Entertainment Computing xxx (2013) XXX-XXX

journal homepage: ees.elsevier.com/entcom b4

Contents lists available at SciVerse ScienceDirect

e -_—
Entertainment
Computing

Entertainment Computing

A Kinect-based natural interface for quadrotor control

Andrea Sanna *, Fabrizio Lamberti, Gianluca Paravati, Federico Manuri

Dipartimento di Automatica e Informatica, Politecnico di Torino, corso Duca degli Abruzzi 24, 1-10129 Torino, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 27 March 2012
Revised 7 September 2012
Accepted 20 January 2013
Available online xxxx

This paper presents a new and challenging approach to the control of mobile platforms. Natural user
interfaces (NUIs) and visual computing techniques are used to control the navigation of a quadrotor in
GPS-denied indoor environments. A visual odometry algorithm allows the platform to autonomously
navigate the environment, whereas the user can control complex manoeuvres by gestures and body pos-

tures. This approach makes the human-computer interaction (HCI) more intuitive, usable, and receptive

Keywords:

Natural user interface
Kinect

Quadrotor control
Interactive systems
Visual odometry

to the user’s needs: in other words, more user-friendly and, why not, fun. The NUI presented in this paper
is based on the Microsoft Kinect and users can customize the association among gestures/postures and
platform commands, thus choosing the more intuitive and effective interface.

© 2013 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.

1. Introduction

The control of mobile platforms plays a key role in several appli-
cation fields ranging from surveillance to entertainment. A frame-
work to control a quadrotor is presented in this paper; the
proposed solution supports both autonomous flight and manual
control by user’s body postures. The autonomous flight system
has been designed for GPS-denied indoor environments, whereas
the human-computer interaction (HCI) has been based on ges-
tures/postures, thus implementing a so called natural user inter-
face (NUI). NUIs have been investigated since early eighty’s
(voice and gestures are used to control a GUI in [5]). Among NUIs,
gesture-based interfaces always played a crucial role in human-
machine communication, as they constitute a direct expression
of mental concepts [25]. For example, nowadays mobile platforms
can be remotely piloted by using multi-touch devices [22,23] that
also act as display devices through the use of interactive streaming
functionalities [18]. The analysis of images coming from on-board
cameras allows mobile platforms to perform target tracking and
following tasks [19-21]. The variety of hand and body gestures,
compared with traditional interaction paradigms, can offer unique
opportunities also for new and attractive forms of HCI [24]. Thus,
new gesture-based solutions have been progressively introduced
in various interaction scenarios (encompassing, for instance, navi-
gation of virtual worlds, browsing of multimedia contents, man-
agement of immersive applications, etc. [28,39]) and the design
of gesture-based systems will play an important role in the future
trends of the HCI.

* Corresponding author. Tel.: +39 011 090 7035; fax: +39 011 090 7099.
E-mail address: andrea.sanna@polito.it (A. Sanna).

Human-robot interaction (HRI) is a subset of HCI and can be
considered as one of the most important domains of the computer
vision. Although a lot of works based on gesture recognition in the
domain of HRI are known in the literature (Section 2 briefly re-
views the most appropriate ones) recent technological advances
have opened new and challenging research horizons. In particular,
controllers and sensors used for home entertainment can be
exploited also as affordable devices supporting the design and
implementation of new kinds of HRI.

The aim of this work is to create a human-robot interaction
framework to allow a quadrotor both to perform autonomous nav-
igation tasks (by completing path-following missions constituted
by a sequence of pre-specified way-points) and to be controlled
by user’s body postures (for instance, when complex actions/
movements have to be performed). The main requisites needed
to implement a system capable of controlling the aerial vehicle
by means of user’s posture are: (1) extracting spatial information
from specific parts of the body (2) recognizing postures from this
information (3) associating recognized postures to specific com-
mands to be sent the quadrotor. In this work, the Microsoft Kinect
[15] is used as gesture tracking device; recognized postures are
then used to control an Ar.Drone quadrotor platform [2] (in the fol-
lowing of the paper the terms: Ar.Drone, quadrotor, and platform
will be used interchangeably). The user is the “controller”, and a
new form of HRI can therefore be experienced. Interaction with
quadrotors via Microsoft Kinect is not new. In particular, the ETH
Zurich group proposes a way to dynamically interact with quadro-
tors based on the position of arms [10]. The local 3D coordinates of
the user’s arms are mapped to the local 3D coordinates of the qua-
drotor; in this way, a direct mapping between arms coordinates
and quadrotor’s position can be established. However, the

1875-9521/$ - see front matter © 2013 International Federation for Information Processing Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.entcom.2013.01.001

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
mailto:andrea.sanna@polito.it
http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://www.sciencedirect.com/science/journal/18759521
http://ees.elsevier.com/entcom
http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

