Sistemas Digitais

Operações Lógicas Mutiplexadores, demultiplexadores

Prof. Manoel Eusebio de Lima
Centro de Informática
Universidade Federal de Pernambuco

Operações com vetores

Possíveis formas de Operação binárias

<u> </u>	Oper. 1	Oper. 2	Resultado	Comentário
----------	---------	---------	-----------	------------

- Escalar Escalar Operação padrão
- Escalar vetor Escalar N\(\tilde{a}\) o existe
- Vetor Escalar Escalar N\u00e3o existe
- Vetor Vetor Operação vetorial
- Vetor Vetor Escalar Operação relacional
- Escalar Vetor Vetor Modo Misto
- Vetor Escalar Vetor

Aplicações lógicas com vetores

- Operações lógicas aplicadas a vetores são simplesmente uma extensão das operações lógicas como aquelas aplicadas a escalares.
- Exemplo:

$$A \neq Z := \overline{A}$$

$$A \stackrel{r}{\not\vdash}$$
 $B \stackrel{r}{\not\vdash}$
 $Z:=A \cdot B$

$$A \stackrel{r}{\not\vdash} Z := A + B$$

Operações Lógicas com vetores

- Operações escalares podem ser estendidas a vetores. Estas operações são importantes no nível de sistema.
- 1. Operação lógica com vetores
- 2. Operações relacionais
- 3. Operações no modo misto

Operações lógicas com vetores

Operação	Representação	significado
NO	$Z:=\overline{X}$	$z_i = \overline{x_i}$
AND	Z:= X .Y	$z_i = x_i . y_i$
OR	Z:= X +Y	$z_i = x_i + y_i$
OR-Exclusivo	$Z:=X\oplus Y$	$z_i = x_i \oplus y_i$
Coincidência	Z:= X o Y	$z_i = x_i \odot y_i$
NAND	$Z:=\overline{X \cdot Y}$	$z_i = \overline{x_i \cdot y_i}$
NOR	$Z:=\overline{X+Y}$	$z_i = \overline{x_i + y_i}$

Operações relacionais com vetores

- Em várias tarefas de processamento é necessário verificar ou melhor comparar dois tipos de informação e tomar alguma decisão lógica. Se a decisão é verdadeira (true) ou falsa(false), em função da comparação solicitada.
- Matematicamente isto é feito através de um operador relacional. Estes operadores operam sobre vetores e produzem um resultado escalar.

Operações relacionais básicas:

< menor que > maior que

≤ menor ou igual a ≥ maior ou igual a

= igual ≠ não igual

Aplicações - operações relacionais

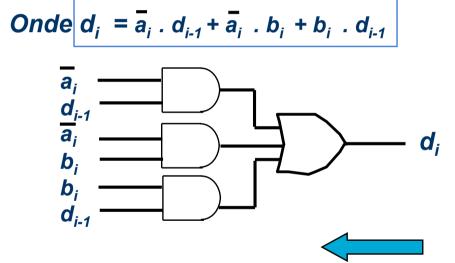
- Na realização de operações relacionais deve-se tomar cuidado com o domínio dos operandos. Os operandos devem pertencer ao mesmo domínio (inteiros, ASCII, EBCDIC, ...)
- Exemplo

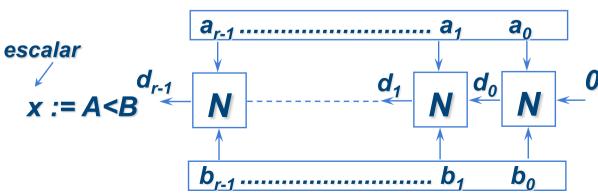
$$x := A < B$$

Para realizarmos tal operação devemos decidir qual código (domínio) será usado para representar a informação correspondente aos vetores A e B. Por exemplo A e B são números binários positivos.

Considere: A:= $[a_{r-1}, a_{r-2}, a_0]$ e B:= $[b_{r-1}, b_{r-2}, b_0]$

A idéia é começar a avaliar os dois vetores da direita para esquerda até encontrarmos dois bits diferentes. Se $a_i = 0$ e $b_i = 1$, então sabemos que A <B e fazemos um certo $d_i = 1$. Este d_i funciona como um bit auxiliar para identificar a relação A < B.




