for high throughput property access 
– memory map as much as possible of the property database files 
– set object cache type to weak 

• Optimizing for graphs that fit into memory 
– fully memory map all database files 
– set object cache type to strong 
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Example (Assuming Java Heap Space 3GB) 
// betweenness centrality 
neostore.nodestore.db.mapped_memory=1M 
neostore.relationshipstore.db.mapped_memory=1234M 
neostore.propertystore.db.mapped_memory=814M 
neostore.propertystore.db.strings.mapped_memory=1M 
neostore.propertystore.db.arrays.mapped_memory=0M 
cache_type=weak 
 
// bridges 
neostore.nodestore.db.mapped_memory=1M 
neostore.relationshipstore.db.mapped_memory=750M 
neostore.propertystore.db.mapped_memory=500M 
neostore.propertystore.db.strings.mapped_memory=1M 
neostore.propertystore.db.arrays.mapped_memory=0M 
cache_type=soft 
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Tuning Guidelines 
Primitives RAM Size Heap Size RAM for OS Memory Mapped 

10M 2GB 512MB the rest 100-512MB 

100M 8GB+ 1-4GB 1-2GB the rest 

1B+ 16-32GB+ 4GB+ 1-2GB the rest 

• Or… Buy a solid state drive! 
– “with a solid state drive the heap settings can be configured lower since 

disk access isn’t as expensive, thus making caching less important and 
memory mapping more important” 
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Array Databases 

David Maier 



A Different Point in Data Space 

• Many of the big-data approaches we’ve 
considered have been for web-data … 
… or web analytics 

• Often huge numbers of modest-sized 
items 

• Array data management directed at 
huge individual items 
Single item may need 100s of nodes 

 5/8/2012 David Maier, Portland State University 2 



Lots of Science Data is Arrays 

Remote imaging (up and down) 
Tomographic reconstructions 
Computational simulation outputs 
In-situ sensing 
Next-Generation Sequencing 

Also business apps: finance, pharma 

5/8/2012 David Maier, Portland State University 3 



Implicit Information in the 
Structure 

Logical organization of an array can 
indicate order, adjacency, correlation 
However, meaning is different for 
different arrays 

5/8/2012 David Maier, Portland State University 4 



Example: Image Data 

Might have two dimensions 
corresponding to latitude and longitude 
 Neighboring entries adjoin in space 
 Lose information if you  

rearrange rows or  
columns 

 Operations – smoothing, 
edge detection, object 
extraction 

5/8/2012 David Maier, Portland State University 5 
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Example: Bi-gram Frequencies 

Entries are bi-gram frequencies 
 A(i, j) = number of times word i precedes 

word j in some corpus of text 
 Adjacency doesn’t mean 

much: OK to permute 
rows and columns 
(in the same way) 

 Operations: row or column 
correlations; matrix  
multiplication 

5/8/2012 David Maier, Portland State University 6 



Example: Sequencing Data  
Have 2-D array, indexed by sample ID 
and DNA base position 
  Array element is a read call (A C G T N) 

and a confidence 
 Sample order could be shuffled, but not 

order of reads 
 Operations: aggregate (across base 

position or whole array); “array induction” 
– count values for x in every b1b2xb3b4, 
indexed by (b1, b2, b3, b4)  

 5/8/2012 David Maier, Portland State University 7 



Support for Array Storage 

netCDF, HDF, other interchange 
formats 
Rasdaman – rasters over DBMS 
SQL 1-D arrays 
RAM Layer on MonetDB 
SciDB – relatively new effort 

5/8/2012 David Maier, Portland State University 8 



Variations in Array Models 

Scalar or complex elements 
 Records 
 Nested arrays 

“Ragged” boundaries 
Special values 
Non-integer dimensions 
Updates vs. versions 
 

5/8/2012 David Maier, Portland State University 9 



SciDB Data Model  

Nested multi-dimensional arrays 
 Cells can be tuples or other arrays 
 Can have non-integer dimensions 

 
Additional “History” dimension on 
updatable arrays 
 
Ragged arrays allow each row or 
column to have a different length 

 
Support for multiple flavors of “null” 

 Array cells can be ‘EMPTY’ 
 User-definable treatment of special 

values 
 



   SciDB DDL 

CREATE ARRAY Test_Array  
     < A: integer NULLS, 
       B: double,  
       C: USER_DEFINED_TYPE >  
      [I=0:99999,1000,10, J=0:99999,1000,10 ]  
      PARTITION OVER ( Node1, Node2, Node3 )  
      USING block_cyclic(); 
 

 
chunk 
size 

1000 

overlap 

    10 

attribute 
names 

 A, B, C 

dimension 
names 

      I, J 



Operations on Arrays 

Need to preserve array structure 
Purely structural ops 
Content-based ops 
Linear algebra (if array represents a 
matrix) 
 

5/8/2012 David Maier, Portland State University 12 



Subsample 

Restrict an array by index ranges 

5/8/2012 David Maier, Portland State University 13 
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Concatenate 

Append arrays along specified dimension 

5/8/2012 David Maier, Portland State University 14 
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Filter 

Apply predicate to array elements 
Keeps array shape: Inserts empty elements 

5/8/2012 David Maier, Portland State University 15 
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Aggregate 

Reduce across one or more dimensions 

5/8/2012 David Maier, Portland State University 16 
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Languages for Arrays 

Many proposals, old and new 
 APL: Falkoff, Iverson 
 AML: Marathe, Salem 
 NewS, R, Matlab 
 rasql: Baumann 
 SciQL: Kersten, Zhang, Ivanova, Nes 