2 A. Sanna et al./ Entertainment Computing xxx (2013) XxX-Xxx

approach adopted in this paper is different from the one adopted in
[10]. Indeed, in this paper gesture recognition is used to trigger dis-
crete control commands without using an external tracker system
to obtain the quadrotor position. The two methods can be consid-
ered as complementary, since the approach presented in this paper
is useful for the navigation over a path which length is not known a
priori, whereas the ETH Zurich group approach [10] is useful for
performing local navigation tasks where a higher degree of preci-
sion is needed. Tests proved that the platform can be easily con-
trolled by a customizable set of body movements, allowing for an
exciting, fun, and safe experience even for non-skilled users. In or-
der to allow the platform to autonomously fly indoor environ-
ments, a pose estimation system exploiting two different
techniques is able to process images received from an on-board
camera to support the navigation. In this work, the on-board cam-
era is looking downward. Position and flight altitude are continu-
ously measured by a feature-based pose estimation algorithm
that analyzes the image features of the camera view, thus allowing
the system to estimate the location and the orientation of the plat-
form in the environment. Moreover, a second technique (namely
tag-based pose estimation) exploits some visual markers (tags)
placed on the floor, at well known positions, in order to reset local-
ization drifts cumulated by the feature-based pose estimation sys-
tem [7]. The combination of these two techniques results into an
efficient and robust visual odometry algorithm. The overall frame-
work introduces a number of challenges to be addressed, from the
control of the quadrotor through body postures to the analysis of
the images coming from the on-board camera to infer the flight
attributes of the quadrotor in a GPS-denied environment. The main
contribution of this paper is the proposal of a new integrated
framework able to efficiently and intuitively support both autono-
mous and piloted flight in indoor environments.

The paper is organized as follows: Section 2 reviews the main
HRI solutions and briefly introduces the Ar.Drone. Section 3 de-
scribes the NUI and the mapping between gestures and commands.
Section 4 presents the quadrotor pose estimation algorithm and its
performance. Finally, conclusions are drawn in Section 5.

2. Background

This Section is split in two parts: the first part presents the
state-of-the-art of NUIs with a particular focus on HRI, whereas
the second part describes the quadrotor used for tests.

2.1. Natural user interfaces

In HRI-based systems, especially in safe critical applications
such as the search-and-rescue and military ones, it is increasingly
necessary for humans to be able to communicate and control robots
in a natural and efficient way. In the past, robots were controlled by
human operators using hand-controllers such as sensor gloves and
electromechanical devices [32]. With these devices, the speed and
simplicity of the interaction were significantly constrained. To
overcome the limitations of such electro-mechanical devices, ges-
ture and body posture recognition techniques have been intro-
duced. In particular, body postures can be recognized by using
sensors which need to be worn as well as vision based techniques.

For example, the approach of controlling mobile platforms by
body postures (e.g., trunk tilt) is presented in [31,34]. A belt inter-
face, encompassing a set of sensors to recognize user bendings, al-
lows the user to control the robot motion and to receive tactile,
visual and auditory feedback from the remote mobile robot.

On the other hand, vision based techniques [25] do not require
to wear any contact devices, but use a set of sensors and algorithms
for recognizing gestures. Therefore, the type of communication

based on gestures can provide an expressive, natural and intuitive
way for humans to control robotic systems. One benefit of such
systems is that they propose natural ways to send geometrical
information to the robot, such as: up, down, etc. As seen in [4],
through the recognition of gestures, a natural language for HRI
can be created, relying on non invasive systems such as a camera
to identify user gestures for comparison with a predefined gesture
database. Gestures may represent a single command, a sequence of
commands, a single word, or a phrase and may be static or dy-
namic. Such a system should be accurate enough to provide the
correct classification of gestures in a reasonable time.

The ability to recognize gestures is important for an interface
developed to understand user’s intentions. Interfaces for robot con-
trol that use gesture recognition techniques have been studied in
depth, as using gestures represents a formidable challenge. In fact,
several issues arise from environments with complex backgrounds,
from dynamic lighting conditions, from shapes to be recognized (in
general, hands and the other parts of the human body can be con-
sidered as deformable objects), from real-time execution con-
straints, and so on.

A lot of work has been focused on hand gesture recognition for
human robot interaction. For instance, a gesture-based architec-
ture for hand control of mobile robots was proposed in [30]. Ges-
tures were captured by a data glove and gesture recognition was
performed by Hidden Markov Model statistical classifiers. Then,
the interpreted gestures were translated into commands to control
the robot. The use of a data glove was then replaced by markers in
[12]. Two cameras provided the information to triangulate the po-
sition of the hand markers, allowing gesture recognition to take
place and control a 6-DOF (Six Degrees of Freedom) robot with a
high precision. An alternative identification of the hand posture
was proposed in [8]. The hand posture was identified from the seg-
mented temporal sequence obtained by the Hausdorff distance
method. A real-time vision-based gesture recognition system for
robot control was implemented in [4]. Gestures were recognized
using a rule-based approach by comparing the skin like regions
in a particular image frame with the predefined templates in the
system memory. Another hand gesture recognition system for ro-
bot control, which uses Fuzzy-C-Means algorithm as gesture clas-
sifier to recognize static gestures, was proposed in [35,36]. Static
and dynamic gestures were recognized by a Fuzzy-C-Means clus-
tering algorithm in [26].