Aplicações - operações relacionais

A tabela verdade para o sub-circuito que gera esta função pode ser dada por:

$$x := A < B$$

ai	b_i	d _{i-1}	di
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Operações no modo misto

- Existem operações onde nós desejamos combinar um escalar x com um vetor para formar um outro vetor.
- Para tal convencionamos que sendo x um escalar e Y e Z vetores, façamos:

<operação> no modo misto se

- 1. <operação> é uma das operações básicas
- 2. $Z := x < peração > Y implica que <math>z_i := x < peração > y_i$, para $i = x < peração > y_i$ 1,2,...,r
- Algumas operações no modo misto

$$Z:=x.Y$$

$$z_i := x \cdot y_i$$

 $i = 1, 2, r$

$$z_i := x \cdot y_i$$
 $Z:= [0] \text{ se } x=0$
 $i = 1,2,r$ $Y \text{ se } x=1$

$$Z := x+Y$$

$$z_i := x + y_i$$

 $i = 1.2....$

$$z_i := x + y_i$$
 $Z:= Y \text{ se } x=0$
 $i = 1,2,r$ $[1,1,...] \text{ se } x=1$

Aplicações - modo misto

Modo Misto

Modo misto é importante quando queremos selecionar um vetor de um grupo de valores.

Suponha um circuito com três entradas W, X e Y e desejamos controlar qual vetor nós devemos usar na computação. Este é o princípio da multiplexação.

$$Z:=(a_1.W)+(a_2.X)+(a_3.Y)$$

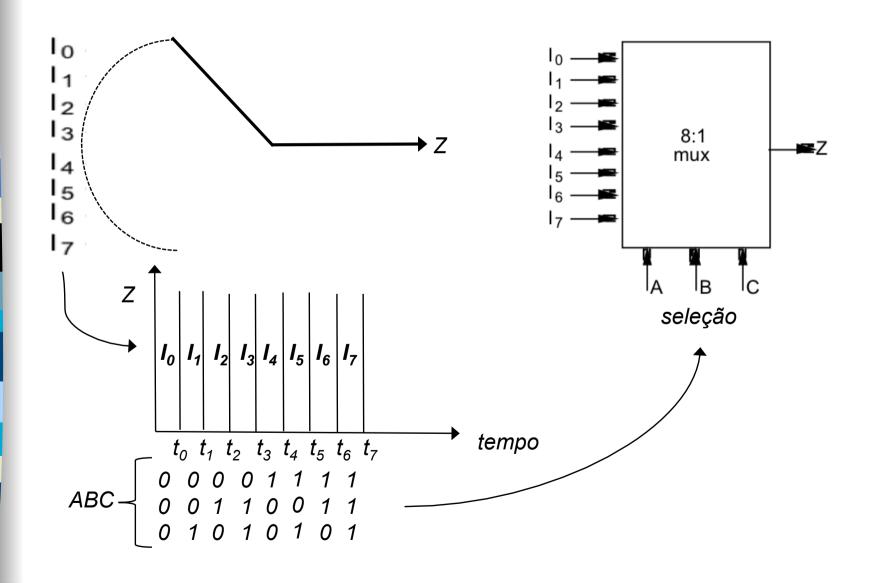
Onde:

1. se
$$a_1 = 1$$
; $a_2 = 0$; $a_3 = 0$; $Z := (1.W) + (0.X) + (0.Y) := W$

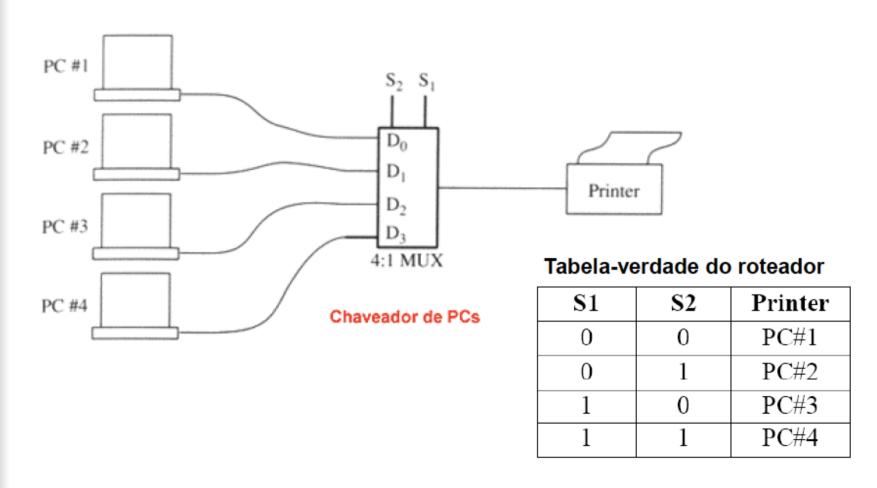
2. se
$$a_1 = 0$$
; $a_2 = 1$; $a_3 = 0$; $Z := (0.W) + (1.X) + (0.Y) := X$