5/8/2012 David Maier, Portland State University 17 



Array Comprehensions 

Like MArray in rasql, Build in SciDB docs 
 Supply a spatial domain S 

e.g. [I=0:999, J=0:4999] 

 Have an expression g:S  ET 
(element type) 

BUILD(S,(i,j)  
  <r=A[i,j+100].va, 
s=B[j].ba*5.0> 
      ) 

5/8/2012 David Maier, Portland State University 18 



SciDB: Array Query Language (AQL) 

SELECT Geo-Mean ( T.B ) 
FROM Test_Array T  
WHERE  
    T.I BETWEEN :C1 AND :C2  
AND T.J BETWEEN :C3 AND :C4 
AND T.A = 10 
GROUP BY T.I; 

 
 

User-defined aggregate on an 
attribute B in array T 
 
 
Subsample 
 
Filter 
Group-by 



SciDB: Array Functional 
Language (AFL) 

Lexical syntax for the algebra 
A<va:int>[I=0:999,J=0:4999] 
B<vb:int>[J=0:4999,K=0:2499] 

aggregate( 
  apply( 
    sjoin(A,B,J=J), 
    res=A.va*B.vb 
        ), 

  [I,K],vr=sum(res) 
          ) 

5/8/2012 David Maier, Portland State University 20 



Physical Representation 

Array of records  record of arrays 
Array<va=int, fa=float>[I=0:99, J=0:499]  
<va=Array<int>[I=0:99, J=0:499], 
 fa=Array<float>[I=0:99, J=0:499]> 

Nested array  merge dimensions 
Array<va=int, fa=Array<r=float>[K=0:9]> 
[I=0:99, J=0:499]  
<va=Array<int>[I=0:99, J=0:499], 
 fa=Array<Array<r=float>[K=0:9]>[I=0:99, J=0:499]> 
 
<va=Array<int>[I=0:99, J=0:499], 
 fa=Array<float>[K=0:9, I=0:99, J=0:499]> 

 
 

5/8/2012 David Maier, Portland State University 21 



Physical Representation 2 

Non-integer indices  mapping array 
Array A<a1: int32, a2: double> 
 [I(string)=100, J(double)=1000]  
Array BasicA<a1: int32, a2: double> 
 [BI=0:99, BJ=0:999] 

IMap<I=string>[BI=0:99] 

JMap<J=double>[BJ=0:999] 

 

A = Sjoin(BasicA, IMap, JMap, 
          A.BI=IMap.BI, A.BJ=JMap.BJ) 

 

 

 5/8/2012 David Maier, Portland State University 22 



Partitioning 
Rasdaman tiling of rasters 
 Many options, needn’t be 

uniform 
 Can isolate regions of 

interest 

SciDB chunking 
 Regular divisions along 

dimensions 
 Distribution pattern, e.g., 

block cyclic 
 

5/8/2012 David Maier, Portland State University 23 



Issue: Neighborhood Ops 

Doing a 5 x 5 
stenciled average over 
a chunk requires up to 
8 adjoining chunks 
Can specify an overlap 
(e.g., 2 elements) 

5/8/2012 David Maier, Portland State University 24 



Issue: Logical vs. Physical Size 

Dividing an array evenly in logical space 
can give unequal physical chunks after 
compression 
Equal physical chunks are easier for 
I/O, but makes it hard to align 2 arrays 
SciDB: Equal-sized logical chunks, but 
combine multiple physical chunks into 
an I/O segment 

5/8/2012 David Maier, Portland State University 25 



Versions 

Conceptually, updates in SciDB are 
additions along a History dimension 
Implemented as reverse deltas at a 
chunk granularity 

5/8/2012 David Maier, Portland State University 26 



Application Programming 
Interface (API) 

Can do embedded queries in general-
purpose programming languages, e.g., 
C++, Python 
Would like a more transparent interface 
from analysis environments such as R 
 Dynamically accumulate expressions (à la 

Ohkawa, RIOT) 
 Evaluate intelligently on demand, e.g., 

minimize data movement 
5/8/2012 David Maier, Portland State University 27 



Current R Support for Large Data Not 
Very Transparent 
Native R 
result <- sum(array); 

Chunked access to netCDF 
chunk.size <- 1000;  
num.chunks <- ceiling(total.size/chunk.size); 
for(i in num.chunks) { 
  array.part <- get.var.ncdf(file.path,chunk.size); 
   result <- result + sum(array.part); 
   remove(array.part); gc(); } 

Call out to RDBMS 
result <- sqlQuery(DBconn, "select sum(value) 
                           from array_table"); 

Specialized Libraries 
5/8/2012 David Maier, Portland State University 28 



Accumulate Expressions 

Want to have as large of scope as 
possible before evaluating 

A <- B + C; 

… 

D <- A[1:10]; 

… 

print(A); 

Accumulate to 
print((B + C)[1:10]); 
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Minimize Data Transfer 

Reductive Transforms: less data to 
move (bold = op or arg in SciDB) 
print((B + C)[1:10]);  

print((B + τ(C))[1:10]);  

print((B[1:10] + τ(C[1:10])); 

Consolidating Transforms: fewer 
transfers 
print((B + C) + D);  
print((B + τ(C)) + τ(D));  
print(B+ τ(C + D));  
 

 5/8/2012 David Maier, Portland State University 30 



Additional Aspects 

Needs to be cost based 
print((B%*%C)%*%D);  
print(B%*%(C%*%D)); 
B[20,500], C[500,1], D[1,300] 

 

