Introduction

This document describes the HOpenGL graphics system: what it is, how it acts, and what is required to implement it. We assume that the reader has at least a rudimentary understanding of computer graphics. This means familiarity with the essentials of computer graphics algorithms as well as familiarity with basic graphics hardware and associated terms.

HOpenGL (for “Haskell Open Graphics Library”) is a software interface to graphics hardware. The interface consists of a set of several hundred procedures and functions that allow a programmer to specify the objects and operations involved in producing high-quality graphical images, specifically color images of three-dimensional objects.

To the programmer, HOpenGL is a set of commands that allow the specification of geometric objects in two or three dimensions, together with commands that control how these objects are rendered into the framebuffer. For the most part, HOpenGL provides an immediate-mode interface, meaning that specifying an object causes it to be drawn.

A typical program that uses HOpenGL begins with calls to open a window into the framebuffer into which the program will draw. Then, calls are made to allocate a GL context and associate it with the window. Once a GL context is allocated, the programmer is free to issue HOpenGL commands. Some calls are used to draw simple geometric objects (i.e. points, line segments, and polygons), while others affect the rendering of these primitives including how they are lit or colored and how they are mapped from the user's two- or three-dimensional model space to the two-dimensional screen. There are also calls to effect direct control of the framebuffer, such as reading and writing pixels.

Installing HOpenGL on Win32 step by step

Step 1. Download the files:

Setup Cygwin from

http://sources.redhat.com/cygwin/setup.exe
(Binary Win32 version – Download/Install program)

HOpenGL-1.00.tar.gz from

http://www.informatik.uni-muenchen.de/~Sven.Panne/haskell_libs/HOpenGL/HOpenGL-1.00.tar.gz
(Source code version)

GHC compiler from

http://haskell.cs.yale.edu/ghc/dist/4.08.1/ghc-4-08-1.exe
(Binary Win32 version – Install shield)

Green Card from (two options)

ftp://ftp.dcs.gla.ac.uk/pub/haskell/glasgow/green-card/gc-2.exe

(Binary Win32 version – Install shield ver. 2.00)

or

http://www.dcs.gla.ac.uk/~sof/gc-2.01-src.tar.gz (recomended)

(Source code version ver. 2.01)

Step 2. Run setup.exe downloaded file:

Choose install on C:/ (your root directory, ignore the warnings).

This may take a while.

After installation complete, you should edit the file c:/cygwin.bat

For:

Step 3. Run (Install) ghc-4.08.1.exe

Choose custom and leave the default path.

Don’t forget to copy the perl.exe from ghc/bin/perl.exe to /bin/perl.exe.

Don’t forget to copy the bash.exe from ghc/bin/bash.exe to /bin/sh.exe.

These two warnings are shown on ghc install program.

More information is suitable on

http://haskell.cs.yale.edu/ghc/docs/latest/set/sec-install-windows.html
Step 4. Run (Install) gc-2.exe or unzip the gc-2.01-src.tar.gz
Step 4.1 only if you run (Install) gc-2.exe

The green card 2.00 has a comma bug. We need to do some improvisation on the source code of HopenGL in order to solve it.

Find the files xxxxxx.gc xxxxxxx.gc and xxxxxxxxxxxx.gc and change the lines

Step 4.2 only if you unzip the gc-2.01-src.tar.gz
When you have finally arrived at the bleeding edge, things get simple.

To compile the library and the examples, just type:

 configure

 make depend

 make all

Let’s do the first program

The “Hello World” program

import GL

import GLUT

main :: IO ()

main = do

 GLUT.init Nothing

 createWindow "hello world" Nothing [Single, GLUT.Rgb]

 (Just (WindowPosition 100 100))

 (Just (WindowSize 250 250))

 mainLoop

This simple program above shows how to everything begin.

createWindow needs some parameters:

Title = "hello world"

DisplayAction = Nothing

DisplayMode = [Single, GLUT.Rgb]

Note: Single means Single buffer.

Let’s do more. Type the lines bellow.

import GL

import GLUT

display :: DisplayAction

display = do

 -- clear all pixels

 clear [ColorBufferBit]

 -- draw white polygon (rectangle) with corners at

 -- (0.25, 0.25) and (0.75, 0.75)

 color (Color3 1.0 1.0 1.0 :: Color3 GLfloat)

 beginEnd Polygon $ mapM_ vertex [

 Vertex2 0.25 0.25,

 Vertex2 0.75 0.25,

 Vertex2 0.75 0.75,

 Vertex2 0.25 (0.75 :: GLfloat)]

 flush –- It’s necessary

myInit :: IO ()

myInit = do

 -- select clearing color

 clearColor (Color3 0.0 0.0 0.0)

 -- initialize viewing values

 matrixMode Projection

 loadIdentity

 ortho 0.0 1.0 0.0 1.0 (-1.0) 1.0

main :: IO ()

main = do

 GLUT.init Nothing

 createWindow "hello world" display [Single, GLUT.Rgb]

 (Just (WindowPosition 100 100))

 (Just (WindowSize 250 250))

 myInit

 mainLoop

It should open a window with the same size but displays a white square inside.