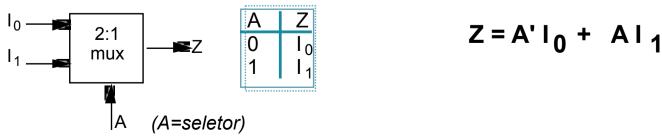
3. se
$$a_1 = 0$$
; $a_2 = 0$; $a_3 = 1$; $Z := (0.W) + (0.X) + (1.Y) := Y$

Estas idéias podem ser expandidas em expressões relacionais ou expressões lógicas para computar valores de <u>a</u> nas expressões acima. Estes escalares (<u>a's</u>) são chamados variáveis de controle.

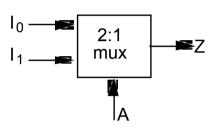

Aplicações

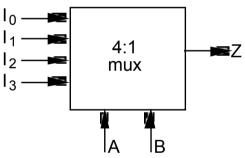
Multiplexadores/Decodificadores

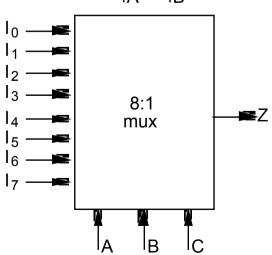

Multiplexação



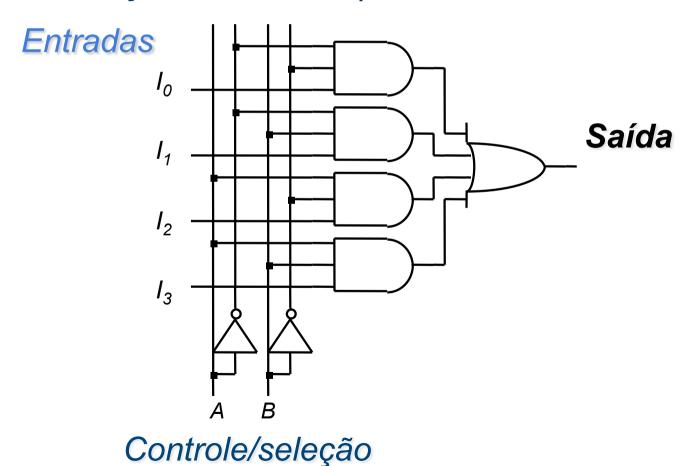
Multiplexação - aplicaçãqo




- Conceito geral
 - A seleção de 2ⁿ entradas é feitas através de n linhas de controle que endereçam cada uma destas entradas para a saída.
 - Cada entrada possui um endereço determinado, o qual é, em geral, associado a um minitermo.
 - A saída recebe o valor da entrada correspondente ao endereço escolhido.
- Exemplo de um multiplexador/selector de duas entradas e uma saída (mux 2->1)



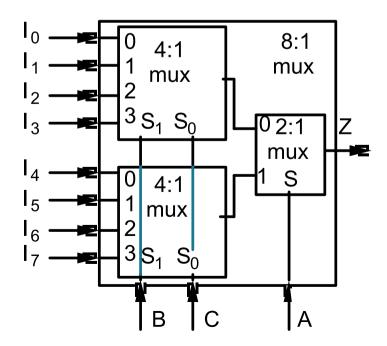
$$Z = A' I_0 + AI_1$$



A seleção em um multiplexador pode ser dado em geral por: n = número de variáveis