Other considerations 
Availability of operators in each engine 
Data representation and distribution 
Estimate execution time 

5/8/2012 David Maier, Portland State University 31 
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Thanks to 
SciDB 
Marilyn Matz, Suchi Raman, Paul Brown, Paradigm4 
www.scidb.org 

R-SciDB Interface 
Patrick Leyshock, PSU  

Novartis 
Proof of concept for SciDB in pharmaceuticals 
http://www-

conf.slac.stanford.edu/xldb2011/talks/xldb2011_wed_1100_
Novartis.pdf 



NewSQL: Flying on ACID 

David Maier 

Thanks to H-Store folks, Mike 
Stonebraker, Fred Holahan 



NewSQL 

• Keep SQL (some of it) and ACID 
• But be speedy and scalable 
 

5/8/2012 David Maier, Portland State University 2 



Database Landscape 
From: the 451 group 
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OLTP Focus 

• On-Line Transaction Processing 
• Lots of small reads and updates 
• Many transactions no longer have a 

human intermediary 
For example, buying sports or show tickets 

• 100K+ xact/sec, maybe millions 
• Horses for courses 
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Premises 

• If you want a fast multi-node DBMS, 
you need a fast single-node DBMS. 

• If you want a single-node DBMS to go 
100x as fast, you need to execute 
1/100 of the instructions. 
 You won’t get there on clever disk I/O: 

Most of the data is living in memory 

5/8/2012 David Maier, Portland State University 5 



Where Does the Time Go? 

5/8/2012 David Maier, Portland State University 6 

Recovery 
24% 

Useful 
Work, 4% 

Buffer Pool 
24% 

Locking 
24% 

Latching 
24% 

• TPC-C CPU 
cycles 

• On Shore DBMS 
• Instruction 

counts have 
similar pattern 
 



A Bit More Detail 
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Source: S. Harizopoulos, D. J. 
Abadi, S. Madden, M. 
Stonebraker, “OLTP Under 
the Looking Glass”, 
SIGMOD 2008. 



What are These Different 
Parts? 

Buffer manager: Manages the slots that 
holds disk pages 
 Locate pages by a hash table 
 Employs an eviction strategy (clock scan – 

approximates LRU) 
 Coordinates with recovery system 
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Different Parts 2 

Locks: Logical-level shared and exclusive 
claims to data items and index nodes 
 Locks are typically held until the end of a 

transaction 
 Lock manager must also manage deadlocks 
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Different Parts 3 

Latches: Low-level locks on shared 
structures 
 Free-space list 
 Buffer-pool directory (hash table) 
 Buffer “clock” 
Also, “pinning” pages in the buffer pool 
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Different Parts 4 

Logging: Undo and redo information in 
case of transaction, application or 
system failure 
 Must be written to disk before 

corresponding page can be removed from 
buffer pool 
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Strategies to Reduce Cost 

• All data lives in main memory 
• Multi-copy for high-assurance 

Still need undo info (in memory) for rollback 
and disk-based information for recovery 

• No user interaction in transactions 
• Avoid run-time interpretation and 

planning 
Register all transactions in advance 
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Strategies, cont. 

• Serialize transactions 
Possible, since there aren’t waits for disk I/O 

or user input 
 

• Parallelize 
• Between transactions 
• Between parts of a single transaction 
• Between primary and secondary copies 
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H-Store & VoltDB 

• H-Store is the academic project 
Brown/Yale/MIT 
http://hstore.cs.brown.edu/ 

• VoltDB is the company 
Velocity OnLine Transactions 
http://community.voltdb.com/documentation 

Community and Enterprise editions 
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VoltDB Techniques 

Data in main memory 
 32-way cluster can have a terabyte of MM 
 Don’t need a buffer manager 
 No waiting for disk 
 All in-use data generally resides in MM for 

OLTP systems anyway 
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VoltDB Techniques 2 

Interact only via stored procedures 
 No roundtrips to client during multi-query 

transactions 
 No user waiting 
 Can compile & optimize in advance 
 (Might pre-analyze conflicts) 

 

Need to structure applications carefully 
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Discussion Problem 

Want to support on-line course reg. 
1. Search for courses: number, time 
2. User gets list of matching courses 
3. User chooses a course 
4. Show enrollment status of course 
5. If not full, allow user to register 

Validate prerequisites 
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Tables 

Offering(CRN, Course#, Days, Limit) 

Registered(CRN, SID) 

Student(SID, First, Last, Status) 

Prereq(Course#, PCourse#, MinMark) 

Transcript(SID, Course#, Grade) 

Don’t over-enroll course 
No user input in transaction 
Don’t turn student away if you’ve shown space in 

the course 
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VoltDB Techniques 3 

Serial execution of transactions 
 Avoids locking and latching 
 Avoids thread or process switches 
 Avoids some logging 

Still need undo buffer for rollback 
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VoltDB Techniques 4 

Multiple copies for high availability 
 Can specify k-factor for redundancy: can 

tolerate up to k node failures 
 For complete durability: 
 Snapshot of DB state to disk 
 Log commands to disk 
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VoltDB Techniques 5 

Shared-nothing parallelism: tables can be 
partitioned (or replicated) and spread 
across multiple sites. 
 Each site has its own execution engine and 

data structures 
 No latching of shared structures 
 Does incur some latency on multi-partition 

transactions 
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Can have partitions of several 
tables at each site 

5/8/2012 David Maier, Portland State University 22 
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Results 

• 45X conventional RDBMS 
• 7X Cassandra on key-value workload 
• Has been scaled to 3.3M (simple) 

transactions per second 
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What VoltDB Isn’t Doing 