2.2. Quadrotors and the Ar.Drone platform

Quadrotors are used in a large spectrum of applications ranging
from surveillance to environmental mapping. Quadrotors are used
singularly as well as in swarm; in the latter case, the task of coor-
dination is always a critical issue. Quadrotors can be used both out-
door and indoor; outdoor platforms use, in general, autopilots for
autonomous navigation, whereas several localization techniques
(mainly based on computer vision) are exploited to determine po-
sition and orientation of indoor platforms, where GPS data are
unavailable (for instance, [1,6,27,29,37]).

The human interface plays a key role when a quadrotor and, in
general, any flying platform has to be directly controlled by the
user. RC-transmitters and joysticks are the two most common in-
put devices used to control quadrotors. Innovative solutions use
multitouch devices (e.g., Apple iPhone [2] and Microsoft Surface
[33]) and game controllers (e.g., Nintendo Wiimote [38]). [nitial at-
tempts of Microsoft Kinect usage to control the Ar.Drone have been
proposed in [42,43]. In both cases, hand gestures are translated
into commands for the platform.

The Parrot Ar.Drone [2] is a quadrotor helicopter with Wi-Fi link
and two on-board cameras: a wide angle front camera and a high
speed vertical camera. Software clients to control the platform

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

A. Sanna et al./ Entertainment Computing xxx (2013) XxX-Xxx 3

are available: Microsoft Windows/Linux PC clients and an applica-
tion for the iPhone can be used to control the Ar.Drone by key-
board, joystick or a multitouch device. The Parrot Ar.Drone
provides automatic “procedures” for takeoff, landing, and hover-
ing. A public SDK is available to implement custom applications
for the quadrotor control; the Windows client has been used as
the starting point to develop the proposed solution (see Section 3).
The SDK can be used to connect the Ar.Drone to ad-hoc Wi-Fi net-
works, send commands (takeoff, land, up/down, rotate, and so on),
receive, decode and display live video streams from the two cam-
eras, receive and interpret navigation data and battery status.
Although the Ar.Drone is sold in Europe at a price of about 300
euros as the flying video game, an impressive number of customers
use this platform for technical and research purposes.

3. The natural user interface

A high-level description of the NUI is provided in Fig. 1. The
user’s body is tracked by the Microsoft Kinect [15], which is
connected to a PC (the control station) via USB; gestures (body pos-
tures) are translated into commands to be sent to the platform via
a Wi-Fi connection. The goal is to let the user completely control
the quadrotor movements by using the body as a kind of natural
controller; moreover, an ad-hoc developed GUI (graphics user
interface) allows the user to remotely oversee the platform as flight
altitude, navigation data (telemetry), and video streams from the
on-board cameras are displayed on the control station screen.

From the software point of view, the architecture of the NUI is
shown in Fig. 2. The stack composed by FAAST (Flexible Action
and Articulated Skeleton Toolkit [11]), OpenNI - PrimeSense Nite,
and the Kinect drivers is used to capture and decode body postures.
FAAST is a middleware to facilitate integration of full-body control
with games and VR applications using OpenNI-compliant depth
sensors (e.g., the Microsoft Kinect). The toolkit incorporates a cus-
tom VRPN (Virtual-Reality Peripheral Network [40]) server to
stream the user’s skeleton over a network, allowing VR applica-
tions to read the skeletal joints as trackers using any VRPN client.
FAAST can also emulate keyboard inputs triggered by body posture
and specific gestures.

On the other hand, the OpenNI Framework [17] provides the
interface for physical devices and for middleware components. APIs
enable modules to be registered in the OpenNI framework and to be
used to produce sensory data. OpenNI covers communication with

LAPTOP

Hnoen g

UNIVERSAL SERIAL BUS

———

MICROSOFT KINECT

&

) Z.

both low-level devices (e.g., Microsoft Kinect), as well as high-level
middleware solutions (e.g., FAAST). OpenNI can interact with the
Microsoft Kinect by the OpenKinect library [16]. Body postures de-
tected by FAAST are used by the GUI to trigger a modified version of
the keyboard-based Ar.Drone client (the DLL Drone module in
Fig. 2), thus implementing an effective and robust command chain
to control the platform. Moreover, the GUI has been designed to re-
ceive information about position and orientation of the platform
from an “external” system (e.g., an optical tracking system or a vi-
sual pose estimation system), thus supporting the implementation
of Al (Artificial Intelligence) mechanisms to replace the user’s
control.