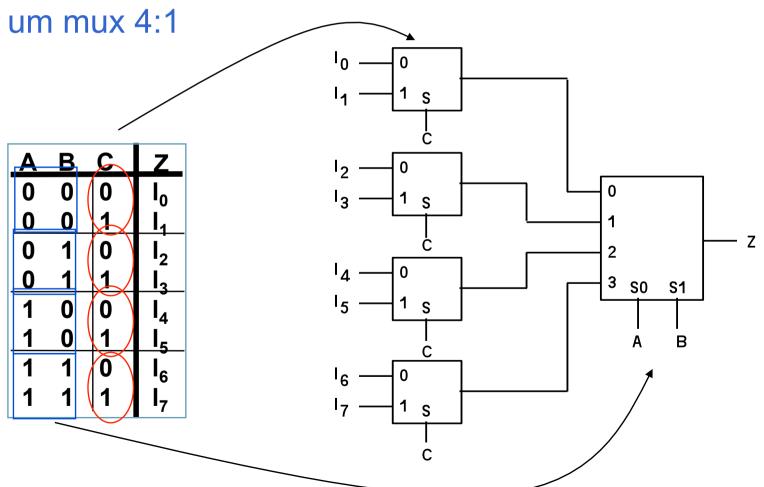
$$Z=\sum_{k=0}^{2^{n}-1} m_k I_k$$
 de seleção $m=minitermo$ $I=entrada$

Implementação de um multiplexador 4:1

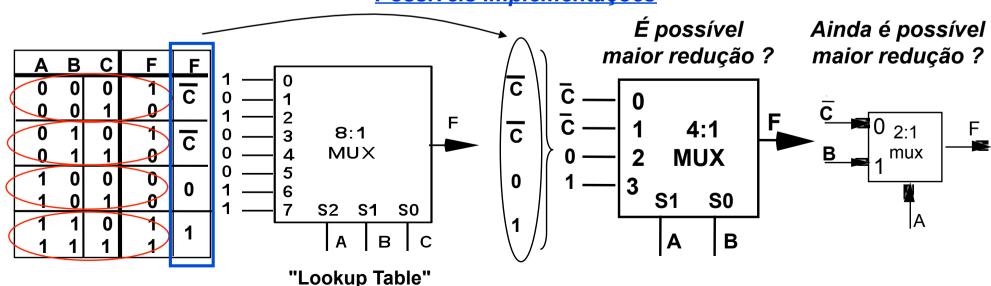


- Implementação de grandes multiplexadores a partir de pequenos multiplexadores
- Implementação de um multiplexador 8:1 a partir de um multiplexador 2:1 e multiplexadores 4:1

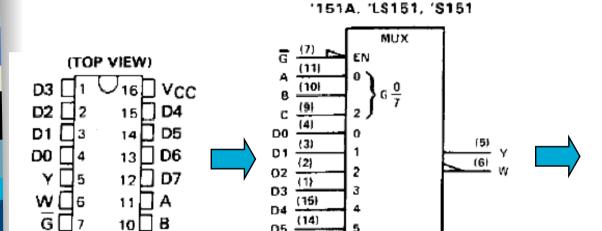
Os controles B e C escolhem uma das entradas de I_0 a I_3 e ao mesmo tempo de I_4 a I_7 entre os muxs 4:1.


O controle A estabelece a saída Z através da seleção no mux 2:1, cujas entradas são saídas dos muxs 4:1

Α	В	С	Z
0	0	0	I ₀
0 0	/ 0 0	1	l ₁
0	1	0	l ₂
0	1_	1	اء
1	0	0	I ₄
1	0	1	I ₅
1	1	0	I ₆
1	1	1/	l ₇



■ Exemplo de multiplexador 8:1 a partir de muxs 2:1 e


■ Multiplexadores 2ⁿ:1 podem implementar qualquer função de n variáveis, com n-1 variáveis de controle . As demais variáveis serão entrada para o mux.

Possíveis implementações

Multiplexador comercial – 74LS151 Mux 8:1

(13)

(12)

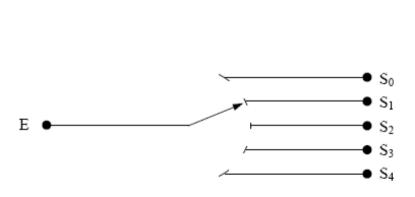
GND □8

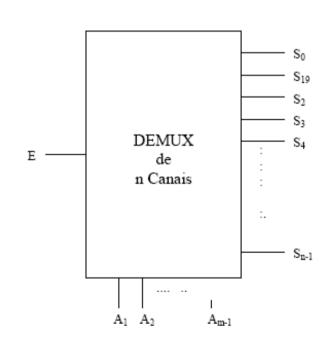
'151A, 'LS151, 'S151 FUNCTION TABLE

	II	OUT	PUTS			
S	ELEC	T	STROBE		W	
С	B	A	Ğ		**	
х	×	х	Н	L	H	
L	L	L	L	DO	00	
L	L	Н	L	D1	D1	
L	н	Ł	L	D2	$\overline{D2}$	
L	н	H	L	D3	D3	
н	Ł	L	L	D4	D4	
Н	L	H	L	D5	D5	
н	н	L.	L L	Ð6	D6	
Н	н	н	L	D7	D7	