• Reducing latency: aim is increased 
throughput 
Might take a while to get results back 

• All of SQL (e.g., no NOT in WHERE) 
• Big aggregates 
• Dynamic DDL 
• Ad hoc queries (possible, not fast) 
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System Structure 

Hosts (nodes) each with several sites 
(< #cores) 

Each site has data (partitions), indexes, 
views, stored procedures 

Client can connect to any host 
Encouraged for load balancing and 

availability 
Also, request queue per host 
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In Operation 
1. Client invokes stored procedures with 

parameters 
2. Sent to some host 
3. Rerouted to site with correct partition 
4. SPs execute serially (need coordinator if 

more than one partition) 
5. Partition forwards queries to redundant 

copies and waits 
6. [Rollback if aborted] 
7. Results come back in VoltTable (array) 
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Setting up a Database 
• Schema definition 

• Tables (strings are stored out of line) 
• Indexes, views 

• Select partitioning column (or replicate) 
• Can be different for different tables 
• Needn’t be a key 
• But may want same column to keep 

transactions in one partition: 
Use CRN for Offering and Registered 

5/8/2012 David Maier, Portland State University 28 



Setting up a Database 2 
• Stored procedures 

• In Java and a subset of SQL (some limits) 
• SQL can contain ‘?’ for parameters 
• Must be deterministic (don’t read system 

clock or do network I/O) 
• Can submit groups of SQL statements 
• Can declare that procedure runs in a single 

partition (fastest) 
Multi-partition, multi-round can have waits and 

network delays 
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   Stored Procedure Example 

package fadvisor.procedures; 
import org.voltdb.*;                                        
 
@ProcInfo(                                                  
    singlePartition = true, 
    partitionInfo = "Reservation.FlightID: 0” 
) 
 
public class HowManySeats extends VoltProcedure { 

           
   public final SQLStmt GetSeatCount = new SQLStmt(         
        "SELECT NumOfSeats, COUNT(ReserveID) " + 
        "FROM Flight AS F, Reservation AS R " + 
        "WHERE F.FlightID=R.FlightID AND R.FlightID=?;"); 

 

Presenter
Presentation Notes
AQL deals with ARRAYS, not TABLES.In this case, the Test_Array is 100K x 100K in size, and is divided into 10,000 "chunks" - each of which is 1Kx1K in size. In AQL, attributes are NOT NULL by defaultthe SciDB NULL handling is very different to SQL. (no 3VL) We will support user defined attribute types The "index" elements define both the logical properties of the array (it's size) and the way the array is organized "physically"We will support a variety of physical distribution schemes over the compute nodes that make up a SciDB instance (next release)



   Stored Procedure Example cont. 
public long run(int flightid)  
        throws VoltAbortException { 
                         
        long numofseats; 
        long seatsinuse; 
        VoltTable[] queryresults; 
 
        voltQueueSQL(GetSeatCount, flightid);              
        queryresults = voltExecuteSQL();                    
 
        VoltTable result = queryresults[0];                 
        if (result.getRowCount() < 1) { return -1; }  
        numofseats = result.fetchRow(0).getLong(0);  
        seatsinuse = result.fetchRow(0).getLong(1); 
 
        numofseats = numofseats - seatsinuse;               
        return numofseats; // Return available seats 
    } 
} 



Setting Up a Database 3 

• Compile stored procedures and client 
apps 

• Set up a Project Definition File 
• Schema 
• Stored Procedures 
• Partitioning 
• Groups & permissions 
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   Project Definition File 
<?xml version="1.0" ?> 
<project> 
  <database name="database”> 
    <schemas> 
      <schema path="flight.ddl" /> 
    </schemas> 
    <procedures> 
      <procedure class="procedures.LookupFlight"/> 
      <procedure class="procedures.HowManySeats"/> 
      <procedure class="procedures.MakeReservation"/> 
      <procedure class="procedures.CancelReservation"/> 
      <procedure class="procedures.RemoveFlight"/> 
    </procedures> 
    <partitions> 
      <partition table="Reservation" column="FlightID"/> 
      <partition table="Customer" column="CustomerID"/> 
    </partitions> 
  </database> 
</project> 



Starting a Database 

• Need a configuration file 
<?xml version="1.0"?> 
<deployment> 
   <cluster hostcount=”16” 
            sitesperhost=”6” 
            kfactor=”2” 
   /> 
</deployment> 

• Ask a “lead node” to start VoltDB 
Lead becomes a peer after start up 

• Start client apps 
5/8/2012 David Maier, Portland State University 34 



From the Client Side 

• Connect to DB 
• Call stored procedures 
VoltTable[] results; 
try { results = client.callProcedure("LookupFlight",  
                                     origin,  
                                     dest,                                          

    departtime).getResults(); 
 
} catch (Exception e) { 
     e.printStackTrace(); 
     System.exit(-1); 
} 

• Can also be asynch. with callback 
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What Can You Change? 