Fig. 3 shows the data exchanged among the NUI components.
The Ar.Drone sends the GUI navigation data and the video stream
and receives navigation commands. Each command is the transla-
tion of a body posture according to Table 3. This table is used by
FAAST to trigger a set of keyboard events related to platform
commands. The correspondence between body postures and
commands for the quadrotor described in the table has been con-
ceived basing on a series of tests performed using the real platform
and the common sense of the designers of the overall framework.
This translation table has been used for the user tests hereinafter
described, whom have been properly instructed. However, it is
worth noting that the correspondences can be easily adapted to
the users need (e.g., for left-handed people). Each posture (also
called action) is associated with a threshold; for instance the
syntax lean_forward 15 sets a lean forward of at least 15 degrees
to activate the corresponding action. The threshold defines the
sensibility in recognizing a given body posture and it can be
thought as the joystick “deadzone”, i.e., the region of movement
that is not recognized by the device.

The user can customize the association among actions and
platform commands, thus choosing the body postures more intui-
tive and effective. Threshold values of 20-25 degrees have been
experienced as a good tradeoff between robustness (i.e., the system
detects the right posture) and sensibility (i.e., the size of the
“deadzone”). A screenshot of a flying session is shown in Fig. 4:
the GUI of the control station is visible on the left, whereas the
platform is shown on the right. A video showing an example of
Ar.Drone control by body movements can be found in [41]. The
video allows to appreciate both the intuitiveness of the HRI and
the graphics output the user can exploit to control the platform.

To evaluate the efficiency of the proposed NUI, a comparative
analysis involving different human machine interfaces has been

Parrot

FIB. e

NN

HUMAN
MOVEMENTS

Fig. 1. A high-level description of the NUIL

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

A. Sanna et al./ Entertainment Computing xxx (2013) XxX-Xxx

Graphic User Interface (Windows Form Application - C#)

DLL Drone AL
(C++) Tracking
System

FAAST

PrimeSense

NITE OpenNI

Operative System
(Windows 7/XP)

Kinect Driver

Hardware

Fig. 2. Software layers of the NUL

| Control Data

4

| bLLDrone || o.s.

Video & Navigation Data |

| PrimeSense NITE |
I OpenNI]

FAAST

GUI

Human Movements

Indoor Tracking
System

GISH

|| wiFi |
Kinect
0.5. Driver USB PE—
——
|
| .
Bluetooth |\ Ag A]
AT A

Tracking Data

<
4
¢

Fig. 3. Data exchanged among the NUI components.

Fig. 4. Screen of the control station (left) and flying platform (right).

carried out. The methodology adopted for the evaluation has been
based on a set of tests to be performed by a group of users. Tests
consisted in repeating one or more navigation tasks by using a joy-
stick, a multitouch device (iPhone), and the proposed solution.
Users were asked for performing complete flight sessions (also
called missions) from takeoff to landing. The results have been

gathered by measuring the time needed to complete the sessions
and the precision in landing has been considered to mark each mis-
sion has completed (C), uncompleted (U) or semi-completed (S)
basing on the distance between the expected landing position
and the real one. The expected landing position was a target box
of size 56 cm x 56 cm. In particular, a mission is considered

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

A. Sanna et al./ Entertainment Computing xxx (2013) XxX-Xxx 5

completed if the user was able to land on the target box, semi-
completed if the landing was partially outside the target box and
uncompleted if the landing was outside the expected landing posi-
tion. Tables 1 and 2 shows the collection of these preliminary re-
sults. In particular, it is worth observing that the proposed
solution reached a score of 100% completed missions. These tests
emerged some useful information for the usability of the system.
Despite the fact that the use of Microsoft Kinect reached the most
accurate result, this comes at the expense of speed of completion of
the mission. On the other hand, the use of the iPhone device was
critical for those who have never used a multi-touch device. Con-
cerning the performance of the recognition technique, during the
tests all the user postures were correctly recognized.

4. Visual estimation of the quadrotor position

Two defined body postures (see Table 3) allow the user to
switch from manual to autonomous flight and viceversa. When
the quadrotor is not controlled by user’s postures, it autonomously
moves in the environment by following a pre-specified path com-
posed by a set of points named way-points. In order to localize the
platform in the environment with respect to a well-defined World
Coordinate System (WCS), a visual odometry algorithm has been
implemented. The basic idea behind the algorithm is to use the
features present in the environment, in particular on the floor, to
estimate the position of the quadrotor vertical camera. The pose
estimation system estimates the 3D rotation and translation of
the quadrotor from 2D images coming from an on-board camera.
The SiftGPU implementation of Lowe’s SIFT [13] has been used
to accomplish this task. The accuracy of this kind of measure is
strongly affected by several parameters: the number of extracted
features, the quality of the camera, the illumination of the environ-
ment, and so on. Therefore, significative errors can be cumulated
over the time (drifts). In the proposed framework, drifts are
bounded by placing a certain number of tags on the floor; each
tag is placed at a well defined position with respect to the WCS.
When a tag enters in the camera field of view, the pose estimation
system switches from the feature-based to the tag-based working
mode, thus resetting the cumulated drifts. The ArToolKit library [3]
has been used to implement the tag-based pose estimation
system.