H = high level, L = tow level, X = irrelevant $\overline{E0}$, $\overline{E1}$. . . $\overline{E15}$ = the complement of the level of the respective E input D0, D1 . . . D7 = the level of the D respective input

Decodificadores/Demultiplexadores


- Decodificadres/demltiplexadores são utilizados tanto para demultiplexar sinais como para decodificar endereços em um sistema computacional.
- Os decodificadores, assim como os multiplexadores também podem ser usados para implementar funções lógicas. No entanto, em geral, estes dispositivos precisam de lógica externa em sua saída.

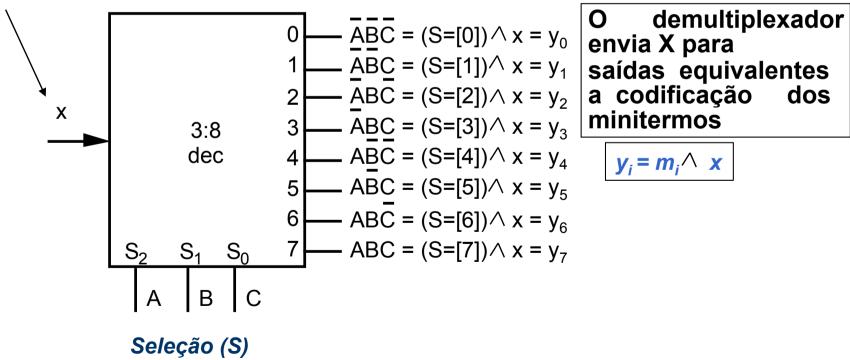


Demultiplexador

O demultiplexador ou Demux é um circuito combinacional dedicado com a finalidade de selecionar, através das variáveis de seleção, qual de suas saídas deve receber a informação presente em sua única entrada, executando a operação inversa realizada pelo Mux.

Demultiplexador

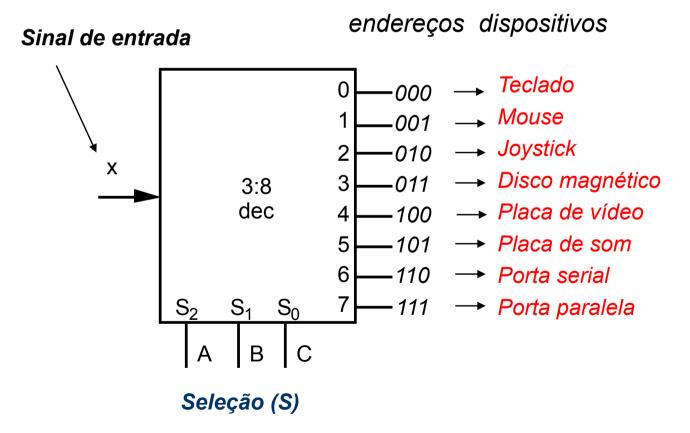
- Da mesma forma que o Mux, no Demux o número de entradas está relacionado com o número de variáveis de seleção, ou seja:
 - $n = 2^{m}$
 - n número de canais de saída;
 - m número de variáveis de seleção.
- Para:
 - m=2 o circuito possui quatro canais de saída,
 - m=3 o circuito possui oito canais de saída
- Algumas aplicações do Demux:
 - seleção de circuitos que devem receber uma determinada informação digital;
 - conversão de informação serial em paralela;