• Can add or modify stored procedures 
while DB is running 
Need to coordinate change with client apps 

• Add columns, tables 
Need to snapshot DB, stop, restart, restore 

• Add nodes, change partitions 
Same drill 
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High Availability 

• If a site is unavailable, use a redundant 
copy 

• A node can rejoin a cluster, rebuild the 
partitions it has 
Partition being copied is locked for duration 

• Can specify on a cluster split, only the 
larger group keeps running 

5/8/2012 David Maier, Portland State University 37 



Snapshots 

Can make a consistent copy of snapshot 
to disk 
• Manual or on a schedule 
• Each node stores a file locally 
• Transaction consistent: will maintain 

multiple versions of data temporarily 
• Can restore with changes 

• New column 
• Different partitioning 
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Command Logging 

Can log commands to disk, then play 
back from last snapshot 
• Don’t need to log SELECTs 
• Can be synchronous, will delay client 

responses 
• Snapshot + synchronous command logging 

shouldn’t lose anything 
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Views 

• Views are materialized 
• Must have group-by and return all 

grouping columns 
• Aggregates are COUNT and SUM (??) 
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Export 
VoltDB can be the front end to a 

warehouse or map-reduce engine 
Export-only tables 

 Can only insert into them (but will undo) 
 Contents are spooled to a Connector 
 Export client polls the Connector 
 Export data overflows to disk 

Have an export client that uses Sqoop to 
populate HDFS 
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Languages 
• C# 
• C++ 
• Erlang 
• Java 
• JDBC 
• JSON (HTTP from PHP, Python, Perl, C#) 
• PHP 
• Python 
• Ruby 
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Minimal Configuration 

• OS: 64-bit Linux 
• Dual-core, 64-bit proc. (4-8 cores 

better) 
• 4 Gbytes memory minimum 
• Sun Java SDK 6 
• Network Time Protocol (NTP) 
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Ongoing Work 

VoltDB uses 2-phase commit on multi-
partition procedures 

Considering speculative execution of 
transactions at sites waiting for 
commit/abort 

Would require multi-transaction rollback 
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PIG LATIN AND HIVE 
Data Management in the Cloud 

1 



The Google Stack 

2 

Bigtable 

Map/Reduce 

GFS 

Sawzall 



The Hadoop Stack 

3 

Hadoop 

HDFS 

Pig/Pig Latin 

SQUEEQL! 

Hive 

ZZZZZQL! 



Motivation for Pig Latin 
• Disadvantages of parallel database products 

– prohibitively expensive at Web scale 
– programmers like to write scripts to analyze data 
– SQL is “unnatural” and overly restrictive in this context 

• Limitations of Map/Reduce 
– one-input two-stage data flow is extremely rigid 
– custom code has to be written for common operations such as 

projection and filtering 
– opaque nature of map and reduce function impedes ability of system to 

perform optimization 

• Pig Latin combines “best of both worlds” 
– high-level declarative querying in SQL 
– low-level procedural programming of Map/Reduce 

4 



A First Example 
• Find pages in sufficiently large categories with a high page rank 
• SQL 

SELECT category, AVG(pagerank) 
FROM urls WHERE pagerank > 0.2 
GROUP BY category HAVING COUNT(*) > 106 

• Pig Latin 
good_urls = FILTER urls BY pagerank > 0.2; 
groups = GROUP good_urls BY category; 
big_groups =  
   FILTER groups BY COUNT(good_urls) > 106; 
output =  
   FOREACH big_groups 
   GENERATE category, AVG(good_urls.pagerank); 
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Pig Latin Programs 
• Embody “best of both worlds” approach 
• Sequence of steps 

– similar to imperative language 
– each step carries out a single data transformation 
– appealing to many developers 

• High-level transformations 
– similar to SQL 
– high-level operations render low-level manipulations unnecessary 
– potential for optimization 

• Similar to specifying a query execution plan 
– “automatic query optimization has its limits, especially with 

uncatalogued data, prevalent user-defined functions, and parallel 
execution” 
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Pig Latin Features 
• “Unconventional features that are important for [..] casual ad-

hoc data analysis by programmers” 
– flexible, fully nested data model 
– extensive support for user-defined functions 
– ability to operate over plain input files without any schema 
– debugging environment to deal with enormous data sets 

• Pig Latin programs are executed using Pig 
– compiled into (ensembles of) map-reduce jobs 
– executed using Hadoop 

• Pig is an open-source project in the Apache incubator 
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Dataflow Language 
• “While the SQL approach is good for non-programmers and/or 

small data sets, experienced programmers who must  
manipulate large data sets [..] prefer the Pig Latin approach.” 
– “I much prefer writing in Pig [Latin] versus SQL. The step-by-step 

method of creating a program in Pig [Latin] is much cleaner and simpler 
to use than the single block method of SQL. It is easier to keep track of 
what your variables are, and where you are in the process of analyzing 
your data.” – Jasmine Novak, Engineer, Yahoo! 
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Optimizations 
• Pig Latin programs supply explicit sequence of operations, but 

are not necessarily executed in that order 
• High-level relational-algebra-style operations enable 

traditional database optimization 
• Example 

spam_urls = FILTER urls BY isSpam(url); 
culprit_urls = FILTER spam_urls BY pagerank > 0.8; 
– if isSpam is an expensive function and the FILTER condition is 

selective, it is more efficient to execute the second statement first 
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Optional Schemas 
• Traditional database systems require importing data into 

system-managed tables 
– transactional consistency guarantees 
– efficient point lookups (physical tuple identifiers) 
– curate data on behalf of the user: schema enables other users to make 

sense of the data 

• Pig only supports read-only data analysis of data sets that are 
often temporary 
– stored schemas are strictly optional 
– no need for time-consuming data import 
– user-provided function converts input into tuples (and vice-versa) 
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Nested Data Model 
• Motivation 

– programmers often think in nested data models 
term = Map<documentId, Set<positions>> 

– in a traditional database, data must be normalized into flat table 
term(termId, termString, …) 
term_position(termId, documentId, position) 

