Fluid DTMouse: Better Mouse Support

for Touch-Based Interactions
Alan Esenther, Kathy Ryall

Mitsubishi Electric Research Laboratories
201 Broadway
Cambridge, MA 02139
+1-617-621-7564

{esenther, ryall}@merl.com

ABSTRACT

Although computer mice have evolved physically (i.e., new form
factors, multiple buttons, scroll-wheels), their basic metaphor
remains the same: a single-point of interaction, with modifiers
used to control the interaction. Many of today's novel input
devices, however, do not directly (or easily) map to mouse
interactions. For example, when using one's finger(s) or hand
directly on a touchable display surface, a simple touch movement
could be interpreted as either a mouse-over or a drag, depending
on whether the left mouse button is intended to be depressed at
the time. But how does one convey the state of the left mouse
button with a single touch? And how does one fluidly switch
between states? The problem is confounded by the lack of
precision input when using a single finger as the mouse cursor,
since a finger has a much larger "footprint" than a single pixel
cursor hotspot. In this paper we introduce our solution, Fluid
DTMouse, which has been used to improve the usability of touch
tables with legacy (mouse-based) applications. Our technique is
applicable to any direct-touch input device that can detect
multiple points of contact. Our solution solves problems of
smoothly specifying and switching between modes, addressing
issues with the stability of the cursor, and facilitating precision
input.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Interaction styles (e.g., commands,
menus, forms, direct manipulation).

General Terms
Design, Human Factors.

Keywords
visual interaction, tabletop interfaces, mouse emulation, multi-
touch.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AVI '06, May 23-26, 2006, Venezia, Italy.

Copyright 2006 ACM 1-59593-353-0/06/0005...$5.00.

112

1. INTRODUCTION

Since its introduction almost forty years ago, the mouse concept
has been and continues to be a critical part of computer
interfaces. It is arguably the most ubiquitous part of any GUI.
Mice have evolved, now having multiple buttons, scroll-wheels,
and other sensing devices. However, even as today's computing
moves off the desktop and into the environment, the concept of a
mouse remains largely the same: a single-point of interaction,
with modifiers used to control the interaction.

Newer touch-sensitive surfaces such as horizontal tabletops or
vertical whiteboards can allow users to interact with displayed
content more naturally and directly than is possible with a
computer mouse. Although some can detect simultaneous points
of input, most applications, new and existing, are generally
written assuming that a mouse is being used. While we note that
new interaction paradigms are evolving and that we are actively
researching in this very area, we must recognize the importance
of providing support for legacy applications in both today’s and
future systems. Such support requires mouse-based input.

One of the challenges of supporting such touch-sensitive surfaces
is to provide a natural mechanism for emulating mouse buttons
on a surface that only detects touches. This is particularly
problematic with “direct-touch” surfaces where the input and
output are the same. For direct-input devices, the user is touching
the actual image of the content, rather than manipulating an
indirect input device such as a mouse or a touchpad off to the
side. In these touch-based systems, there is a difficulty in
interpreting a single-touch when used as a replacement for
mouse-input; a simple touch movement could be interpreted as
either a mouse-over or a drag, depending on whether the left
mouse button is intended to be depressed at the time. But how
does one convey the state of the left mouse button with a single
touch? And how does one fluidly switch between states? For
example, users may have to right-click to open a context menu,
drag with the left mouse button to re-position content, double-
click to engage a button, or may simply wish to reposition the
mouse without any additional input being generated.

In addition to the mouse button problem, there is a second,
confounding problem — the lack of precision input when using a
single finger as the mouse cursor. A finger has a much larger
"footprint" than a single pixel cursor hotspot, making it
awkward, difficult, and at times impossible to interact with GUI
elements designed for mouse interaction.

In this paper we introduce Fluid DTMouse, our solution to the
finger-based, direct-touch mouse problem; it has significantly
enabled the use of touch tables with legacy (mouse-based)
applications. While we have developed our techniques using the
DiamondTouch platform, they are applicable for any direct-touch
input device that can detect multiple points of contact (e.g., [2]
[11]) or future technologies with this capability. Our solution
solves problems of smoothly specifying and switching between
modes, addressing issues with the stability of the cursor, and
facilitating precision input. Section 2 introduces the mouse
emulation problems and discusses related work. Section 3
describes the Fluid DTMouse work and explains how it solves
key problems. Section 4 wraps up and discusses future and
ongoing work.