Decodificadores/Demultiplexadores

Demultiplexador/Decodificador 3:8 como bloco lógico

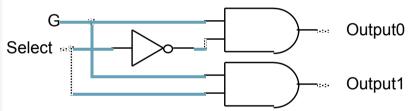
Sinal de entrada

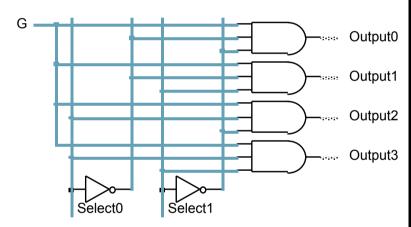

saídas equivalentes a codificação dos minitermos

$$y_i = m_i \wedge x$$

Decodificadores

Decodificadores de dispositivos

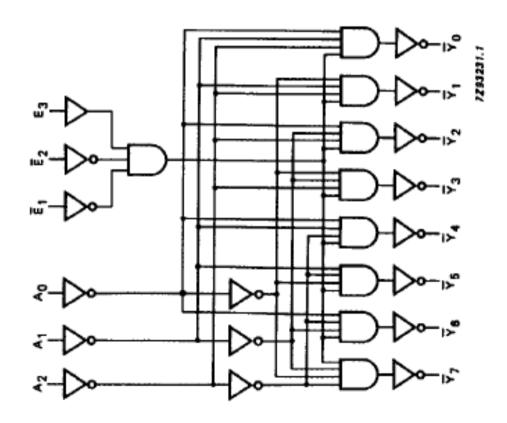




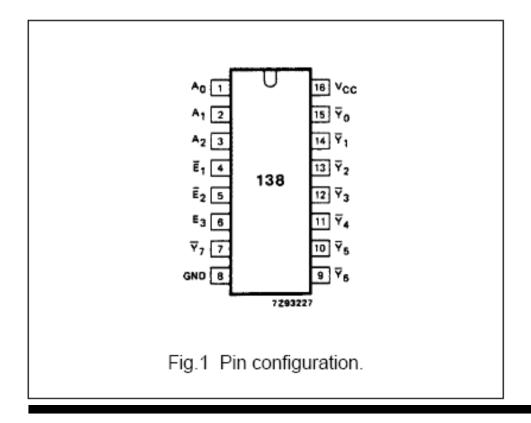
Decodificadores/Demultiplexadores

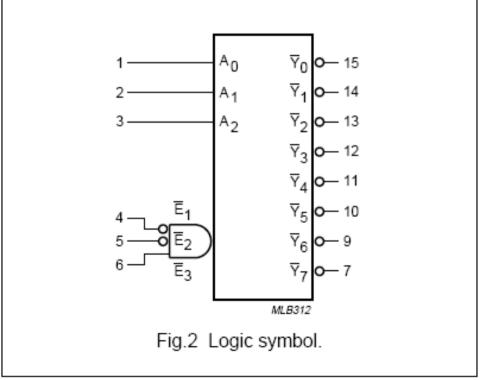
Alternativas de Implementação

- Demultiplexador 1:2 ou
- Decodificador 1:2 com habilitação ativa em alta ("1")


- Demultiplexador 2:4 ou
- Decodificador 2:4 com habilitação em alta ("1")

Decodificador/demultiplexador 74138


Diagrama Lógico



Decodificador/demultiplexador 74138

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 2, 3	A ₀ to A ₂	address inputs
4, 5	$\overline{E}_1, \overline{E}_2$	enable inputs (active LOW)
6	E ₃	enable input (active HIGH)
8	GND	ground (0 V)
15, 14, 13, 12, 11, 10, 9, 7	\overline{Y}_0 to \overline{Y}_7	outputs (active LOW)
16	Vcc	positive supply voltage

Decodificador 74 138 – tabela verdade

3-to-8 line decoder/demultiplexer; inverting

FUNCTION TABLE

INPUTS								OUT	PUTS				
E ₁	E ₂	E ₃	A_0	A ₁	A ₂	\overline{Y}_0	<u>Y</u> 1	₹ ₂	\overline{Y}_3	\overline{Y}_4	Y ₅	Y ₆	₹ 7
Н	Х	Х	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	X	X	X	X	H	Н	Н	Н	Н	H	Н	H
X	X	L	X	Х	X	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	H
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	H
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

Decodificadores

Exemplo

Implemente um decodificador 4-> 16 a partir de decodificadores 2->4 do tipo descrito abaixo:

G2	G1	Α	В	Y0	Y1	Y2	Y3
1	Х	Х	Х	1	1	1	1
Х	0	Х	Х	1	1	1	1
0	1	0	0	0	1	1	1
0	1	0	1	1	0	1	1
0	1	1	0	1	1	0	1
0	1	1	1	1	1	1	0

G1 e G2 são controles que habilitam a saída. A saída Y0-Y3 selecionada fica em '0'. As demais ficam em '1'.

Decodificadores/demultiplexadores

■ Decodificadores como gerador de funções

F1 = A' B C' D + A' B' C D + A B C D F2 = A B C' D' + A B C F3 = (A' + B' + C' + D')