• Pig Latin has a flexible, fully nested data model 
– closer to how programmers think 
– data is often already stored in nested fashion in source files on disk 
– expressing processing tasks as sequences of steps where each step 

performs a single transformation requires a nested data model, e.g. 
GROUP returns a non-atomic result 

– user-defined functions are more easily written 
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User-Defined Functions 
• Pig Latin has extensive support for user-defined functions 

(UDF) for custom processing 
– analysis of search logs 
– crawl data 
– click streams 
– … 

• Input and output of UDF follow flexible, nested data model 
– non-atomic input and output 
– only one type of UDF that can be used in all construct 

• UDFs are implemented in Java 
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Parallelism 
• Pig Latin is geared towards Web-scale data 

– requires parallelism 
– does not make sense to consider non-parallel evaluation 

• Pig Latin includes a small set of carefully chosen primitives that 
can easily be parallelized 
– “language primitives that do not lend themselves to efficient parallel 

evaluation have been deliberately excluded” 
– no non-equi-joins 
– no correlated sub-queries 

• Backdoor 
– UDFs can be written to carry out tasks that require this functionality 
– this approach makes user aware of how efficient their programs will be 

and whether they will be parallelized 
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Data Model 
• Atom: contains a simple atomic value 

–  string, number, … 

• Tuple: sequence of fields 
– each field can be any of the data types 

• Bag: collection of tuple with possible duplicates 
– schema of constituent tuples is flexible 

• Map: collection of data items, where each data item has a key 
– data items can be looked up by key 
– schema of constituent tuples is flexible 
– useful to model data sets where schemas change over time, i.e. 

attribute names are modeled as keys and attribute values as values 
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Data Model 

15 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008 



Data Loading 
• First step in a Pig Latin program 

– what are the data files? 
– how are file contents deserialized, i.e. converted into Pig’s data model 
– data files are assumed to contain a bag of tuples 

• Example 
queries = LOAD ‘query_log.txt’ 
          USING myLoad()  
          AS (userId, queryString, timestamp); 
– query_log.txt is the input file 
– file contents are converted into tuples using the custom myLoad 

deserializer 
– the tuples have three attributes named userId, queryString, 
timestamp 
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Per-Tuple Processing 
• Command FOREACH applies some processing to every tuple of 

the data sets 
• Example 

expanded_queries = FOREACH queries GENERATE 
                 userId, expandQuery(queryString); 
– every tuple in the queries bag is processed independently 
– attribute userId is projected 
– UDF expandQuery is applied to the queryString attribute 

• Since there can be no dependence between the processing of 
different tuples, FOREACH can be easily parallelized 
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Per-Tuple Processing 

• GENERATE clause is followed by a list of expressions as 
supported by Pig Latin’s data model 

• For example, FLATTEN can be used to unnest data 
expanded_queries = FOREACH queries GENERATE 
userId, FLATTEN(expandQuery(queryString)); 
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Selection 
• Tuples are selected using the FILTER command 
• Example 

real_queries = FILTER queries BY userId neq ‘bot’; 

• Filtering conditions involve a combination of expressions 
– equality:  == (numeric), eq (strings) 
– inequality:  != (numeric), neq (strings) 
– logical connectors: AND, OR, and NOT 
– user-defined functions 

• Example 
real_queries =  
              FILTER queries BY NOT isBot(userId); 
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Grouping 
• Command COGROUP groups tuples from one or more data sets 
• Example 

grouped_data = COGROUP results BY queryString, 
                       revenue BY queryString; 
– assume (queryString, url, rank) for results 
– assume (queryString, adSlot, amount) for revenue 
– gouped_data will be (queryString, results, revenue) 

• Difference to JOIN 
– JOIN is equivalent to COGROUP followed by taking the cross-product 

of the tuples in the nested bags 
– COGROUP gives access to “intermediate result” (example on next slide) 

• Nested data model enables COGROUP as independent 
operation 
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Grouping versus Joining 

• Example 
url_revenues = FOREACH grouped_data GENERATE 
FLATTEN(distributeRevenue(results, revenue)); 
– distributeRevenue attributes revenue from top slot entirely to 

first result, while revenue from side slot is attributed to all results 
– Since this processing task is difficult to express in SQL, COGROUP is a 

key difference between Pig Latin and SQL 
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Syntactic Sugar 
• Special case of COGROUP is when only one data set is involved 

– can use more intuitive keyword GROUP 
– similar to typical group-by/aggregate queries 

• Example 
grouped_revenue = GROUP revenue BY queryString; 
query_revenues = FOREACH grouped_revenue GENERATE 
              queryString, 
              SUM(revenue.amount) AS totalRevenue; 
– revenue.amount refers to a projection of the nested bag in the 

tuples of grouped_revenue 
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More Syntactic Sugar 
• Pig Latin provides a JOIN key word for equi-joins 
• Example 

join_result = JOIN results BY queryString, 
                   revenue BY queryString; 

 is equivalent to 
temp_var    = COGROUP results BY queryString, 
              revenue BY queryString; 
join_result = FOREACH temp_var GENERATE 
              FLATTEN(results), FLATTEN(revenue); 
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We Gotta Have Map/Reduce! 
• Based on FOREACH, GROUP, and UDFs, map-reduce programs 

can be expressed 
• Example 

map_result = FOREACH input  
             GENERATE FLATTEN(map(*)); 
key_groups = GROUP map_result BY $0; 
output = FOREACH key_groups GENERATE reduce(*); 
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More Pig Latin Commands 
• Pig Latin commands that are similar to SQL counterparts 