The visual odometry algorithm, which is the base brick to esti-
mate the position of the quadrotor, is shown in Fig. 5. A thread is in
charge to gather the frame coming from the vertical camera and to
cope with the synchronization of the two pose estimation systems
(feature-based and tag-based). Then, two threads run concurrently.
The first thread searches for a visual marker in the frame, whereas
the second thread calculates the correlations (matches) between

Table 1
User study - experimental results using three different input devices.
Device User Time 1 [s] Time 2 [s]
(Test result 1) (Test result 2)
Joystick user01 45 (S) 46 (C)
user02 22 (U) 21 (C)
user03 26 (C) 20 (S)
user04 23 (C) 13 (S)
iPhone user01 61 (C) 20 (S)
user02 47 (U) 43 (C)
user03 42 (U) 67 (U)
user04 37 (U) 45 (U)
Kinect user01 82 (C) 70 (C)
user02 48 (C) 56 (C)
user03 63 (C) 54 (C)
user04 58 (C) 61 (C)

features extracted from the current frame and features computed
over a reference image. When a tag is identified, the absolute posi-
tion of the camera is computed and values are forwarded to the
feature-based pose estimation system to reset the drifts. Also the
altitude (measured by the ultra sound sensors of the quadrotor)
is sent to the feature-based pose estimation block in order to min-
imize errors; in particular, it is assumed that the platform is flying
over a planar surface. Then, a switch block selects the most appro-
priate pose estimation algorithm for the current frame and sends
position values to a filter for noise minimization. The algorithm
provides position and flight altitude of the quadrotor, thus allow-
ing to map it in the environment. Algorithm steps are repeated
for each frame when the platform flies autonomously.

The tag-based pose estimation system analyzes a given frame to
identify a visual marker. The first step of the algorithm is marker
detection, during which the system extracts information about
any marker placed into the current frame through thresholding
and corner detection techniques. Whenever a marker is detected,
it should be identified; during this phase, a unique marker identi-
fier is extracted depending on its pattern. Since each marker is
placed in known locations, the identification of a marker returns
early geo referential data that will be refined in the next steps. Bas-
ing on the position of marker’s edges and corners, a pose estima-
tion block extracts the position of the marker with respect to the
camera reference system. In particular, the transformation matrix
of the marker is computed. A change of the reference system
through an inversion of the transformation matrix is necessary to
find the position of the camera with respect to the framed marker.
Finally, the new transformation matrix is used in combination with
the early geo referential data of the specific marker to find the
absolute position of the camera (and therefore of the quadrotor)
in the environment.

Whenever markers cannot be detected, the feature-based
algorithm is triggered. The current frame coming from the verti-
cal camera is analyzed to compute a list of keypoints and their
descriptors, which represent the salient features of the image.
This process is performed through the SiftGPU implementation
of Lowe’s SIFT [13]. During the keypoints matching phase, the
current list of keypoints is compared against a previous list of
keypoints, computed at a reference frame, to find any correspon-
dence among them. The reference image is not continuously up-
dated at each analyzed frame, rather it is updated when the
number of matches is lower than a given threshold. The next
step is the pose estimation computed on the common features
of the two considered images (the current and the reference
frame). This process is performed by the Orthogonal Iteration
(OI) algorithm (described in the details in [14]) that returns
the new position and orientation in the camera reference system.
Therefore, a change of the reference system is needed to express
the position and orientation of the quadrotor with respect to an
absolute reference system, which origin is placed where the mis-
sion started.

The feature-based pose estimation algorithm has the clear
benefit of being able to estimate the position and rotation of the
quadrotor without knowing in advance any characteristics of the
surrounding environment. Position and rotations are computed
incrementally with respect to the take-off location and attitudes.
On the other hand, the main drawback is that it is heavily influ-
enced by drifts. The tag-based pose estimation algorithm has the
main advantage of being more precise than the feature-based
one. This behavior is clearly visible in the study of the position er-
ror shown in Fig. 7, where the position error due to the use of the
tag-based pose estimation is significantly lower. On the other
hand, the main drawback of the tag-based pose estimation
algorithm is due to the fact that for the correct functioning the
environment should contain reference points.

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

6 A. Sanna et al. / Entertainment Computing xxx (2013) XxX-Xxx

Table 2
User study - statistics.
Device Average time [s] (U)ncompleted % (S)emi-completed % (C)ompleted %
Joystick 27 12.5% 37.5% 50%
iPhone 45.25 62.5% 12.5% 25%
Kinect 61.5 0% 0% 100%
Table 3

Correspondence between body postures detected by FAAST [11] and commands for
the quadrotor.

