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Motivation

• Many AR tracking techniques 
require image processing 
procedures

• Usually done by software
– General purpose processing
– Operating system overhead
– Impact on frame rate and image 

resolution
– Increase on clock frequency and 

power consumption



Motivation

• Solution: embedded image 
processing
– Dedicated hardware
– Better performance
– Real parallelism
– Low power consumption
– High resolution images



Goals

• ARCam: framework for the development 
of embedded AR systems

• Library of common AR functions

• Development model based on 
components



Related work

• It was not found any flexible embedded 
solution for AR applications

• Features of existing solutions
– Rely on hybrid hardware-software approaches
– Dedicated to specific applications

• ARCam contribution
– Entirely hardware based
– General component based framework for developing 

embedded AR applications



ARCam development environment

Digital image 
sensor

Altera Stratix II 
FPGA



Framework architecture

ARCam architecture 



Framework architecture
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Implemented components

• Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection
Hardwire
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Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection

• Hardwire



Performance analysis

Ratio (100MHz)
Process sw/hw

Binarization 18.89
Gray Scale 16.10
3x3 Filter 30,428.57
Mean Filter 1,751.15
Edge Detection 1,951.06
Labeling 3,623.64
Centroid 5.26
QuadDetection 27.63



Results

• Two case studies
– Pong

• Prototype AR application rapidly created
• Do not worry about modularization

– Object recognition
• Make use of the componentized design model



Results :: Pong



Results :: Object recognition

Centroid estimation Hardwire
(x,y)



Lessons learned

• Software to hardware translation

• Recursion to iteration

• New possible optimizations



Conclusions

• An architecture was implemented to support 
the development of AR embedded solutions

• A pre-existent infrastructure makes the 
development of hardware based AR applications 
easier and faster

• Performance obtained from the hardware 
implementation was shown to be satisfactory



Future work

• Performance analysis
• Finish QuadDetector
• Hardwire extension

– Z-buffer
– Textures

• Creation of an authoring tool for hardware 
based AR applications

• More complex AR studies
• Different AR approaches

– Markerless AR
• External memory access
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Introduction

• Virtual and 
augmented reality 
applications hosting

• Mobile and 
autonomous 
execution



Introduction

• High performance hardware requirement
– 3D applications
– Visual quality/response time result in high cost!

• Minimum intervention on user’s mobility
– Wearable computer



miva Prototype



miva Prototype

• Intel Pentium-M,1.4GHz
• 512MB DDR (up to 1024MB)
• 855GME Intel, 16-64MB
• Intel 10/100 Mbit/s



miva Prototype

• 4 USB V2.0 ports
• Stereo analog output and SPDif audio 

input, mic and SPDif
• COM1/COM2 RS232
• 5Volts DC 1.5Ah



miva Prototype

36cm

3.4kilograms

31cm 4hours



miva Prototype

• Software setup
– Windows XP Embedded

• Reduced storage space required
• High performance



Software Architecture



Software Architecture

• Application layer modules



Software Architecture

• Service layer
– Hardware abstraction API
– Can be customized and incremented by user
– Provides a high level abstraction for 

communication and persistence services



Software Architecture

• Support layer modules



Potential Applications

mivaDesk
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mivaDesk



Potential Applications

mivaTherm



Conclusions and Future Work

• RV/RA platform
• Easily extensible
• Developed without previous project 

design



Conclusions and Future Work

• miva platform physical evaluation
– Size must be reduced
– A more usable container will be developed
– Use of more accurate pointer devices (data 

glove and tracker)
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