– UNION: returns the union of two or more bags 
– CROSS: returns the cross-product of two or more bags 
– ORDER: orders a bag by the specified fields 
– DISTINCT: eliminates duplicate tuples in the bag (syntactic sugar for 

grouping the bag by all fields and projecting out the groups) 

• Nested operations 
– process nested bags within tuples 
– FILTER, ORDER, and DISTINCT can be nested within FOREACH 

• Output 
– command STORE materializes results to a file 
– as in LOAD, default serializer can be replaced in the USING clause 
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Implementation 
• Pig is the execution platform of Pig Latin 

– different systems can be plugged in as data processing backend 
– currently implemented using Hadoop 

• Lazy execution 
– processing is only triggered when STORE command is invoked 
– enables in-memory pipelining and filter reordering across multiple Pig 

Latin commands 

• Logical query plan builder 
– checks that input files and bags being referred to are valid 
– builds a plan for every bag the user defines 
– is independent of data processing backend 

• Physical query plan compiler 
– compiles a Pig Latin program into map-reduce jobs (see next slide) 
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Mapping Pig Latin to Map/Reduce 

• Each (CO)GROUP command is converted into a separate map-
reduce job, i.e. a dedicated map and reduce function 

• Commands between (CO)GROUP commands are appended to 
the preceding reduce function 

• For (CO)GROUP commands with more than one data set, the 
map function adds an extra attribute to identify the data set 
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More Nuts and Bolts 
• Two map-reduce jobs are required for the ORDER command 

– first job samples input to determine quantiles of sort key 
– map of second job range partitions input according to quantiles 
– reduce of second job performs the sort 

• Parallelism 
– LOAD: parallelism due to data residing in HDFS 
– FILTER and FOREACH: automatic parallelism due to Hadoop 
– (CO)GROUP: output from multiple map instances is repartitioned in 

parallel to multiple reduce instances 
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Hadoop as a Data Processing Backend 
• Pros: Hadoop comes with free 

– parallelism 
– load-balancing 
– fault-tolerance 

• Cons: Map-reduce model introduces overheads 
– data needs to be materialized and replicated between successive jobs 
– additional attributes need to be inserted to identify multiple data sets 

• Conclusion 
– overhead is often acceptable, given the Pig Latin productivity gains 
– Pig does not preclude use of an alternative data processing backend 
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Debugging Environment 
• Using an iterative development and debugging cycle is not 

efficient in the context of long-running data processing tasks 
• Pig Pen 

– interactive Pig Latin development 
– sandbox data set visualizes result of each step 

• Sandbox data set 
– must meet objectives of realism, conciseness, and completeness 
– generated by random sampling, synthesizing “missing” data, and 

pruning redundant tuples 
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Debugging Environment 

31 Figure Credit: “Pig Latin: A Not-So-Foreign Language for Data Processing” by C. Olston et al., 2008 



Use Cases at Yahoo! 
• Rollup aggregates 

– frequency of search terms aggregated over days, week, or months, and 
also geographical location 

– number of searches per user and average number of searches per user 
– Pig Point: data is too big and transient to justify curation in database 

• Temporal analysis 
– how do search query distributions change over time? 
– Pig Point: good use case for the COGROUP command 

• Session analysis 
– how long is the average user session? 
– how many links does a user click before leaving a page? 
– how do click patterns vary over time? 
– Pig Point: sessions are easily expressed in the nested data model 
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Motivation for Hive 
• Growth of the Facebook data warehouse 

– 2007:  15TB of net data 
– 2010:  700TB of net data 

• Original Facebook data processing infrastructure 
– built using a commercial RDBMS prior to 2008 
– became inadequate as daily data processing jobs took longer than a day 

• Hadoop was selected as a replacement 
– pros: petabyte scale and use of commodity hardware 
– cons: using it was not easy for end user not familiar with map-reduce 
– “Hadoop lacked the expressiveness of [..] query languages like SQL and 

users ended up spending hours (if not days) to write programs for even 
simple analysis.” 

• Hive is intended to address this problem by bridging the gap 
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Data Model 
• Unlike Pig Latin, schemas are not optional in Hive 
• Hive structures data into well-understood database concepts 

like tables, columns, rows, and partitions 
• Primitive types 

– Integers: bigint (8 bytes), int (4 bytes), smallint (2 bytes), tinyint (1 byte) 
– Floating point: float (single precision), double (double precision) 
– String 

• Complex types 
– Associative arrays: map<key-type, value-type> 
– Lists: list<element-type> 
– Structs: struct<field-name: field-type, …> 

• Complex types are templated and can be composed to create 
types of arbitrary complexity 
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Creating Tables 
• Example 

CREATE TABLE t1( 
 st string,  
 fl float,  
 li list<map<string, struct<p1:int, p2:int>> 
); 

– Query expressions can access fields using the dot operator 
– t1.li[0].key gives the struct associated with key of the first 

element of the list li 

• Tables are serialized and deserialized using serializers and 
deserializers provided by Hive 
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Creating Tables 
• Legacy data or data from other applications is supported 

through custom serializers and deserializers 
– SerDe framework 
– ObjectInspector interface 

• Example 
ADD JAR /jars/myformat.jar 
CREATE TABLE t2 
ROW FORMAT SERDE ‘com.myformat.MySerDe’; 
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Query Language 
• HiveQL is a subset of SQL plus some extensions 

– from clause sub-queries 
– various types of joins: inner, left outer, right outer and outer joins 
– Cartesian products 
– group by and aggregation 
– union all 
– create table as select  
– useful functions on primitive and complex types 

• Limitations 
– only equality joins 
– joins need to be written using ANSI join syntax 
– not support for inserts in existing table or data partition 
– all inserts overwrite existing data 
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Inserting Data 
• Example 