2. BACKGROUND & RELATED WORK

One of the more fundamental challenges for direct-touch input is
that users may wish to move a mouse cursor across a touch-
sensitive display without engaging any mouse buttons (e.g.,
simply move the mouse over a tooltip). But when a user touches
a touch-sensitive surface, how is the system to know whether the
touch was intended to simply move the mouse, or to “drag” with
the mouse by holding down the left mouse button during the
move? Thus direct-touch systems suffer from a different variant
of the well-known Midas Touch problem [9]; every touch counts!
It is instructive to consider how other touch surfaces deal with
this problem, even though most are not designed for larger
surface areas (the focus of our work).

The ubiquitous TouchPad [5] on laptop PCs has mouse buttons,
too, but there is a mechanism to switch between modes without
using the buttons. A user can switch between moving the mouse
and dragging with the mouse by tapping once and then quickly
pressing the finger down again and holding it down (a “click and
a half”). This sequence is recognized as a cue to hold down the
left mouse button. However, on a flat surface it can be difficult to
precisely position a cursor with a “large” fingertip, particularly
with direct input surfaces because the user’s finger is obscuring
the very content with which they wish to interact. The problem of
obscuring content has been addressed by offsetting the cursor
from the touch point, but this forfeits one of the big advantages
of a direct input surface — that you can directly touch the content
that you wish to interact with.

Fingerworks [3], a pad-like device, will use the average of two
adjacent finger touches as the location of the mouse cursor.
However, this is an indirect input device, and it does not address
problems with obscuring content or fluidly moving between
mouse-over and mouse-dragging modes.

The Touchscreen [4] is a direct input screen that also uses the
average of two touch locations as the location of the mouse
cursor. However it is not actually possible to detect whether one
or multiple points is being touched, which limits the dimensions
of its usefulness. For example, it requires a dedicated onscreen
“right-click mode” button to specify whether touches should be
interpreted as left-clicks or right-clicks. This solution does not
support mouse-overs at all, avoiding the issue of how to move the
mouse without holding down a mouse button.

113

Tablet PCs [6] are also direct-input devices. They rely on a
special pen. These devices have the unusual ability to detect
“hovering” when the pen is near the surface but not actually in
contact with the surface. So if the pen is hovering, then the
mouse is simply moved, and if the pen is in contact with the
Tablet PC surface then dragging (left-mouse button down) is
engaged. Right-clicking is supported by holding a button on the
Tablet PC pen, or holding the stylus down briefly, or by selecting
a “right-click” menu item to indicate that the next tap should be
interpreted as a right-click. It is the lack of this third state,
hovering (the first two states being touching or not touching),
which makes mouse-over support so difficult on most touch
surfaces. For our research we were interested in solutions that
would work with fingers, since requiring the use of a special pen
or other hardware may not be as convenient — particularly for a
large touch surface. It should be noted, however, that another
advantage of using a fine-tipped pen such as the Tablet PC pen is
that the fine tip does not obscure content as much as a finger
does. At any rate, currently Tablet PCs are only available with
very small surface areas, compared to tabletop and whiteboard
surfaces.

The DiamondTouch [1] “DiamondTouch Mouse” [7] software
supports a right-click by tapping with a second finger. It also
supports a TouchPad emulation mode. As with the TouchPad,
normal finger drags are interpreted as mouse moves, and the tap
then press (“click and a half”) gesture engages the left mouse
button. This provides a mechanism for switching between
mouse-over and dragging modes, but it is not a very smooth
mechanism. Drawing a series of lines requires extra tapping, and
it is difficult to precisely aim the mouse-down since it is part of a
gesture where the finger is tapped twice (but kept down the
second time). There is another mode in which all touches occur
with the mouse down, but this mode has two problems. All finger
drags result in mouse drags (no mouse-overs), and right-clicking
(again, by tapping with a second finger) causes first a left-click
and then a right-click to be sent to the first finger location.
While this earlier mouse-emulation provides most of the
necessary mouse functionality, its moded nature made it
awkward to use. Our current work was inspired by the
shortcomings of the earlier system; there has been a
demonstrated need to support better mouse-emulation.

The SmartBoard [8] supports mouse-overs via a dedicated Hover
button. When this button is pressed from a special toolbar, a
mouse-over mode is entered. A subsequent finger movement on
the surface will move the mouse without dragging. SmartBoard
allows right-clicking by pressing and holding until you see a
right-click menu. There is also a dedicated physical button on an
external pen tray that can be pressed to tell the system to
interpret the next touch as a right click. SmartBoard also
supports right-clicking by tapping with a second finger, which
will send a left-click and then a right-click to the first touch
location. The primary drawback is the dependency on dedicated
modes for mouse-over and mouse-dragging, without a smooth
mechanism for transitioning between the modes.