Body posture Command Body posture Command
Right arm up Takeoff Right arm down Landing

Lean forward Go forward Lean backward Go backward
Lean right Go right Lean left Go left

Left arm up Go up Left arm down Go down
Left arm out Turn left Right arm out Turn right
Right foot up Aut. flight on Left foot up Aut. flight off
Rest position Hovering

4.1. Performance

Several tests have been performed to characterize the two pose
estimation systems in order to evaluate the error during the local-
ization process. Tests were aimed at measuring the error of the two
separate systems and, afterwards, the error of the two systems
working together as shown in Fig. 5. Moreover, characterization
tests were aimed at identifying the best setup of the environment;
in particular, the size of the tags, the optimal flight altitude and the
minimum number of floor features have been determined. All
these parameters are strongly dependent on the quality of the ver-
tical camera that, unfortunately, in the current setup provides very
low resolution frames, thus limiting the maximum flight altitude. A

Yposition [o T R RERET
| | IR
[mm] o | I Yyl

200/ U;‘Z : / : L.I '
v l* Tracking IR

Visual Odometry
— Marker

0 200 400 600
Elapsed Time [s]

Fig. 6. Measure of the position along the Y coordinate.

satisfactory trade-off can be found using 20 x 20 cm tags, flying at
an altitude of about 70 cm and extracting about 250 matches at
each correlation step. Assuming the floor as the X —Y plane,
Fig. 6 shows an example of error characterization when, with the
above setup, both pose estimation systems are used. Fig. 6 deals
with the error along the Y coordinate, but similar results have been
obtained for the X coordinate. The altitude is measured by the ultra
sound sensors of the platform, whereas orientation errors are on
the average of 2 degrees around a rotation axis (the most impor-
tant angle is the heading, that is the rotation around the Z axis).

Frame
Find No
marker
¢Yes
Y
ArTag Sift
Pose . Pose <— Altitude
Estimation Estimation
Y

Switch <———

Filter

l

6 DoF

Fig. 5. The flow chart of the pose estimation algorithm.

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

A. Sanna et al./ Entertainment Computing xxx (2013) XxX-Xxx 7

400
i
]
300 m
|
Error of Y ',‘~ \b«'
position 2gp § ﬁ. ‘-f '
estimation 1 | i
(mm) | i"L I ’ “
10 i | | ‘:"fn'll | ‘\ 1, HI" i i
| a ,ill-l' ‘H‘\‘ il% A 4 m “‘I ' h
Hy i F ,P‘J l "r E | | l! i Ty .:‘ f \
W Wil LAY W WY
200 400 600

Elapsed Time [s]

Fig. 7. Measure of the error along the Y coordinate.

The measures obtained by the algorithm presented in Section 4
have been compared with values computed by an infrared tracking
system [9]: the blue curve represents the value of Y measured by
the tracking system, whereas the red curve shows values obtained
by the proposed solution. It is worth observing that drifts grow
with the number of samples (i.e., the time) and they are almost re-
set when a tag is found in the frame (the red curve is thicker). This
allows the system to keep the error bounded, thus providing a ro-
bust localization solution.

5. Conclusion

This paper presents a framework for controlling the navigation
of a quadrotor in GPS-denied environments. A NUI based on body
gestures/postures allows the user to control the platform, whereas
a hybrid visual odometry algorithm (based on both tag detection
and features extraction) supports autonomous navigation.

The latency of the system has been also measured: the term la-
tency denotes the delay between a change in user’s posture and the
execution of the corresponding command. The measure has been
performed by analyzing the video sequence in [41] and counting
the number of frames elapsed between user and Ar.Drone move-
ments. An average latency of 0.3 s has been experienced. Thus,
about three commands can be executed in a second, which is fully
consistent both with the platform’s dynamic and the “user’s dy-
namic”. On the other hand, the term latency assumes a different
meaning when the autonomous flight is enabled. In this case, the
latency is the delay between the acquisition of a frame by the ver-
tical camera and its processing on the control station. The experi-
enced latency is about 2 s and this limits the speed of the platform.

Results presented in this paper showed how affordable devices
such as the Microsoft Kinect are opening new scenarios allowing to
create innovative forms of HRI unthinkable until a few months ago.
The evolution of devices designed to implement novel user-centric
forms of entertainment will provide researchers with alternative
tools to re-design more intuitive, robust and fun HRI paradigms.

References

[1] M. Achtelik, A. Bachrach, R. He, S. Prentice, N. Roy, Autonomous navigation and
exploration of a quadrotor helicopter in GPS-denied indoor environments, in:
Int. Aerial Robotics Competition, 1st Symposium on Indoor Flight Isssues,
2009.

[2] Ar.Drone web site, <http://ardrone.parrot.com>.

[3] Artoolkit documentation, <http://www.hitl.washington.edu/artoolkit>.

[4] S.J. Hong, N.A. Setiawan, C.W. Lee, Real-time vision based gesture recognition
for human-robot interaction, in: Proc. of the 11th International Conference
KES 2007 and XVII Italian Workshop on Neural Networks Conference on
Knowledge-based Intelligent Information and Engineering Systems: Part I,
2007, pp. 493-500.