INSERT OVERWRITE TABLE t2 
SELECT t3.c2, COUNT(1) 
FROM t3 
WHERE t3.c1 <= 20 
GROUP BY t3.c2; 
– OVERWRITE (instead of INTO) keyword to make semantics of insert 

statement explicit 

• Lack of INSERT INTO, UPDATE, and DELETE enable simple 
mechanisms to deal with reader and writer concurrency 

• At Facebook, these restrictions have not been a problem 
– data is loaded into warehouse daily or hourly 
– each batch is loaded into a new partition of the table that corresponds 

to that day or hour 
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Inserting Data 
• Hive also supports inserting data into HDFS, local directories, 

or directly into partitions (more on that later) 
• Inserting into HDFS 

INSERT OVERWRITE DIRECTORY ‘/output_dir’ 
SELECT t3.c2, AVG(t3.c1) 
FROM t3 
WHERE t3.c1 > 20 AND t3.c1 <= 30 
GROUP BY t3.c2; 

• Inserting into local directory 
INSERT OVERWRITE LOCAL DIRECTORY ‘/home/dir’ 
SELECT t3.c2, SUM(t3.c1) 
FROM t3 
WHERE t3.c1 > 30 
GROUP BY t3.c2; 
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We Gotta Have Map/Reduce! 
• HiveQL has extensions to express map-reduce programs 
• Example 

FROM ( 
  MAP doctext USING ‘python wc_mapper.py’ 
              AS (word, cnt) 
  FROM docs CLUSTER BY word 
) a 
REDUCE word, cnt USING ‘python wc_reduce.py’; 

• Distribution criteria between mappers and reducers can be 
fine tuned using DISTRIBUTE BY and SORT BY 

• interchangeable order of FROM, SELECT, MAP, and REDUCE 
• MAP can be used without REDUCE clause 
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Data Storage 
• Table metadata associates data in a table to HDFS directories 

– tables: represented by a top-level directory in HDFS 
– table partitions: stored as a sub-directory of the table directory 
– buckets: stores the actual data and resides in the sub-directory that 

corresponds to the bucket’s partition, or in the top-level directory if 
there are no partitions 

• Partitioned table are created using the PARTITIONED BY 
clause in the CREATE TABLE statement 
CREATE TABLE test_part(c1 string, c2 int) 
PARTITIONED BY (ds string, hr int); 

• New partitions can be created through an INSERT statement 
or an ALTER statement that adds a partition to a table 
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Partition Example 
INSERT OVERWRITE TABLE test_part  
PARTITION(ds=‘2009-01-01’, hr=12) 
SELECT * FROM t; 
ALTER TABLE test_part 
ADD PARTITION(ds=‘2009-02-02’, hr=11); 

• Each of these statements creates a new directory 
– /…/test_part/ds=2009-01-01/hr=12 
– /…/test_part/ds=2009-02-02/hr=11 

• Note that partitioning columns are not part of the table data 
• HiveQL compiler uses this information to prune directories that 

need to be scanned to evaluate a query 
SELECT * FROM test_part WHERE ds=‘2009-01-01’; 
SELECT * FROM test_part 
WHERE ds=‘2009-02-02’ AND hr=11; 
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Hive Architecture 
• Driver manages lifecycle of 

HiveQL statement as it 
moves through Hive 

• HiveServer provides Thrift 
and JDBC/ODBC interfaces 

• Clients use command line 
interface, Web UI, or 
JDBC/ODBC driver 

• Extensibility interfaces 
include SerDe, user defined 
functions (UDF), user 
defined aggregate functions 
(UDAF) 
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Hive Architecture 
• Metastore 

– system catalog and metadata about tables, columns, partitions, etc. 
– uses a traditional RDBMS “as this information needs to be served fast” 
– backed up regularly 
– needs to be able to scale with the number of submitted queries 
– only plan compiler talks to Metastore 

• Query Compiler 
1. parsing HiveQL using Antlr to generate an abstract syntax tree 
2. type checking and semantic analysis based on Metastore information 
3. naïve rule-based optimization: column pruning, predicate pushdown, 

partition pruning, mapping of “side joins”, and join reordering 
4. generation of the physical plan by splitting it into multiple map-

reduce and HDFS tasks… magic! 
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Hive Usage at Facebook as of 2010 
• Data stored 

– 700TB of data in warehouse (2.1PB with three-way replication) 
– 5TB of compressed data added daily (15TB after replication) 
– typical compression ratio is 1:7 and more 

• Data processed 
– 75TB of data processed each day 
– 7500 jobs submitted to cluster per day 

• Data processing task 
– more than 50% of the workload are ad-hoc queries 
– remaining workload produces data for reporting dashboards 
– range from simple summarization tasks to generate rollups and cubes 

to more advanced machine learning algorithms 

• Hive is used by novice and expert users 
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Hive and Pig Latin 
Feature Hive Pig 

Language SQL-like PigLatin 

Schemas/Types Yes (explicit) Yes (implicit) 

Partitions Yes No 

Server Optional (Thrift) No 

User Defined Functions (UDF) Yes (Java) Yes (Java) 

Custom Serializer/Deserializer Yes Yes 

DFS Direct Access Yes (implicit) Yes (explicit) 

Join/Order/Sort Yes Yes 

Shell Yes Yes 

Streaming Yes Yes 

Web Interface Yes No 

JDBC/ODBC Yes (limited) No 
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That’s All Folks! 
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“It was much nicer before people started 
storing all their data in the Cloud.” 
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