3. FLUID DTMOUSE SOLUTION

In order for mouse emulation to be smooth and natural on a
touch-based surface, a number of things are desired. First, it

must be easy to precisely position the mouse cursor. This is
particularly challenging when fine positioning is attempted with
a finger since the user’s finger typically obscures the mouse
cursor. Second, there must be a simple mechanism to toggle
between mouse-over mode (just moving the mouse) and mouse-
dragging mode (dragging with the mouse). Third, it is
undesirable for this toggling mechanism to require movement of
the cursor itself. For example, once you have moved the mouse
cursor over a small target that is to be dragged, you do not want
the act of switching to mouse-dragging mode to move the cursor
off of the target. Fourth, and perhaps most importantly, any such
solution should “feel” very easy and natural — what we call
“fluid.”

The Fluid DTMouse solution for better mouse support was the
culmination of several earlier attempts to support existing
mouse-based software for users of a DiamondTouch [1] table and
software [10]. The DiamondTouch table can detect multiple
concurrent users as well as multiple touch points by each user.
However, it is only the latter capability that was important for
supporting existing software on the table, because common
existing programs (and operating systems) are not designed to
support concurrent mouse input from multiple users. Our focus
in this work is to provide traditional single-user mouse
emulation.

With Fluid DTMouse, whenever a user touches the table with
one finger, the system behaves as though the left mouse button is
being held down at the time. This facilitates a simple and
intuitive behavior when the user is performing common
operations such as scrolling, dragging, drawing, clicking buttons,
and double-clicking. However, this makes it awkward to perform
mouse-over operations such as activating tooltips and image
rollovers in web pages (wherein moving the mouse over an
image changes the image). If the left mouse button is held down
during what would normally be a mouse-over operation, then
text, for example, will typically become unexpectedly selected.

Figure 1. Normally a touch would cause the left mouse button
to be held down. However when two fingers (the thumb and
middle finger in this case) are placed on the table at the same
time, the mouse is moved, not dragged. The mouse cursor
immediately jumps to the point in between the two fingers,
providing a view of the mouse cursor that is not obscured by
either finger.

As shown in Figure 1, the solution was to leverage the multi-
touch capability of the surface. If the user touches with two
fingers, rather than one finger, at the same time (or nearly so)
then the mouse cursor is just moved without engaging the left
mouse button. Furthermore, the mouse cursor is moved to the
point directly in between the two fingers. This insures that

114

neither finger is obscuring the mouse cursor, so the mouse cursor
can be precisely positioned by moving either or both fingers.

Figure 2. While in this mouse-move mode, tapping with a
third finger (in this case the index finger) in between the
other two toggles the left mouse button.

As shown in Figure 2, once this mouse-move mode has been
entered by placing two fingers on the surface, repeated tapping in
between the other two fingers with a third finger will toggle the
state of the left mouse button. (It doesn’t matter exactly where
the third finger taps, so long as it is within the rectangle created
by the first two fingers.) This allows for smoothly transitioning
between mouse-moving and mouse-dragging modes, without
causing the mouse cursor to move during the transition. This
addresses problems with the “stability” of the mouse cursor
position that are introduced with the “click and a half” technique
described earlier. The new technique allows you to keep your
fingers in contact with the table to save effort that might be spent
re-acquiring a cursor location for subsequent precision input. For
example, after drawing a line, as shown with the painting
program in Figure 3, the user can tap to disengage the left mouse
button, then move both fingers (still in contact) to reposition the
mouse cursor, and then tap again to smoothly start drawing a new
line. When the user stops touching the table, the mouse-over
mode is exited and the left mouse button is disengaged if it had
been engaged. Therefore, for simple dragging or for drawing just
one line, the third finger tap is only required once, not twice.

Figure 3. Now that the left mouse button has been engaged,
dragging the thumb and index finger causes a drag operation
centered between the fingers. The left mouse button is
released when either a subsequent third finger tap is
performed, or when the hand is removed from the table.

In practice it seems most natural to use the thumb and middle
finger of one hand to enter mouse-over mode. This allows the
index finger to be in position for tapping in between the other
two. However, if the user finds that her fingers or hand is
obscuring the cursor or other content from the view of herself or
other users, then she can instead use, for example, her index
finger from each hand for the first two touches. By keeping her

hands widely separated she can keep them from blocking
anyone’s view. The “widely-separated two-hand” technique is
also sometimes easier to use for very precisely positioning the
mouse cursor location.

The right mouse button is activated by touching with first one
finger and then tapping briefly with a second finger. At that point
the first finger can be moved around to perform dragging with
the right mouse button depressed. When the first finger is
removed from the surface, the right mouse button is disengaged.
In an earlier version, the right click would be generated as soon
as the second finger came up, but some applications required the
capability to drag with the right mouse button, so the behavior
was modified. This solution for right-clicking does not address
the need for very precisely specifying the location at which to
activate the right mouse button. But it was found to be so
intuitive that it was desirable as implemented. Alternative
techniques can supplement this default behavior.