[5] R.A. Bolt, Put-that-there: voice and gesture at the graphics interface, in: Proc.
Siggraph, ACM, NY, 1980, pp. 262-270.

[6] F. Caballero, L. Merino, J. Ferruz, A. Ollero, Vision-based Odometry and SLAM
for medium and high altitude flying UAVs, Journal of Intelligent and Robotic
Systems 54 (2009) 137-161.

[7] C. Celozzi, G. Paravati, A. Sanna, F. Lamberti, A 6-DOF ARTag-based tracking
system, IEEE Transactions on Consumer Electronics 56 (1) (2010) 203-210.

[8] N. Chao, M.Q. Meng, P. Xiaoping Liu, X. Wmg, Visual gesutre recognition for
human-machine interface of robot teleoperation, in: the IEEE/RS] Intl.
Conference on Intelligent Robots and Systems, 2003, pp. 1560-1565.

[9] S. De Amici, A. Sanna, F. Lamberti, B. Pralio, A Wii Remote-based infrared-
optical tracking system, Entertainment Computing 1 (2010) 119-124.

[10] Interaction with a Quadrotor via the Kinect, ETH Zurich, <http://
www.youtube.com/watch?v=A52FqfOiOEk>.

[11] FAAST web site, <http://projects.ict.usc.edu/mxr/faast/>.

[12] J. Kofman, Wu. Xianghai, TJ. Luu, S. Verma, Teleoperation of a robot
manipulator using a vision-based human-robot interface, IEEE Transactions
on Industrial Electronics 52 (2005) 1206-1219.

[13] D.G. Lowe, Distinctive image features from scale-invariant keypoints,
International Journal of Computer Vision 60 (2004) 91-110.

[14] C.-P. Lu, G.D. Hager, E. Mjolsness, Fast and globally convergent pose estimation
from video images, IEEE Transactions on Pattern Analysis and Machine
Intelligence 22 (6) (2000).

[15] Microsoft Kinect web site, <http://www.xbox.com/en-US/kinect/>.

[16] OpenKinect web site, <http://openkinect.org/wiki/Main_Page>.

[17] OpenNI web site, <http://www.openni.org/>.

[18] G. Paravati, C. Celozzi, A. Sanna, F. Lamberti, A feedback-based control
technique for interactive live streaming systems to mobile devices, IEEE
Transactions on Consumer Electronics 56 (1) (2010) 190-197.

[19] A. Sanna, B. Pralio, F. Lamberti, G. Paravati, A novel ego-motion compensation
strategy for automatic target tracking in FLIR video sequences taken from
UAVs, IEEE Transactions on Aerospace and Electronic Systems 45 (2) (2009)
723-734.

[20] F. Lamberti, A. Sanna, G. Paravati, Improving robustness of infrared target
tracking algorithms based on template matching, IEEE Transactions on
Aerospace and Electronic Systems 47 (2) (2011) 1467-1480.

[21] G. Paravati, A. Sanna, B. Pralio, F. Lamberti, A genetic algorithm for target
tracking in FLIR video sequences using intensity variation function, IEEE
Transactions on Instrumentation and Measurement 58 (10) (2009) 3457-
3467.

[22] G. Paravati, A. Sanna, F. Lamberti, C. Celozzi, A reconfigurable multi-touch
framework for teleoperation tasks, in: 16th IEEE International Conference on
Emerging Technologies and Factory Automation, 2011, pp. 1-4.

[23] G. Paravati, B. Pralio, A. Sanna, F. Lamberti, A reconfigurable multi-touch
remote control system for teleoperated robots, in: 29th IEEE International
Conference on Consumer Electronics, 2011, pp. 153-154.

[24] V.I Pavlovic, R. Sharma, T.S. Huang, Gestural interface to a visual computing
environment for molecular biologists, in: Proc. of the 2nd Int. Conference on
Automatic Face and Gesture Recognition, 1996, 52-73.

[25] V.1 Pavlovic, R. Sharma, T.S. Huang, Visual interpretation of hand gestures for
human-computer interaction: a review, IEEE Transactions on Pattern Analysis
and machine Intelligence 19 (1997) 677-695.

[26] V.S. Rao, C. Mahanta, Gesture based robot control, in: Proc. of the 4th
International Conference on Intelligent Sensing and Information Processing,
2006, pp. 145-148.

[27] S. Se, P. Jasiobedzki, Stereo-vision based 3D modeling and localization for
unmanned vehicles, International Journal 13 (2008) 46-57.

[28] T. Selker, Touching the future, Communications of the ACM 51 (2008) 14-16.

[29] S.P. Soundararaj, A.K. Sujeeth, A. Saxena, Autonomous indoor helicopter flight
using a single onboard camera, in: Proc. of the IEEE/RS] Int. Conference on
Intelligent Robots and Systems, 2009, pp. 5307-5314.

