
{jpsml, gfg, gds, jmxnt, ebmx, vt, jk} @cin.ufpe.br

ARCam: an FPGA-based 
Augmented Reality Framework 

Petrópolis, May 2007

SVR 2007

JOÃO PAULO LIMA
Germano Guimarães

Guilherme Silva

JOÃO MARCELO TEIXEIRA
Emanoel Xavier

Veronica Teichrieb
Judith Kelner



Motivation

• Many AR tracking techniques 
require image processing 
procedures

• Usually done by software
– General purpose processing
– Operating system overhead
– Impact on frame rate and image 

resolution
– Increase on clock frequency and 

power consumption



Motivation

• Solution: embedded image 
processing
– Dedicated hardware
– Better performance
– Real parallelism
– Low power consumption
– High resolution images



Goals

• ARCam: framework for the development 
of embedded AR systems

• Library of common AR functions

• Development model based on 
components



Related work

• It was not found any flexible embedded 
solution for AR applications

• Features of existing solutions
– Rely on hybrid hardware-software approaches
– Dedicated to specific applications

• ARCam contribution
– Entirely hardware based
– General component based framework for developing 

embedded AR applications



ARCam development environment

Digital image 
sensor

Altera Stratix II 
FPGA



Framework architecture

ARCam architecture 



Framework architecture

ARToolKit Pipeline

Search for
markers

Find marker 3D
position and
orientation

Identify
markers

Position and
orient objects

Render 3D objects
in video frame



Framework architecture

ARCam architecture 

Search for
markers

Find marker 3D
position and
orientation

Identify
markers

Position and
orient objects

Render 3D objects
in video frame



Framework architecture

ARCam architecture 



Implemented components

• Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling

• Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling
Labeling

• Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection
Hardwire

N11 N12 N13

N21 Pin N23

N31 N32 N33

C11 C12 C13

C21 C22 C23

C31 C32 C33

333332323131

2323in222121

131312121111out

NCNCNC
NCPCNC
NCNCNCP

×+×+×
+×+×+×
+×+×+×=



Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution

• Mean filter
Edge detection
Centroid estimation
Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter

• Edge detection
Centroid estimation
Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection

• Centroid estimation
Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation

• Quad detection
Hardwire



Implemented components

Image binarization 
and gray scaling
Labeling
Generic convolution
Mean filter
Edge detection
Centroid estimation
Quad detection

• Hardwire



Performance analysis

Ratio (100MHz)
Process sw/hw

Binarization 18.89
Gray Scale 16.10
3x3 Filter 30,428.57
Mean Filter 1,751.15
Edge Detection 1,951.06
Labeling 3,623.64
Centroid 5.26
QuadDetection 27.63



Results

• Two case studies
– Pong

• Prototype AR application rapidly created
• Do not worry about modularization

– Object recognition
• Make use of the componentized design model



Results :: Pong



Results :: Object recognition

Centroid estimation Hardwire
(x,y)



Lessons learned

• Software to hardware translation

• Recursion to iteration

• New possible optimizations



Conclusions

• An architecture was implemented to support 
the development of AR embedded solutions

• A pre-existent infrastructure makes the 
development of hardware based AR applications 
easier and faster

• Performance obtained from the hardware 
implementation was shown to be satisfactory



Future work

• Performance analysis
• Finish QuadDetector
• Hardwire extension

– Z-buffer
– Textures

• Creation of an authoring tool for hardware 
based AR applications

• More complex AR studies
• Different AR approaches

– Markerless AR
• External memory access



Virtual Reality
and Multimedia
Research Group

{jmxnt, ds2, gsm, lhcbc, vt, jk} @cin.ufpe.br

miva: Constructing a Wearable 
Platform Prototype

Petrópolis, May 2007

SVR 2007

João Marcelo Teixeira
DALITON SILVA

Guilherme Moura

Luiz Henrique Costa
Veronica Teichrieb

Judith Kelner



Introduction

• Virtual and 
augmented reality 
applications hosting

• Mobile and 
autonomous 
execution



Introduction

• High performance hardware requirement
– 3D applications
– Visual quality/response time result in high cost!

• Minimum intervention on user’s mobility
– Wearable computer



miva Prototype



miva Prototype

• Intel Pentium-M,1.4GHz
• 512MB DDR (up to 1024MB)
• 855GME Intel, 16-64MB
• Intel 10/100 Mbit/s



miva Prototype

• 4 USB V2.0 ports
• Stereo analog output and SPDif audio 

input, mic and SPDif
• COM1/COM2 RS232
• 5Volts DC 1.5Ah



miva Prototype

36cm

3.4kilograms

31cm 4hours



miva Prototype

• Software setup
– Windows XP Embedded

• Reduced storage space required
• High performance



Software Architecture



Software Architecture

• Application layer modules



Software Architecture

• Service layer
– Hardware abstraction API
– Can be customized and incremented by user
– Provides a high level abstraction for 

communication and persistence services



Software Architecture

• Support layer modules



Potential Applications

mivaDesk



Potential Applications

mivaDesk



Potential Applications

mivaTherm



Conclusions and Future Work

• RV/RA platform
• Easily extensible
• Developed without previous project 

design



Conclusions and Future Work

• miva platform physical evaluation
– Size must be reduced
– A more usable container will be developed
– Use of more accurate pointer devices (data 

glove and tracker)


	Slide Number 1
	Motivation
	Motivation
	Goals
	Related work
	ARCam development environment
	Framework architecture 
	Framework architecture 
	Framework architecture 
	Framework architecture
	Implemented components
	Implemented components
	Implemented components
	Implemented components
	Implemented components
	Implemented components
	Implemented components
	Implemented components
	Performance analysis
	Results
	Results :: Pong
	Results :: Object recognition
	Lessons learned
	Conclusions
	Future work
	Slide Number 26
	Introduction
	Introduction
	miva Prototype
	miva Prototype
	miva Prototype
	miva Prototype
	miva Prototype
	Software Architecture
	Software Architecture
	Software Architecture
	Software Architecture
	Potential Applications
	Potential Applications
	Potential Applications
	Conclusions and Future Work
	Conclusions and Future Work