Having two fingers on the table seems to provide a more stable
touch (less muscle vibration over time) than just one finger. If
the thumb and middle finger of one hand are used to specify the
two points then it seems to be a very natural and stable posture
for a human hand. The two fingers nicely “anchor” the touch,
which is particularly important when trying to precisely position
the mouse pointer.

It should be noted that it is due to nuances of the DiamondTouch
hardware that the third tap should be in between the first two
fingers. With some other system, such as a system based on
cameras, it is conceivable that the third tap could be anywhere
rather than only in between the first two fingers. Furthermore,
with the DiamondTouch system, the third tap should be within
the rectangular “bounding box” created by the other two fingers.
Otherwise the third tap will modify the cursor location as it
toggles the left mouse button. The main implication of this is that
the first two fingers should not be placed along the same
horizontal or vertical antennas used to detect the touch in a
DiamondTouch system. Doing so would create a bounding box
“rectangle” with no area in which to tap with the third finger. In
practice this doesn’t tend to be a problem since it is somewhat
less natural (more uncomfortable) to place the hand in this
problematic way.

Another issue is that the two-finger technique could make it
difficult to “reach” into corners of the surface. With a
DiamondTouch system, this is addressed by simply under-
projecting the display onto the table a bit. Other systems may
require the technique to be “intelligently magnetic” near edges.

4. CONCLUSION AND FUTURE WORK

Fluid DTMouse relies on multi-touch detection capabilities to
provide improved mouse emulation on a touch-sensitive surface.
It addresses issues including mouse-over support, smoothly
toggling the left mouse button, ergonomics, and precision input.

With the current implementation, one issue that remains is that
even with two fingers widely separated, the cursor might still be
obscured by the hand of the toucher for some observers.
Although two widely-separated hands could be used rather than

115

two fingers on the same hand, in some cases it may be better to
apply simple techniques for dynamically offsetting the cursor, or
duplicating the cursor area elsewhere, as needed. While
additional experimentation and evaluation is needed, Fluid
DTMouse is a notable improvement over existing solutions.

Although not discussed in this paper, another issue is support for
other mouse buttons, or for the mouse-wheel. Such support can
be (and has been) added through other natural extensions. In
some cases, however, the behavior is not enabled by default so as
to simplify the tool. These solutions rely on variations of the
basic techniques presented in this paper, and are still being
assessed.

Finally, as might be expected, Fluid DTMouse has quite a few
subtleties such as timing issues and error states that were not
addressed in this paper due to space considerations. Hands-on
exploration is the best way to understand and evaluate our
techniques. It is encouraging that this latest generation of mouse
emulation techniques finally allows sorely missed access to
particular aspects of many legacy applications — particularly
those aspects that were reliant on hovering and/or precise input
via a mechanism that “feels” natural and intuitive.

5. REFERENCES

[1] Dietz, P. and Leigh, D. DiamondTouch: A Multi-User
Touch Technology. In Proc. of UIST *01, ACM, NY, 2001,
pp. 219-226.

Rekimoto, J. SmartSkin: An Infrastructure for Freehand
Manipulation on Interactive Surfaces In ACM CHI
Conference on Human Factors in Computing Systems (CHI),
ACM Press. 2002, pp. 113-120.

(2]

FingerWorks. www.fingerworks.com

Mass Multimedia, Inc. http://www.touchscreens.com

[5] Synaptics Inc.
http://www.synaptics.com/products/touchpad.cfm.

[6] Microsoft Corporation.
http://www.microsoft.com/windowsxp/tabletpc/

[71 Mitsubishi Electric Research Laboratories.
http://www.merl.com/projects/dtmouse/

[8] Smart Technologies SMART Board.

http://www.smarttech.com/SmartBoard

Hansen, J., Andersen, A., and Roed, P. Eye-gaze control of
multimedia systems. ACM Symposium on Eye Tracking
Research & Applications, 1995.

[10] Esenther, A., Forlines, C., Ryall, K., Shipman, S,
DiamondTouch SDK: Support for Multi-User, Multi-Touch
Applications, ACM Conference on Computer Supported
Cooperative Work (CSCW 2002 Demonstration). Available
as, Mitsubishi Electric Research Labs Technical
Report TR2002-048, 2002.

[11] Han, J.
total internal

Low-cost multi-touch sensing through frustrated
reflection. In Proc. of UIST 2005.

http://www.fingerworks.com/
http://www.touchscreens.com/
http://www.synaptics.com/products/touchpad.cfm
http://www.microsoft.com/windowsxp/tabletpc/
http://www.merl.com/projects/dtmouse/
http://www.smarttech.com/SmartBoard