[30] CJ.P. Soshi Iba, J. Michael Vande Weghe, P.K. Khosla, An architecture for
gesture-based control of mobile robots, in: Proc. of the IEEE/RS] International
Conference on Intelligent Robots and Systems, 1999, pp. 851-857.

[31] J. Sugiyama, D. Tsetserukou, J. Miura, NAVIgoid: robot navigation with haptic
vision, in: Proc. Int. Conf. on Computer Graphics and Interactive Technologies
(ACM SIGGRAPH Asia 2011), Emerging Technologies, Article No. 9, Hong Kong,
China, December 12-15, 2011.

[32] D.J. Sturman, D. Zetler, A survey of glove based input, IEEE Computer Graphics
and Applications 14 (1994) 30-39.

[33] Controlling the AR Drone with Microsoft Surface, <http://blogs.msdn.com/b/
surface/archive/2011/01/27/controlling-the-ar-drone-with-surface.aspx>.

[34] D. Tsetserukou, J. Sugiyama, J. Miura, Belt tactile interface for communication
with mobile robot allowing intelligent obstacle detection, in: Proc. IEEE World
Haptics Conference (WHC 2011), Istanbul, Turkey, June 21-24, 2011, pp. 113-
118.

[35] J.P. Wachs, H. Stern, Y. Eden, Parameter search for an image processing-Fuzzy
c-Means hand gesture recognition system, in: Proc. of the IEEE Int. Conference
on Image Processing, 2003, pp. 341-344.

[36] J.P. Wachs, H. Stern, Y. Edan, Cluster labeling and parameter estimation for the
automated setup of a hand gesture recognition system, IEEE Transactions
Systems and Humans 35 (2005) 932-944.

[37] Y. Wang, A. Camargo, R. Fevig, F. Martel, R.R. Schultz, Image mosaicking from
uncooled thermal IR video captured by a small UAV, in: Proc. of the IEEE
Southwest Symposium on Image Analysis and Interpretation, 2008, pp. 161-
164.

[38] Controlling the AR Drone with Nintendo Wiimote, <http://www.youtube.com/
watch?v=z]50H-_431w&feature=player_embedded>.

10.1016/j.entcom.2013.01.001

Please cite this article in press as: A. Sanna et al., A Kinect-based natural interface for quadrotor control, Entertainm. Comput. (2013), http://dx.doi.org/

http://ardrone.parrot.com
http://www.hitl.washington.edu/artoolkit
http://www.youtube.com/watch?v=A52FqfOi0Ek
http://www.youtube.com/watch?v=A52FqfOi0Ek
http://projects.ict.usc.edu/mxr/faast/
http://www.xbox.com/en-US/kinect/
http://openkinect.org/wiki/Main_Page
http://www.openni.org/
http://blogs.msdn.com/b/surface/archive/2011/01/27/controlling-the-ar-drone-with-surface.aspx
http://blogs.msdn.com/b/surface/archive/2011/01/27/controlling-the-ar-drone-with-surface.aspx
http://www.youtube.com/watch?v=zJ50H-_431w&feature=player_embedded
http://www.youtube.com/watch?v=zJ50H-_431w&feature=player_embedded
http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

ARTICLE IN PRESS

8 A. Sanna et al. / Entertainment Computing xxx (2013) XXX—xXx

[39] A. Wright, Making sense of sensors, Communications of the ACM 52 (2009) [42] Hand tracking to control the AR Drone with Microsoft Kinect, <http://
14-15. dronehacks.com/2010/12/21/controlling-the-ar-drone-with-a-kinect-

[40] The Virtual-Reality Peripheral Network, <http://www.cs.unc.edu/Research/vrpn/>. controller/>.

[41] Controlling the AR Drone with Microsoft Kinect, <http://www.youtube.com/ [43] Hand tracking to control the AR Drone with Microsoft Kinect, <http://

watch?v=jD]pb4xXAJM>. www.youtube.com/watch?v=mREorvOhbY8>.

http://www.cs.unc.edu/Research/vrpn/
http://www.youtube.com/watch?v=jDJpb4xXAJM
http://www.youtube.com/watch?v=jDJpb4xXAJM
http://dronehacks.com/2010/12/21/controlling-the-ar-drone-with-a-kinect-controller/
http://dronehacks.com/2010/12/21/controlling-the-ar-drone-with-a-kinect-controller/
http://dronehacks.com/2010/12/21/controlling-the-ar-drone-with-a-kinect-controller/
http://www.youtube.com/watch?v=mREorv0hbY8
http://www.youtube.com/watch?v=mREorv0hbY8
http://dx.doi.org/10.1016/j.entcom.2013.01.001
http://dx.doi.org/10.1016/j.entcom.2013.01.001

	A Kinect-based natural interface for quadrotor control
	1 Introduction
	2 Background
	2.1 Natural user interfaces
	2.2 Quadrotors and the Ar.Drone platform

	3 The natural user interface
	4 Visual estimation of the quadrotor position
	4.1 Performance

	5 Conclusion
	References

